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20 Abstract

21 The complex process of tip-propagation and growth of natural faults remains poorly understood. 

22 We analyse field structural data of strike-slip faults from the Atacama Fault System using fracture 

23 mechanics theory to depict the mechanical controls of fault growth in crystalline rocks. We 

24 calculate the displacement-length relationship of faults developed in the same rock type and 

25 tectonic regime, covering a range of five orders of magnitude, showing a linear scaling defined 

26 by  A multiple linear regression approach based on the cohesive end zone 𝒅𝒎𝒂𝒙 = 0.0337𝐿1.02.

27 (CEZ) crack model was formulated to estimate the range of possible effective elastic moduli, 

28 cohesive endzone lengths, stress drops, and fracture energies from  displacement distributions 

29 mapped on natural faults. Our results challenge the existent paradigm wherein the self-similarity 

30 of fault growth is only achieved under the condition of invariable stresses and elastic properties. 

31 We propose a model of self-similar fault growth with scale-dependent evolution of shear 

32 modulus, cohesive end zone length and stress drop. These results also have implications for 

33 determination of stress drop for small earthquakes that are consistent with recent advances in 

34 observational seismology.   
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40 1 Introduction  

41 The process by which faults propagate into previously unfaulted rock is controlled by local 

42 stresses, friction and material response near faults, but its mechanical nature remains poorly 

43 understood. Understanding how faults propagate trough the Earth’s crust is fundamental for 

44 unraveling the processes governing brittle deformation, which in turn has strong implications in 

45 a variety of fields such as earthquake nucleation and seismic hazard assessment, fracture 

46 distribution and fluid flow through the upper crust. 

47 Geologists have been widely interested in finding scaling relationships between geometrical 

48 parameters of faults such as length, maximum displacement and damage zone width (e.g. Walsh 

49 and Watterson 1979; Cowie and Scholz 1992b; Faulkner et al., 2011). These relationships aim to 

50 link field observations to mechanical models and thus unravel the processes governing fault 

51 development over geologic time. Some of these models (e.g. Cowie and Scholz 1992a,b; Scholz 

52 1993) predict that faults grow in a self-similar manner under conditions of invariable stress and 

53 material properties, which results in linear scaling between fault length ( ) and maximum 𝐿

54 displacement ( ). However, the multiple datasets collected over the past decades (e.g. Walsh 𝑑𝑚𝑎𝑥

55 and Watterson, 1988; Marrett and Allmendinger, 1991; Cowie and Scholz, 1992a; Dawers et al. 

56 1993; Schlische et al. 1996; Kim and Sanderson, 2005) have not reached consensus regarding the 

57 relationship between  and  This divergence of opinion is associated with several limitations 𝐿 𝑑𝑚𝑎𝑥.

58 inherent to the data collection of length and displacement of natural faults  (e.g. Kim and 

59 Sanderson 2005). It has been suggested that these limitations can only be reduced by spanning 

60 the widest range of scales as possible, on faults developed under the same rock type and stress 

61 regime (Cowie and Scholz 1992b; Scholz 1993; Gillespie et al. 1992).
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62 Here, we build on previous observations by Cembrano et al. (2005),  Jensen et al. (2011), Mitchell 

63 and Faulkner (2009) and Faulkner et al. (2011) to study the mechanical controls involved in fault 

64 growth as depicted from the geological record. We focus on strike-slip faults of the Atacama Fault 

65 System (Central Andes, Chile) developed on relatively isotropic, low-porosity, dioritic and meta-

66 dioritic rocks over scales ranging from centimeters to kilometers to provide new insights into the 

67 progressive development of upper crustal faults in crystalline rocks. We measure the along-strike 

68 slip distributions and the displacement-length relationship of faults in the study area, covering a 

69 range of five orders of magnitude. We then formulate a multiple linear regression approach 

70 based on the cohesive end zone (CEZ) crack model (Cowie and Scholz, 1992a, Burgmann et al., 

71 1994) to analyze our field data and invert for fault tractions from mapped slip distributions. Our 

72 combined approach provides valuable evidence supporting the self-similarity of the fault growth 

73 process. which we propose is achieved by scale-dependent parameter evolution (i.e., shear 

74 modulus, end zone length and stress drop) throughout the development of a fault system. These 

75 findings have strong implications in the understanding of the mechanics of fault growth and 

76 provides a valuable tool for estimating geometrical parameters of faults under various scales. 

77 2 Fault development and scaling

78 2.1 Fault initiation and propagation

79 The lifetime of a fracture may be subdivided into initiation, propagation, and cessation (Pollard 

80 and Segall, 1987), and relative displacements may accumulate along the fracture throughout this 

81 process. The understanding of fault initiation and propagation in crystalline rocks is largely 

82 influenced by the classical work of Segall and Pollard (1983) and Martel et al. (1988) – among 
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83 others – who regarded natural faults (variably mixed Mode II-III, shear fractures) as nucleating 

84 from earlier joints (Mode I fractures) because of stress reorientation and subsequent linkage via 

85 wing cracks at their tips. This interpretation is consistent with the observation that shear cracks 

86 cannot propagate in their own plane in otherwise isotropic materials (e.g., Erdogan and Sih, 1963; 

87 Cotterell and Rice, 1980), but grow from the reactivation of pre-existing discontinuities under a 

88 rotating stress field or from the coalescence of pre-rupture tension cracks (e.g., Scholz et al. 1993; 

89 Crider and Peacock, 2004; Healy et al. 2006). 

90 In a study of a strike-slip duplex system in dioritic rocks in the Coastal Cordillera of Chile,Jensen 

91 et al. (2011) showed that mesoscopic faults did not initiate from pre-existing joints formed under 

92 a previous stress field. They propose that faults likely grew by the progressive propagation and 

93 coalescence of small tension fractures in the same regional stress field, a process that finally led 

94 to cataclastic rocks within larger, mature fault zones in a way similar to that suggested by Crider 

95 and Peacock (2004) and Laubach et al. (2014). Faults grew as composite fault zones linked by 

96 secondary faults or extension fractures forming duplexes at millimeter to kilometer scale. 

97 Although the evidence to deduce such evolution has been mainly observed at microscopic- and 

98 outcrop-scales, it can also be inferred to occur at larger scales, as the system is geometrically self-

99 similar (Jensen et al., 2011). This fault maturation via progressive incorporation of fractures 

100 agrees with previous laboratory observations wherein shear fracture propagation occurs by 

101 linkage and localization of opening mode fractures that form in the process zone of the main 

102 fracture (Lockner et al., 1991; Zang et al. 2000, Anders et al. 2014, Aben et al. 2019).

