
A Learning Approach to Edge Caching with
Dynamic Content Library in Cellular Networks
1st Xinruo Zhang

Wolfson School
Loughborough University

Loughborough, UK
X.Zhang@lboro.ac.uk

2nd Gan Zheng
Wolfson School

Loughborough University
Loughborough, UK
g.zheng@lboro.ac.uk

3rd Sangarapillai Lambotharan
Wolfson School

Loughborough University
Loughborough, UK

s.lambotharan@lboro.ac.uk

4th Mohammad Reza Nakhai
Department of Informatics

King’s College London
London, UK

reza.nakhai@kcl.ac.uk

5th Kai-Kit Wong
University College London

London, UK
kai-kit.wong@ucl.ac.uk

Abstract—This paper focuses on joint edge cache placement
and content delivery problem at a base station (BS) in the
presence of spatio-temporal unknown content dynamics, where
the BS can satisfy its users’ content demand either directly from
its local cache or by fetching from the content server. Unlike
previous works that assume a static content library, we consider a
more realistic non-stationary content library, where new contents
may emerge over time at different locations, and we propose that
the new contents cached at local users can be utilized by the BS to
timely update its flexible cache memory in addition to its routine
off-peak main cache update from the content server. To account
for the traffic demand variations and the limited caching space
at the BS, a user-aided non-stationary bandit-inspired caching
algorithm is developed to gradually optimize the caching policy
with the target of maximizing the weighted network utility in the
long run. Simulation results validate that the proposed strategy
outperforms various benchmark designs.

Index Terms—non-stationary bandit, edge caching, dynamic
content library

I. INTRODUCTION

Global mobile data traffic is experiencing an explosive
growth and is predicted to reach 48.3 Exabytes per month
by 2021, of which, 82 percent will be video traffic [1]. The
backhaul data rate demand between the base stations (BSs)
and the core network incurred by such rapid traffic growth,
nevertheless, has become the major revenue and technical
bottlenecks for the network operators, especially during peak
traffic periods [2]. Since a large portion of backhaul traffic is
contributed by duplicate data transmission [2], caching popular
contents such as video and social media that are repeatedly
requested by users near the wireless network edge, e.g., in
the BSs’ local memories, has recently become one of the
research focuses. Most approaches in the literature assume
limited cache storage and perfect knowledge of time-invariant
content popularity distribution at BSs, and then design content
delivery [2], content placement [3] as well as joint content
placement and delivery [4] strategies in various network s-
cenarios. Their assumption of content popularity distribution
known in advance at the BSs, nevertheless, is not realistic
in practical scenarios. In recent years, employing machine

learning techniques to estimate the unknown content popu-
larity and proactively cache the popular contents at the BSs
prior to users’ content requests, has attracted the attention of
researchers. The authors in [5], [6] propose multi-armed bandit
(MAB)-based caching strategies to estimate the unknown but
time-invariant content popularity distribution. The authors in
[7] introduce a regret learning based per-BS caching strategy
to learn spatio-temporal traffic demands and capture local and
global content popularity trade-off. However, the aforemen-
tioned works simply ignore the fact that the contents can be
dynamic over time: new contents are constantly introduced to
the system and their popularity distributions may change over
time. The authors in [8] and [9] focus on the cache placement
design for dynamic content library. However, the authors in [8]
propose an ON-OFF traffic model under the assumption that
the arriving content request processes at different caches are
temporal correlated. [9] adopts both global and local caches
and proposes an age based threshold policy taking into account
both the frequency of requests and the content age.

