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O P T I C S

Four-wave mixing of topological edge plasmons 
in graphene metasurfaces
Jian Wei You, Zhihao Lan, Nicolae C. Panoiu*

We study topologically protected four-wave mixing (FWM) interactions in a plasmonic metasurface consisting 
of a periodic array of nanoholes in a graphene sheet, which exhibits a wide topological bandgap at terahertz 
frequencies upon the breaking of time reversal symmetry by a static magnetic field. We demonstrate that due to 
the significant nonlinearity enhancement and large life time of graphene plasmons in specific configurations, a 
net gain of FWM interaction of plasmonic edge states located in the topological bandgap can be achieved with a 
pump power of less than 10 nW. In particular, we find that the effective nonlinear edge-waveguide coefficient is 
about  ≃ 1.1 × 1013 W−1 m−1, i.e., more than 10 orders of magnitude larger than that of commonly used, highly 
nonlinear silicon photonic nanowires. These findings could pave a new way for developing ultralow-power- 
consumption, highly integrated, and robust active photonic systems at deep-subwavelength scale for applications 
in quantum communications and information processing.

INTRODUCTION
In the past decade, topological photonics has emerged as a rapidly 
burgeoning field of exploration of topological physics ideas framed 
in the context of photonics. This area of research began with the 
theoretical work by Haldane and Raghu (1, 2), where they constructed 
an analog of quantum Hall edge states in photonic crystals based on 
magneto-optical media and observed topological edge modes within 
the corresponding photonic bandgaps. Shortly afterward, an exper-
imental realization and observation of such topological edge modes 
in a magneto-optical photonic crystal were reported in the micro-
wave regime (3). Since then, there has been increasing interest in 
implementing in photonics topological states of matter and devel-
oping new ideas specific to topological photonics (4–8).

In addition to new perspectives brought in fundamental science, 
topological photonics also offers a broad array of potential applica-
tions for novel photonic devices, as its exotic features have already 
prompted the reexamination of some traditional views on light ma-
nipulation and propagation. For instance, reducing back reflection 
is a major challenge in optical waveguides, and in this context, the 
unidirectional topological waveguide (9–11) is an ideal light transport 
device in integrated photonics, as it could transmit light without 
backscattering even in the presence of inherent structural disorder. 
Moreover, some new concepts of topological photonics have also 
led to the development of novel photonic devices, such as optical 
isolators (12, 13), robust delay lines (14, 15), signal switches (16), 
nonreciprocal devices (17–19), and topological lasers (20, 21).

Most of the previous studies have focused on linear topological 
photonic systems; however, topological physics could also play an 
important role in the nonlinear regime, leading to previously 
unknown collective phenomena and strongly correlated states of 
light (8,  22–24). For instance, a topological source of quantum 
light has recently been realized in a nonlinear photonic system, 
which paves a new way for the development of robust quantum 
photonic devices (22). Moreover, a novel and sensitive approach for 

imaging topological edge states with third-harmonic generation 
has been recently demonstrated experimentally (24).

In this work, we demonstrate topologically protected four-wave 
mixing (FWM) interactions in a graphene metasurface upon the 
breaking of time reversal symmetry by a static magnetic field. In 
particular, we show that due to large optical near-field enhance-
ment and large life time of graphene plasmons in such metasurfaces, 
a net gain of FWM interaction of plasmonic edge states located in 
the topological bandgap can be achieved at an ultralow pump power 
of less than 10 nW. This remarkable feature is a direct consequence 
of the unusually large effective nonlinear edge- waveguide coeffi-
cient,  ≃ 1.1 × 1013 W−1 m−1, which, to the best of our knowledge, 
to date is by far the largest reported nonlinear optical coefficient of 
a light guiding physical system.

