
  

  

Abstract— Accurate localization is an important part of 

successful autonomous driving. Recent studies suggest that when 

using map-based localization methods, the representation and 

layout of real-world phenomena within the prebuilt map is a 

source of error. To date, the investigations have been limited to 

3D point clouds and normal distribution (ND) maps. This paper 

explores the potential of using OpenStreetMap (OSM) as a proxy 

to estimate vehicle localization error. Specifically, the 

experiment uses random forest regression to estimate mean 3D 

localization error from map matching using LiDAR scans and 

ND maps. Six map evaluation factors were defined for 2D 

geographic information in a vector format. Initial results for a 

1.2 km path in Shinjuku, Tokyo, show that vehicle localization 

error can be estimated with 56.3% model prediction accuracy 

with two existing OSM data layers only.  When OSM data 

quality issues (inconsistency and completeness) were addressed, 

the model prediction accuracy was improved to 73.1%. 

I. INTRODUCTION 

Accurate localization is a crucial requirement of successful 
autonomous driving, allowing self-driving vehicles to navigate 
safely. Major sources of positioning information are Global 
Navigation Satellite Systems (GNSS) such as GPS, 
GLONASS, Galileo or BeiDou. The positional accuracy using 
just GNSS, however, can exhibit errors of tens of meters 
within dense urban environments due to buildings blocking 
and reflecting the satellite signal [1]. To address this issue, 
self-driving vehicles use vision and range-based sensors to 
determine where they are located. One such method utilizes 
light detection and ranging (LiDAR) sensors for map 
matching, whereby the input scan is registered against a 
prebuilt map to obtain a position. Despite the advancement in 
LiDAR sensor technology, map-based localization can still 
suffer from error, arising from sources such as the input scan 
or the matching algorithm. 

To improve map-based localization accuracy, research so 
far has focused on refining the map matching algorithms [2] as 
well as producing increasingly accurate High Definition maps 
[3]. In contrast, there is a lack of research on the impact of the 
map itself, and the representation of the environment, as a 
source of localization error. For example, within a tunnel or 
urban canyon environment, even with a locally and globally 
accurate map, the lack of longitudinal features in the map can 
cause localization error in the moving direction. So far, the 
author is aware of only one set of studies which have been 
conducted to evaluate the relation between the representation 
within the map and localization accuracy [4], [5].  

To date, the evaluation of a map’s capability for vehicle 
localization has been limited to the 3D point cloud format. 
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There are several challenges with this approach. Firstly, 
localization error can only be estimated for an area if a prebuilt 
point cloud map is available. If not, data must be collected, 
which can be costly and time-consuming. These 3D point 
cloud maps also require substantial effort to maintain and keep 
up to date. Secondly, the large size of the point cloud data can 
make it challenging to manage. For example, a 300×300 m 
area may consist of over 250 million points.  Coupled with the 
unstructured nature of the data, this leads to a large amount of 
pre-processing, processing, and subsequent management. 
Considering these challenges, there is a need to explore 
whether other mapping formats and sources of data, such as 
geographic information, can offer an alternative approach for 
estimating vehicle localization error. 

This paper aims to investigate whether it is possible to 
estimate vehicle localization error using OpenStreetMap 
(OSM) as a proxy. OpenStreetMap is a freely editable 2D map 
of the world. The main objective is to leverage OSM’s public 
availability, wide coverage, and comparatively ‘light’ data to 
enable a more efficient alternative for estimating localization 
error. This work builds upon Javanmardi et al.’s [4] format-
agnostic map evaluation criteria, by defining six new factors 
specific for 2D geographic information (as used by 
OpenStreetMap). The resulting work can enable the estimation 
of localization error without requiring the collection of data to 
create a prebuilt map. It can help identify and highlight areas 
with high localization error – either as the result of the map 
itself, or the real-world environment. Further, the estimated 
error model can be used in conjunction with other sensor 
information to improve the accuracy of localization [6]. 

The remainder of this paper is structured as follows: in 
Section II, a short overview of vehicle localization and its 
sources of error is presented, followed by an overview of 
geographic information and OpenStreetMap. Section III 
describes the datasets used in this study, as well as the 
formulation of the six map evaluation factors. The results of 
the experiment are presented in Section IV. Following a 
discussion on the capability of OSM, and the advantages and 
challenges of the approach, the final Section presents the 
conclusions and future work.  