In contrast to the existing caching designs that assume
stationary content library and/or time-invariant content pop-
ularity, this paper considers a non-stationary content library,
where the content popularity may change over time and
locations. We propose a three-phase procedure at different
time scales for joint content placement and delivery at a BS.
Phase I is the BS’s main cache update phase at off-peak times,
where the cache unit is updated from the content server. Phase
II is the BS’s flexible cache update phase during peak traffic
hours, where the flexible cache can be more frequently updated
with users’ cached new contents. Phase III is the content
delivery phase at individual time instances, where the content
demand is satisfied from either the BS’s local cache or the
content server with different serving rewards. To adaptively
track the spatio-temporal variations of users’ content demands,
a user-aided caching algorithm based on non-stationary bandit
principles is developed to sequentially optimize the caching
policy at the BS, with the objective of maximizing the average
weighted network utility.



II. SYSTEM MODEL AND PROBLEM
FORMULATION

A. System Scenario and Assumptions

Fig. 1. Illustration of the system scenario and three-phase procedure at
different time scales for joint cache placement and content delivery.

As illustrated in Fig. 1, we consider a cache-enabled BS
with storage capacity of M that serves its Nu users, indexed
by Lu = {1, · · · , Nu}, based on perfect knowledge of channel
state information. The BS is connected to the content server
via capacity-limited backhaul link and attempts to offload
backhaul traffic as much as possible via prefetching popular
data from the core network during off-peak traffic hours and
delivering to its users at peak times. Let the time horizon be di-
vided into discrete time slots and indexed as T = {1, · · · , T}.

1) Non-stationary Content Library: We consider a non-
stationary finite content library at the content server, where
new contents are constantly introduced into the system. Let
us denote by F and F [max], respectively, the initial and the
maximum numbers of contents in the content library, and de-
note by F t = {1, · · · , F ′} the content library with individual
content sizes of {mf}f∈Ft at the t-th time slot, t ∈ T , where
F ′ indicates the current number of contents in the library. It
is evident that F ≤ F ′ ≤ F [max]. In case the content library
has F ′ = F [max] available contents at time slot t, whilst the
new contents are continuously emerging with time, the least
frequently used contents at the content server will be evicted
and replaced by the newly emerged contents. Note that our
considered dynamic content library naturally leads to the time-
varying content popularity, which is unknown to the BS.

2) New Contents at Users and Cache Unit at the BS: Each
user has a local cache memory and can only cache one content
at each time. At the end of each time slot, each user randomly
updates its cache memory with one of its requested contents.
In addition, newly emerged contents may be cached at some
random users either via being generated by the local users
themselves, or by being brought in through other networks
such as wireless local area network. The users are motivated
to upload these potentially popular new contents to the BS
for the incentive payment. From the BS’s perspective, let us
denote by κ[user] ∈ [0, 1] the per-unit per-time-slot equivalent
cost of the users’ uploading incentives, which covers various

costs such as the cost for allocating extra bandwidth for users’
contents uploading. To fully exploit users’ cached contents, a
portion with capacity of ξM, ξ < 1 of the BS’s cache unit
is allocated as the flexible cache memory that can be timely
updated from users’ caches, whilst the remainder of the cache
unit will be updated at a more infrequent pace, for instance,
from the content server during off-peak traffic hours.

3) Users’ Content Demands: At each time slot t, t ∈ T ,
user u, u ∈ Lu, may request up to Nu

f number of different
contents that are not cached by itself from the BS according
to some content popularity distribution {θtu,f}f∈Ft that is
unknown to the BS. In addition to the temporal variability
of the content popularity, we further consider the spatial
diversity of the content popularity distribution among users,
i.e., different content preferences at users, and denote by
∆u the circular shift of the content popularity distribution
at user u. Let the content demands of user u at time t be
denoted by dtu = {dtu1, · · · , dtuf , · · · , dtuF ′}, where the binary
scalar dtuf ∈ {0, 1} indicates whether or not the content f is
requested by user u at time t, and ‖dtu‖0 ≤ Nu

f .

4) Three-Phases Procedure: We consider a three-phase
procedure at different time scales of τ [main], τ [flex] and t ∈ T ,
for joint cache placement and content delivery in this paper.