RESULTS
The system
We study a topologically protected nonlinear FWM process in a 
graphene plasmonic system. Graphene distinguishes itself as an ideal 
platform to study nonlinear topological photonics in several key 
aspects: First, graphene exhibits large nonlinearity over a broad 
spectral range, from terahertz to visible light. In particular, it has 
been shown (25) that graphene in a strong magnetic field has the 
largest third-order susceptibility of all known materials. Second, 
some recent studies (26, 27) revealed that topologically protected 
one-wave edge plasmons can be realized in graphene metasurfaces. 
In addition to the typical plasmonic effects, such as local field enhance-
ment and field confinement, the local field can be further confined 
to the edge of the graphene plasmonic system, leading to a marked 
enhancement of the nonlinear optical response of the graphene system. 
Third, phase matching is a crucial condition in nonlinear frequency 
mixing processes. In contrast to the frequently used bulk modes (22), 
where several modes with different wave vectors usually exist at a 
given frequency, a topological edge mode with absolute value of the 
Chern number equal to one, as it is the case with the graphene 
metasurface investigated in this study, has a unique wave vector at 
a fixed frequency. Therefore, the phase matching condition can be 
achieved and implemented experimentally much more easily, as in 
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this case only one mode can be excited at a specific frequency. These 
important features make graphene plasmonic systems particularly 
appealing in the design of highly integrated nonlinear topological 
nanophotonic devices.

The nonlinear system explored in this work is illustrated in Fig. 1. 
A graphene plasmonic metasurface consisting of a periodic nano-
hole array with hexagonal symmetry is placed in a static magnetic 
field. Because of the time reversal symmetry breaking induced by 
the magneto-optical response of graphene under an external mag-
netic field, this plasmonic system could have a topological bandgap. 
After a geometry optimization, the topological bandgap could become 
wide enough so that it readily accommodates the optical modes taking 
part in an FWM process. To induce an FWM process, the system is 
excited by an external source at the pump frequency p, as illustrated 
in Fig. 1. Because of the strong third-order nonlinearity of graphene, 
a degenerate FWM process could take place, where two photons in 
a pump mode will generate a pair of photons at the signal and idler 
frequencies, s and i, respectively. As a result, the energy of the 
pump mode (green) in Fig. 1 is transferred to the (seeded) signal 
(blue) and idler (red) modes, leading to the pump decay and the 
amplification of the signal and idler. This degenerate FWM process 
is topologically protected by the chiral nature of the edge plasmons.

Topological bands of the graphene plasmonic system:  
Linear response
We first study the linear optical response of our graphene plasmonic 
system by calculating its photonic band structure using a numerical 
approach based on the finite element method (FEM). The unit cell 
(with lattice constant a and air hole radius r) and the first Brillouin 
zone of the system used in our simulations are shown in Fig. 2 (A and 
B). The band diagrams of the system (a = 400 nm, r = 120 nm) at 
different magnetic fields B = 0,2,5,7,10 T are presented in Fig. 2C, 
where the parameters of the graphene are set to be EF = 0.2 eV, vF = 
106 ms−1, and  = 50 ps (see Materials and Methods for details).

There are several notable features of the results presented in 
Fig. 2C. First, without the external magnetic field (B = 0), due to the 
hexagonal symmetry of the metasurface structure, Dirac cones that 
are protected by the parity (P) inversion and time reversal (T) sym-
metries exist at K and K′ symmetry points of the Brillouin zone (26). 
Second, in the presence of the magnetic field (B ≠ 0), the time reversal 
symmetry of the system is broken and, consequently, the Dirac cones 
are gapped out, resulting in a topological nontrivial bandgap. More-
over, the width ∆v of this bandgap increases as the amplitude of the 
magnetic field increases.

To confirm the topological nature of the bandgap, we illustrate 
the emergence of the edge modes within the bandgap for a system 

that has finite size along the y axis, i.e., the number of unit cells along 
this direction is finite (chosen to be 20 in our FEM simulations), 
whereas the system is periodic along the x axis (in the FEM simula-
tions, periodic boundary conditions are imposed at the left and 
right boundaries along the x axis; see Fig. 3A). The supercell for this 
finite system is shown by a green rectangle in Fig. 3A, whose width 
and length are a and  b =  √ 

_
 3a   , respectively.