II. BACKGROUND 

A. Vehicle localization 

Localization is the estimation of where a vehicle is situated 
in the world. While Global Navigation Satellite Systems can 
provide a position with meter-level accuracy, this is 
insufficient for the application of autonomous driving. One 
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meter can be the difference between driving safely on the road 
in the correct lane and driving along the pavement. 
Centimeter-level positional accuracy is therefore required for 
successful autonomous driving. To achieve this, autonomous 
vehicles are equipped with a myriad of sensors, including 
LiDAR, radar, and onboard cameras.  

One approach for localization is LiDAR map matching. 
For this, a map is prebuilt using a high-end mobile mapping 
system. Subsequently, the LiDAR scan from an autonomous 
vehicle can then be used to match against the prebuilt map to 
obtain a position. Despite the importance of accurate vehicle 
self-localization, there is yet to be an international standard for 
required accuracy. As guidance, the Japanese government’s 
Cross-ministerial Strategic Innovation Promotion (SIP) 
Program recommends an accuracy of less than 25 cm. This 
value is based on satellite image resolution and the physical 
width of a car tire. 

B. Sources of localization error for LiDAR map matching 

Sources of localization error for map matching using 
LiDAR can be divided broadly into four categories: 1) Input 
scan; 2) Matching algorithm; 3) Dynamic phenomena, and; 4) 
Prebuilt map.  

Firstly, errors from the input scan may be dictated by 
choice of the laser scanner. For example, the lower-end 
Velodyne VLP-16 has 16 laser transmitting and receiving 
sensors with a range of up to 100m. In contrast, the latest 
model (VLS-128) has 128 sensors and up to 300 m range, 
allowing the capture of more detail in a wider area, thus 
enabling more accurate map matching. In addition, distortion 
can be introduced during the capture phase when in motion – 
a vehicle traveling at 20 m/s, with a scanner at 10Hz would 
result in a 2 m distortion as the scanner rotates 360 degrees. 
Errors can also be introduced in the post-processing where the 
input scan is required to be downsampled for the matching 
algorithm. While this reduces noise within the data, it can also 
remove features and details useful for map matching.  

Secondly, the choice of the matching algorithm can be a 
source of error. As matching is an optimization problem, some 
algorithms are designed to be more robust to local optimum, 
while others are more immune to initialization error [7]. In 
general, Normal Distribution Transform (NDT) is more 
resilient to sensor noise and sampling resolution (than other 
algorithms such as Iterative Closest Point) but suffers from 
slower convergence speed [8].  

Thirdly, dynamic phenomena in the environment can 
contribute error. During the mapping phase, if a large vehicle 
such as a lorry or a bus blocks the laser scanner, then a large 
portion of the map will be missing. During the localization 
phase, some phenomena or features may have moved or 
shifted. For example, parked cars found in the prebuilt map 
may have since moved or buildings may have been built or 
demolished. Furthermore, seasonal changes such as the 
presence and absence of leaves on trees between the mapping 
and localization phases can introduce error.  

Lastly, the prebuilt map itself is a source of error. As 
mentioned earlier, having a highly accurate map does not 
always result in a low localization error. There are instances 
within the environment, e.g. tunnels, urban canyons, open 

spaces whereby map matching is not a suitable localization 
method. In these cases, it is the physical attributes of the 
phenomena and its representation on the map which is the 
source of localization error. This is discussed further in the 
next section. 

C. Quantifying the sources of map-derived errors 

To quantify the sources of map-derived errors, Javanmardi 
et al. [4] defined four criteria to evaluate a map’s capability for 
vehicle localization: 1) feature sufficiency; 2) layout; 3) local 
similarity, and; 4) representation quality.  

Feature sufficiency describes the number of mapped 
phenomena in the vicinity which can be used for localization. 
For example, within urban areas, buildings and other built 
structures provide lots of features to match against, resulting 
in more accurate localization. An insufficient number of 
features in the vicinity (such as found in open rural areas) may 
result in lower localization accuracy.  

The layout is also an important consideration, as it is not 
simply the number of features in the vicinity, but also how they 
are arranged. Even if there are lots of high-quality features 
nearby, if they are all concentrated in one direction, the quality 
of the matching degrades.  

