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Abstract

Background

Multidrug-resistant tuberculosis poses a major threat to the success of tuberculosis control

programs worldwide. Understanding how drug-resistant tuberculosis evolves can inform the

development of new therapeutic and preventive strategies.

Methods

Here, we use novel genome-wide analysis techniques to identify polymorphisms that are

associated with drug resistance, adaptive evolution and the structure of the phylogenetic

tree. A total of 471 samples from different patients collected between 2009 and 2013 in the

Lima suburbs of Callao and Lima South were sequenced on the Illumina MiSeq platform

with 150bp paired-end reads. After alignment to the reference H37Rv genome, variants

were called using standardized methodology. Genome-wide analysis was undertaken using

custom written scripts implemented in R software.

Results

High quality homoplastic single nucleotide polymorphisms were observed in genes known

to confer drug resistance as well as genes in the Mycobacterium tuberculosis ESX secreted

protein pathway, pks12, and close to toxin/anti-toxin pairs. Correlation of homoplastic vari-

ant sites identified that many were significantly correlated, suggestive of epistasis. Variation

in genes coding for ESX secreted proteins also significantly disrupted phylogenetic

PLOS ONE | https://doi.org/10.1371/journal.pone.0189838 December 27, 2017 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Grandjean L, Gilman RH, Iwamoto T,
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structure. Mutations in ESX genes in key antigenic epitope positions were also found to dis-

rupt tree topology.

Conclusion

Variation in these genes have a biologically plausible effect on immunogenicity and viru-

lence. This makes functional characterization warranted to determine the effects of these

polymorphisms on bacterial fitness and transmission.

Introduction

The World Health Organization estimates that multidrug-resistant tuberculosis causes 500

deaths and 1300 new infections each day [1]. Understanding the genetic basis of tuberculosis

drug resistance, host immune evasion and bacterial phenotype is important to inform the

development of new diagnostic, treatment and preventive strategies. Identifying convergent

evolution in multidrug-resistant tuberculosis may uncover how Mycobacterium tuberculosis is

adaptively evolving to evade host immunity and antibiotic chemotherapy. Determining which

variant sites are most disruptive of phylogenetic structure could also uncover important geno-

typic influences on phenotype.

Homoplasy is defined as the emergence of identical traits or characters occurring indepen-

dently in different clades that are not present in their common ancestor [2]. Homoplastic

events are often associated with adaptive advantages, a frequently cited example being the

independent evolution of the eye across multiple different species [3]. Analyses of genome

wide data looking for homoplasious signals have already led to the identification of genes asso-

ciated with echo location in mammals [4], caffeine production in coffee and tea [5], and the

adaptation of Pseudomonas to the human lung in cystic fibrosis [6]. Homoplastic mutations

among drug resistant M. tuberculosis may code for drug resistance or mechanisms of immune

subversion [7,8].

Only a few studies have examined M. tuberculosis strain collections for evidence of homo-

plasy. Casali et al [9] identified a set of homoplastic mutations among a large collection of 1000

prospectively collected strains in Samara Oblast, while Farhat et al [7] in a smaller dataset of

123 strains compared the occurrence of multiple independent mutations in MDRTB strains to

that among drug susceptible strains. Others have screened a selected set of genes encoding sur-

face proteins for homoplasy to test the hypothesis that mutations in these surface proteins at

the interface with the human immune system lead to significant adaptive advantage [8]. No

studies have examined the correlation between homoplastic sites or identified variant sites that

particularly influence phylogenetic structure.

In order to identify homoplasy, topologically disruptive polymorphisms and evidence of

epistasis we sequenced the genomes of 471 predominantly multidrug-resistant tuberculosis

isolates collected in the suburbs of metropolitan Lima, Peru.

Results and discussion

Patient demographics. The median age of recruited patients was 30 years (IQR 23–42) with an

HIV prevalence of 4% (19/469) and a smear positivity percentage of 90% (416/469), S1 Table.

