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Abstract—In this paper, the synergy of combining the edge
and central cloud computing is studied in heterogeneous cellular
networks (HetNets). Multi-antenna small base stations (SBSs)
equipped with edge cloud servers offer computing services
for user equipment (UEs) proximally, whereas a macro base
station (MBS) provides central cloud computing services for
UEs via wireless multiple-input multiple-output (MIMO) back-
haul allocated to their associated SBSs. With task processing
latency constraints for UEs, the network energy consumption
is minimized through jointly optimizing the cloud selection, the
UEs’ transmit powers, the SBSs’ receive beamformers, and the
SBSs’ transmit covariance matrices. A mixed-integer and non-
convex optimization problem is formulated, and a decomposition
algorithm is proposed to obtain a tractable solution iteratively.
The simulation results confirm that great performance improve-
ment can be achieved compared with the traditional scheme with
central cloud computing only.

Index Terms—Edge computing, central cloud computing, Het-
Nets, MIMO, wireless backhaul.

I. INTRODUCTION

The explosively increasing computing demand for resource-
limited user equipment (UEs) has driven the emergence and
development of edge computing, which has been regarded a
promising technology to achieve high energy efficiency and
low latency. The rationale behind edge computing is that cloud
services can be provided at the edge of wireless networks,
to liberate the UEs from heavy computation workload and
prolong their battery lifetime [1, 2]. Recently, mobile edge
computing (MEC) has been widely used in cellular networks,
aiming at improving the energy efficiency or reducing the
latency, e.g., [3–7]. The tradeoff between energy consumption
and latency in information transmission and computation is
studied in [3]. In [4], game-theoretical solutions are proposed
to maximize the cell load and minimize the cost in terms of
time and energy. Later in [5], time and frequency allocation
problems are solved for improving energy efficiency. The work
of [6] examines a single-cloudlet scenario, and a successive
convex optimization approach is developed. A UAV-assisted
MEC architecture is proposed in [7] to leverage the flexibility
of UAV. The implementation of energy harvesting in MEC
networks can further improve the system performance by
providing sustainable energy supply for users and prolonging
their lifetime, such as the works in [8–11].

However, the aforementioned works mainly focus on the

small-scale edge computing networks. Actually, edge comput-
ing cannot entirely replace the traditional central cloud for
the reason that edge computing provides limited processing
and storage at the proximity of UEs but may be incapable
of handling massive data processing. The latest white paper
published by ETSI has further illustrated that edge computing
and central cloud computing are highly complementary and
significant benefits can be achieved when utilizing both [12].

Therefore, this paper studies the synergy of combining the
edge and central cloud computing in a two-tier heterogeneous
cellular network (HetNet), where UEs can offload their com-
puting tasks to the small base stations (SBSs) with limited edge
computing capabilities, or to the macro BS (MBS) providing
central cloud computing services via wireless multiple-input
multiple-output (MIMO) backhaul allocated to their associated
SBSs [13]. Our aim is to minimize the network’s total energy
consumption under UEs’ task processing latency constraints
through jointly optimizing the cloud selection decisions, the
UEs’ transmit powers, the SBSs’ receive beamforming vectors
and transmit covariance matrices. The formulated problem is
mixed-integer and non-convex, and an iterative algorithm is
proposed to solve such a combinatorial problem properly. It is
confirmed that the integrated edge and central cloud computing
scheme proposed in this work can achieve better performance
than the traditional central cloud computing scheme.

Notations—In this paper, the notations (·)H and (·)† are
conjugate transpose and conjugate operators, respectively. In
addition, [x]+ = max {x, 0}. eig {X} denotes the set of all the
eigenvalues for matrix X and eigvec {·} gives the eigenvector
for a given eigenvalue of X. ⟨X1,X2⟩ , R{tr(XH

1 X2)},
where R{·} is the real-value operator.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A two-tier HetNet is considered, in which an M -antenna
MBS is fiber-optic connected to the central cloud with super
computing capability and provides high-speed wireless back-
haul to N SBSs with edge clouds offering limited computing
capabilities. In each small cell, a SBS equipped with L
antennas serves a single-antenna UE, and each UE has an
atomic computation-intensive task which cannot be divided
and has to be offloaded as a whole for computing. The case for
serving multiple UEs in each small cell can be dealt with by



using existing orthogonal multiple access techniques such as
time-division. Let N = {1, . . . , N} denote the set of the SBSs
and UEs, and Ba and Bb denote the bandwidths allocated to
the access and backhaul links, respectively.