103



6

104 2.2 Fault growth models

105 Classic Linear Elastic Fracture Mechanics (LEFM) models of cracks subjected to uniform stress 

106 drop (e.g., Pollard and Segall 1987) predict an elliptical fault slip distribution (Figure 1a) with an 

107 abrupt termination of slip at the crack terminations. This maximum displacement gradient at the 

108 crack tips results in infinite stresses in the vicinity of the fault terminations, which is physically 

109 impossible. Therefore, the LEFM crack model is insufficient for unravelling near-tip deformation 

110 and fault growth in nature.  

111 Cowie and Scholz (1992a) addressed the infinite stress issue by adapting a cohesive end zone 

112 (CEZ) model of a Mode I crack (Dugdale, 1960; Barrenblatt, 1962; Goodier and Field, 1963) to 

113 study Mode II fault growth. In this model, inelastic yielding occurs in a small region surrounding 

114 the fault tips, within an otherwise elastic medium.  In CEZ models, the inelastic yielding is 

115 simulated by applying cohesive traction, equal to the yield strength of the material , along the 𝜎𝑦

116 fault from the fault tips to a finite distance inward.  The cohesive traction resists the crack-driving 

117 stress such that the net stress intensity factor, i.e., the sum of contributions arising from the 

118 uniform stress drop and the cohesive tractions, is zero at the crack tips, ensuring a finite near-tip 

119 fault stress field that does not exceed the strength of the rock. As a result, the displacement 

120 profile predicted by the model tapers out gradually towards the crack tip (Figure 1b). 

121 Burgmann et al. (1994) explored a similar CEZ model where, rather than adopting the Mode I 

122 equations derived by Barenblatt (1962), they simulate the non-linear stress distribution by 

123 summing solutions of stresses and displacement arising from stress functions for various fault 

124 traction distributions (Tada et al. 1973, p. 5.11). For the simple, symmetric CEZ model comparable 



7

125 to that of Cowie and Scholz (1992a), the crack is segmented into a central area characterized by 

126 a well-developed fault with lower strength, and an immature zone at the fault terminations with 

127 increased resistance to slip due to either inelastic deformation and/or greater friction between 

128 fault surfaces (e.g., Palmer and Rice 1973). The desired stress distribution is simulated by 

129 superimposing three loading configurations: (1) A stress-free crack under uniform remote  

130 loading stress , (2) a  uniform residual stress of magnitude  along the central, mature  portion 𝜏𝑟 𝜏𝑓

131 of the fault, and (3) uniform stress of magnitude , equal to the shear strength of the 𝜏𝑐𝑒𝑧

132 surrounding medium, along the cohesive end zone at the terminations of the crack. Certain 

133 distributions of shear stress in the cohesive end zone of a shearing-mode crack will oppose the 

134 action of the remotely applied load, resulting in total stress intensity factor zero (𝑖.𝑒., 𝐾𝑡𝑜𝑡𝑎𝑙
𝐼𝐼 = 𝐾 𝑟

𝐼𝐼

135 ) and thus eliminating the stress singularity at the faults tips. + 𝐾𝐶𝐸𝑍
𝐼𝐼 = 0

136 The slip distribution resulting from this CEZ model is, in its general case, similar in shape to that 

137 of Cowie and Scholz 1992a (Figure 1b) and is controlled by the three shear stress magnitudes 𝜏𝑟, 

138 the length of the end zone, and the elastic properties of the medium. Burgmann et al. 𝜏𝑓, 𝜏𝐶𝐸𝑍, 

139 (1994) also explored other factors influencing slip distributions along faults, showing that variable 

140 stress, splay fracturing, fault interaction and variable elastic properties in the medium alter the 

141 otherwise symmetric, bell-shaped slip distributions along faults. Similar results are shown by 

142 Peacock and Sanderson (1996) by accounting for variabilities in fault propagation rates, due to, 

143 for example, fault interaction, which they suggest could explain much of the diversity identified 

144 in slip distribution profiles.
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145 The concavely tapering slip towards the crack tips in the CEZ model (Figure 1b) is a result of the 

146 explicit representation of yielding occurring directly along the plane of the crack (Scholz, 2019). 

147 However, abundant field (e.g., Vermilye and Scholz, 1998; Mitchell and Faulkner 2009; Faulkner 

148 at al., 2011) and experimental evidence (e.g., Pollard and Segall, 1987; Lockner et al., 1991; 

149 Moore and Lockner, 1995; Zang et al., 2000) shows that inelastic deformation occurs within a 

150 volume surrounding fault tips rather than the idealized strip explicitly represented by analytic 

151 CEZ models. Numerical elastic-plastic models such as Constant Fault Tip Taper (CTTP) (e.g., 

152 Kanninen and Popelar 1985, Scholz and Lawler, 2004) instead allow yielding to occur in a volume 

153 around the fault tip. A direct consequence of this model is that slip distribution profiles taper 

154 linearly toward the fault tips (Figure 1c), a feature supported by displacement profiles from most 

155 exhumed faults (Muraoka and Kamata, 1983, Cowie and Shipton, 1998; Gupta and Scholz 2000; 

156 Scholz and Lawler 2004 and references therein) and earthquake slip distributions (Manighetti et 

157 al., 2005). The CTTP model does not permit an analytical formulation, although Burgmann et al. 

158 (1994) showed that similar slip distributions can be achieved by linearly varying tractions along 

159 the fault plane (Figure 1c).

160 Here we are interested in assessing the key mechanical parameters governing fault growth and 

161 how they can be depicted from the geological record. We thus consider the CEZ model from 

162 Burgmann et al. (1994) the most suitable analytical tool to interpret our field evidence.  Similar 

163 results and insights may be obtained by implementing a similar procedure using fault models 

164 with contributions from linearly varying tractions.
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165 Insert Figure 1.

166 2.3 Fault scaling

167 As slip accumulates along a fault, the stress concentration at its tips increases. If near-tip stresses 

168 meet the appropriate propagation criterion, the fault must then increase its length to relax the 

169 resulting stress concentrations and remain in quasi-static equilibrium. The relationship between 

170 maximum displacement   and length  is thus a key indicator of the fault growth process, as 𝑑𝑚𝑎𝑥 𝐿

171 it provides a description of fault development over geologic time. 