The 471 sequences clearly clustered phylogenetically into 5 main groups together with the out-

group of Mycobacterium canetti and 3 circulating strains of M. caprae observed at the population
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level in Lima (Fig 1) supported by high (>99%) bootstrap probabilities and also by principle

component analysis. Samples were predominantly from lineage 4 (Euro-American) which com-

prised 54% (255/469) LAM (Latin American Mediterranean), 17% (81/469) Haarlem, 10% (47/

469) T Clade and 10% (47/469) other small clades (including X, S and other T-type MIRU-spoli-

gotypes). A total of 34 (7%) were from the lineage 2 Beijing family and the remainder of the data-

set included 3 Mycobacterium caprae strains, one Mycobacterium bovis strain and one East

Asian Indian Manilla (EIA2) strain (Table 1).

Phylogenetic comparison of 15-loci MIRU-VNTR with whole genome

sequencing

At high resolution when the sub-clades of the LAM clade as defined by MIRU-VNTR were

compared to whole genome sequence defined clades (Fig 2), significant disagreement in clade

topology was observed. This highlights the unreliable nature of defining a sub-clade based on

MIRU-VNTR alone. MIRU derived trees correlated better with the whole genome trees than

trees constructed from concatenated MIRU-spoligotypes and much better than trees made

from spoligotyping alone (S1 Fig).

Fig 1. The whole genome maximum likelihood SNP based phylogeny of 471 study strains together with the reference

H37Rv and Mycobacterium canettii.

https://doi.org/10.1371/journal.pone.0189838.g001
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Table 1. Table of demographics.

Number Proportion

Whole Genomes Sequenced 471 100%

Metadata Available (Denominator) 469 99%

Sex

Male 288 61%

Female 179 38%

Unknown 2 1%

Age Median (IQR) Overall 0 (23–42) -

<10 0 0%

10–<20 49 10%

20–<30 174 37%

30–<40 104 22%

40–<50 54 12%

50–<60 38 8%

>60 37 8%

Unknown 13 3%

Ziehl Neelsen Smear Status

Positive 416 89%

Negative 46 10%

Unknown 7 1%

Previous TB Disease

Yes 298 64%

No 171 36%

Unknown 0 0%

HIV Status

Positive 19 4%

Negative 450 96%

Unknown 0 0%

Drug Resistance Profile

Susceptible1 26 6%

Rifampicin Resistant 33 7%

Isoniazid Resistant 97 21%

Multidrug Resistant 311 66%

MIRU-Spoligotype Available 240 52%

Clade

Latin American Mediterranean 255 54%

Haarlem 81 17%

Beijing 34 7%

T 47 10%

Mycobacterium caprae 3 <1%

Mycobacterium bovis 1 < 1%

East Asian Indian 1 <1%

Other Small Clades2 47 10%

1Susceptible to Rifampicin and Isoniazid.
2Comprised the MIRU defined ‘S’ family, ‘X’ family and ‘T’ family strains.

https://doi.org/10.1371/journal.pone.0189838.t001
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Homoplastic non-synonymous polymorphisms

Many of the known drug resistance mutations were observed to occur homoplastically across

the phylogeny (S2 Table). These mutations have been widely reported elsewhere [10]. A phy-

logeny of the study strains together with the sites of homoplastic polymorphisms is provided

in Fig 3.

The Rv2828c non-synonymous mutation Thr141Met is particularly interesting as a separate

intergenic homoplastic polymorphism was also identified in the promoter region 2bp

upstream of the start of Rv2828c (position 3136343). This gene has not as yet been implicated

with drug resistance or virulence, however the Rv2828c gene is adjacent to a toxin antitoxin

(TA) system vapC22 (Rv2829c) vapB22 (Rv2830c) which has been demonstrated to limit

growth of M. smegmatis [11]. Toxin gene products of vapB and vapC block M. tuberculosis
translation via RNA cleavage thereby slowing down the replication rate facilitating successful

latent infection [11,12]. Many antibiotics target bacterial growth, making slowly replicating

bacteria more refractory to treatment [13]. Ramage et al highlight that the significant

Fig 2. A 15-loci MIRU-VNTR derived neighbour joining tree (right) of 142 strains of the LAM clade (lineage 4) for

which both whole genome sequence data were available labelled according to Institut Pasteur website www.

miru-vntrplus.org and compared to a whole genome sequence neighbour joining tree (left) demonstrating the

misclassification of strains into groups at high definition based on MIRU alone.

https://doi.org/10.1371/journal.pone.0189838.g002
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expansion of TA systems relative to the last common ancestor of M. tuberculosis suggesting an

important role for these systems in M. tuberculosis evolution [11].