Since the computing tasks offloaded by the UEs could be
executed either at the edge cloud or central cloud, cloud
selection needs to be appropriately determined before eval-
uating the computation latency and energy consumption. Let
the binary indicator cn denote the computing decision, where
cn = 1 indicates edge computing, and cn = 0 indicates central
cloud computing for each UE n ∈ N . In the sequel, we will
study the latency and energy consumption of the network,
and then formulate the optimization problem for minimizing
the network’s total energy consumption under each UE’s task
processing latency constraint.

A. Transmission and Computing Latency

1) Access Transmission Latency: The uplink transmission
rate for offloading the computation task of UE n to its serving
SBS is given as

Ra
n(p

u,wn) = Ba log2 (1 + γa
n(p

u,wn)) (1)

with the signal-to-interference-plus-noise ratio (SINR)

γa
n(p

u,wn) =
pun|wH

n ha
n,n|2∑N

i=1,i̸=n p
u
i |wH

n ha
i,n|2 + |wH

n nn|2
, (2)

where wn is the receive beamforming vector of the n-th SBS,
ha
i,n ∈ CL×1 is the channel vector between UE i and SBS n,

nn is a vector of additive white Gaussian noise with zero mean
and variance σ2

n, and pu , [pu1 , . . . , p
u
N ]T ∈ RN×1 denotes

the transmit power vector of the UEs. Therefore, given an
arbitrary offloaded computation task size of the n-th UE’s,
denoted as In (bits), its uplink transmission latency for task
offloading to the SBS n can be calculated as

T a
n(p

u,wn) =
In

Ra
n(p

u,wn)
. (3)

2) Edge Computing Latency (cn = 1): Let fn and ϑn

denote the SBS n’s CPU frequency and the number of CPU
cycles per bit data required for computing UE n’s task. Then
the computation latency at the n-th SBS can be described as

T edge
n = ϑnIn/fn. (4)

3) Central Cloud Processing Latency (cn = 0): The central
cloud processing latency results from backhaul transmission
and task execution at the central cloud. Due to the central
cloud’s super computing capability, its computing time is much
lower than edge computing, thus we assume that the central
cloud computing time is negligible. Hence, the central cloud
processing latency, i.e., the backhaul transmission latency for
the n-th UE is calculated as

T central
n (Q) =

In
Rb

n(Q)
, (5)

where Rb
n(Q) is the backhaul transmission rate given by

Rb
n(Q) = Bb log2 det

(
I+Ψ(Q−n)

−1Hb
nQn

(
Hb

n

)H)
, (6)

with the noise-plus-interference covariance matrix denoted as
Ψ(Q−n) = σ2I+

∑N
i=1,i̸=n H

b
iQi

(
Hb

i

)H . In (6), Qn is the
transmit covariance matrix of SBS n, Q = {Qn}Nn=1 and
Q−n = {Qi}Ni=1,i̸=n are the compact transmit covariance
matrices and the compact transmit covariance matrices except
Qn, respectively, and Hb

n ∈ CM×L is the backhaul channel
matrix from SBS n to the MBS. Hence, the total latency for
completing UE n’s computation task can be described as

T total
n = T a

n(p
u,wn) + cnT

edge
n + (1− cn)T

central
n (Q). (7)

In addition, it is assumed that the size of computing outputs
(usually a few command bits) is small and the downlink
overhead such as time and energy consumption for delivering
them to the UEs is negligible and therefore ignored.