The projected band diagrams along kx, determined for B = 
0, 2, 5, 7, 10 T, are depicted in Fig. 3B. First, similar to what we 
observed in Fig. 2C, a bandgap opens when one applies an external 
static magnetic field (B ≠ 0), with the gap width ∆v increasing as 
the amplitude of magnetic field increases. However, different from 
the band diagrams of an infinite graphene metasurface shown in 
Fig. 2C, in the band diagrams of Fig. 3B, there are two additional 
edge modes at the top (red) and bottom (blue) boundaries of the 
finite graphene system. These two edge modes connect the bulk 
bands located above and below the bandgap and cannot be moved 
out of the bandgap into the bulk bands as long as the bandgap exists. 
In other words, they are robust and defect immune, which is guar-
anteed by the topological protection of the bandgap.

One can also calculate the gap Chern number, which is a topo-
logical invariant that characterizes the topological properties of 
the bandgap, to further confirm that the bandgap discussed above is 
topologically nontrivial and that these edge modes are topological 
modes (26). To this end, we indicate in Fig. 3B the calculated gap 
Chern number. Since the gap Chern number is −1 (the magnitude 
indicates the number of topological edge modes, whereas the sign 
shows the direction of propagation), there is only one topologically 
protected edge mode for each edge termination. In other words, our 
graphene structure supports modes that can exhibit unidirectional 
and defect-immune propagation features along the top and bottom 
edges. Moreover, the property of unidirectional propagation of the 
edge modes is also illustrated by the slope of their frequency dispersion 
curve, as their group velocity, vg = ∂/∂k, within the topological 
bandgap is either positive (top edge) or negative (bottom edge).

To gain deeper insights into the physical properties of plasmonic 
bulk and edge modes of the graphene metasurface, the near-field 
distribution of these modes propagating in a finite graphene plasmonic 
metasurface (four unit cells along the y axis and about 15 unit cells 
along the x axis, as per Fig. 4, B and C) is studied by using full-wave 
FEM simulations. In these computations, a perfectly matched layer 
is used at the left side of the graphene structure, whereas at the other 
sides, we imposed scattering boundary conditions so as to mimic 
infinite air space. To excite this finite graphene system, an electric 
source (E0 = 2 × 104 V/m) depicted by a red triangle in Fig. 4B is used.

In the case of the bulk mode, we choose the source frequency 
Vb = 16 THz, which belongs to the bulk region (see Fig. 4A). As 
expected, the corresponding optical field spreads throughout the 
graphene structure (see Fig. 4B), which proves that bulk modes are 
excited in this case. It should be noted that, due to the plasmonic 
characteristics of the graphene bulk modes, their optical field is 
tightly confined at the surface of the graphene metasurface.

In the case of the excitation of an edge mode, we choose a fre-
quency in the bandgap, vp = 13.17 THz, so that at this frequency 
only the edge mode exists, as per Fig. 4A. The corresponding field 
profile generated by the source in the finite system, presented in 
Fig. 4C, illustrates several notable features. Thus, the optical field 
does not penetrate in the bulk region and only propagates unidirec-
tionally along the edge of the graphene metasurface. In addition, 

Fig. 1. FWM of topologically protected one-way edge plasmons in a graphene 
metasurface consisting of a periodic nanohole array with hexagonal symmetry 
in a static magnetic field and the corresponding energy level diagram of a 
degenerate FWM process. 
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because of the chiral nature of the edge mode, this unidirectional 
propagation is robust against structural defects, which allows it to 
circumvent defects (e.g., sharp bends) without producing back-
scattering. These features prove that the edge modes within the 
topological bandgap in Fig. 4A are topologically protected. Last but 
not least, we note that in addition to the plasmonic field confinement 
effect illustrated in Fig. 4 (B and C), the optical field of the edge modes 
is further confined to the edge of the system, which is particularly 
important when one seeks to enhance nonlinear optical interactions 
such as FWM.