The non-synonymous homoplastic polymorphism in esxI occurred in the epitope coding

region at position 1160767 (Ser23Leu). This polymorphism has been described by Upleker at

al [14] as critical to immunogenicity and therefore likely to confer a functionally beneficial

adaptive advantage.

The lldD2 non-synonymous single nucleotide polymorphism Val3Ile (at position 2123153)

occurred independently 12 times and expanded to a total of 70 strains at the tips of the tree (a

second non-synonymous homoplastic lldD2 Val253Met variant at position 2122403 was also

identified). The lldD2 gene is a putative lactate dehydrogenase. Osorio et al [8] identified this

polymorphism when evaluating genes encoding membrane proteins for diversifying selection.

They speculated that mutations in this gene could represent a metabolic adaptation to host

environment such as anaerobic conditions. One synonymous polymorphism also occurred

homoplastically in Rv1873, a gene of unknown function located adjacent to lldD2 [15].

Fig 3. Phylogeny of study strains with clade names and position of homoplastic sites identified in the

study.

https://doi.org/10.1371/journal.pone.0189838.g003
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Homoplastic intergenic polymorphisms

The most homoplastic intergenic polymorphism (occurring 13 times independently and

expanding to 64 strains at the tips of the tree) arose 15bp upstream (position 1673433) of

fabG1 in the promoter region [16]. This gene is associated with isoniazid resistance as it can

act as an alternative promoter for inhA [17].

Homoplastic synonymous polymorphisms in ESX genes

Emerging evidence suggests that synonymous sites may also be under selection because of

adaptive changes in gene expression via transcription factor binding or mRNA stability [18].

The ESAT-6 like ESX proteins were over represented among the synonymous polymorphisms

identified in this analysis. The family of proteins coded by these genes are the most immuno-

dominant of M. tuberculosis antigens. A synonymous esxK mutation (position 1340675 A to G)

occurred independently on 9 occasions expanding to 84 strains at the tips of the tree. This

mutation fell in the middle of a transcription factor binding hotspot that has been demon-

strated to bind 10 different gene regulators [19]. Only 2.5% of the genome acts as a binding

site for multiple transcription factors making these regions highly likely to influence gene

expression. Supporting the importance of the esx genes in immunogenicity, Villareal and col-

leagues [20] have already demonstrated substantial antigen-specific IFN-γ spot-forming cells

to all esx antigens together with a maintained memory response. In addition, none of esxO,

esxV, esxP, esxW, esxA, and esxB are present in avirulent BCG [21]. The conservation of silent

as well as nonsynonymous SNPs between paralogs and orthologs of the ESX family, as seen in

esxP and esxM, respectively, suggests that even minor variation within these families could sig-

nificantly alter the expression of these proteins [14]. Uplekar et al also suggested that sequence

changes in ESX genes are likely to lead to immune variation and found evidence of intra-geno-

mic recombination as a potential source of variation in these genes. Skjot and colleagues

hypothesized that the amino acid substitutions encoded by the duplicated genes for the ESAT-

6 protein family may allow for antigenic drift, wherein the regulated expression of functionally

similar protein homologs that differ in their immunodominant epitopes result in antigen vari-

ation and immune system escape [22].

Other homoplastic synonymous polymorphisms that occurred in transcription factor bind-

ing hotspots included those in esxL (3 homoplastic sites, C>G at position 1341052), esxO (2

homoplastic sites, C>G at position 2626103) and Rv1873 (a gene upstream of lldD2, 3 homo-

plastic sites, A>C at position 2123190). The genes esxL, esxM and esxN also demonstrated syn-

onymous polymorphism homoplasy albeit with two ancestral homoplastic mutations only.

Two homoplastic synonymous sites were identified in the gene pks12 also identified as homo-

plastic by Farhat et al [7]. This gene is the largest in the Mycobacterium tuberculosis genome

and is involved in pathogenesis by dimycocerosyl phthiocerol synthesis [23].

The esx genes also featured in the phyC output (S3 Table) with mutations in esxK, esxN and

esxV also identified as being homoplastic. The homoplastic synonymous polymorphism in esxN
identified by phyC also occurred in the epitope coding region of esxN at position 2030950.