172 The relationship between  and the maximum linear dimension of the fault surface ( ) has 𝑑𝑚𝑎𝑥 𝐿

173 been defined as follows (e.g., Walsh and Watterson, 1988; Marrett and Allmendinger, 1991; 

174 Cowie and Scholz, 1992b; Dawers et al., 1993):

𝑑𝑚𝑎𝑥 = 𝑐𝐿𝑛 (1)

175 The mechanical CEZ model by Cowie and Scholz (1992a) predicts that a fault loaded by a uniform 

176 remote stress grows in a self-similar process such that:

177                                                                                  (2)𝑑𝑚𝑎𝑥 =
𝐶(𝜎0 ‒  𝜎𝑓 )𝐿

𝜇

178 Where  is the shear strength of the surrounding rock,  is the shear modulus, and  the 𝜎0 𝜇 𝜎𝑓

179 frictional shear stress on the fault,  a constant that depends on the ratio of the remote stress 𝐶

180 loading the fault to the rock shear strength. This model predicts linear scaling ( in equation 𝑛 = 1 

181 1) between  and , with the constant of proportionality varying with lithology and tectonic 𝑑𝑚𝑎𝑥 𝐿

182 environment. 
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183 However, over the last three decades different authors have obtained  values between 0.5 and 𝑛

184 2 (e.g., Walsh and Watterson, 1988; Marrett and Allmendinger, 1991; Cowie and Scholz, 1992a; 

185 Dawers et al. 1993; Schlische et al. 1996; Kim and Sanderson, 2005), raising questions regarding 

186 the underlying physical origin of such wide range of  values and scatter.𝑛

187 The relationship between maximum displacement ( ) and fault length ( ) is poorly 𝑑𝑚𝑎𝑥 𝐿

188 constrained for exhumed fault datasets for several reasons.  Most available datasets mix either 

189 different types of faults or different types of rocks, which adds to the inherent complexity of fault 

190 nucleation and propagation processes. Furthermore, the coexistence of brittle and plastic 

191 deformation mechanisms at individual faults (e.g., Griffith et al. 2009) can severely impact the 

192 interpretation of the  ratio. Another common limitation comes from the difficulty of covering 
𝑑𝑚𝑎𝑥

𝐿

193 the full spectrum of fault geometries across different scales.  With a few exceptions (e.g., Walsh 

194 and Watterson, 1988; Gillespie et al., 1992; Schlische et al., 1996; Bistacchi et al., 2011), most  

195 studies performed at the same rock type and tectonic regime cover a  range of scales of less than 

196 3 orders of magnitude. According to Gillespie et al. (1992), the effect of most of these 

197 fundamental limitations can be significantly reduced by covering a range of spatial scales greater 

198 than five orders of magnitude. 

199 Additionally, there are practical problems associated with measuring displacements and lengths 

200 from 2D fault outcrops. Displacement measurements rely on markers displaced by faults; 

201 however, to measure displacement from offset between two points of a marker, the measure 

202 needs to be made on a line parallel to the slip vector.  Uncertainty regarding the slip vector of 

203 faults leads to underestimation of displacement. Another unavoidable shortcoming for almost all 
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204 possible fault studies arises from measuring geometrical parameters from the arbitrarily exposed 

205 trace or section of a fault. Faults in 2D are idealized as planar surfaces with an elliptical tip-line 

206 boundary representing zero displacement, with increasing displacement towards the surface 

207 center. Thus, the exposed fault trace will unlikely represent its section of maximum length and 

208 displacement, instead, fault traces correspond to chords of their elliptical surfaces at an unknown 

209 distance of their center. Hence, fault traces measurements will yield, as a rule, apparent length 

210 and displacements (e.g. Kim and Sanderson 2005, Griffith et al., 2009). However, because in this 

211 idealistic representation of faults both length and displacement decrease elliptically towards the 

212 fault terminations, the apparent length and displacements of an arbitrarily exposed trace of a 

213 fault will decrease in the same proportion with respect to the fault center. As a result, the  𝑑𝑚𝑎𝑥/𝐿

214 ratio should not be significantly affected by this geometrical bias.  

215

216 3. Field data

217 3.1 Case study

218 To examine the fault slip patterns at various scales, we have mapped subvertical strike-slip faults 

219 that developed in a similar, nearly isotropic rock type covering five orders of magnitude, ranging 

220 from centimeters to a few kilometers.  All mapped faults are part of the Caleta Coloso Duplex 

221 (CCD) (Figure 2) in the Atacama fault system (AFS), an intra-arc shear zone active during the 

222 Mesozoic (e.g., Brown et al., 1993; Scheuber and Gonzalez, 1999).

223 The CCD is formed by two, NNW-striking, subvertical master faults: the Bolfin and Jorgillo Faults, 

224 which are in turn joined by a set of second-order NW-striking, imbricate splay faults (Figure 2) 
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225 (González, 1996, Cembrano et al. 2005). The second-order faults in the CCD have steep dips and 

226 dominantly left-lateral displacement; they have minimum net displacements varying between 10 

227 and 100 m and show variable internal structure. Centimeter to meter-long sinistral strike slip 

228 faults occur within several kilometric splay faults at the southern termination of the Bolfin fault.  

229 Some of these splays consist of segments of centimeter to meter-long faults linked by 

230 shear/extensional fractures forming duplexes, whereas higher displacement faults (on the order 

231 of >10m) show well-developed layers of cataclasites and gouge (Cembrano et al. 2005). 

232 Additionally, the lack of any pre-existing regional-scale joint systems occurring in the area implies 

233 that faults in the strike-slip duplex grew by brittle fault propagation and coalescence in otherwise 

234 intact rock. 

235 Insert Figure 2.

236

237 3.2 Field measurements of fault length and displacement and along-strike 

238 displacement profiles

239 Trace lengths ( ) and maximum exposed horizontal displacements ( ) were measured on 𝑳 𝒅𝒎𝒂𝒙

240 more than one hundred, centimeter to kilometer-long sinistral strike slip faults (i.e., lengths were 

241 measured parallel to the slip vector). Analyzed faults cut very similar, mostly isotropic dioritic and 

242 metadioritic rocks (Figure 2). Both rock types consist of 5-20 percent quartz, 40-60 percent 

243 plagioclase and a different proportion of mafic minerals (Hornblende, pyroxene, and biotite).  𝑳 

244 and  were obtained from two different sources, as follows:𝒅𝒎𝒂𝒙



13

245 1. High resolution satellite images (Figure 3b), which show faults previously mapped in the 

246 field (e.g., Gonzalez, 1996; Jensen et al.  2011, Cembrano et al. 2005), reveal very well-

247 defined, nearly straight traces of tens of meters to a few kilometers-long strike-slip faults 

248 with synkinematic slickenlines raking up to ~30°.  These faults cut and displace a 

249 subvertical quartz-plagioclase, north-striking dyke, allowing the measurement of 

250 horizontal separations, which was performed on the central third of all mapped faults 

251 (Figure 3b)

252 2. The second source of data are direct observations and measurements on outcrops such 

253 as those shown in Figure 3a, c.  Much care was placed on identifying both fault tips and 

254 the maximum horizontal offset on subvertical, strike-slip faults having subhorizontal to 

255 shallowly-plunging synkinematic striae. Subvertical magmatic layering, amphibolite dykes 

256 and chlorite veins lying nearly orthogonal to faults serve as excellent markers 

257 documenting both slip sense and magnitude. Outcrops cover a range of lengths from a 

258 few centimeters to tens of meters, covering two to three orders of magnitude; the same 

259 is the case for displacements, which range from a few to hundreds of millimeters. 

