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ABSTRACT 
In this study, we describe the results of our research to model 

collaborative problem-solving (CPS) competence based on 

analytics generated from video data. We have collected ~500 mins 

video data from 15 groups of 3 students working to solve design 

problems collaboratively. Initially, with the help of OpenPose, we 

automatically generated frequency metrics such as the number of 

the face-in-the-screen; and distance metrics such as the distance 

between bodies. Based on these metrics, we built decision trees to 

predict students’ listening, watching, making, and speaking 

behaviours as well as predicting the students’ CPS competence. 

Our results provide useful decision rules mined from analytics of 

video data which can be used to inform teacher dashboards. 

Although, the accuracy and recall values of the models built are 

inferior to previous machine learning work that utilizes multimodal 

data, the transparent nature of the decision trees provides 

opportunities for explainable analytics for teachers and learners. 

This can lead to more agency of teachers and learners, therefore can 

lead to easier adoption. We conclude the paper with a discussion on 

the value and limitations of our approach. 
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1. INTRODUCTION 
Collaborative problem-solving (CPS) is considered an essential 

skill for learners. However, the measurement and support of CPS 

are challenging for educators [1]. Nowadays, there is increasing 

evidence that learning analytics can provide us new means to 

measure and support students’ interactions, collaboration and 

problem-solving processes [2, 3]. For instance, analytics generated 

from video data can help us predict students’ attendance [4], 

attention to lectures [5, 6], and learning performance [7]. However, 

most available research in this area focuses on more monotonous 

contexts of lectures as it is a challenging task for researchers to 

detect and interpret complex learner interactions in dynamic 

classroom contexts. Here, we present our results on modelling 

students’ learning behaviours in dynamic collaborative and their 

CPS competence, using analytics generated from video data. More 

specifically, we investigate two research questions. 1) What 

automated metrics from video data can be used to predict students’ 

speaking, making, listening and watching behaviours during 

collaborative learning activities? 2) To what extent can video data 

analytics accurately predict learners’ CPS competence? Although, 

the identification of students’ complex interactions with each other, 

and with other resources around them, from automated metrics 

generated only from video data is challenging [7]; it can provide 

opportunities for easy-to-implement learning analytics for the 

measurement and support of CPS in real-world settings. 

2. LITERATURE REVIEW 

2.1 Learning Analytics for Co-located 

Collaborative Learning 
Most existing learning analytics (LA) research focuses on 

investigating computer-based educational environments. However, 

majority of collaborative learning still occurs in face-to-face or 

blended settings. Recently, the term “physical learning analytics” 

was coined to refer to research which brings LA methods and 

innovations into physical learning spaces and attempts to leverage 

and make sense of physical data to aid teaching practices and 

learning processes [8]. In this section, we review the previous 

research that model and analyse collaborative learning and teaching 

experiences beyond computer-based learning environments. 

Previous work presented here captures learner and teacher data 

beyond digital spaces and excludes research studies that leverage 

only the digital footprints and online logs of interactions [9]. 

In face-to-face, co-located collaborative learning environments, 

students communicate and interact with their peers via speech, 

facial expressions and body gestures while teachers or facilitators 

monitor these cues and reciprocate accordingly in real-time. As 

Chua et al. [9] show, research in physical LA can utilise video, 

audio, or biometric data separately or it can utilise a combination 

of multiple modalities as in the case of multimodal learning 

analytics research [10]. There is limited research on physical 

collaborative learning analytics and it mainly focuses on individual 

student level analyses rather than group or classroom. This research 

is mainly at the early maturity level of generating automated 

metrics rather than creating effective visualisations or providing 

feedback and reflection opportunites to teachers and students. For 

instance, Grover, Bienkowski, and Tamrakar [11] collected data of 

video, audio, clickstream, and screen capture from the activities of 

pair programming. The authors have asked expert to judge the level 

of collaboration of each group into three levels: low, medium, and 

high. Then, built a model with the collected multimodal data to 

predict the human level judgment. The model published can predict 

the results better than a baseline with the accuracy of 44%. As a 

pilot study, this research showed the possibility of using 

multimodal data to predict the expert judgement of collaboration 

levels. Similarly, [2] conducted a study collecting multimodal data 

in students’ physical proximity during their collaborative learning 

activities and analyzed the relationship between these data and 
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students’ learning outcomes. They used cameras, wearable 