Homoplastic mutations in lldD2, pks12, Rv2828c, Rv0277 were also confirmed with this

technique. Additional homoplastic mutations of interest identified with phyC but not with the

accelerated transformation analysis included the mutation occurring in Rv2571c, a gene

located adjacent to aspS, which is involved in the M. tuberculosis translational pathway.

Correlation between homoplastic sites

Blocks of correlation indicative of epistatic interaction were identified between homoplastic

polymorphisms (S2 Fig). Notably the homoplastic mutations in rpsL, Rv2082, lppB, lldD2 and
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the intergenic region around position 3841670 were all significantly positively correlated. Sim-

ilarly, the pks12 gene mutation was positively correlated with mutations in Rv2082 and inter-

genic regions 3067969, 3122583, 3232711 and 3820553. A strong negative correlation was

observed between mutations in pks12 and Rv2082 as well as between esxV with intergenic

mutation at position 3738660. Unexpectedly no correlation was observed between rpoC muta-

tions and rpoB mutations. Mutations in rpoC have been demonstrated to compensate for

mutations in rpoB in vitro and therefore we hypothesized that homoplastic mutations in these

two genes may be correlated [24]. A similar lack of correlation was seen in other well docu-

mented drug resistance mutations (katG, gyrA, inhA) suggesting that there is not a homoplas-

tic compensatory mechanism for the drug resistance mutations in these genes.

Topologically disruptive sites. Only 2.19% (382/17476) of all variant sites were found to dis-

rupt phylogenetic structure (S4 Table, Fig 4). The variant site that most affected phylogenetic

structure was a non-synonymous single nucleotide polymorphism observed in esxI at position

1160776 (Gln20Leu). This polar to non-polar substitution occurred right in the middle of the

esxI epitope coding region making it likely to influence the immune response to M. tuberculo-
sis infection. The paralogous nature of the esxI gene with repeating regions up and down

stream does however make this mutation less reliable when called by 150bp read sequencing.

It is therefore necessary to repeat and confirm this observation using longer read sequencing

platforms. The tree difference algorithm also identified the non-synonymous Leu23Ser muta-

tion at the antigenically critical position in the middle of the epitope region of esxL at position

1341081. Once again this was not picked up by either Sanger or phyC homoplasy software.

This supports our hypothesis that phylogenetically disruptive polymorphisms may affect

Fig 4. Manhattan plot of the polymorphisms most influential of phylogenetic structure with the most significant genes labelled.

https://doi.org/10.1371/journal.pone.0189838.g004
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phenotype; three of the fifty most informative sites also included rpoB, katG and embB muta-

tions, well documented to have phenotypic consequence in drug resistance.

Genome wide association corrected for phylogenetic structure by principal component

analysis

Correcting for principal components significantly reduced the background noise in the

Manhattan plots demonstrating the key polymorphisms involved in second line drug resis-

tance (S3 and S4 Figs). Genome wide analysis for sputum smear grade (positive vs negative),

gender, HIV status and previous treatment did not uncover any significant polymorphisms.

Conclusion

This study has identified the presence of a set of convergent homoplastic polymorphisms

among a collection of 471 predominantly multidrug-resistance tuberculosis strains in Peru.

Homoplasy is highly associated with beneficial adaptive evolution as evidenced by the confir-

mation of many homoplastic drug resistance mutations and mutations in the highly immuno-

genic secreted protein ESX gene family. Mutations in the ESX genes may therefore have

implications for vaccine development, while designing drugs to target these gene products

may help to prevent the consequences of adaptive evolution or immune evasion of multi-drug

resistant M. tuberculosis. A non-synonymous Leu23Ser mutation at the antigenically critical

position in the middle of the epitope region of esxL at position 1341081 was identified by the

tree difference algorithm. This lends weight to our hypothesis that polymorphisms that affect

tree topology can have phenotypically significant consequences. Functional and longer

sequencing read confirmation of the homoplastic and topologically disruptive polymorphisms

identified here is therefore warranted as well as the use of this technique to identify informative

sites in other organisms.