260 Additionally, several displacement markers were identified along four outcrop-scale faults, 

261 allowing us to reconstruct their along-strike slip profiles. 

262 Insert Figure 3.

263

264

265
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266 3.3 Field results

267 The along-strike slip profiles for four outcrop-scale faults are plotted in Figure 4.  They all show 

268 the largest displacement closer to the fault centre and an overall symmetrical displacement 

269 distribution with respect to the central maximum. Furthermore, displacement fault profiles 2 and 

270 3 show a clear gradient decrease towards the tips, whereas faults 1 and 4 appear to have a linear 

271 decrease in slip towards the tips, although this could be due to a paucity of offset markers.

272 Insert Figure 4.

273 Out of more than one hundred faults mapped in the field, only sixty-three were selected for 

274 displacement –length analysis (data repository). These meet the following minimum conditions: 

275 (i) Subvertical dips, (ii) unequivocally exposed fault tips, and (iii) maximum exposed displacement 

276 measured from subvertical offset markers close to the fault center.  Faults traces bounded by 

277 intersections with other faults were not considered for further analysis as they would likely 

278 underestimate maximum displacement with respect to total length.

279 The data is plotted on a single  versus  log-log diagram (Figure 5), with a power law fit of 𝐿 𝑑𝑚𝑎𝑥

280 , with coefficient of determination .  Although the data is clearly 𝒅𝒎𝒂𝒙 = 0.0337𝐿1.02  𝑅2 = 0.94

281 biased to small scale faults, it is evident that more scatter is found in faults that are shorter than 

282 around 1 m.  Another important characteristic of our data set is the scarcity of data in the middle 

283 part of the range, particularly for fault lengths between 20 and 800 m. 
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284 Insert Figure 5.

285

286 4. Linear regression for shear traction inversion 

287 4.1 Regression formulation

288 Below we formulate a linear regression approach based on the cohesive end zone (CEZ) crack 

289 model by Burgmann et al., (1994) to invert for shear tractions and end zone lengths from our 

290 mapped slip distribution profiles (Figure 4). By doing so, we evaluate the capability of the CEZ 

291 model to fit our measured faults and then analyze the parameters controlling the fault growth 

292 process. Figure 1b shows the geometry and boundary conditions of this model. A uniform remote 

293 stress acts along the length  of the fault. The well-developed or mature portion of the fault, 𝜏𝑟 2𝑎

294 of length  is subjected to a residual frictional stress  whereas uniform stress of magnitude 2𝑑 𝜏𝑓

295  act along the cohesive end zone from  and .𝜏𝑐𝑒𝑧 𝑑 ≤ 𝑥 ≤ 𝑎 ‒ 𝑎 ≤ 𝑥 ≤‒ 𝑑

296 The slip distribution for the plane strain mode II CEZ crack can be computed using the 𝐷𝑥(𝑥) 

297 following terms (Burgmann et al., 1994).

298 (3)𝐷𝑥(𝑥) =
2(1 ‒ 𝜈)

𝜇 [{(𝜏𝑟 ‒ 𝜏𝑐𝑒𝑧) ‒ (𝜏𝑓 ‒ 𝜏𝑐𝑒𝑧)2
𝜋sin ‒ 1 (𝑑

𝑎)} 𝑎2 ‒ 𝑥2

‒
1
𝜋(𝜏𝑓 ‒ 𝜏𝑐𝑒𝑧){ (𝑑 + 𝑥)cosh ‒ 1 (𝑎2 + 𝑥𝑑

𝑎|𝑥 + 𝑑|)
+ (𝑑 ‒ 𝑥)cosh ‒ 1 (𝑎2 ‒ 𝑥𝑑

𝑎|𝑥 ‒ 𝑑|)} ]



16

299 Here, µ is the shear modulus and ν the Poisson ratio of the elastic medium. This distribution 

300 reduces to the expected end-members, for example, as , (3) becomes a classic crack (𝑎 ‒ 𝑑)→0

301 with a uniform stress drop of -  and an infinite stress concentration at the tips. 𝜏𝑟 𝜏𝑓

302 We use this closed form solution to use measured slip distributions  along four CCD faults 𝐷𝑥(𝑥)

303 (Figure 4) to explore the fault tractions and effective elastic moduli that may have governed fault 

304 growth.  Because Cowie and Scholz (1992a) interpret the fault growth process as self-similar, they 

305 speculate that the actual length of the end zone  increases with total fault length, , and (𝑎 ‒ 𝑑) 𝑎

306 thus the scaled length of the end zone, , is constant during fault growth.  By assuming this 
(𝑎 ‒ 𝑑)

𝑎

307 and setting  (i.e., traction free, complete stress drop, along the well-developed portion of 𝜏𝑓 = 0

308 the fault), and non-dimensionalizing the spatial terms by :𝑎

309 𝑥 ∗ = 𝑥 𝑎

310 𝑑 ∗ = 𝑑 𝑎

311 𝑎 ∗ = 1

312 we can rewrite (3) as:

313                                    (4)𝐷𝑥 = 𝐶1𝐹1 + 𝐶2𝐹2

314 where 

315 𝐹1 = 1 ‒ (𝑥 ∗

𝑎 )
2



17

316 𝐹2 = (𝑑 ∗ + 𝑥 ∗

𝑎 )cosh ‒ 1 (1 +
𝑥 ∗ 𝑑 ∗

𝑎2

|𝑥 ∗ + 𝑑 ∗

𝑎 |) + (𝑑 ∗ ‒ 𝑥 ∗

𝑎 )cosh ‒ 1 (1 ‒
𝑥 ∗ 𝑑 ∗

𝑎2

|𝑥 ∗ ‒ 𝑑 ∗

𝑎 |)
317 𝐶1 =

2(1 ‒ 𝜈)
𝜇 {(𝜏𝑟 ‒ 𝜏𝑐𝑒𝑧) + (2𝜏𝑐𝑒𝑧

𝜋 )sin ‒ 1 (𝑑 ∗

𝑎 )}
318 𝐶2 =

2(1 ‒ 𝜈)
𝜇

𝜏𝑐𝑒𝑧

𝜋

319 Rewriting equation (4) in matrix-vector form with  discrete fault slip measurements each at 𝑛

320 position  :𝑥𝑛

321 (5)[𝐷𝑥(𝑥1)
⋮

𝐷𝑥(𝑥𝑛)] = [𝐹1(𝑥1) 𝐹2(𝑥1)
⋮ ⋮

𝐹1(𝑥𝑛) 𝐹2(𝑥𝑛)][𝐶1
𝐶2]