equipment, and an integrated development environment to collect 

the data about students’ position, movement, speech, and their 

interactions with the computer. The results showed that the distance 

between students’ hands and faces can be strong predictors of 

students’ learning outcomes in collaborative learning. Similarly, 

Worsley [12] collected gesture, speech and electro-dermal 

activation data from pair collaboration. The gesture data was used 

to learn a set of canonical clusters and the relation between 

students’ clusters and their behaviors showed that gesture data can 

be used to predict students’ CPS behaviours. Moreover, in some 

previous studies biometric data was also used to analyse students’ 

collaborative learning. Lubold and Pon-Barry [13] conducted a 

study related to acoustic-prosodic features with rapport in 

collaborative learning and found that students’ pitch may be similar 

when they collaborated well with each other. Similarly, Dikker et 

al. [14] used portable electroencephalogram (EGG) to record 

students’ brain activities and showed that, brain-to-brain synchrony 

can also be a possible indicator of dynamic social interaction and 

effective collaboration.  

At a relatively more mature research level, aiming to generate 

visualisations from automatically generated metrics of students’ 

collaborative learning in physical spaces, Martinez-Maldonado et 

al. [3] used multimodal data to record students’ learning activities 

in healthcare simulations. Similar to group’s previous work by 

Echeverria et al. [15], they tracked and visualized how teams of 

students occupy the space in healthcare simulations. Although, 

visualisations of how students occupied space in the learning 

environment were created, the authors argued that teachers need the 

additional contextual information to have an interpretation of the 

students’ learning process from these visualisations.   

On the other hand, some researchers focused on individual student 

data and analysis rather than the group data as presented previously. 

In order to identify the different performances and behaviours of 

individual students during collaborative learning, Oviatt et al. have 

conducted a series of studies [16-19]. The group mainly explored 

the differences between expert and novice students, and compared 

their collaborative learning behaviours. The participants were 

asked to solve math problems in groups of three and video, audio, 

and written data was collected. The authors found that expert 

students performed more fluently in both writing and speaking 

during the process of collaboration. They also found that expert 

students had a higher ratio of using non-linguistic symbolic 

representations and structured diagrams to elemental marks. 

Similarly, Schneider et al. [20] used eye-tracking, video, and audio 

data to analyze individual student’s learning motivation in pair 

collaboration. Their results show that, using eye-tracking data only 

is not enough to fully present students’ different levels of learning 

dynamics. 

As the reviewed research above shows, LA research, particularly 

with multimodal data, can provide promising results to investigate 

collaborative learning in physical spaces. However, the collection 

and analyses of multimodal data from real-world classroom 

environments are challenging. On the other hand, video recording 

is a method which is used frequently to collect data from the 

classrooms to study student or teacher behaviours. Due to their low 

financial and technical costs, video-based analytics of collaborative 

learning can provide valuable opportunities for immediate real-

world impact. Therefore, researchers also focused on investigating 

the potential of video data to analyze student behaviors in various 

learning activities. In the next section, we will review this research. 

2.2 Video data to generate relevant metrics on 

learner behaviours in physical spaces  
 

Different types of information are extracted from the video data to 

generate physical learning analytics. Nowadays, the most common 

technology implemented to generate metrics from video data on 

learning is face recognition. Firstly, it can contribute to identify 

which students appear in videos. For instance, Mao et al. [4] 

designed a system which uses face recognition to identify students’ 

attendance in class. In fact, a similar approach was used in most 

existing learning analytics studies using video data, because in all 

previous studies, the first essential step to generate analytics from 

video data was to identify each student in the video. Secondly, head 

motion is another key metric which was utilised by researchers to 

measure and support learning. For instance, previously head motion 

was used to measure students’ attention in lectures [5, 6]. Thirdly, 

gestures are frequently extracted from video data for LA. Won et 

al. [7] used a Kinect cam to capture teachers’ and students’ gestures 

in one-to-one tutorial settings and found that both students’ and 

teachers’ gestures can be used to predict the effectiveness of 

learning and teaching.  