Nonlinear interaction of edge states: FWM
Comparing Fig. 4 (B and C), one can see that, in the case of the edge 
mode, the plasmon-induced field enhancement effect quantified by 
the ratio ∣Ee∣max/E0 is two orders of magnitude stronger than that 
in the case of the bulk mode ∣Eb∣max/E0, namely, ∣Ee∣max/∣Eb∣max > 
100. Moreover, the results in Fig. 4A show that at a particular fre-
quency, there is only a single-edge mode, with a unique wave vector, 
whereas several different bulk modes can be excited at one frequency. 
The former effect is important in enhancing the nonlinear optical 

interactions, whereas the latter one is particularly useful for engi-
neering physical configurations in which phase matching in FWM 
is achieved.

To illustrate these ideas, in what follows, we analyze the circum-
stances in which the phase matching condition in a degenerate FWM 
of one-way edge modes can be fulfilled. To this end, we calculate 
the normalized wave vector mismatch, defined as  ≡ k = a(2kp − 
ks − ki), corresponding to an FWM process in which a pump edge 
mode with wave vector kp gives rise to signal and idler edge modes 
with wave vectors ks and ki, respectively. In particular, the exchange 
of energy among the interacting waves is most efficient when the 
phase matching condition ∆ = 0 is satisfied. Unlike the wave vector, 
the energy is conserved in the FWM process, meaning 2vp = vs + vi.

Starting from the mode dispersion curves of the topological edge 
modes presented in Fig. 4A, and using the energy conservation 
relation that characterizes the FWM process, the corresponding 
dispersion map of the normalized wave vector mismatch  is cal-
culated numerically and depicted in Fig. 4D. In particular, for the 
sake of a better quantitative understanding of the energy conversion 
efficiency of the FWM process, we also show in this figure the 

CA

B

Fig. 2. Band diagrams of the graphene plasmonic metasurface. (A) Unit cell and (B) the first Brillouin zone of the metasurface. (C) Band diagrams of the metasurface 
at B = 0, 2, 5, 7, 10 T. As the Dirac cone is below the air light cone, surface plasmons can exist at deep-subwavelength scale (/a > 40). Moreover, a topological bandgap is 
opened in the presence of an external static magnetic field.

A B

Fig. 3. Band diagrams of a finite graphene metasurface. (A) Geometry of the finite graphene metasurface, where the number of unit cells (green dashed frame) is finite 
along the y axis and infinite along the x axis. (B) Projected band diagrams of the metasurface at B = 0, 2, 5, 7, and 10 T, where the edge modes on the top and bottom 
boundaries are depicted by red and blue curves, respectively. Since the gap Chern number characterizes the number of edge modes in the gap, there is a single edge 
mode at each boundary.
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contour defined by  = 10−5. More specifically, for frequencies in-
side the domain defined by this contour, energy is transferred from 
the pump to the signal and idler over a distance of about 105 lattice 
constants.

To validate the conclusions derived from the dispersion map of 
, we performed full-wave simulations of the nonlinear dynamics of 
the interacting edge modes. To this end, we chose a point indicated with 
a red dot in Fig. 4D, characterized by vp = 13.17 THz, vs = 13.72 THz, 
and vi = 12.62 THz, and for which the FWM interaction is nearly 
phase matched ( = 5.16 × 10−6). Moreover, we considered a seeded 
FWM process in which the input intensity of the signal is much 
smaller than that of the pump, whereas the input intensity of the 
idler is set to zero. Specifically, in our FEM simulations, we set the 
source input field amplitudes at the three frequencies ∣Ep∣ = 2 × 
104 V m−1, ∣Es∣ = 4 × 102 V m−1, and ∣Ei∣ = 0. Last, the nonlinearity 
of graphene under the influence of a magnetic field of 10 T is 
described by a third-order susceptibility with value of (3) = 5 × 
10−10 m2 V2 (25).