322 We can now solve for the unknown constants and , and then compute the tractions  and𝐶1 𝐶2 𝜏𝑟  

323  from the relationships defined above. 𝜏𝑐𝑒𝑧

324 4.2 Inversion results

325 Using the linear regression methodology described above, we invert for the shear tractions  𝜏𝑟

326 and   to fit our measured fault-slip profiles (Figure 4). Because the scaled end zone length  𝜏𝑐𝑒𝑧 (𝑎 ‒

327   is an unknown independent parameter in  and  , we perform inversions using a range 𝑑) 𝑎 𝐹1 𝐹2

328 of  between 0 and 0.9.  As an example of how results vary with scaled end zone length, (𝑎 ‒ 𝑑) 𝑎,

329 Figure 6a shows the results of total stress intensity factor , where𝐾𝑡𝑜𝑡𝑎𝑙
𝐼𝐼 = 𝐾 𝑟

𝐼𝐼 + 𝐾𝐶𝐸𝑍
𝐼𝐼

330               (6) 𝐾 𝑟
𝐼𝐼 = 𝜏𝑟 𝜋𝑎
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331     (7)𝐾𝐶𝐸𝑍
𝐼𝐼 =

𝜏𝑐𝑒𝑧

𝜋 2𝜋(𝑎 ‒ 𝑑)

332 These were calculated for each fault in the range of scaled end zone lengths and fixed values for 

333 the effective elastic moduli ( ). As we will show later in section 3.3, elastic 𝜇 = 1 𝐺𝑃𝑎 , 𝜈 = 0.25

334 properties must vary in some cases to satisfy the requirement of .  For the CEZ model 𝐾𝑡𝑜𝑡𝑎𝑙
𝐼𝐼 ≈ 0

335 results to be physically meaningful, it is necessary that   to eliminate the stress 𝐾𝑡𝑜𝑡𝑎𝑙
𝐼𝐼 ≈ 0

336 singularity at the fault tips.   

337 For short faults (i.e. fault 1, a=0.4m and fault 2, a=1.2m), the length of the CEZ does not exert 

338 much influence in the total stress intensity factor magnitude, and within all the range, . 𝐾𝑡𝑜𝑡𝑎𝑙
𝐼𝐼 ≈ 0

339 On the contrary, for fault 3 (a=2.3m), only CEZ length values above 0.55 result in , 𝐾𝑡𝑜𝑡𝑎𝑙
𝐼𝐼 ≈ 0

340 whereas for fault 4 (a=6.9m) small CEZ lengths,  result in the smallest . For (𝑎 ‒ 𝑑) 𝑎 ≈ 0.1 𝐾𝑡𝑜𝑡𝑎𝑙
𝐼𝐼

341 each fault we selected the magnitude of   that result in stress intensity factor closest to (𝑎 ‒ 𝑑) 𝑎

342 zero. Figure 6b shows the resulting modelled slip distribution for each fault (dashed black) 

343 contrasted to the measured slip profiles (blue). The coefficient of determination for the fits range 

344 between 0.91 and 0.98 (Figure 6b). 

345 Insert Figure 6.

346 4.3 Parameter estimation

347 Using the regression approach described in section 3.2., we can now investigate the parameters 

348 controlling the fault growth process. Regressions were conducted over a range of 100 possible 

349 shear moduli ranging from 0.1 GPa to 20 GPa and 100 possible relative end zone lengths (𝑎 ‒ 𝑑) 𝑎

350 , from 0 to 0.9. Of these 10,000 regressions, we select the parameter combinations that satisfy 
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351 the requirements of the CEZ models and have a satisfactory coefficient of determination. The 

352 criteria are:

353 i) |𝐾𝑡𝑜𝑡𝑎𝑙
𝐼𝐼 | < 15 𝑀𝑃𝑎

354 ii)   within 15 MPa of the in situ shear strength (assumed to be 100MPa), and 𝜏𝑐𝑒𝑧

355 iii) coefficient of determination for the regression of .𝑅2 > 0.8

356 Shear moduli 

357 Figure 7(a) displays the shear moduli as a function of end zone length for the four faults, where 

358 each data point represents a combination of parameters that fit the above defined criteria. Best 

359 fit shear moduli magnitudes (up to 4 GPa) are lower than laboratory estimated values (up to 20 

360 GPa for granodiorites). In general, shear moduli increase with end zone length for small faults (1 

361 and 2), whereas for longer faults (3 and 4), the slip distributions can only be fit by a single, low 

362 value (µ<0.5 GPa). Furthermore, a general trend can be observed in which best fit shear moduli 

363 increase with decreasing fault length. Maximum fault displacement is also inversely correlated 

364 with shear modulus (Figure 7b). 

365 Insert Figure 7.

366 Stress drop

367 The static stress drop associated with a slip event is defined as the difference between the 

368 remote field shear stress  and the shear stress resolved on the fault after slip . In this case, 𝜏𝑟 𝜏𝑓

369 we considered a complete drop with ; therefore, shear stress drop magnitude equals that 𝜏𝑓 = 0

370 of the driving stress . Figure 8 shows the best fit  as a function of end zone length for each of 𝜏𝑟 𝜏𝑟

371 the modelled faults. Larger stress drops require larger end zone lengths. Also, longer faults are 
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372 associated with larger stress drops. An exception for this general trend is fault 4, which has a 

373 similar maximum displacement to fault 3, though with three times its length (see Figure 4). For 

374 this fault, only two of the 10,000 parameter combinations result in a satisfactory CEZ model, 

375 characterized by very small end zone length and low stress drop. 

376 Insert Figure 8.

377 Fracture Energy 

378 The fracture energy  , or the critical energy release rate during the time of fracture propagation, 𝐺𝑐

379 is the energy consumed per unit area of fracture advance, and is closely related to the stress 

380 drop, but also to fracture length and to effective elastic modulus.  It can be regarded as an 

381 estimate of the elastic strain energy released in creating the fault.  can be estimated from the 𝐺𝑐

382 stress intensity factor corresponding to the uniform applied stress, ( ) as follows for a plane 𝜏𝑟 ‒ 𝜏𝑓

383 strain CEZ crack (e.g., Tada et al., 2000, p. 30.2):

384   (8)𝐺𝑐 =
(1 ‒ 𝜈2)(𝐾 𝑟

𝐼𝐼)2

𝐸

385 Figure 9 shows the calculated fracture energy  with respect to end zone length for our four 𝐺𝑐

386 faults. In general, more fracture energy is required for propagating cracks with longer endzone 

387 lengths. As predicted by Cowie and Scholz (1992) and Scholz (1993),   scales with fault length, 𝐺𝑐

388 with larger faults requiring higher fracture energy to propagate/slip. However, fault 4 violates 

389 this trend.  We discuss the implications of these results in the following sections.
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390 Insert Figure 9.