• In Phase I, i.e., for every τ [main] time slots, the cache
placement policy will be designed at the BS and the
contents will be dispatched from the content server via
backhaul links to update BS’s cache unit.

• In Phase II, i.e., for every τ [flex] time slots, N [new]
f number

of new contents are added to the content server and might
be cached by some random users. Each user broadcasts
its cached content directory to the BS, and the BS will
then make a decision on whether or not to update its
flexible cache with the users’ cached contents.

• In Phase III, i.e., at each time slot t, t ∈ T , the BS
satisfies the instantaneous content requests of its users,
i.e., {dtu}u∈Lu , either by directly from its cache unit or by
retrieving from the content server with different per-unit
gross serving gains of π[cache] and π[server], respectively.
To take into account the backhaul traffic offloading as
well as to fully utilize the BS’s cache unit, let us assume
π[cache], π[server] ∈ [0, 1] and π[server] < π[cache].

5) Content Caching and Content Delivery: Let us define
the binary vector c

[p]
t = {ctf ∈ {0, 1}, ∀f ∈ F t} as the

content placement policy at time t, t ∈ T , where ctf = 1 and
ctf = 0, respectively, indicate that the content f is cached and
is not cached at the BS. This caching policy will be designed
in Phase I for BS’s main cache update, and might be updated
in Phase II for the portion of flexible cache memory. Let us
denote the content uploading policy for user u at time t, t ∈ T
as c

[u]
t = {ctu,f ∈ {0, 1},

∑
u∈Lu c

t
u,f ≤ 1, ∀u ∈ Lu, f ∈

F t}, where ctu,f ∈ {0, 1} represents whether or not the content
f is uploaded from user u to the BS. It is obvious that ctf ≥∑
u∈Lu c

t
u,f . Then, the net serving gain of the BS caching

content f and serving user u at time slot t, t ∈ T , can be



defined as

Gtf,u =mfd
t
uf (π[cache]ctf −

∑
u′ 6=u,u′∈Lu

κ[user]ctu′,f ),

∀t ∈ T , u ∈ Lu, f ∈ F t,
(1)

where the terms at the right hand side of (1) denote, re-
spectively, the gross serving gain for the BS serving user
u with content f directly from its local cache, and the per-
time-slot equivalent cost if the content f cached at the BS
is uploaded from the other local users. Let us denote by
c

[s]
t = {stf ∈ {0, 1}, ∀f ∈ F t} the content retrieving policy at

time t, where stf ∈ {0, 1} denotes whether or not the content
f is retrieved from the content server by the BS at time t. The
user demand of content f, f ∈ F t at each time slot t, t ∈ T
will be satisfied by serving either from the content server or
from the BS’s cache, as

stf + ctf = 1, ∀f ∈ F t,
∑
u∈Lu

dtuf 6= 0. (2)

The net serving gain of the BS serving user u by retrieving
content f from the content server at time slot t, is given by

G
[s],t
f,u = mfd

t
ufπ

[server]stf ,∀t ∈ T , u ∈ Lu, f ∈ F t. (3)

Let us denote by Ψt
u the channel gain between the BS and

user u at time slot t, t ∈ T and denote by P [Tx]
u the transmit

power from the BS to user u. With normalized bandwidth, the
instantaneous downlink data rate for user u at time t, can be
expressed as

Rtu = log2(1 +
P

[Tx]
u Ψt

u∑
u′∈Lu,u′ 6=u

P
[Tx]
u′ Ψt

u + σ2
u

),∀u ∈ Lu, (4)

where σ2
u is the variance of the additive white Gaussian noise

at user u. At each time slot t, t ∈ T , the content demand f
of user u is satisfied either from the BS’s cache unit with the
net serving gain of Gtf,u, or from the content server with the
net serving gain of G[s],t

f,u . The instantaneous serving reward,
i.e., the weighted data rate, for serving user u with content f
at time slot t, t ∈ T , can be defined as

R(dtuf ) = (Gtf,u +G
[s],t
f,u )Rtu, ∀u ∈ Lu, f ∈ F t, t ∈ T . (5)

Note that (5) jointly considers the backhaul traffic offloading
as well as the content delivery by assigning different weighting
factors, i.e., Gtf,u or G[s],t

f,u , to the transmission data rate. This
serving reward will be useful in designing cache placement
policy as well as content delivery policy in the subsequent
sections.