Materials and methods

Ethics approval and consent to participate. Ethical approval for sample collection and process-

ing was obtained from the IRB of the Universidad Peruana Cayetano Heredia as part of previ-

ously published studies [25,26] and institutional approval was obtained from the Peruvian

Ministry of Health. Individual patient consent was not sought as the data was collected and

analysed anonymously.

Field methods, culture techniques and sample selection

Collection of patient metadata, sputum samples, culture techniques, DNA extraction, MIRU

typing and spoligotyping were undertaken as previously described [25,26]. Briefly, samples

were selected from two large studies undertaken in the regions of Callao (population size

800,000) and Lima South (population size 1,200,000). The first study (“population level

study”) undertaken between 2008–2010 sampled all patients presenting to tuberculosis clinics

and hospitals in these areas as part of the population level implementation of Microscopic

Observed Drug Susceptibility (MODS) testing [27,28]. The second study (“household follow-

up study”) followed 213 households with an MDRTB index case and 487 households with a

DSTB index case in the same study area over a period of 3 years between 2010–2013.

Population level study sampling

Samples were collected from 2086 unselected unique patients presenting with symptoms of

tuberculosis across this study area. All study samples were genotyped with 15-loci MIR-

U-VNTR and spoligotyping. At least one strain was selected for whole genome sequencing

Adaptive evolution in multidrug-resistant tuberculosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0189838 December 27, 2017 9 / 16

https://doi.org/10.1371/journal.pone.0189838


from every MIRU-VNTR and spoligotype defined cluster in order to sample a representative

selection of total population genetic diversity, maximize genomic variability and to improve

analytical power. A total of 198 samples were selected from MIRU-spoligotype defined clusters

as well as 87 samples from unique MIRU-spoligotypes. Metadata was gathered using a struc-

tured questionnaire that was completed at the time of sputum collection.

Household study sampling

The second study recruited unselected newly diagnosed multidrug-resistant tuberculosis

patients in the same study areas as part of a 3-year long household follow up study conducted

between 2010–2013. This study recruited a total of 213 MDRTB patients of which 186 multi-

drug-resistant tuberculosis strains were selected at random to contribute to this analysis. Meta-

data was collected in a structured questionnaire completed at recruitment for household

follow-up.

All tuberculosis patients in Peru are tested for HIV, so this data was available from the

patient records at the time of recruitment to both studies. Sputum samples from all patients in

both studies were transported to the regional reference laboratories and processed both on liq-

uid (MODS) and solid Ogawa media. An aliquot of each positive culture was sub-cultured at

Universidad Peruana Cayetano Heredia and spoligotyping was performed [29] after DNA

extraction [30]. DNA was sent to the Kobe Institute, Japan for 15-loci MIRU VNTR typing

[31]. Any drug resistant sample (resistant to rifampicin or isoniazid) based on MODS was

retested at the national reference laboratory using the proportions method on agar.

Genome sequence quality control

We prepared Illumina sequencing libraries with a 450 bp insert size, using instructions in the

manufacturer’s protocols, and then undertook sequencing on an Illumina HiSeq2000 with

paired-end reads of length of 100 bp. To this end we multiplexed 96 samples per lane to attain

an average depth of coverage of ~ 97.17-fold. We confirmed the species in the short reads

using Kraken [32]. We assembled paired end sequence reads with an improved assembly pipe-

line [33], based on Velvet [34]. A list of isolates and their accession numbers in the European

Nucleotide Archive is provided in S4 Table (project number: ERP004677). We mapped short

reads to the corrected H37Rv reference genome available from Casali et al. [35] genome.cshlp.

org/content/suppl/2012/02/01/gr.128678.111.DC1/1_H37RvQM_embl.txt. In doing so, we

employed SMALT v0.7.4 (www.sanger.ac.uk/science/tools/smalt-0) using maximum and min-

imum inserts sizes of 1000 and 50, respectively. To annotate SNPs, we used SAMtools mpileup

[36] and BCFtools, as it is described by Harris et al [37]. We included SNPs that were covered

by at least two forward and two reverse short paired end reads [38]. A minimum base call qual-

ity of 50 and a minimum root mean squared mapping quality of 30 to call a SNP were used.