B. Energy Consumption

Energy consumption mainly comes from task offloading
energy and task execution energy. Based on Section II-A,
the amount of energy consumption for UE n to offload its
computing tasks to its serving SBS is

Ea
n = punT

a
n(p

u,wn). (8)

If the task is executed by the edge cloud at the SBS n, the
energy consumption is given by [8]

Eedge
n = ϱnϑnInf

2
n, (9)

where ϱn is the effective switched capacitance of the edge
server n associated with the SBS n. Else, if the task is executed
by the central cloud, we then have

Ecentral
n = tr (Qn)T

central
n (Q) + ζnE

edge
n , (10)

where ζn is the ratio of central cloud’s energy consumption
to that of the edge cloud for computing the same task, and it
is related to the CPU frequency. We assume that ζn > 1 since
the CPU frequency of the central cloud server should be much
higher than edge servers. Thus, the total energy consumption
for offloading and computation can be calculated as

Etotal =
N∑

n=1

(
Ea

n + cnE
edge
n + (1− cn)E

central
n

)
. (11)

C. Problem Formulation

We aim at minimizing the total energy consumption for
offloading and computation under each UE’s task processing
latency constraint through jointly optimizing the cloud selec-
tion decisions (c = {cn}Nn=1), UEs’ transmit power vector
(pu), SBSs’ receive beamformers (w = {wn}Nn=1), and the
SBSs’ transmit covariance matrices in (Q). Hence, we can
formulate the problem as follows:

min
c,pu,w,Q

Etotal (12)

s.t. C1 : cn ∈ {0, 1} , ∀n ∈ N ,

C2 : 0 ≤ pun ≤ P u
max, ∀n ∈ N ,

C3 : Qn ≽ 0, ∀n ∈ N ,

C4 : T total
n (c,pu,w,Q) ≤ Tth, ∀n ∈ N ,



where C1 is the cloud selection constrains; C2 and C3 are
constraints guaranteeing the non-negativeness of the param-
eters; C4 shows the UEs’ delay constraints for completing
their computation tasks, and Tth is a predefined threshold.
According to the expression of T total

n (c,pu,w,Q) in (7)
and the definition of cn in C1, the constraint C4 can be
equivalently divided into the following two constraints

C4.1 : T a
n(p

u,wn) + cnT
edge
n ≤ Tth,∀n ∈ N , (13)

C4.2 : T a
n(p

u,wn) + (1− cn)T
central
n (Q) ≤ Tth,∀n ∈ N .

(14)

In the following sections, we will mainly focus on the equiv-
alent version of the above problem (12) with the processing
latency constraints C4.1 and C4.2.

III. ALGORITHM DESIGN

In fact, problem (12) is a mixed-integer optimization prob-
lem with coupled variables c and {pu,w,Q}, which is non-
convex and a NP-hard in general. To address this issue, a
decomposition approach is adopted to solve (12) in an iterative
manner. We first make the cloud selection decisions with
given {pu,w,Q}, and then optimize the transmit power (pu),
the beamformers (w), and the covariance matrices (Q) with
a given cloud selection. A tractable solution can be finally
obtained when the algorithm converges.

A. Edge or Central Cloud Decision

By relaxing cn ∈ {0, 1} to ĉn ∈ [0, 1], we find that given
{pu,w,Q}, problem (12) can be decomposed into

min
ĉ

N∑
n=1

(
ĉnE

edge
n + (1− ĉn)E

central
n

)
(15)

s.t. Ĉ1 : ĉn ∈ [0, 1] , n ∈ N , C4.1, C4.2.

where ĉ = {ĉn}n∈N . It is easy to note that problem (15) is a
one-dimensional linear programming, and its solution is given
in the following lemma.

Lemma 1. The optimal cloud decision variable ĉn of
problem (15) can be given in two cases:

• Case 1: If Eedge
n ≤ Ecentral

n , the objective function in
problem (15) is a decreasing function of ĉn, and thus
the optimal ĉ∗n is the maximum value that satisfies the
constraints in (15), i.e.,

ĉ∗n =

[
min

{
Tth − T a

n(p
u,wn)

T edge
n

, 1

}]+
. (16)

• Case 2: If Eedge
n > Ecentral

n , the objective function in (15)
is an increasing function of ĉn, and the optimal ĉ∗n is the
minimum value that satisfies the constraints in (15), i.e.,

c∗n =

[
1− Tth − T a

n(p
u,wn)

T central
n (Q)

]+
. (17)

From Lemma 1, we can see that the edge/central cloud
computing decision ĉ∗ is reliant on the optimal {pu,w,Q} of
problem (12). Hence, we will respectively focus on obtaining

the optimal {pu∗,w∗} and Q∗ based on a given cloud
selection decision ĉ in the following two subsections. The final
cloud decision c∗ is obtained by rounding ĉ∗.