To further compound the issue, in certain scenarios, even 
with sufficient and well-distributed features, accurate 
localization remains difficult due to local similarity. In these 
cases, there may be geometrically similar features either side 
of the vehicle, making it difficult during the optimization 
process to determine the position in the traveling direction.  

Lastly, representation quality describes how well a map 
feature represents its real-world counterpart. In theory, the 
closer the map is to reality, the more accurate the prediction. It 
is important to note, however, that this criterion is slightly 
different from the level of abstraction or generalization of the 
map. For example, a flat wall can be highly abstracted as a 
single line but still have high representation quality. 

D. OpenStreetMap 

First introduced in 2004, OpenStreetMap is an open source 
collaborative project providing user-generated street maps of 
the world. As of March 2019, the project has over 5.2 million 
contributors to the project who create and edit map data using 
GPS traces, local knowledge, and aerial imagery. In the past, 
commercial and governmental mapping organizations have 
also donated data towards the project. 

Features added to OSM are modeled and stored as tagged 
geometric primitives (points, lines, and polygons). For 
example, a road may be represented as a line vector geometry 
with tags such as ‘highway = primary; name:en = Ome Kaido; 
oneway = yes’. Despite OSM operating on a free-tagging 
system (and thus allowing a theoretically unlimited number of 
attributes and tag combinations), there is a set of commonly 
used tags for primary features which operate as an ‘informal 
standard’ [9]. 

As with any user-generated content, OSM attracts 
concerns about data quality and credibility. Extensive research 
has been conducted on assessing the quality of OSM datasets, 
including evaluating the completeness of the data. For 



  

example, Barrington-Leigh and Millard-Ball [10] estimate the 
global OSM street layer to be ∼83% complete, with more than 
40% of countries having fully mapped networks. When 
comparing the number of OSM tags in Japan to official 
government counts (TABLE I. ), ‘completeness’ varies with 
different features [11]. While fire departments, police stations 
and post offices are well represented, temples and shrines are 
underrepresented. Despite this variance in completeness, OSM 
still represents a viable and useful source of geospatial data. In 
fact, in certain areas, OSM is more complete and more 
accurate (for both location and semantic information) than 
corresponding proprietary datasets [12], [13]. As mapping data 
are abstract representations of the world, it can also be argued 
that a map can never truly be complete. Instead, mapping data 
should be collected as fit-for-purpose, and specific for the 
required application. OSM is successfully used in a wide 
variety of practical and scientific applications from different 
domains, demonstrating the usefulness of crowdsourced 
mapping data.  

TABLE I.  COVERAGE OF OSM TAGS IN JAPAN 2017 [11] 

Tag # Actual # in OSM Coverage 

School 36,024 45,568 126.5%a 

Fire department 5,604 5,028 89.7% 

Police station 15,034 13,152 87.5% 

Post office 24,052 20,795 86.5% 

Traffic lights 191,770 108,498 56.6% 

Convenience store 55,176 30,710 55.7% 

Bank 13,595 7,077 52.1% 

Gas station 32,333 8,944 27.7% 

Pharmacy 58,326 7,842 13.4% 

Shrine 88,281 10,292 11.7% 

Temple 85,045 9,610 11.3% 

Postal post 181,523 7,522 4.1% 

Vending machine 3,648,600 10,311 0.3% 

a. Note that the coverage of schools is higher than 100%. This is the result of schools comprising of 
multiple buildings and therefore having more than one polygon or point represented within OSM. 

E. Related work 

There are a several studies on the estimation of vehicle 
localization error in literature. Akai et al. [6] estimate the error 
of 3D NDT scan matching in a pre-experiment, which was 
then subsequently used in the localization phase for pose 
correction. Javanmardi et al. [4] proposed ten map evaluation 
factors to quantify the capability of normal distribution (ND) 
maps for vehicle self-localization, allowing error to be 
modelled with an RMSE and R2 of 0.52 m and 0.788 
respectively. The subsequent error model was then used to 
dynamically determine the NDT map resolution, resulting in a 
reduction of map size by 32.4% while keeping mean error 
within 0.141 m. For both studies [4], [6], the estimation of 
localization error used 3D point cloud and ND maps. As far as 
the authors are aware, no previous study has investigated the 
use of OpenStreetMap as a proxy for the estimation of 
autonomous vehicle localization error.  