From the perspective of the educational settings, most research that 

uses metrics from only video data focuses on lectures. In these 

studies, researchers mainly analyze individual learner behaviors, 

such as attendance, attention, and engagement. On the other hand, 

very few studies focused on using video data to generate metrics on 

students’ interaction in collaborative learning settings. For 

instance, Schneider and Blikstein [21] conducted a study using 

video data to analyze pair collaboration. Students’ gestures were 

extracted from the 3D video data from Kinect cameras. The authors 

have explored whether the bimanual coordination, body 

synchronization, and body distance can be used to predict the 

learning outcomes in collaboration. The results showed that, 

although body distance was not strongly associated with students’ 

learning outcomes, students with low scores tended to be further 

away from their partners. So far, previous studies which use only 

video data in collaborative learning settings were not able to 

generate models with high prediction accuracy, particularly 

compared to those studies focusing on relatively more monotonous 

contexts such as lectures. It is a challenging task for researchers to 

identify students’ complex interactions with each other, and with 

other resources around them, from metrics generated only from 

video data [7]. However, this challenge if addressed to a 

satisfactory level, can provide opportunities for learning analytics 

of physical collaborative learning settings that can be more easily 

adopted in real-world education settings.  

3. METHODOLOGY 

3.1 Participants and the learning activities 
The participants in this study were 18 engineering students (17 

male, 1 female). Their average age was 20 years old. Participants 

were selected from a class of 30 students by their lecturers 

according to their performance and they had similar levels of 

domain knowledge. This was intentional to ameliorate the bias of 

knowledge and skill differences between the students on their CPS 

performance. The participants were divided into six groups to 

complete three sequential open-ended design tasks: 1) prototyping 

an interactive toy, 2) prototyping a colour sorting machine, and 3) 

building an autonomous car. The group members in the three 

activities were consistent. No specific instruction on how to 

allocate tasks or time was given to the learners.  
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3.2 Generating metrics from video data 
The final dataset encompassed 15 videos. Two open source 

libraries were used to extract metrics from videos. A face 

recognition database, FaceNet, was used to assign student IDs; and 

OpenPose, a powerful deep learning-based library, was used to 

extract students’ body poses from the videos. Initially, a random 

identifier was assigned to each person in the scene and these 

identifiers were associated with student ID’s using FaceNet. 

OpenPose was used to detect multi-person human body poses in 

real-time. For each video frame, OpenPose outputs the location of 

18 key points of the bodies found in the scene. Based on these, 8 

metrics were calculated, namely face-in-the-screen, right-hand in 

the screen, left-hand in the screen, both hands in the screen, hand 

distance of individual students, distance between bodies, distance 

between faces, and distance between group members’ hands. The 

first four are metrics of frequency, and they refer to the frequency 

of students’ body key points being found in the screen. The rest 

four are metrics of distance, and they refer to the distance between 

students’ key body points. These metrics were automatically 

extracted from video data using Python. Next, we will describe 

methods used to calculate these metrics. 

3.2.1 Metrics of frequency 

The metrics were used to represent the frequency of a student’s 

body point identified in the scene. To exemplify the approach, we 

will explain the face in screen (FIS) metric. When a student’s face 

position as generated from OpenPose is not (0,0), it means that the 

student’s face is found in the scene. If K(A) is the total number of 

windows in video A, XP (A1, n) would be the x value of student 

A1’s face point P in the window n. Similarly, YP (A1, n) would be 

the y value of student A1’s face point P in the window n. FIS, P = 

0. FIS(A1) was be defined as: 

FIS(A1) = 
∑ (𝑥𝑃(𝐴1,𝑛)≠0 𝑎𝑛𝑑 𝑦𝑃(𝐴1,𝑛)≠0 )

𝐾(𝐴)
𝑛=1

𝐾(𝐴)
 

Similarly, right-hand in screen (RHIS), left-hand in screen (LHIS) 

and both-hands in screen (BHIS) metrics were defined as follows: 

RHIS(A1) = 
∑ (𝑥𝑅𝐻(𝐴1,𝑛)≠0 𝑎𝑛𝑑 𝑦𝑅𝐻(𝐴1,𝑛)≠0 )

𝐾(𝐴)
𝑛=1

𝐾(𝐴)
 

LHIS(A1) = 
∑ (𝑥𝐿𝐻(𝐴1,𝑛)≠0 𝑎𝑛𝑑 𝑦𝐿𝐻(𝐴1,𝑛)≠0 )

𝐾(𝐴)
𝑛=1

𝐾(𝐴)
 