B. UEs’ Transmit Powers and SBSs’ Receive Beamformers

With a given cloud decision ĉ and the SBSs’ transmit
covariance matrix Q, the optimal {pu∗,w∗} can be obtained
by solving the following subproblem of (12):

min
pu,w

N∑
n=1

punT
a
n(p

u,wn) (18)

s.t. C2, Ĉ4 : T a
n(p

u,wn) ≤ T (1)
n ,

where T
(1)
n = [Tth − max{ĉnT edge

n , (1 − ĉn)T
central
n (Q)}]+.

The objective function of the subproblem (18) is weighted
sum-of-ratios related to pu and w, and thus this problem is
non-convex and challenging to solve. We first decouple the
interplay between pu and w, and the following Lemma 2
presents the optimal w∗ of problem (18) when pu is fixed.

Lemma 2. With a given pu, problem (18) with respect to
(w.r.t.) wn can be equivalently transformed into a generalized
eigenvector problem, thus the optimal w∗

n is given by

w∗
n = eigvec

{
max

{
eig{(Φ−n)

−1
Φn}

}}
, (19)

where Φ−n =
∑N

i=1,i̸=n p
u
i h

a
i,n(h

a
i,n)

H + σ2
nIL and Φn =

punh
a
n,n(h

a
n,n)

H .

With the help of auxiliary variables t = {tn}Nn=1, it can be
verified that problem (18) over the UEs’ transmit power vector
pu for fixed w can be equivalently transformed as

min
pu,t

N∑
n=1

Intn (20)

s.t. C2, Ĉ4, C5 : pun − tnR
a
n(p

u,wn) ≤ 0, ∀n ∈ N .

Lemma 3. The optimal solution (pu∗, t∗) of problem (20)
satisfies the Karush-Kuhn-Tucker (KKT) conditions of the
following N (n ∈ N ) subproblems

min
pun

(λn +Mn) p
u
n − λntnR

a
n(p

u,wn) (21)

s.t. C̃2 : 0 ≤ pun ≤ P u
max,

C̃4 : In/T
(1)
n −Ra

n(p
u,wn) ≤ 0,

with

Mn =
N∑

j=1,j ̸=n

λjtj
Ba

ln 2

(
γa
j

)2 |wH
j ha

n,j |2

puj |wH
j ha

j,j |2
(
1 + γa

j

)+ (22)

N∑
j=1,j ̸=n

µj

(
γa
j

)2 |wH
j ha

n,j |2

puj |wH
j ha

j,j |2
,

where {µn}Nn=1 and {λn}Nn=1 are the Lagrange multipliers
associated with the constraints Ĉ4 and C5 of problem (20),
and Mn = −

∑N
j ̸=n λjtj

∂Ra
j

∂pu
n
−

∑N
j ̸=n µj

∂γa
j

∂pu
n

. For optimal
(pu∗,w∗), λn and tn are respectively calculated as

λn =
In

Ra
n (p

u∗,w∗
n)

, tn =
pu∗n

Ra
n (p

u∗,w∗
n)

. (23)



Given λn and tn, subproblem (21) is convex w.r.t. pun.
Therefore, we have the following theorem.

Theorem 1. The solution of subproblem (21) is given by

pu∗n =


τ

Λn
, if Ωn <

τ

Λn
,

Ωn, if
τ

Λn
≤ Ωn ≤ P u

max,

P u
max, if Ωn > P u

max,

(24)

µ∗
n =


λn +Mn

Λn
− Ba

ln 2

λntn
τ + 1

, if Ωn <
τ

Λn
,

0, otherwise,
(25)

ν∗
n =


0, if Ωn ≤ P u

max,

Ba

ln 2

λntn
P u
max + 1/Λn

− λn −Mn, otherwise,
(26)

where τ = 2
In

BaT
(1)
n − 1, Λn , |wH

n ha
n,n|

2∑N
i=1,i̸=n pu

i |wH
n ha

i,n|2+|wH
n nn|2

,

Ωn , Ba

ln 2
λntn

λn+Mn
− 1

Λn
, and ν∗n and µ∗

n are the optimal
Lagrange multipliers associated with the constraints C̃2 and
C̃4 of problem (21)1, respectively.