Using the procedure we just described, we have computed the 
near-field profiles at the frequencies of the pump, signal, and idler, 
the results of these simulations being summarized in Fig. 5. In these 
calculations, graphene losses are neglected by setting  → ∞. It can 
be seen in Fig. 5 (A and B) that, as a result of the nonlinear FWM 
interaction, the signal is amplified upon propagation, whereas an 
edge mode is generated at the idler frequency (note that in Fig. 5B, 
there is no external source at the idler frequency). Since the frequency 
of all the interacting edge modes is located in the topological bandgap, 
both signal and idler modes are topologically protected and exhibit 
unidirectional and defect-immune propagation along the system edge.

The FWM process can be further quantitatively investigated by 
calculating the dependence on the propagation distance of the power 
carried by the three edge modes. The mode power is calculated by 
integrating the corresponding Poynting vector across the transverse 
section of the mode. The results of these calculations are summarized 
in Fig. 5 (C and D) and correspond to the case of near phase matching 
discussed above and a case when the FWM process is not phase 
matched. In the latter case, the system parameters are vp = 13.03 THz, 

vs = 14.05 THz, vi = 12.01 THz, and ∆ = 1.75 × 10−2 (magenta point 
in Fig. 4D).

There are several important ideas revealed by the results presented 
in Fig. 5 (C and D). First, the power of both the signal and idler 
modes is amplified upon propagation, due to the energy conversion 
from the pump mode. Second, the growth rate of the signal and idler 
modes in the case of the nearly phase-matched FWM is larger than 
when the FWM interaction is not phase matched, which means that 
the energy conversion is more efficient in the former case. Third, 
the plots presented in the insets of Fig. 5 (C and D) show that the 
predictions of the coupled-mode theory (CMT), see the Supplementary 
Materials for details, agree very well with the rigorous results obtained 
using full-wave simulations of the nonlinear mode interaction, de-
spite the fact that the optical fields at the three frequencies are strongly 
confined at deep-subwavelength scale and significantly enhanced. 
This is particularly important in practice because the CMT calcula-
tions are much faster and require a much smaller amount of memory 
as compared with using full-wave simulations.

Our CMT predicts that the effective nonlinear FWM coefficient 
is FWM ≈ 2.4 × 1013 W−1 m−1 (see the Supplementary Materials), 
which is more than 10 orders of magnitude larger than that of sili-
con photonic wire waveguides (28, 29) and 5 orders of magnitude 
larger than that of a graphene nanoribbon waveguide (30). To the 
best of our knowledge, to date, this is the largest nonlinear FWM 
coefficient reported in a nonlinear optical system. This remarkable 
result is a consequence of the particularly large third-order suscep-
tibility of graphene, which is further enhanced by the plasmon- 
induced enhancement and extreme confinement of the optical field of 
the edge modes. In particular, the size of the unit cell of the graphene 
metasurface is much smaller than the operating wavelength, namely, 
/a > 50 in our FWM process, a notable feature that can facilitate 
the design of low-power, ultracompact active photonic nanodevices.

The radiation loss of the edge modes of the graphene metasurface 
can be neglected because, as we just discussed, they are strongly 
confined. The intrinsic loss, however, has to be taken into account 
in practical applications. To study its influence on the FWM inter-
action, a finite plasmon life time  is considered in Eqs. 2 and 3. 