BHIS(A1)=
∑ (𝑥𝑅𝐻(𝐴1,𝑛)≠0 𝑎𝑛𝑑 𝑦𝑅𝐻(𝐴1,𝑛)≠0 𝑎𝑛𝑑 𝑥𝐿𝐻(𝐴1,𝑛)≠0 𝑎𝑛𝑑 𝑦𝐿𝐻(𝐴1,𝑛)≠0)

𝐾(𝐴)
𝑛=1

𝐾(𝐴)
 

3.2.2 Metrics of distance 

Hand distance (HD) was used to represent the mean distance 

between a student’s left hand and right hand. The distance between 

a student’s left hand and right hand was calculated only when both 

hands were found in the scene. If we define TBH(A1) to represent 

the set of windows in which student A1’s both hands are found in 

the screen and tBH(A1) as the total number of windows in this 

dataset. HD(A1) is calculated as below to measure student A1’s 

mean hand distance. 

HD(A1) = 
∑ (√(𝑥(𝐴1)(4,𝑛)−𝑥(𝐴1)(7,𝑛))2+(𝑦(𝐴1)(4,𝑛)−𝑦(𝐴1)(7,𝑛))2)𝑛∈𝑇𝐵𝐻(𝐴1)

𝑡𝐵𝐻(𝐴1)
 

The methods for calculating the distance between bodies (DBB) 

and distance between faces (DBF) were similar. For example, DBF 

metric was used to present the mean distance between one student’s 

face and the other two students’ faces during the CPS activity. The 

student who stood in the middle always had a smaller distance to 

the other two students even if this student was not engaged with the 

CPS activity. Therefore, a method of triangle visualisation was 

used. As figure 2 shows, points A1, A2 and A3 were used to 

represent the students’ faces. These three points make up a digital 

triangle and the closer the students stood to each other, the smaller 

area the triangle had. The height values of A1, A2, and A3 points 

represent how these three points affect the area of the triangle. 

Therefore, the height value of these points, HS1, HS2, and HS3, 

were used to define and calculate the DBF values.  

Figure 2. Distance between faces metric 

This method contributed to differentiate distance between students’ 

faces in a triangle relation. DBF(A1) was defined as: 

DBF(A1) = Average of Df(A1,n) 

Df(A1,n) was used to represent the distance between student A1’s 

face and the other students’ faces in the window n. If student A1’s 

face was not found in the scene or there were no other faces in the 

scene, DBF value was not calculated. If only two students’ faces 

were found in the scene (including student A1), Df(A1,n) was 

calculated as the distance between A1 and midpoint of the other 

two students’ faces. 

Df(A1,n)=Df(A2,n)= 

√(𝑥𝑃(𝐴1, 𝑛) − (
𝑥𝑃(𝐴1,𝑛)+𝑥𝑃(𝐴2,𝑛)

2
))2 + (𝑦𝑃(𝐴1, 𝑛) − (

𝑦𝑃(𝐴1,𝑛)+𝑦𝑃(𝐴2,𝑛)

2
))2 

If there were three students’ faces found in the scene, Df(A1,n) was 

calculated as the height value of point A1.  

Df(A1,n)=

 
|(𝑥𝑃(𝐴2,𝑛)−𝑥𝑃(𝐴1,𝑛))∗(𝑥𝑃(𝐴3,𝑛)−𝑥𝑃(𝐴1,𝑛))−(𝑦𝑃(𝐴3,𝑛)−𝑦𝑃(𝐴1,𝑛))∗(𝑦𝑃(𝐴2,𝑛)−𝑦𝑃(𝐴1,𝑛))|

√(𝑥𝑃(𝐴2,𝑛)−𝑥𝑃(𝐴3,𝑛))2+(𝑦𝑃(𝐴2,𝑛)−𝑦𝑃(𝐴3,𝑛))2
 

Similarly, the distance between group members’ hands (DBH) was 

used to show the distance between students’ hands.  

DBH(A1) = Average of Dh(A1,n) 

The first step in calculating Dh(A1,n) was defining students’ hand 

position. If student’s hands were both in the scene, the midpoint 

was used to represent the position of the students’ hand. If only a 

student’s right hand or left hand was found in the scene, the position 

of this hand was used to represent the hand position. If no hands 

were found in the scene for a student, this students’ DBH value was 

not calculated. (xHA1,yHA1) was used to represent student A1’s hand 

position. Then, a similar method to calculating distance between 

faces and distance between bodies was used to define Dh(A1,n). If 

student A1’s hand position was not found in the scene or there were 

no other hand positions defined in the scene, this value was not 

calculated. If there were two students’ hand positions found in the 

scene (including student A1), Dh(A1,n) was calculated as the 

distance between A1 and midpoint of the two students’ hand 

positions.  