B. Problem Formulation

The objective of the BS is to design a joint caching policy
{c[p]
t , c

[u]
t , c

[s]
t } to offload as much traffic as possible from the

content server, whilst ensuring the quality of service (QoS) of
the users. Hence, the problem of interest can be formulated

as the maximization of the long-term average reward of the
network, i.e., the average weighted network utility, as

max
{c[p]
t ,c

[u]
t ,c

[s]
t }

 lim
T→∞

1

T

∑
t∈T

∑
f∈Ft

∑
u∈Lu

R(dtuf )

 (6)

s.t. C1 :
∑
f∈Ft

mfc
t
f ≤M, ∀t ∈ T ,

C2 : stf + ctf = 1, ∀f ∈ F t, t ∈ T ,
∑
u∈Lu

dtuf 6= 0,

C3 :
∑
u∈Lu

ctu,f ≤ 1, ∀f ∈ F t, t ∈ T ,

C4 : ctf ≥
∑
u∈Lu

ctu,f , ∀f ∈ F t, t ∈ T ,

C5 : ctf ∈ {0, 1}, ∀f ∈ F t, t ∈ T ,
C6 : ctu,f ∈ {0, 1}, ∀f ∈ F t, t ∈ T ,
C7 : stf ∈ {0, 1}, ∀f ∈ F t, t ∈ T ,

where the constraint C1 represents that the total size of the
cached contents cannot exceed the capacity of the BS’s cache
unit. C2 guarantees that the users’ content demands at each
time slot will be satisfied either from the BS’s cache unit
or from the content server. C3 denotes that the content f
can be uploaded from at most one local user to the BS. C4
indicates that the content uploaded from the users will be
stored at the BS’s cache unit. C5 - C7 specify that the joint
caching policy {ctf}f∈Ft,t∈T , {ctu,f}f∈Ft,t∈T , {stf}f∈Ft,t∈T
are binary variables, respectively.

III. USER-AIDED LEARNING-BASED CONTENT
CACHING STRATEGY

In this section, the problem in (6) will be gradually solved
through a user-aided reinforcement learning-based three-phase
procedure at different time scales. The main objective of the
proposed caching algorithm is to progressively optimize the
joint caching policy {c[p]

t , c
[u]
t , c

[s]
t } time slot by time slot, such

that the long-term average reward, i.e., the average weighted
network utility, can be maximized. More specifically, the
learning processes in Phase I and Phase II of the proposed
algorithm, respectively, aim at tracking the variations in user
demands in order to design {c[p]

t } in constraints C1, C4 and
C5 of problem (6) at every τ [main] time slots, and design {c[u]

t }
in constraints C3 and C6 at every τ [flex] time slots. The content
retrieving and delivery policy, i.e., {c[s]

t } in constraints C2 and
C7, will be satisfied at each individual time slot t, t ∈ T , in
Phase III of our proposed algorithm.