A B

C

D

Fig. 4. Nonlinear edge-mode interaction and FWM within a topological bandgap. (A) Band diagram of the graphene metasurface at B = 10 T. (B) Field profile of a bulk 
mode excitation at vb = 16 THz, showing that the optical field spreads throughout the bulk region. (C) Field profile of an edge mode excitation at vb = 13.17 THz, illustrating 
its unidirectional and defect-immune propagation along the system edge ( → ∞). (D) Dispersion map of the normalized wave vector mismatch . The blue contour is 
defined by the condition  = 10−5, whereas the red and magenta dots correspond to a nearly phase-matched ( = 5.16 × 10−6) and a phase-mismatched ( = 1.75 × 10−2) 
FWM process, respectively.

 on M
arch 30, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


You et al., Sci. Adv. 2020; 6 : eaaz3910     27 March 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 7

Similar to the lossless case, we determined the dependence of the 
power of the interacting edge modes on the propagation distance; 
the corresponding results of this analysis are presented in Fig. 6.

Typically, the plasmon lifetime is determined by the plasmon- 
phonon coupling and varies from 0.1 to 1 ps (31). This loss can be 
reduced if exfoliated graphene is placed onto a boron nitride sub-
strate (32), which leads to a lifetime as large as 3 ps. Moreover, recent 
experiments (33, 34) have demonstrated that an external magnetic 
field can also strongly increase the plasmon lifetime, as in this case 
the two-dimensional surface plasmon can be effectively transformed 
into a one-dimensional–like edge plasmon. Specifically, it has been 
shown that by applying an external magnetic field, the plasmon life-
time can be readily increased to 50 ps (34).

One remarkable conclusion of the analysis of the FWM interaction 
of edge modes of our lossy graphene metasurface is that net signal 
gain can be achieved if the lifetime  ≳ 2.5 ps. This is the first plas-
monic system in which net gain can be achieved without incorpo-
rating gain optical media in the system. It can be seen in Fig. 6 that 
whereas the pump decays for all values of the plasmon lifetime, due 
to the combined contributions of the graphene loss and energy trans-
fer mediated by the FWM interaction, the signal power increases 
monotonously if  ≳ 2.5 ps. The idler, on the other hand, shows a 
more complex dynamics. Thus, irrespective of the value of the life 
time, at the beginning of the nonlinear interaction, the power in the 
idler builds up over a certain distance. After this amplification stage, 
the power in the idler decays monotonously if  ≲ 2.5 ps, because the 
pump power is no longer large enough to sustain the amplification 

of the idler, whereas if  ≳ 2.5 ps, then the power in the idler mode 
increases monotonously over the entire distance considered in our 
simulations.

DISCUSSION
Using rigorous full-wave simulations supported by a coupled-mode 
theory, we have demonstrated a topologically protected nonlinear 
FWM process in a patterned graphene plasmonic metasurface. In 
particular, we have shown that a topological bandgap as wide as 
several terahertz can be created in the metasurface under a strong 
static magnetic field. Moreover, the analysis of the dispersion prop-
erties of the topologically protected edge modes located in the band-
gap reveals that FWM interaction is efficiently phase matched in a 
large domain of the parameter space of the system. Here, we note 
the dispersion property of edge modes can be engineered by tailor-
ing the edge truncation of the graphene metasurface. The near-field 
profiles of the interacting edge modes show unidirectional and 
defect-immune propagation, hence demonstrating that the FWM 
process is topologically protected. Our study also reveals that, be-
cause of an unusually large value of the FWM nonlinear coefficient 
and the large field enhancement at plasmon resonances, the FWM 
interaction produces net gain even when plasmon losses in graphene 
are rigorously taken into account. This notable property of FWM 
of topological edge modes of graphene metasurfaces might play an 
important role in the development of new ultracompact and topo-
logically protected active photonic nanodevices.