Dh(A1,n)=Dh(A2,n)= 

√(x𝐻𝐴1(n) − (
x𝐻𝐴1(n)+x𝐻𝐴2(n)

2
))2 + (y

HA1
(n) − (

yHA1
(n)+yHA2

(n)

2
))2 

If there were three students’ hand positions found in the scene, 

Dh(A1,n) was calculated as the height value of point A1.  
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Dh(A1,n)=
|(x

HA2
(n)−x𝐻𝐴1(n))∗(x

HA3
(n)−x𝐻𝐴1(n))−(y𝐻𝐴3

(n)−y𝐻𝐴1
(n))∗(y

HA2
(n)−yHA1

(n))|

√(x𝐻𝐴2(n)−x𝐻𝐴3(n))2+(yHA2(n)−y𝐻𝐴3(n))2

 

3.3 Human coding of the video data for ground 

truth 

3.3.1 Learner Behaviours in CPS 

Learners present various behaviours while they are engaged with 

CPS activities. As has been shown in previous work [22], some of 

these relate to speaking such as vocalizing knowledge to establish 

shared understanding; some relate to listening such as adopting an 

improved version of a hypothesis suggested; some others to 

watching such as observing an agreed action being undertaken to 

achieve shared understanding; or making such as taking appropriate 

actions to solve the problem at hand. Therefore, we categorized the 

learner behaviours in four main categories of making (M), watching 

(W), speaking (S) and listening (L). In previous research, learners 

were marked with three different states according to the extent they 

were physically engaged in CPS [23]. However, such focus on 

physical activity emphasises on students’ making and watching 

behaviours, while omitting communication behaviours of listening 

and speaking. Here, by involving codes on listening and speaking, 

we aim to cover learner behaviours in CPS more holistically. 

Making refers to the situations that learners interact with objects 

around them. Watching represents situations when learners are 

looking at the resources around them (including human resources). 

Speaking refers to situations when learners were talking to other 

learners or teachers. Listening refers to situations when a learner’s 

head was facing towards another learner who is speaking. 

This coding scheme was implemented for 15 videos. 30-second 

windows were used to code each learner’s behaviours. The 

researchers observed the video for three seconds in every 30 

seconds to judge learners’ behaviours. Five digits were used to 

represent learner states. In each window, the codes (1), (2), (3), and 

(4) were used to represent making(M), watching(W), speaking(S), 

and listening(L) respectively. The code (0) was used to code 

windows when a learner was not in any of the states mentioned 

above, or was not found in the scene. The coding scheme was 

implemented by two human coders. Whenever there was 

disagreement, the coders observed the video for five seconds to 

revise their coding. In the end, there was %98 agreement with the 

ordinal k alpha value 0.912. M, W, S, and L values were then 

calculated as the relative frequency of these behaviours. For 

instance, M was defined as: 

M = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑑𝑒 ‘1’

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑛𝑑𝑜𝑤𝑠
 

3.3.2 Collaborative Problem-solving Quality 

Similar to the previous studies [11, 23], the group videos were 

watched by two researchers and manually coded using the 

frameworks introduced in [22, 23]. Based on these scores student 

groups were categorized as high, medium, and low competence 

CPS groups. In final scores, there was high agreement between 

researchers, with the ordinal k alpha = 0.876. 

3.4 Decision trees 
We use decision tree algorithm in RapidMiner v.9.3 to explore the 

relation between automated metrics and behaviours, as well as the 

relation between learner behaviours and CPS competence. Before 

implementing the operator, the numerical data was transferred into 

nominal data. For the values of video metrics and the values of 

behaviours, each value was compared with the mean score of the 

same learning activity (an interactive toy, a colour sorting machine, 

and an autonomous car). So, if the M value was higher than the 

mean making value of an interactive toy activity, it was labelled 

with ‘high’. Otherwise, it is labelled with ‘low’. For the CPS 

competence, groups were divided into three groups of high, 

medium, and low competence CPS groups. Given the scale of the 

sample, pruning and pre-pruning were used to avoid overfitting if 

the models. The confidence of pruning was 0.1. The minimal gain 

of pre-pruning was 0.01, the minimal leaf size was chosen as 2 and 

the maximum depth was set to 5. All learning behavior prediction 

models were evaluated with eight-fold cross-validation and CPS 

competence prediction model was evaluated with a three-fold cross 

validation due to smaller number of data points at the group level.  