III. METHOD 

A. Study area 

The study area is Shinjuku, Tokyo, Japan. The architecture 
is relatively heterogeneous, with buildings ranging from low-
rise shops to multi-story structures. Similarly, roads vary from 
single narrow lanes to wide multi-lane carriageways. The 
experiment path is 1.2 km and is shown in Figure 1. 

 
Figure 1. Experiment path in Shinjuku, Tokyo, Japan. 

B. Mapping data 

Mapping data from OSM was extracted from the 
geofabrik.de server. For the study area, 49 data layers 
(referencing 23 tags) were available. Note that each tag can be 
represented by a maximum of three layers, one for each 
geometry primitive (point, line, polygon). TABLE II. shows a 
summary of all the tags found in the study area and their 
feature counts. 

TABLE II.  OSM TAGS AND FEATURE COUNT IN THE STUDY AREA 

OSM tags Feature count  OSM tags Feature count 

aeroway 12  natural 595 

amenity 2,109  office 35 

barrier 675  place 4 

boundary 16  power 20 

building 10,723  
public 
transport 

114 

craft 2  railway 485 

emergency 8  route 100 

highway 4,021  shop 580 

historic 7  tourism 168 

landuse 202  unknown 598 

leisure 87  waterway 2 

man made 12    

Note that OSM tags can represent geometric or semantic 
features. For example, features labeled as ‘building’ may 
represent the physical walls of the structure, whereas a 
‘boundary’ feature may represent an administrative region, 
e.g., ward boundary. For this experiment, the aim is to model 
what the LiDAR scanner ‘sees’ during the localization phase. 
As such, only the geometric features from OSM were useful.  



  

To model the surrounding environment, four OSM data 
layers were used: 1) building_polygon; 2) barrier_polygon; 3) 
barrier_line, and; 4) barrier_point. The buildings layer was 
selected as they represent the most stable feature within the 
urban landscape. Buildings, in general, are least affected by 
seasonality or time of day (unlike other features such as trees). 
For vehicle localization, however, the use of buildings alone 
for map matching may be insufficient. For example, on wide 
multi-lane roads or within the rural environment, buildings 
may not be present or visible by the LiDAR scanner. In these 
scenarios, roadside features (such as central reservations, 
guard rails, and pole-like features) become increasingly 
important. Within OSM, these are classified under the 
‘barriers’ tag. Areal features, such as hedges, are classed under 
‘barrier_polygon’. Linear features, such as guard rails and 
traffic barriers, are classed as ‘barrier_line’. Lastly, pole-like 
features (e.g., bollards) are classed as ‘barrier_point’. 

The completeness of OSM varies within the study area. For 
buildings, the data is 74.3% complete when compared to GSI 
Japan building footprints, using area as a crude measure. For 
barriers, an authoritative equivalent dataset was not available 
for reference. In a visual comparison with aerial imagery, over 
half of the hedges and central reservations (polygon barriers) 
were missing along the experiment path. There were no line or 
point barriers mapped within 20 m of the experiment path 
(although they were present in the wider study area). 

To mitigate any issues of inconsistency and 
incompleteness (as highlighted in Section II.D), an additional 
set of ‘completed’ OSM layers were created. Supplementary 
data (aerial imagery and base map) from ATEC and the 
Geospatial Information Authority of Japan were used to 
support the manual digitization. By creating these ‘completed’ 
layers, it allowed the assessment of the capability of OSM, in 
a scenario where users had correctly and fully mapped all 
required features. This allowed for a more robust evaluation, 
without being hindered by data quality issues. In total, 63 
polygon-barriers, 31 line-barriers, and 204 point-barriers were 
manually added along the experiment path. The ‘completed’ 
OSM layers are presented in Figure 2. TABLE III. presents a 
summary of all the mapping data used in the study. 

TABLE III.  SUMMARY OF MAPPING DATA USED 

Layer 

name 
Type Description Count 

Original OpenStreetMap layers 

Building Polygon 
Individual buildings or groups of 
connected buildings, e.g., 
apartments, office, cathedral 

10,723 

Polygon 
barriers 

Polygon 
Areal barriers and obstacles, e.g. 
hedges, central reservation 

410 

Completed OpenStreetMap layers 

Polygon 
barriers 
(completed) 

Polygon 

Areal barriers and obstacles, 
manually completed using aerial 
imagery and external reference 
maps. 