391

392

393

394

395 5 Discussion

396 5.1 Dmax vs L scaling

397 In a very influential work on the mechanics of fault scaling, Cowie and Scholz (1992b) stated the 

398 following as one main conclusion regarding the different relationships found between L and d:  

399 …. “Finally, it must be stated that none of these data are really conclusive, otherwise it would not 

400 be possible for such a wide divergence of opinion to exist. What is needed is data that span a 

401 much greater scale range for faults in a single tectonic environment and rock type”.  

402 Our dataset is, as far as we know, one of the few sets of  ratios coming from faults from the 𝑑/𝐿

403 essentially same rock type and tectonic setting, covering a range of five orders of magnitude. 

404 Furthermore, the studied faults did not form from earlier joints but nucleated and propagated 

405 from the coalescence of tensile fractures under the same stress regime (Cembrano et al. 2005; 

406 Jensen et al. 2011). For a displacement to length ratio dataset to be geologically and mechanically 

407 meaningful, sampled faults should have not been formed from earlier joints because their initial 

408 length would be greater than zero. 
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409 Because the variables of rock type, regional stress regime, fault growth mechanics, and 

410 subsequent fault kinematics are essentially set constant in this study, the main sources of scatter 

411 for our data set probably arise from underestimations of lengths and/or displacement due to 

412 exposure limitations and non-horizontal slip vectors. Another very likely source of scatter 

413 probably arises from fault linkage which is associated with irregular along-strike displacement 

414 gradients (Cartwright et al., 1995; Cladouhos and Marrett 1999; Schlische et al., 1996).  For linked 

415 faults the displacement/length ratio will likely be underestimated. Although our displacement 

416 profiles (Figure 4) do not show the irregular gradients characterizing linked faults, it is not 

417 possible to rule out linkage as a fault growth mechanism in our dataset, especially for large faults 

418 (Rotevatn et al., 2019). However, it is interesting to note that scatter of our dataset is higher 

419 within the smaller scale faults (<1 m length). This can be attributed to the larger number of faults 

420 that is possible to map at this scale (e.g. Schlische et al., 1996). The scarcity of data in the middle 

421 part of the range, i.e. fault lengths between 20 and 800 m, is mostly associated with the absence 

422 of reliable displacement markers in this fault length range. Finally, permanent ductile 

423 deformation accompanying brittle fault displacement will also tend to overestimate the  𝑑𝑚𝑎𝑥/𝐿

424 ratio (Griffith et al., 2009).  Although some limited ductile deformation is observed along some 

425 of the mapped faults, this effect is negligible for most cases (Cembrano et al. 2005).

426 The relationship between  and  obtained for this data set confirms a linear scaling between 𝑑𝑚𝑎𝑥 𝐿

427 and , where the constant of proportionality varies with rock type and tectonic 𝑑𝑚𝑎𝑥 𝐿

428 environment. The linear relationship between and  is also shown by Schlische et al. (1996) 𝑑𝑚𝑎𝑥 𝐿

429 in a compilation of  and  from different sources, covering eight orders of magnitude of 𝑑𝑚𝑎𝑥 𝐿

430 faults from a variety of fault types and lithologies. However, the considerable scatter from this 
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431 compilation suggests that the vs   relationship would be better constrained by analysing 𝑑𝑚𝑎𝑥 𝐿

432 data separately from each particular geological setting.

433 The  ratio (  from Equation 1) was defined by Cowie and Scholz (1992b) as a critical shear 𝑑𝑚𝑎𝑥/𝐿 𝑐

434 strain for fault propagation that determines the magnitude of the finite stress concentration at 

435 the ends of a growing fault. For this data set  is equal to 0.0337, and because it was calculated 𝑐

436 over a wide range of faults developed in the same rock and tectonic regime, we interpret it to be 

437 approximately representative of the development of the whole fault system. Below we analyse 

438 the mechanical significance of this quantity.

439 Equation 9 provides an analytical formulation to calculate the  ratio, where:𝑑𝑚𝑎𝑥/𝐿

440                                       (9)
𝑑𝑚𝑎𝑥

2𝑎 =
(1 ‒ 𝜈)

𝜇 {(𝜏𝑟 ‒ 𝜏𝑐𝑒𝑧) + (2𝜏𝑐𝑒𝑧

𝜋 )sin ‒ 1 (𝑑 ∗

𝑎 ) +  
2𝜏𝑐𝑒𝑧

𝜋 (𝑑 ∗

𝑎 )cosh ‒ 1(
𝑎

𝑑 ∗ )}
441 The  ratio thus depends on the elastic properties of the medium ( ), the remote shear 𝑑𝑚𝑎𝑥/𝐿 𝜈, 𝜇

442 stress , the shear strength of the medium  and the relative end zone length . By setting 𝜏𝑟 𝜏𝐶𝐸𝑍
𝑑 ∗

𝑎

443 constant  and the shear strength  we calculate  using equation 𝜈 = 0.25 𝜏𝐶𝐸𝑍 = 100𝑀𝑃𝑎, 𝑑𝑚𝑎𝑥/𝐿

444 6 with a range of relative end zone lengths from 0 to 1, a range of remote shear stress, 𝜏𝑟

445 , and shear modulus . = 20 ‒ 100 𝑀𝑃𝑎  𝜇 = 0.2 ‒ 1 𝐺𝑃𝑎

446 Figure 10 shows the  ratio as a function of end zone length for various combinations of   𝑑𝑚𝑎𝑥/𝐿 𝜏𝑟

447 and , represented by the  ratio. Increasing endzone lengths correlate with decreasing 𝜇 𝜏𝑟/𝜇 𝑑𝑚𝑎𝑥/

448   ratios. Also, increasing   ratios are related to increasing shear moduli and decreasing 𝐿 𝑑𝑚𝑎𝑥/𝐿

449 remote shear stresses. This simple analysis shows that under the CEZ crack model framework, 
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450 multiple combinations of end zone lengths, remote shear stress and shear moduli can result in 

451 the characteristic  ratio for our case study (c=0.0337, see in black line). In the following 𝑑𝑚𝑎𝑥/𝐿

452 section we further discuss the implications of this observation.

453 Insert Figure 10.

454 5.2 Parameter evolution during fault growth

455 Our linear regression approach allowed us to model the slip distributions of all four measured 

456 faults (Figure 6b) using a Cohesive End Zone (CEZ) crack model.  This supports the applicability of 

457 the fracture mechanics framework, in particular, of the CEZ model, for analysing field structural 

458 data and estimating the parameters controlling fault growth. Consequently, we estimated the 

459 ranges of end zone length and shear modulus that meet the requirements of the CEZ model and 

460 had a satisfactory coefficient of determination for each of our measured faults and calculated 

461 the static stress drop and fracture energy associated with them. It is important to note that the 

462 fit of the model to the measured slip distributions could be improved by considering linearly 

463 varying cohesive tractions at the end zone (Burgmann et al. 1994). However, we chose to 

464 implement the basic formulation of the CEZ model to identify the first order controls of fault 

465 growth. 