In the sequel, the proposed user-aided learning-based
caching algorithm is introduced to offload the backhaul traffic
as much as possible while ensuring the QoS of the users.
Let us consider a non-stationary generalization of the MAB
problem that models a system of F ′ actions whose expected
rewards are independent and identically distributed over time
with unknown means and may vary across time. The objective
of the agent in the MAB problem is to maximize the accu-
mulated reward over time via exploring the environment to



find profitable actions, while exploiting current knowledge to
make the empirically best decisions among a set of actions
[10]. The caching problem investigated in this paper can be
modelled as a non-stationary bandit problem, where the BS
can be regarded as the agent and F ′ actions correspond to
the current library of F ′ contents at the content server, whose
content popularity evolves over time. As per (5), it is obvious
that in order to maximize the long-term average reward of the
network, the user will be served from BS’s local cache with the
top priority, and by retrieving from the content server with the
least priority. Hence, the associated reward of action f, f ∈ F t
can be defined as the aggregated data rate for satisfying users’
content demand of f , i.e.,

∑
u∈Lu R

t
ud
t
ufmf .

Fig. 2. Flowchart of the proposed caching algorithm.

The details of the proposed learning-based caching strategy
are described in Algorithm 1 and Fig. 2, where a three-phase
procedure at different time scales for joint content caching and
delivery is proposed and explained below:

1) Phase I: For every τ [main] time slots, a perturbation
procedure is applied to the estimated mean reward r̄t according
to step 4 in Algorithm 1. Such adjustment implements a trade-
off between exploring the contents that are not frequently
cached and may yield a better accumulated reward in the future
by artificially increasing their estimated mean reward, and
exploiting the contents associated with the top mean rewards
so far based on the past observations. Due to the fact that the
content library is massive and evolutive, the standard upper
confidence bound (UCB) algorithm [10] may not be able to
catch up with such rapid variations. Hence, we modified the
UCB algorithm by adding a discount factor β as well as
introducing a weighting factor ρt that is proportional to the
long-term discounted content demands. Such modification will
encourage the BS to cache those contents that are frequently
requested in recent times but are not cached that often.

2) Phase II: For every τ [flex] time slots, the contents asso-
ciated with the lowest reward in BS’s flexible cache will be
replaced by the new contents cached at the users accordingly.
To be specific, with the probability of εt, we explore new
contents cached by local users via updating BS’s flexible
cache directly. With the probability of 1 − εt, the flexible
cache will only be updated with the more potentially popular

Algorithm 1 User-aided learning-based caching algorithm
1: Initialize: time horizon T , temporary reward matrix r =
{rtf ,∀f ∈ F t, t ∈ T }, estimated mean reward vector
r̄t = {r̄tf ,∀f ∈ F t}, adjusted mean reward vector
r̂t = {r̂tf ,∀f ∈ F t}, recent content demand observation
vector ot = {otf ,∀f ∈ F t}, exploration/exploiation trade-
off εt, discount factor β, ρt, time slot count t = 1.

2: REPEAT
3: If t = τ [main], Phase I. Main Cache Placement
4: Update r̂t, as r̂tf = r̄tf + ρt

√
2log nt
Tf

, where ρt ∝
t∑

t′=1

∑
u∈Lu

β(t−t′)mfd
t′

uf , Tf =

t∑
t′=1

β(t−t′)I{ct′f =1} is the

discounted number of times content f has been cached by
the BS and nt =

∑
f∈Ft Tf .

5: Update BS’s cache unit with contents associated with the
top reward values based on r̂t in a sorted order, such that∑
f∈Ft mfc

t
f ≤M .

6: End If
7: If t = τ [flex], Phase II. Flexible Cache Update
8: Observe its local users’ cached content directory.
9: If A new content f ′ is cached by its local user u

10: -with probability εt, update BS’s flexible cache directly;
11: -with probability 1 − εt, update recent content request

vector ot, and update the flexible cache only if otf ′ is
larger than that of the current content in flexible cache.

12: End if
13: End If
14: Phase III. Content Delivery at Each Time Slot t
15: Receive user demands {dtu}u∈Lu .
16: If the content f ∈ F t requested by user u,∀u ∈ Lu is

cached at the BS, i.e., dtufc
t
f = 1

-Serve user u directly from its local cache.
Else
-Serve user u by fetching from the content server.
End if

17: Update r as rtf =
∑
u∈Lu

Rtud
t
ufmf , ∀f ∈ F t.