473 

Line 
barriers 
(completed) 

Line 

Linear barriers and obstacles, e.g. 
guard rails. Manually digitized 
using aerial imagery and external 
reference maps. 

229 

Point 
barriers 
(completed) 

Point 

Point barriers and obstacles, e.g. 
pole-like objects, lamp posts, 
traffic lights. Manually digitized 
using aerial imagery and external 
reference maps 

271 

 
Figure 2. Map showing the ‘completed’ OSM layers and experiment path 

C. Localization error data 

For localization error, data from a previous experiment was 
used. Specifically, the mean 3D localization error from map 
matching using a LiDAR input scan and a prebuilt normal 
distribution (ND) map with a 2.0 m grid size. The process of 
obtaining the mean 3D localization error is described below. 
Firstly, a point cloud map of the area was captured using a 
Velodyne VLP-16 mounted on the roof of a vehicle at the 
height of 2.45 m. The vehicle speed was limited to 2 m/s, with 
a scanner frequency of 20 Hz to mitigate motion distortion. 
From this point cloud map, an ND map was generated with a 
2.0 m grid size. Next, during the localization phase, a second 
scan was obtained with the laser scan range limited to 20 m. 
This second scan was then registered to the ND map (NDT 
map matching) to obtain a location. Thirdly, to evaluate the 
map factors, sample points along the experiment path at 1.0m 
intervals were selected. For each sample point, mean 3D 
localization error was calculated by averaging the localization 
error from 441 initial guesses at different positions evenly 
distributed around the sample point, at 0.2 m intervals within 
a range of 2 m. Further details on the experimental set-up and 
the creation of the data can be found in [4]. 

D. Formulating map evaluation factors 

Javanmardi et al. [4] proposed ten map evaluation factors 
to quantify the capability of ND map for vehicle self-
localization. Unlike the four map evaluation criteria, the map 
factors were designed specifically to evaluate 3D ND maps 
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and cannot be easily transferred to another mapping format 
without modification. Therefore, six new factors for 2D vector 
mapping format were defined, based on Javanmardi et al.’s [4] 
map evaluation criteria. Specifically, the focus was on feature 
sufficiency of the map and layout of the map. Local similarity 
and representation quality were not considered in this study, 
due to the high level of abstraction of OSM and the lack of a 
higher quality dataset available for comparison. 

To model the behavior of the laser scanner and localization 
process, two auxiliary layers were produced: view lines and 
view polygons. Firstly, for each sample point, 360 view lines, 
each 20 m in length, radiating outwards from the center at 1° 
interval, were generated (Figure 3a). These lines represent the 
laser scanner’s 20 m range. Within the urban environment, the 
walls of buildings represent a ‘solid’ and opaque barrier for the 
laser scanner. As OSM is 2D, it is assumed that buildings are 
infinitely tall, and view lines were clipped where they intersect 
with the building layer (Figure 3b). This assumption was based 
on the 30° vertical field of view (+/- 15° up and down) of the 
Velodyne VLP-16. Mounted at 2.45 m, and with a laser range 
of 20 m, the effective vertical view is between 0 to 7.8 m. This 
is equivalent to an average two-story building. Considering the 
buildings in the experiment area were, at a minimum, three 
stories high, this assumption was acceptable. Secondly, from 
these clipped view lines, a minimum bounding convex hull 
was generated as an areal representation of what the laser 
scanner ‘sees’ and is referred to as a view polygon (Figure 3c).  

 
Figure 3. View lines and view polygons. 

E. Factors for feature sufficiency criterion 

1) Feature count 
The first factor is the feature count. It is an adaption of 

Javanmardi et al.’s [4] factor, providing a simple count of all 
nearby features. However, unlike 3D ND map formats, there 
are three geometry primitives for 2D vector mapping: points, 
lines, and polygons. Further, the 3D nature of the scanner must 
be abstracted in 2D. 

To account for the differences between the geometric 
representations, feature count was calculated based on the 

intersection points between the layer and the view lines or 
view polygons.  

For buildings, feature count was the total number of view 
lines which intersected with the buildings layer. In this 
scenario, the intersection points were also the endpoints of the 
view lines as they were previously clipped (as described in 
Section III.D). At these end points of the view lines, it is 
assumed that the sensor cannot ‘see’ any further past the 
opaque building walls.  

For point barriers, this was a simple count of features 
which intersected with (and were therefore within) the view 
polygon. 