4. RESULTS 

4.1 Using video metrics to predict learner 

behaviours of CPS 

4.1.1 Making 

The metrics of distance played a significant role in predicting the 

frequency of making behaviours. The DBB value was the root of 

the decision tree built which shows that when student bodies were 

close to each other, they were likely to have a high frequency of 

making behaviours. 

Figure 4. Decision tree for predicting the M value 

The overall accuracy of this decision tree was at 63.75%±20.43%. 

Predicting both high making (66.67%) and low making (63.89%) 

behaviours in groups more accurately than the baseline measures.  

Table 1. Confusion matrix for the M value 

 True H True L Class Precision 

Pred. H 6 3 66.67% 

Pred. L 13 23 63.89% 

Class Recall 31.58% 88.46%  

4.1.2 Watching 

The decision tree which was generated to predict the W value is 

shown in figure 5. Both, the metrics of frequency and the metrics 

of distance, contributed significantly to the prediction of watching 

behaviours. The frequency of student’s both hands being found in 

the screen was the most significant metric to predict their watching 

behaviours. When student’s both hands were found in the screen 

frequently, their watching behaviours tended to be low.  

 

Figure 5. Decision tree for the W value 

The accuracy of the decision tree was at 64.58%±12.34%, and it 

performed better in predicting the low watching behavior of 

learners compared to high watching behaviours.  

 

Table 2. Confusion matrix for the W value 

 True H True L Class Precision 

Pred. H 5 5 50.00% 
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Pred. L 11 24 68.57% 

Class Recall 31.25% 82.76%  

4.1.3 Speaking 

Distance between students’ faces was the most significant metric to 

predict students’ speaking behaviours. Moreover, other metrics of 

distance were related to the prediction of the S value. Whereas, only 

one metrics of frequency, LHIS value, was found significantly 

relevant to learners’ speaking behaviours.  

Figure 6. Decision tree for the S value 

The overall accuracy of the model was at 63.75%±26.27% with the 

low speaking behaviour prediction (75.00%) being much higher 

than the high speaking behaviour prediction (52.38%).  

Table 3. Confusion matrix for the S value 

 True H True L Class Precision 

Pred. H 11 10 52.38% 

Pred. L 6 18 75.00% 

Class Recall 64.71% 64.29%  

4.1.4 Listening 

Although the root of the listening decision tree was RHIS metric, 

both the metrics of distance and the metrics of frequency were 

significant in predicting the students’ listening behaviours in CPS.  

Figure 7. Decision tree for the L value 

The overall accuracy of this decision tree was at 60.00%±14.36% 

with similar class precision for high and low listening behaviours. 

Table 4. Confusion matrix for the L value 

 True H True L Class Precision 

Pred. H 17 12 58.62% 

Pred. L 6 10 62.50% 

Class Recall 73.91% 45.45%  

4.2 Predicting CPS from students’ Making, 

Listening, Speaking, and Watching behaviours  
In order to predict human judgements of CPS competence, we 

categorized learners’ behaviour values in three groups. For each 

behaviour, groups’ total values are ranked and every five group 

from top down is labelled as labelled as “Low”, “Med”, and 

“High”, respectively. We chose categorizing behaviours cross-

activity, rather than within activity, because the CPS competence 

judgements of humans were also made at the cross-activity level.  

Figure 8. Decision tree for the CPS competence 

As table 5 shows, the overall accuracy of this decision tree is 

62.50%±44.32% which is better than the baseline and the previous 

work in the field [11]. The L collaboration class prediction 

precision was the highest (75.00%) which shows the approach’s 

efficiency to predict low competence CPS groups from video data 

only. Whereas the prediction performance of high competence CPS 

groups was relatively low. 

Table 5. Confusion matrix for CSP competence 

 
Ture 

High 

True 

Medium 

True 

Low 

Class 

Precision 

Pred. High 2 3 0 40.00% 

Pred. Med 2 4 0 66.67% 

Pred. Low 0 1 3 75.00% 

Class Recall 50.00% 50.00% 100.00%  

 

5. Discussion and Conclusions 
In this study, students’ speaking, listening, making, and watching 

behaviours were interpreted via eight metrics generated from video 

data, which were than used to predict students’ CPS competences. 