466 Our calculations show that best fit shear moduli increase with decreasing fault length and with 

467 decreasing displacement (Figure 7a, b). We interpret this is a result of large faults being 

468 influenced by a larger area of the fractured surrounding medium, which reduces the effective 

469 shear modulus as compared to small faults propagating into comparatively more intact rock. This 

470 interpretation is consistent with the observation made at the same study area by Faulkner et al. 
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471 (2011) that fault damage zone widths scale with displacement. As faults grow and increase their 

472 length and cumulative displacement, their damage zone expands, which is reflected by the 

473 increase of micro and macrocrack damage. Significant changes in the elastic properties of 

474 crystalline rocks have been reported as crack damage accumulates (e.g. Faulkner et al., 2006; 

475 Heap and Faulkner 2008; Heap et al., 2009).  Longer faults then propagate into a comparatively 

476 more damaged/fractured medium with reduced shear modulus. 

477 However, if the process of fault growth decreases the effective elastic modulus of the medium, 

478 the general assumption of fault growth being self-similar only when the elastic properties and 

479 remote stress remain constant would be challenged. Our data set shows a self-similar system 

480 with fault length scaling linearly with displacement, and, at the same time, a parameter evolution 

481 where only reduced shear modulus can fit a CEZ crack model for longer faults. It is therefore 

482 necessary that a trade-off exists between fault growth parameters to preserve the self-similarity 

483 of the system. 

484 As can be seen in Figure 7a, relative end zone length increases with fault length: longer faults 

485 seem to require a higher proportion of breakdown zone to propagate. Furthermore, Figure 10 

486 shows that numerous different combinations of parameters may fit the characteristic   of 𝑑𝑚𝑎𝑥/𝐿

487 the system; in particular, longer end zone lengths correlate with smaller shear moduli. Our results 

488 thus support the interpretation that as longer faults propagate within a medium with 

489 comparatively reduced effective modulus, the relative end zone length of the fault increases, 

490 thus preserving the self-similarity of the system. This suggests that the assumption of the CEZ 

491 model by Cowie and Scholz (1992a) of the relative length of the end zone  being (𝑎 ‒ 𝑑) 𝑎

492 constant throughout the development of faults might not be accurate. In contrast, it seems that 
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493 there is a trade-off between end zone length and elastic modulus over fault growth: as the 

494 effective elastic modulus decreases during the progressive fracturing of the medium, faults may 

495 increase end zone length to propagate. 

496 The increasing proportion of end zone length in longer faults may be physically explained by 

497 several mechanisms. First, the inability of fractured damage zone rocks to sustain large stresses 

498 can lead to smearing out near-tip stress gradients. Second, it is widely known that fracture 

499 healing increases the shear strength of rocks (e.g. Tenthorey et al. 2003; Laubach et al. 2019), a 

500 process that has been interpreted to occur from the fracture tip inwards (Smith and Evans, 1984). 

501 Third, the CEZ model itself provided some mechanical and geometrical constraints that lead to 

502 the same interpretation. 

503 According to the CEZ model, a fault at a growing stage  is characterized by a well-developed, low 𝑖

504 shear strength, segment of length  and an end zone length of . Once it propagates, fault 2𝑑𝑖 2𝑠𝑖

505 length increases into  . At this new stage, the newly developed matured fault 2𝑑𝑖 + 1 + 2𝑠𝑖 + 1

506  should not exceed the previous end zone length  (i.e. ) to avoid 𝛥𝑑 = 2𝑑𝑖 + 1 ‒ 2𝑑𝑖, 2𝑠𝑖
𝛥𝑑
2𝑠𝑖

< 1

507 stress concentrations at the fault tips. For constant s/a ratios,  can only be achieved by 
𝛥𝑑
2𝑠𝑖

< 1

508 high propagation rates (over 30%) and/or high (over 70%) proportion of end zone length (Figure 

509 11). Because fault propagation rates are estimated on the range of 0.25 to 2.5% (Cowie and 

510 Scholz 1992c; Peacock and Sanderson 1996), it seems highly likely that the relative end zone 

511 length increases for each fault increment to avoid stress singularities. 

512 Insert Figure 11.
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513 Additionally, our stress drop estimations (Figure 8) indicate that end zone length increases with 

514 larger stress drops. Also, in general, the stress drop is positively correlated with fault length: 

515 longer faults are related to increased driving stress. Finally, as predicted by Cowie and Scholz 

516 (1992b) and Scholz (1993), fracture energy   scales with fault length (Figure 10), with larger 𝐺𝑐

517 faults requiring higher fracture energy to propagate/slip, and more fracture energy is released at 

518 faults with longer end zone lengths. An exception for both of these general trends is fault 4, which 

519 has a similar maximum displacement to fault 3, though with three times its length (see Figure 

520 4a). A possible explanation for these observations is that fault 4 resulted from a linkage of several 

521 pre-existing fractures that continued to slip and grow after the linkage process, whereas faults 

522 1,2 and 3 follow the self-similar trend of isolated fractures propagating with minimum interaction 

523 with neighbouring faults. This suggests that the analysis of individual fault propagation within the 

524 CEZ framework may have a length limit: at some growing stage, coalescence and linkage of faults 

525 might correspond to the primary fault growth process. A similar interpretation is reported by 

526 Rotevatn et al. (2019) for the growth of normal faults in sedimentary rocks. Further analysis on 

527 the displacement distribution of long faults (above 5m length) would be required to confirm this 

528 hypothesis in our case study. Finally, it would be required to perform the inversion analysis 

529 presented here in datasets from other geological settings to confirm and expand our proposed 

530 fault growth model. 

531 5.3 Implications for seismological estimations of stress drop

532 Our stress drop estimations form measured faults (Figure 9, ranging from 10-100 MPa) exceed 

533 the generally accepted range for seismological source stress drops calculations (e.g., 0.1-10 MPa; 
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534 e.g., Abercrombie, 1995; Aki, 1967; Houston, 2001; Shearer et al., 2006). Based on observations 

535 that some microseismicity from the same location had similar seismic moments, but different 

536 sourced durations, Lin and Lapusta (2018) investigated the possibility that ignoring duration 

537 heterogeneity may yield systematically under-estimated stress drops.  They considered complex 

538 source models made of heterogeneous fault patches with strong variations in shear strength due 

539 to asperities, as opposed to standard circular uniform source models showing that these source 

540 models result in a non-linear relationship between seismic moment and duration.  Simulations 

541 on these complex sources yielded stress drops as much as 100 to 1000 times larger than 

542 determined by traditional seismological methods. These new source models can be interpreted 

543 as the 3D analogue to our 2D model of shear crack propagation across a fault with varying shear 

544 strength.  