For line barriers, all intersection points between all view 
lines and line barriers were counted.  

Polygon barriers, unlike buildings, were not considered to 
be infinitely tall and opaque as the LiDAR sensor can often 
‘see’ over them. Modelling this was not as straight forward, as 
the intersection between a view line and a polygon barrier is a 
line. To remedy this, points were generated along the 
intersection with view lines at 10 cm intervals i.e. the portion 
of the view line which overlaps with any polygon barrier were 
converted into a series of points. The value of 10 cm was 
arbitrary chosen as an optimal balance between resolution and 
computation time, after trialing multiple other values (1 cm, 5 
cm, 25 cm). These generated points were then counted for the 
feature count. One point to note is that this method results in 
the generation of multiple points per view line, unlike other 
layers which may only have single intersection points per 
feature. This, however, does not affect the factors, as each 
layer is considered separately during the calculation.  

F. Factors for the layout of the map 

1) Angular dispersion of features 
Angular dispersion is a measure of the arrangement of 

features around the sample point. Akin to Javanmardi et al.’s 
[4] Feature DOP measure (which in turn was inspired by 
GDOP in global positioning systems), this factor describes the 
uniformity of dispersion and is calculated as follows: 

������� 
�������� = ��∑ sin �� �� + �∑ cos �� ��
 

where α is the azimuth of the features, in radians. The factor 
returns a value between 0 and 1, with a value of 0 indicating a 
uniform dispersion and a value of 1 meaning a complete 
concentration in one direction. For this factor, the dispersion 
of the intersection points between the view lines or view 
polygons and the respective layer was calculated. 

2) View line mean length 
For each sample point, the mean length for every view line 

which intersected with the building layer was calculated. Non-
intersecting view lines were not considered as they would 
skew the metric. 

3) Area of view polygon 
This is the area of the view polygon. It represents the 

theoretical area that the laser scanner can ‘see’. A small area 
suggests that there are lots of building features in the vicinity 
to localize against.  
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4) Compactness of view polygon 
A compact field of view could suggest that there are a lot 

of building features nearby to localize against. To measure 
compactness, the ratio between the area of the view polygon 
and the area of a circle with the same radius was calculated. 

5) The variance of building face direction 
Javanmardi et al.’s [4] suggest that if the features in the 

local vicinity face a greater variety of directions, then the 
positioning uncertainty decreases. To measure this, at all 
points of intersection between the view lines and the building 
layer, the normal of the face was calculated. Subsequently, for 
each sample point, the variance of all the normal vectors was 
calculated.  

G. Random forest regression 

To obtain a prediction of localization error, random forest 
regression was used. Random forest regression is an ensemble 
learning method for classification and regression. It uses 
multiple decision trees and bootstrap aggregation to form a 
prediction. Random forest regression aims to reduce variance 
in predictions while maintaining a low bias, thus controlling 
overfitting. For the implementation, scikit-learn (a machine 
learning Python library) was used. As random forest 
regression is a supervised learning method, a training dataset 
was required. For each model, the datasets were split into two 
parts: training (75%) and test (25%). 

IV. RESULTS 

A. General results 

Six models were evaluated, using different combinations 
of data layers from OSM. Model 1 used just the buildings layer 
directly from OSM. Model 2 considered both the buildings 
layer and polygon barriers from OSM. From model 3 onwards, 
completed OSM layers were considered. Model 3 included the 
completed polygon barriers. Model 4, 5, and 6 then added the 
line barriers and point barriers individually, and then finally 
together.  

To evaluate the goodness of fit, the R-squared (R2), root 
mean square error (RMSE), mean absolute error (MAE), and 
accuracy are presented. In this scenario, accuracy is defined as 
the mean average percentage error subtracted from 100%: 

�������� = 1 − 1� ! "�# −  $#�# "%
&'(

 
where At = actual value and Pt = predicted value. The models 
and their prediction errors are presented in TABLE IV.   

B. Factor importance 

One of the advantages of random forest regression is the 
ability to evaluate the importance of different variables used 
for prediction. TABLE V. shows an overview of the 
importance of each factor and data layer, with the two most 
important variables in bold. Note that for models 2 to 5, the 
feature count of polygon barriers is the first or second most 
important factor for predicting localization error (ranging from 
0.18 to 0.38). With the inclusion of point barriers data in 

models 5 and 6, the angular dispersion factor has high 
importance (0.20 and 0.22). Aside from model 1, the 
importance of factors based on view line and view polygon 
geometry is below 0.1. 