18: Update r̄t as r̄tf =
∑t
t′=1

rt
′
f β

(t−t′)∑t
t′=1

β(t−t′) ,∀f ∈ F t.
19: Update t = t+ 1.
20: UNTIL t = T

new contents, based on the recent content demand observation
ot = {otf ,∀f ∈ F t}, where otf is the recent observation of
the request number of content f .

3) Phase III: At each time slot t, t ∈ T , users’ instan-
taneous content requests are received and satisfied according
to the delivery policy in step 16 of Algorithm 1. Then, the
rewards of the individual requested contents are updated at
the BS.

IV. SIMULATION RESULTS

Consider a downlink network where a BS serves Nu = 8
randomly deployed users. The non-stationary content library
at the server has an the initial library of F = 100 contents



and has a finite capacity of F [max] = 150. Each content size
varies as mf ∈ {1, 2} and the capacity of BS’s cache unit is
M = 15 with ξ = 0.2. The Phase I of BS’s main cache update
phase occurs at every τ [main] = 9 time slots and the Phase II of
flexible cache update phase is executed every τ [flex] = 3 time
slots, where N [new]

f = 3 new contents will be added to the
content library and might be cached by maximally 3 random
users. The per-unit gross gains for the BS to serve its users
directly from local cache unit, and by retrieving contents from
the content server are, respectively, π[local] = 1 and π[server] =
0.3, whilst the per-unit per-time-slot equivalent cost of users’
uploading incentives is κ[user] = 0.2. We adopt the commonly
used Zipf distribution with exponent of γt = 2 [5], given by

θtu,f→∆u
=

f−γ
t∑F ′

f=1 f
−γt

, f ∈ F t, (7)

to model the actual content preferences at the individual users
that is unknown to the BS, where the circular shifts are
{∆u} = {0, 2, · · · , 14}. Each user has up to Nu

f = 3 number
of different content requests at each time slot t according
to the actual content popularity distribution {θtu,f}f∈Ft . The

channel gain is modelled as Ψt
u = ht

2

u GaLuσ
2
F e
−0.5

(σs ln10)2

100

[11], where htu ∼ CN(0, 1), Ga = 10 dBi is the antenna gain,
Lu(dB) = 128.1+37.6log10(`) [12] denotes the path loss over
a distance of ` km and σs = 8 dB is log-normal shadowing
standard deviation. The other simulation parameters are de-
scribed, unless otherwise stated, as follows: identical transmit
power P [Tx]

u = 23 dBm for all users, exploration/exploitation
trade-off εt = 0.8 and discount factor β = 0.9. Three designs
that consider no user cache, i.e., no Phase II evolved, are
chosen as the benchmark designs, namely, the algorithm in
[5], the algorithm in [6] and the random caching design. We
further employ a user-aided popularity-known caching design
to show the performance upper bound. For fair comparison,
identical constraints have been applied to all strategies. These
benchmark schemes are introduced as follows.

1) Benchmark design in [5]: The benchmark design in [5]
estimates the content popularity distribution at the BS via the
standard UCB algorithm. The estimated mean reward is given
by r̄tf =

ôtf
n̂tf

, where ôtf and n̂tf denote, respectively, the long-
term observation of the total request number of content f up
to time t, and the total number of times the requests of content
f are satisfied directly from BS’s cache.

2) Benchmark design in [6]: The benchmark design in [6]
learns the content popularity distribution at the BS via the
combinatorial UCB algorithm [10] based on the past obser-
vation of user content demands. The instantaneous reward
associated with file f is defined as rtf =

∑
u∈Lu mfd

t
uf , and

the estimated mean reward is given by r̄tf =
∑t
t′=1

rt
′
f

Tf
, where

Tf is the number of times content f has been cached by the
BS. For fair comparison, we have embedded the benchmark
designs in [5] with a sliding-window of 100 time slots [13],
which relies on a local empirical average of the observed

rewards and emphasizes more on the recent observations, so
as to better adapt to our considered scenario.