C

A B

D

Fig. 5. Topologically protected FWM process in a graphene metasurface. (A) Field profile at the signal frequency, vs = 13.72 THz. (B) Field profile at the idler frequency, 
vi = 16.62 THz. (C) Dependence on the propagation distance of the mode power of the pump, signal, and idler corresponding to the field profiles shown in (A) and (B), 
determined using the CMT when the FWM process is phase matched. Also shown in the insets are the same mode powers determined using the CMT and full-wave 
simulations. The black curve corresponds to the total power and shows that the energy is conserved in the FWM interaction. (D) The same as in (C), but corresponding to 
a case when the FWM interaction is not phase matched.
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MATERIALS AND METHODS
In our modeling of an infinite graphene metasurface, periodic bound-
ary conditions are used for the four edges of the unit cell depicted in 
Fig. 2A. At infrared and terahertz frequencies, graphene placed in a 
static magnetic field can be characterized as an electrically gyrotropic 
material (35–37), whose surface conductivity tensor can be repre-
sented as

      s   =  [       L       H    −    H       L     ]     (1)

where the diagonal elements (longitudinal conductivity, L) and the 
off-diagonal elements (Hall conductivity, H) can be determined 
using Kubo’s formalism (38). At room temperature and for fre-
quencies below the visible-light region, the longitudinal and Hall 
conductivities are given by (26, 27)

     L   =    0     1 − i ───────────  
 (   c  )   2  −  (i + )   2 

    (2)

     H   = −    0        c   ───────────  
 (   c  )   2  −  (i + )   2 

    (3)

where 0 = e2EF/(ℏ2),  is the relaxation time (plasmon lifetime),   
  c   ≈ e  B  ⊥    v F  2   /  E  F    is the cyclotron frequency, with B⊥, vF, and EF being 
the external static magnetic field perpendicular onto the graphene sur-
face, the graphene Fermi velocity, and the Fermi energy, respectively.

The surface conductivities in Eqs. 2 and 3 show that graphene 
under a nonzero static magnetic field is lossy; thus, the eigenvalue 
problem defining the band structure of graphene metasurfaces be-
comes non-Hermitian. Therefore, most of the traditional electro-
magnetic eigenmode solvers are not particularly efficient to compute 
band diagrams of such metasurfaces. To circumvent this problem, 
we used the numerical solver of Comsol based on the FEM method 
to calculate the band diagrams of the graphene metasurfaces inves-
tigated in this study. In our full-wave simulations, electric sources 
are placed at points with low symmetry, so that all modes are excited. 
Moreover, multiple probe monitors are placed at low-symmetry 
points, too, to determine the mode frequencies.

In the nonlinear simulations, three nonlinear surface currents are 
defined in the Comsol software, namely, one for the pump frequency 
(vp), one for the signal frequency (vs), and one for the idler frequency 

(vi). These nonlinear currents are coupled via the optical fields of 
the interacting modes, as described by the following equations

   J p  surf  = 6  p,surf  
(3)    E  s   E  i   E p  *    (4)

   J s  
surf  = 3  s,surf  

(3)    E  p   E  p   E i  
*   (5)

   J i  
surf  = 3  i,surf  

(3)    E  p   E  p   E s  
*   (6)

Here, the third-order surface conductivity is defined as    ,surf  
(3)   = 

− i  ϵ  0          h  eff       (3)  ,  = p, s, i, where (3) is the third-order bulk suscep-
tibility and the thickness of graphene is assumed to be heff = 0.3 nm 
(25). Moreover, the electric fields E,  = p, s, i, are the amplitudes 
of the pump, signal, and idler, respectively. More details about the 
nonlinearity of magnetized graphene and the coupled-mode theory 
describing the FWM interaction of graphene edge modes can be 
found in the Supplementary Materials.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/13/eaaz3910/DC1
Section S1. Optical properties of graphene in an external static magnetic field
Section S1.1. Linear optical properties of graphene
Section S1.2. Nonlinear optical properties of graphene
Section S2. Coupled-mode theory describing the FWM nonlinear process
Section S3. Influence of optical losses on graphene topological plasmonic systems
Section S4. Influence of the substrate on graphene topological plasmonic systems
Fig. S1. Dependence of the effective waveguide nonlinear coefficient  on z.
Fig. S2. Effect of optical losses as described by the coupled-mode theory.
Fig. S3. Band diagrams of a graphene metasurface on a PMMA substrate.
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