TABLE IV.  PREDICTION ACCURACY OF MODELS 

Data 
Model 

1 2 3 4 5 6 

OSM Buildings ● ● ● ● ● ● 

OSM Poly. barriers  ●     

Completed Poly. barriers   ● ● ● ● 

Completed Line barriers     ●  ● 

Completed Point barriers      ● ● 

Number of factors 6 8 8 10 10 12 

R2 0.182 0.327 0.438 0.692 0.634 0.672 

RMSE (cm) 5.0 4.5 4.2 3.1 3.4 3.2 

MAE (cm) 3.4 3.0 2.6 2.1 2.2 2.0 

Prediction Accuracy (%) 51.2 56.5 62.3 71.9 72.1 73.1 

TABLE V.  FACTOR IMPORTANCE 

Data 
Models 

1 2 3 4 5 6 

F
ea

tu
re

 c
ou

nt
 Buildings 0.14 0.09 0.06 0.04 0.05 0.03 

Polygon barriers - 0.28 0.38 0.18 0.26 0.13 

Line barriers - - - 0.21 - 0.18 

Point barriers - - - - 0.13 0.08 

A
ng

ul
ar

 
di

sp
er

si
on

 

Buildings 0.19 0.10 0.07 0.08 0.06 0.06 

Poly. barriers - 0.14 0.27 0.15 0.11 0.05 

Line barriers - - - 0.10 - 0.04 

Point barriers - - - - 0.20 0.22 

O
th

er
 

View line mean 
length 

0.16 0.09 0.04 0.07 0.04 0.05 

Area of view 
poly. 

0.11 0.07 0.03 0.06 0.02 0.04 

Compactness of 
view poly. 

0.11 0.07 0.03 0.06 0.02 0.04 

Variance of 
building face dir. 

0.28 0.17 0.10 0.07 0.10 0.06 

V. DISCUSSION 

A. The capability of OpenStreetMap for estimating vehicle 

localization error 

Initial results from TABLE IV. show that using both the 
buildings and polygon barriers layer from OSM, the model can 
achieve 56.5% prediction accuracy. By improving the 
completeness of the polygon barriers, the model prediction 
accuracy is then increased to 62.3%. By adding additional 
point barriers and line barriers layers, a model prediction 
accuracy of 73.1% is achieved. Although OpenStreetMap is 
not specifically designed for feature scale problems such as 
map matching localization, the work described in this paper 
show that it is possible to estimate vehicle localization error 
with reasonable success. 



  

For the application of autonomous vehicles, it is important 
to note that detecting the points which exceed a threshold error 
value is perhaps more important than the general accuracy of 
the prediction. This is because at these locations, the 
autonomous vehicle is unable to localize itself within its safety 
threshold. As such, precision and miss rate may be a more 
suitable assessment of the performance of a prediction model. 
Using the SIP program’s 25 cm value as guidance, only 20 out 
of 1096 sample points does localization error exceed the 
threshold (Figure 4). Of these instances, 18 are ‘detected’ by 
the model (Model 6). Further work is required to devise a more 
appropriate accuracy metric which better describes a model’s 
ability to detect these peaks in localization error, and thus its 
suitability for the autonomous driving application. 

B. Comparison with other studies 

TABLE VI. presents a comparison between Models 1 and 
6 against Javanmardi et al.’s [5] ND map mean error models. 
While Model 1 has a relatively low R2 (0.182), Model 6 can 
achieve a similar performance with an R2 of 0.672 and RMSE 
of 3.2 cm. Although Javanmardi et al.’s [5] 2.0m model has a 
higher R2 value (0.77), the RMSE is much higher at 9.0 cm. It 
is important to bear in mind the difference in methodology – 
while [5] uses principal component regression, this study uses 
random forest regression. Further work is therefore required to 
confirm if OpenStreetMap can truly achieve comparable 
results with existing approaches. 