Proof. See Appendix A.

C. SBSs’ Transmit Covariance Matrixes

For fixed cloud selection ĉ and {pu,w} obtained in the
above subsection, the optimal Q∗ can be obtained by solving
the following subproblem:

min
Q

y (Q) =

N∑
n=1

(1−ĉn) tr (Qn)T
central
n (Q) (27)

s.t. C3, Ĉ4.2 : Rb
n(Q) ≥ (1− ĉn) In/T

(2)
n , ∀n ∈ N ,

where T
(2)
n = Tth − T a

n(p
u,wn). Problem (27) is non-convex

because of the non-convex objective function and constraints
in Ĉ4.2. To solve it, a successive pseudoconvex approach is
leveraged, which is noted for its fast convergence and parallel
computation capability [14].

First, let Ql denote the Q value in the l-th iteration. Hence,
the non-convex terms tr (Qn)T

central
n (Q) for n ∈ N in the

objective function can be approximated as a pseudoconvex
function at Ql, which is written as

ŷn(Qn;Q
l) , Intr(Qn)

Rb
n(Qn;Ql)

+ zn(Qn), n ∈ N (28)

where zn(Qn) =
∑

j ̸=n Ijtr(Q
l
j)
⟨
(Qn −Ql

n),∇Q†
n

1−cj
Rb

j (Q
l)

⟩
is a function obtained by linearizing the non-convex func-
tion

∑N
j ̸=n tr (Qj)T

central
j (Q) in Qn at the point Ql and

∇Q†
j

1−cj
Rb

j (Q
l)

is the Jacobian matrix of 1−cj
Rb

j (Q
l)

w.r.t. Q†
j . Based

on (28), the objective function y (Q) of problem (27) at Ql

can be approximated as

ỹ(Q;Ql) =

N∑
n=1

(1−cn) ŷn(Qn;Q
l). (29)

It can be verified that ỹ(Q;Ql) is a pseudoconvex function
and has the same gradient with y (Q) at Q = Ql.

1C̃4 can be equivalently expressed as τ −γa
n(p

u,wn) ≤ 0, which is used
in the derivation of Theorem 1.

Then, by rewriting the non-concave function Rb
n(Q) in Ĉ4.2

as a difference of two concave functions equivalently as in
(30a) and leveraging the first-order Taylor expansion at Ql

for the second function, Rb
n(Q) can be approximated as

Rb
n(Q) = Bb log2 det

(
σ2I+Ξ(Q)

)
−Rb2

n (Q) (30a)

> Bb log2 det
(
σ2I+Ξ(Q)

)
−Rb2

n (Ql)−
N∑

j ̸=n

⟨
(Qj −Ql

j),∇Q†
j
Rb2

n (Ql)
⟩
, R̃b

n(Q), (30b)

where Ξ (Q) =
∑N

i=1 H
b
iQi

(
Hb

i

)H
, Rb2

n (Q) = Bb log2 det(∑N
i ̸=n H

b
iQi

(
Hb

i

)H
+ σ2I

)
, and ∇Q†

j
Rb2

n (Ql) is the Jaco-

bian matrix of Rb2
n (Ql) w.r.t. Q†

j . Here, R̃b
n(Q) expressed in

(30b) is a concave function over Q.
Therefore, at Ql, the original problem (27) can be approx-

imately transformed as

min
Q

ỹ(Q;Ql) (31)

s.t. C3, C̃4.2 : R̃b
n(Q) ≥ (1− cn) In/T

(2)
n , ∀n ∈ N .