545 Our stress drop calculations magnitudes are comparable to those of Lin and Lapusta (2018) in 

546 terms of both stress drop magnitude and source complexity, suggesting that our linear regression 

547 methodology might be applicable for correlating field fault data to seismological estimations of 

548 stress drop. It is also worth pointing out that stress drops considered in this study are 

549 substantially smaller than those determined previously using similar data derived from outcrop 

550 scale mapping in the Sierra Nevada batholith (Griffith et al., 2009). However, we suggest that 

551 their results may substantially overestimate stress drop because they limited their analysis to 

552 LEFM faults. 

553

554 6 Conclusions
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555 Sixty-three strike-slip faults developed in low-porosity crystalline rock, covering a length range of 

556 five orders of magnitude, show a linear displacement to length ratio defined by the equation 

557 , with a coefficient of determination .𝒅 = 𝟎.𝟎𝟑𝟑𝟕𝑳𝟏.𝟎𝟐  𝑹𝟐 = 𝟎.𝟗𝟒

558 The relationship between  and  obtained for this data set confirms a linear scaling between 𝑑𝑚𝑎𝑥 𝐿

559 and , where the constant of proportionality varies with rock type and tectonic 𝑑𝑚𝑎𝑥 𝐿

560 environment.

561 By using a multiple linear regression approach based on the cohesive end zone (CEZ) crack model 

562 by Burgmann et al., (1994), we inverted for shear tractions, endzone lengths and shear modulus 

563 from mapped slip distribution profiles. Our calculations show that best fit shear moduli increase 

564 with decreasing fault length and displacement, whereas resolved stress drop and relative end 

565 zone length increase with fault length.

566 Our findings suggest that the accepted paradigm in which the self-similarity of the fault growth 

567 process occurs only on the conditions of faults developing under constant remote shear stress, 

568 invariable elastic properties and constant relative length of the end zone might not be accurate. 

569 In contrast, it seems that there is a trade-off between end zone length, elastic modulus and stress 

570 drop over fault growth: as the effective elastic modulus decreases during the progressive 

571 fracturing of the medium, faults may increase end zone length and stress drop to propagate. This 

572 trade-off thus preserves the self-similarity of the system. 

573 Our stress drop estimations correlate with recent reinterpretation of complex source models 

574 with variable in shear strength due to asperities, which suggests that our linear regression 

575 methodology can be applicable to relate field fault measurements to seismological estimates.
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Figure 1. (a) Linear Elastic model of a crack of length 2a subjected to a uniform stress drop  and 𝜏𝑟 ‒  𝜏𝑓

resulting elliptical slip distribution, (b) Cohesive End Zone  model of a crack of length 2a with a cohesive end 

zone of length 2s and resulting slip distribution tapering towards the crack tips, (c) Slip distribution for small 

scale yielding model or Constant Fault Tip Taper. A similar distribution is obtained from a CEZ model with 

linearly varying tractions (Modified from Scholz 2019).  



Figure 2. Regional geological and structural map of the Caleta Coloso Duplex (CCD) in the Atacama fault 

system (AFS), northern Chile. Isotropic igneous and high-grade metamorphic rocks dominate the CCD 

geology. First and second-order faults of the CCD are highlighted. Insets show locations for Figures 3a, b 

and c.



Figure 3.(a) Along-strike displacement measurement of tens of meters long strike slip fault (black), from offset 

(red) in sub-vertical dykes. (b) Satellite image showing kilometer-scale faults (black) with hundreds of meter 

displacement (red). (c)Centimeter-scale faults with millimetric displacement. All maps are in plan views. See 

figure 1 for locations of a, b and c.



Figure 4.  Fault displacement profiles of four faults for which several displacement markers were identified. 

X correspond to distance with respect to the fault center.



Figure 5. Displacement vs Length in a log-log plot, covering a range of five orders of magnitude. Power-law 

fit line indicates exponent of 1.02 with a coefficient of determination 0.94.



(a)



Figure 6.(a) . (b) Modelled slip distributions 𝐾𝑡𝑜𝑡𝑎𝑙
𝐼𝐼  𝑎𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑛𝑑 𝑧𝑜𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ (𝑎 ‒ 𝑑) 𝑎

(dashed black) fitting measured slip profiles (blue, same as Figure 4). The coefficient of determination R2 is 

shown for every fit. See text for details.

(a)

(b)



Figure 7. (a) Shear moduli (GPa) as a function of end zone length for each fault. Each circle plotted 

represents a combination of parameters that meet the defined criteria. Shorter faults (Faults 1 and 2) are 

consistent with higher shear moduli than those of longer faults (Faults 3 and 4).(b) Shear modulus as a 

function of maximum fault displacement. Shear modulus consistently decreases with increasing displacement.

Figure 8. Stress drop as a function of end zone length for each modelled fault. Larger stress drops require 

larger end zone lengths. Also, longer faults are associated with larger stress drops. An exception for this 

trend is fault 4.



Figure 6. Fracture energy as a function of end zone length for each fault. In general, more fracture energy is 

required for propagating cracks with longer end zone lengths.   scales with fault length, with larger faults 𝐺𝑐

requiring higher fracture energy to propagate/slip. An exception for this trend is fault 4.



Figure 10. D/L ratio as a function of end zone lengths length for various combinations of   and , 𝜏𝑟 𝜇

represented by the  ratio. The characteristic   ratio calculated for our case study is shown in 𝜏𝑟/𝜇 𝑑𝑚𝑎𝑥/𝐿

balck. Increasing end zone lengths correlate with decreasing   ratios. Also, increasing   ratios 𝑑𝑚𝑎𝑥/𝐿 𝑑𝑚𝑎𝑥/𝐿

are related to increasing shear moduli and decreasing remote shear stresses, showing that multiple 

combinations of parameters result in the characteristic .𝑑𝑚𝑎𝑥/𝐿



Figure 11.  ratio as a function of propagation ratio for various constant s/a ratios. 1 imply that 
𝛥𝑑
𝑠𝑖

 
𝛥𝑑
𝑠𝑖

>

between growing stages i and i+1, the newly developed mature segment of the fault ( exceed the previous 𝛥𝑑) 

end zone length ( , resulting in a stage without end zone that produces a stress singularity at the fault tips 𝑠𝑖)

and contradicts the CEZ model.  can only be achieved by high propagation ratio, much higher than the 
𝛥𝑑
𝑠𝑖

< 1



estimated range of 0.25 to 2.5% (Cowie and Scholz 1992c; Peacock and Sanderson 1996), shown 

approximately in grey rectangle, or high s/a ratios.