3) Random caching design: A random caching design that
randomly caches contents at the BS in Phase I regardless of
user content demand, is employed to indicate the performance
lower bound.

4) Popularity-known caching design: The user-aided
popularity-known caching design has perfect knowledge of
actual content popularity distribution {θtu,f} in advance at the
BS. It allows the BS to update its cache unit in Phase I from
the content server and to update its flexible cache in Phase II
with local users’ cached contents based on prior knowledge
of {θtu,f} at the individual users.

0 100 200 300 400 500 600 700 800 900 1000
Index of time slot (t)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

A
ve

ra
g

e 
w

ei
g

h
te

d
 n

et
w

o
rk

 u
ti

lit
y 

(b
p

s/
H

z)

Proposed caching design
Benchmark design in [5]
Benchmark design in [6]
Random caching design
Popularity-known caching design

Fig. 3. Comparison of average reward for various strategies.

Fig. 3 presents the comparison of the average reward,
i.e., the weighted network utility, of the proposed caching
design against the benchmark designs in [5], [6], the random
caching design and the popularity-known caching design at
the individual time slots. As can be observed from Fig. 3,
the proposed design outperforms all benchmark designs and
the performance gap between the proposed design and the
popularity-known design narrows with the increasing number
of time slots. This is due to the fact that the proposed strategy
takes into account the spatio-temporal variations in users’
content demands, and maximally benefits from users’ caches
through timely updating the BS’s flexible cache with the
potentially more popular new contents cached by users in
addition to the routine off-peak main cache update from the
content server, thus provides a better adaptation to the user
content demand uncertainties. In contrast, the performance
of all the benchmark designs degrades with increasing time
slots, since neither the evolution of the content library nor
the potential of user cache has been taken into consideration
in the nature of their designs. Furthermore, it is obvious
that the random caching design has the worst performance
among all of the strategies, as it simply caches contents
randomly without involving any learning process to estimate
the unknown variations in user demands.



50 100 150 200 250 300 350 400 450 500
Number of initial contents F

1

1.2

1.4

1.6

1.8

2

2.2

2.4
A

ve
ra

g
e 

o
ve

ra
ll 

re
w

ar
d

 (
b

p
s/

H
z)

Proposed caching design
Benchmark design in [5]
Benchmark design in [6]
Random caching design
Popularity-known caching design

Fig. 4. Comparison of average overall rewards of various strategies for
different number of initial contents F .

Fig. 4 illustrates the average overall reward of the proposed
caching design against the benchmark designs in [5], [6],
the random caching design and the popularity-known caching
design for different number of initial contents F at the content
server. The average overall reward is obtained by averaging
over T = 1000 time slots for each value of F , and the finite
capacity of content library is set as F [max] = F + 50. As can
be observed from the figure, the average performance of all
strategies degrades with increasing value of F , since a larger
content library naturally results in more users’ content requests
being satisfied by the content server. It is worth noticing
that the gap between the proposed design and the benchmark
designs in [5], [6] increases with increasing value of F , whilst,
the increment of F has less impacts on the random caching
design. This is due to the fact that the standard UCB algorithm
adopted in [5], [6] fails to provide quick adaptation to the
variations when the content library, i.e., the number of actions,
is massive.

1 1.5 2 2.5 3 3.5 4 4.5 5

Number of new contents Nf
[new]

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

A
ve

ra
g

e 
o

ve
ra

ll 
re

w
ar

d
 (

b
p

s/
H

z)

Proposed caching design
Benchmark design in [5]
Benchmark design in [6]
Random caching design
Popularity-known caching design

Fig. 5. Comparison of average overall rewards of various strategies for
different number of emerged new content N [new]

f .