The objective function in problem (31) is a sum of N pseudo-
convex functions each containing a fractional function and a
linear function. In addition, all the constraints in problem (31)
are convex. Hence, by introducing a set of auxiliary variables
for the N fractional functions in the objective function and
leveraging the Dinkelbach-like algorithm [15], problem (31)
can be transformed into a solvable convex optimization prob-
lem, which can be effectively solved by CVX [16] and owns
provable convergence [14]. Let Ql∗ represent the solution of
problem (31) at the l-th iteration, and thus the value of Q in
the next (l + 1)-th iteration can be updated as

Ql+1 = Ql + ε(l)(Ql∗ −Ql), (32)

where Ql∗ −Ql is the descent direction of y (Q) and ε(l) is
the step size at the l-th iteration that can be obtained through
the successive line search. Therefore, the solution of problem
(27) can be iteratively obtained.

IV. SIMULATION RESULTS

In this section, simulation results are presented to evaluate
the performance of the proposed solution and show the effects
of the key parameters including the uniform task size (I = In),
the UEs’ processing latency threshold (Tth), and the uniform
SBSs’ CPU frequency (f = fn), in combination with the
uniform ratio of energy consumption between central and edge
cloud computing (ζ = ζn). The performance of traditional
“Central-cloud-only” computing scheme is also given as a
benchmark. Note that the total energy consumption shown in
the following figures are averaged over 500 independent chan-
nel realizations. All the small-scale fading channel coefficients
follow independent and identically complex Gaussian distribu-
tion with zero mean and unit variance. The pathloss between
SBS and UE and between MBS and SBS are respectively
set as 140.7 + 36.7 log10 d(km) and 100.7 + 23.5 log10 d(km)
according to 3GPP TR 36.814 [17], where d is the distance



TABLE I
SIMULATION PARAMETERS

Parameter Symbol Value
Bandwidth for an access or backhaul link Ba, Bb 10 MHz
Noise power spectral density for an access or backhaul link σ2

n, n ∈ N , σ2 -174 dBm/Hz
Radius of the small cell, macro cell ra, rb 50 m, 500 m
Number of of antennas for the MBS M 16
Number of SBSs/UEs N 6
Number of antennas for each SBS L 2
UEs’ maximum transmit power Pu

max 23 dBm
Required CPU cycles per bit ϑn, n ∈ N 300 cycles/bit
the effective switched capacitance of the SBS processor ϱn, n ∈ N 10−28
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Fig. 1. The total energy consumption of the system versus UEs’ uniform task
size I: Tth = 0.3 s and f = 6 GHz.

between two nodes. The other basic simulation parameters are
listed in Table I.

In Fig. 1, the total energy consumption of the system versus
the uniform task sizes I for the cases of ζ = 1.1 and ζ = 1.3
are presented. It is easy to understand that computing more
input data consumes more energy, and thus the energy cost of
each scheme increases with I . We can see that the proposed
solution is superior to the “Central-cloud-only” scheme in both
cases. Besides, the gap between the proposed solution and the
“Central-cloud-only” scheme becomes larger when ζ increases
due to the fact that more energy will be consumed for central
cloud computing with a larger ζ. We also observe that in both
two cases, the results of using the proposed solution gradually
approach to those of the Central-cloud-only scheme when I
increases, which means that more UEs will select the central
cloud for computing tasks with large sizes. The reason is that
when the task is large, T edge

n will be large accordingly, and
thus the use of edge computing may no longer satisfy the
latency constraint C4.1 of problem (12) due to the limited
edge computing capability, and central cloud has to be chosen
for computing so as to guarantee the UEs’ computing tasks
being completed within the given duration.

Fig. 2 depicts the total energy consumption of the system
varying with the latency threshold of completing UEs’ tasks
(Tth) for the cases of ζ = 1.1 and ζ = 1.3. It is seen
that the proposed solution is a non-increasing function of Tth

and outperforms the baseline scheme with central cloud only.
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Fig. 2. The total energy consumption of the system versus the latency
threshold of completing UEs’ task Tth: I = 5 Mbits and f = 6 GHz.

Similar to Fig. 1, the gaps between the proposed solution
and the “Central-cloud-only” scheme become larger when ζ
increases. We can see that the Central-cloud-only scheme is
insensitive to Tth, and its performance is almost invariant
thanks to its super computing capability for low computing
latency. Note that in both two cases, the two schemes consume
almost same amount of energy when Tth is small, e.g.,
Tth = 0.2 s. The reason is that the latency constraint C4.1
cannot be met for the reason that T edge

n > Tth and only central
cloud computing can be employed. With the increasing of Tth,
the edge cloud computing becomes more feasible, and thus
the consumed energy of the proposed solution decreases with
Tth and its performance improvement becomes more obvious
since more UEs are allowed to choose the energy-efficient
edge cloud computing for large Tth.