Furthermore, the SNPs at sites with heterogeneous mapping where less than 75% of reads at

that site covered the SNP were excluded from the analysis [37]. We obtained the multiple

alignment by generating pseudo-sequences, after ignoring the small indels.

Phylogenetic analysis and ancestral state reconstruction

Maximum likelihood, parsimony and neighbour joining phylogenies were constructed with

concatenated SNPs from the whole genome sequence data using R software (R Foundation for

Statistical Computing, Vienna, Austria 2011, www.R-project.org) with packages “adegenet”,

“phangorn” [39] as well as RAxML [40]. Whole genome sequence clades were defined as hav-

ing boot-strap confidence value of 99 or higher [41], these clades were independently con-

firmed using principal component analysis. Clades were named using the corresponding
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MIRU-VNTR and spoligotype independently by the Institut Pasteur Guadeloupe according to

published protocols (www.miru-vntrplus.org and www.pasteur-guadeloupe.fr:8081/SITVIT_

ONLINE) [42]. Ancestral state reconstruction was undertaken using maximum parsimony,

likelihood and Bayesian approaches.

Identification and correlation of homoplastic variants

Homoplastic variants were identified by two techniques; 1) a Sanger in-house software that

applied the accelerated transformation algorithm to a maximum parsimony tree and 2) phyC

software [7] that pre-specified drug resistant and drug susceptible states and compared the

occurrence of independent ancestral changes between the two groups. Both methods counted

the number of independent occasions in which an ancestral base was different to the descen-

dent base at any given site in the tree. The phyC method also calculated the Fisher’s exact sta-

tistic for the comparison of the number of homoplastic events that occurred in drug

susceptible versus drug resistant strains. Given that some of the ESX genes are paralogous we

also visually inspected the SNP calls within ESX genes to ensure that the mapping was accurate

and coverage reliable enough to call the SNP. Correlation between homoplastic variant sites

was undertaken in R using the cor.table function from the picante package.

Principal component analysis genome wide association

Genome wide analysis with Bonferroni correction and correction for underlying genetic struc-

ture by principal components was performed for the following variables; resistance to first and

second line drugs (kanamycin, ciprofloxacin, capreomycin), sputum smear status, gender,

HIV status and previous treatment history using the function dapc from the package adegenet

[43,44].

Comparing whole genome, MIRU, MIRU-spoligotpye dendrograms

The correlation between whole genome, MIRU, MIRU-Spoligotype derived dendrograms was

determined using the R program “Dendextend”. Co-phenetic correlations were obtained as

per the Dendextend reference manual [45].

Determining polymorphisms most disruptive of phylogenetic structure

Kendall et al [46,47] proposed a tree comparison method for determining variant sites most

influential of tree structure in which a "reference" tree is constructed from the whole align-

ment, then compared to “experimental” trees built with the variant site in question removed.

We used this method to detect phylogenetically informative and therefore potentially biologi-

cally informative polymorphisms in our alignment. This method will detect Homoplasy as

does phyC and the Sanger software cited above, however it will also identify single ancestral

sites that have particular influence on tree structure.

We noted that in a random sample of 100 single sites that belonged to blocks of 10 adjacent

alignment sites which when removed did not cause a change in the initial screening, none

were found to cause a change in the tree. It is widely accepted that tuberculosis does not

undergo recombination, and in the absence of recombination, under circumstances with suffi-

cient genetic diversity to recreate high-quality phylogenetic trees, removal of a single variable

site from an alignment of ~20,000 variable sites should not affect the topology of the recon-

structed phylogeny. While the information in all variable sites is pooled to reconstruct the phy-

logeny, we term sites whose removal led to an altered tree topology “phylogenetically

disruptive”.
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Using RAxML 7.2.4 [40] with the GTRCAT model of rate heterogeneity [48] to construct

our trees, we created a reference tree from all 20976 variant sites. The same settings were then

used to create trees from the alignment with the site in question removed. For an initial screen-

ing and to minimize computational time we removed blocks of ten sites from the alignment at

a time. We compared the trees as per Kendall et al [46], using function refTreeDist from R

package treescape [49]. We found that around 10% of the blocks of 10 variant sites, when

removed, produced a tree with a different topology from the reference tree. We then re-ran the

method, removing a single site of the alignment at a time, each belonging to a block of 10 that

caused a change in the first run.
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