Fig. 5 compares the average overall rewards of all strategies
for various number of new content N [new]

f when the number
of initial library of contents is F = 200. One may conclude
from the figure that though performing better than the random
caching design, the performance of benchmark designs in [5]
and [6] decreases with increasing value of N [new]

f , and drops
significantly when N [new]

f ≥ 4. The reason is that neither the
time-varying content popularity nor the non-stationary content
library has been taken into account in [5] and [6], and, for a
larger value of N [new]

f , it is more challenging for them to adapt
to the rapid variations in users’ content demands.

V. CONCLUSION

The joint caching placement and content delivery problem
at a BS is studied in this paper, where the time-varying content
popularity is unknown a priori and the content library evolves
over time. To keep track of the dynamic content library, a
portion of cache unit at the BS is assigned as the flexible cache
that can be timely updated with the contents cached by users
in addition to its routine off-peak main cache update from
the content server. Considering three phases of different time
scales for main cache update, flexible cache update and content
delivery, a user-aided learning-based caching algorithm is
proposed to maximize the long-term average weighted utility
of the network. Simulation results confirm the superiority of
the proposed foresighted strategy in achieving a significant
performance improvement over various benchmark designs.

REFERENCES

[1] Cisco, “Cisco Visual Networking Index: Forecast and Methodology,
2016-2021”, White Paper, Sep. 2017.

[2] L. Li, G. Zhao and R. S. Blum, “A Survey of Caching Techniques in
Cellular Networks Research Issues and Challenges in Content Placement
and Delivery Strategies,” IEEE Communications Surveys & Tutorials,
vol.20, no.3, pp.1710-1732, Mar. 2018.

[3] E. Bastug, M. Bennis and M. Debbah, “Living on the edge: The role
of proactive caching in 5G wireless networks,” IEEE Communications
Magazine, vol.52, no.8, pp.82-89, Aug. 2014.

[4] Z. Zhao et al., “Cluster Content Caching: An Energy-Efficient Approach
to Improve Quality of Service in Cloud Radio Access Networks,” IEEE
JSAC, vol.34, no.5, pp.1207-1221, May 2016.

[5] J. Song, M. Sheng, T. Q. S. Quek, C. Xu and X. Wang, “Learning-Based
Content Caching and Sharing for Wireless Networks,” IEEE Trans. on
Communications, vol.65, no.10, pp.4309-4324, Oct. 2017.

[6] P. Blasco and D. Gunduz, “Learning-based optimization of cache content
in a small cell base station,” IEEE ICC, pp.1897-1903, Jun. 2014.

[7] S. Tamoor-ul-Hassan, S. Samarakoon, M. Bennis, M. Latva-aho and C.
S. Hong, “Learning-Based Caching in Cloud-Aided Wireless Networks,”
IEEE Communications Letters, vol.22, no.1, pp.137-140, Jan. 2018.

[8] M. Garetto, E. Leonardi, and S. Traverso, “Efficient Analysis of Caching
Strategies under Dynamic Content Popularity,” IEEE INFOCOM, Apr.
2015, pp. 2263-2271.

[9] M. Leconte et al., “Placing dynamic content in caches with small
population,” IEEE INFOCOM, Apr. 2016, pp. 1-9.

[10] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduc-
tion," Cambridge MA, US: The MIT press, 2017.

[11] W. N. S. F. Wan Ariffin et al., “Sparse Beamforming for Real-time
Resource Management and Energy Trading in Green C-RAN", IEEE
Transactions on Smart Grid, vol.8, no.4, pp.2022-2031, Jul. 2017.

[12] 3GPP, “TR 36.814 V9.2.0: Further Advancements for E-UTRA Physical
Layer Spects (Release 9)," Available: http://www.3gpp.org, Mar. 2017.

[13] A. Garivier, E. Moulines, “On Upper-Confidence Bound Policies for
Non-Stationary Bandit Problems," arXiv:0805.3415, May 2008.