Fig. 3 shows the total energy consumption of the system
versus the SBSs’ uniform CPU frequency f for the cases of
I = 3 Mbits and I = 5 Mbits. According to the curves of these
two cases, we see that the effect of f is heavily reliant on the
computing task size I . When I is not large, i.e., I = 3 Mbits,
the energy consumption of both two schemes may increase
with f for the reason that the energy consumption of both the
edge cloud computing and central cloud computing increase
with f . However, when I becomes large, the network’s energy
consumption of the proposed solution may decrease with f
in certain scenario, where there is an obvious decrease as
f ∈ [5, 6] × 109 Hz in the case of I = 5 Mbits. This is
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Fig. 3. The total energy consumption of the system versus the SBSs’ uniform
CPU frequency f : I = 5 Mbits and ζ = 1.5.

because when f is small, e.g., less than 4× 109 Hz, the edge
cloud computing cannot satisfy the latency constraint C4.1,
i.e., T edge

n > Tth and the central cloud computing becomes
the only option; as f increases, the energy-efficient edge cloud
computing becomes feasible for more UEs to save energy, thus
the total energy cost will first decrease then increase with f .

V. CONCLUSION

In this paper, we studied the joint design of computing
services when edge cloud computing and central cloud com-
puting coexist in a two-tier HetNet with wireless MIMO
backhaul. By optimizing the cloud selection decisions, the
UEs’ transmit powers, the SBSs’ receive beamforming vectors
and the transmit covariance matrices, the network’s energy
consumption can be minimized while meeting the latency
constraints of completing UEs’ computation tasks. An iterative
algorithm was proposed, which can achieve better performance
than the traditional scheme with central cloud computing only.
The simulation results have further confirmed the performance
enhancement of leveraging the proposed solution.
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APPENDIX A: PROOF OF THEOREM 1

The KKT conditions of subproblem (21) are expressed as

λn +Mn − Ba

ln 2

λntnΛn

1 + γa
n

− µnΛn + νn = 0, (A.1)

νn (p
u
n − P u

max) = 0. (A.2)
µn (τ − γa

n) = 0, (A.3)

From (A.1), we see that the optimal pu∗n meets

pu∗n =
Ba

ln 2

λntn
λn +Mn − µ∗

nΛn + ν∗n
− 1

Λn
, (A.4)

where ν∗n and µ∗
n satisfy the KKT conditions (A.2) and (A.3),

respectively. To explicitly obtain {pu∗n , µ∗
n, ν

∗
n}, we need to

consider the following cases:

• Case 1: When pu∗n ∈
(

τ
Λn

, P u
max

)
, ν∗n = µ∗

n = 0

according to (A.2) and (A.3). In this case, pu∗n = Ωn with
Ωn = Ba

ln 2
λntn

λn+Mn
− 1

Λn
according to (A.4). Therefore, if

Ωn ∈
[

τ
Λn

, P u
max

]
, pu∗n = Ωn and ν∗n = µ∗

n = 0.
• Case 2: If Ωn < τ

Λn
, it is seen from (A.4) that µ∗ > 0.

In this case, pu∗n = τ
Λn

and ν∗n = 0 according to (A.2)
and (A.3). Substituting pu∗n = τ

Λn
and ν∗n = 0 into (A.4),

we obtain µ∗
n = λn+Mn

Λn
− Ba

ln 2
λntn
τ+1

• Case 3: If Ωn > P u
max, it is seen from (A.4) that ν∗n > 0.

In this case, pu∗n = P u
max and µ∗

n = 0 according to (A.2)
and (A.3). Substituting pu∗n = P u

max and µ∗
n = 0 into

(A.4), we obtain ν∗n = Ba

ln 2
λntn

Pu
max+1/Λn

− λn −Mn.
Thus, we get the optimal {pu∗n , µ∗, ν∗n} shown in Theorem 1.
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