Our ultimate goal is to generate transparent and explainable models 

that predict learners’ CPS competences from video data. These 

models can be used to support teachers’ co-orchestration of 

collaborative learning activities in classrooms. We chose decision 

trees due to their easy to interpret nature for teachers to be able to 

interrogate the analytics suggestions of learners’ CPS competences. 

We avoided the use of “black-box” modelling approaches, even 

though they are more frequently used in video analysis due to their 

high precision to generate insights from complex data [24]. As 

"black-box" approaches, we refer to the use of machine learning 

approaches (i.e deep neural networks) in learning analytics that are 

non-transparent and unexplainable. Not being able to explain a 

machine learning model doesn't matter in all cases. However, in 

educational contexts and learning analytics, where usually the main 

goal of a model is not only to get good predictions but also to 

understand which factors influence a learning outcome measure 

and to what extent, opaque approaches might have limited value 

[30]. However, as also argued in the literature [24] transparent 

modelling approaches such as decision trees can be more valuable 

as they allow teachers and learners to scrutinise analytics 

suggestions generated and allow opportunities for feedback and 

reflection [30]. This increased human agency in transparent models 

has the potential to lead to a better adoption in practice [25]. 

Our first research question was: What automated metrics from 

video data can be used to predict students’ speaking, making, 

listening and watching behaviours during collaborative learning 

activities? The results show that, all-eight automated metrics we 

calculated can contribute to the prediction of student behaviours. 

However, the distance between students’ faces and the distance 

between student’s hands were the most significant metrics as they 

were closer to the roots of four behaviours’ decision trees. These 

results are aligned with previous research that showed hands 

distance, and the students’ body location can be used to predict 
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various learning outcomes [26, 27]. More specifically for CPS, the 

distance between students’ hands, and the distance between 

students’ faces were also found to be strong features for predicting 

CPS performance [2]. However, in contrast to previous research the 

number of faces looking at the screen did not perform well in 

predicting students’ CPS performance [2]. The reason for this 

difference may be that the ground truths used in those studies were 

different. For instance, [2] evaluated outcomes of students’ CPS 

activity, whereas we evaluated students’ CPS competence 

regardless of their activity outcomes to categorise groups. While in 

education the goal of learning domain-specific knowledge is often 

accompanied with the goal of learning how to collaborate, both may 

require different guidance and support [28,31]. Our second research 

question was: To what extent can video data analytics accurately 

predict learners’ CPS competence? Although the decision trees 

illustrate that the automated metrics from video data can be used to 

predict CPS competence better than baseline, the accuracy of the 

decision trees need to be improved. The accuracy of the transparent 

models we built are inferior to previous LA work in the field that 

involves multimodal data [2, 3, 20]. It might be the case that 

different modalities of data can be used to extract different types of 

metrics to build more accurate models [i.e audio data [24, 29]]. 

However, transparent nature of the models built here helps us 

generate insights of learners’ CPS competence from video data. For 

instance, learners’ listening, making, and watching behaviours 

were all strong predictors of their CPS competence. Considering 

the hands-on nature of the learning activities we studied, perhaps 

these results are not surprising. Yet, it is still interesting to observe 

that high competence CPS learners are frequently engaged in 

making and/or watching their peers’ making behaviours during the 

learning activities. On the other hand, low competence CPS 

students were spending most of their time listening to others while 

not making or watching other’s making behaviours. These insights 

generated from the models can serve to LA tools that provide 

suggestions for interventions to teachers and learners. Learners and 

teachers need to know their performance through analytics, but they 

also need to know the reasons behind the analytics’ predictions on 

their performance. Our approach of building layered models from 

analytics metrics to learner behaviours (distance and frequency 

metrics → to predict S, M, L, and W) and from learner behaviours 

to CPS (S, M, L, and W → to predict high, medium, and low CPS 

competence groups) provides valuable contributions towards the 

design and use of non-disruptive LA technologies that can be used 

to improve real-world practice of CPS. It should be noted that since 

we used video data from classroom activities, there were multiple 

issues such as the cameras being too close/too far, not being able 

record all interactions between students, or being moved away by 

students during the activities. This all led to missing data and lower 

accuracy in our predictions. Therefore, a similar research with more 

reliable data sources can help improve the results presented here.  
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