TABLE VI.  COMPARISON TO OTHER MODELS 

Author Model R2 RMSE (cm) 

Javanmardi et al. [5] 
2.0m grid size 0.770 9.0 

5.0m grid size 0.551 20.6 

Our models with OSM 
Model 1 0.182 5.0 

Model 6 0.672 3.2 

C. The importance of different factors and data layers 

Of the factors, feature count is the most important for all 
six models. Feature count of polygon barriers is one of the top 
two most important factors for models 2 to 5. Comparatively, 
angular dispersion is less important, except for point barriers 
for models 5 and 6. Factors based on view line and view 
polygon geometry were least important. There are several 
possible explanations for this result. Firstly, the middle half of 
the experiment route is populated by many polygon barriers 
(as illustrated in Figure 2). In addition, in this central section 

of the experiment path, the combination of wide multi-lane 
roads, restricted 20m scanner range, and building setback 
means that buildings cannot be necessarily ‘seen’ by the 
LiDAR sensor. In these cases, the barrier features become 
more important for localization. Secondly, the importance of 
point barriers could be the result of the completeness of the 
data, as pole-like features can be found all along the 
experiment path.  

Note that these factors have only been applied to a limited 
experiment path. For example, in other areas where there are 
no point or polygon barriers, other data layers such as 
buildings and line barriers could become more important. In 
addition, only 4 of the 49 layers available from OSM was used 
in this study. Utilizing additional geometric OSM layers, e.g. 
road network, may improve the model prediction accuracy.  

D. The impact of data quality of OSM 

As discussed in Section II.D, OpenStreetMap suffers from 
data quality issues such as inconsistency and incompleteness. 
In this study, the data was manually corrected and improved 
using external datasets, resulting in a 16.6% improvement in 
model accuracy over using unaltered OSM data. This is 
encouraging and could suggest that as the quality of OSM 
improves over time, its capability to estimate localization error 
also increases. The improved layers in this study can also 
provide guidance to OSM users on what features to digitize for 
the application of autonomous vehicles. However, some of the 
data layers useful for vehicle localization estimation (e.g., 
pole-like objects) may be difficult to digitize using current data 
sources for OSM, e.g. satellite imagery. 

E. 2D geographic information versus 3D point cloud map 

In this study, 2D geographic information in a vector format 
from OpenStreetMap was used instead of a 3D point cloud 
map to predict localization error. One of the main differences 
is that 2D GI is a much more abstracted representation than a 
3D point cloud map. From a data handling and computation 
perspective, it is much ‘lighter’. The vector geometry also 
provides clear boundaries for delineating features which is not 
found in point cloud maps. The main drawback of 2D GI is 
that it lacks the detail found within a 3D point cloud. This 
means feature scale phenomena such as local similarity cannot 
be easily evaluated. Nevertheless, even with the inherent data 
quality issues and lack of detail, the results from this study 
shows that 2D GI can still be used to assess the feature 

Figure 4. Modelled 3D error (red) compared to actual mean 3D error (black) for the full experiment path (Model 6) 
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sufficiency and layout of an area. Beyond OpenStreetMap, the 
same factors could be used with better quality 2D GI. Data 
from authoritative sources, such as national mapping agencies, 
could be used to mitigate data quality issues found in open 
data, and thus achieve higher prediction accuracy. 

F. Generalizability of the model 

The model is currently only trained on data from a 
relatively short path, resulting in relatively low 
generalizability. The addition of more data from multiple paths 
should reduce any random patterns that may previously have 
appeared predictive. This would, in turn, enable the use of 
OSM to predict localization error beyond the modeled area. 
Coupled with the wide coverage of OSM, it could theoretically 
be possible to predict localization error for large areas, 
anywhere in the world, without collecting data to create a 
prebuilt map as the mapping data is readily available. 

G. Alternatives to random forest regression 

Random forest regression is only one machine learning 
approach for prediction. In some cases, alternative approaches 
such as support vector machine or gradient boosting machines 
could outperform random forest regression and provide a more 
generalizable model. These approaches, however, also require 
additional manual hyperparameter tuning. Further work is 
required to ascertain which approach is best. 

H. Source of localization error 

As described in Section II.B, there are many sources of 
localization error for LiDAR map matching. The precise 
sources of localization error, however, remain difficult to 
ascertain. Within the experiment, multiple measures were 
taken to ensure the reduction of non-map errors, so that any 
remaining localization error evaluated was directly related to 
the map as much as possible. Regardless, it is currently 
difficult to confirm how much of the localization error was 
derived from the map or the environment. In the future, if the 
source of localization error is known, map producers could be 
encouraged to improve mapping for the application of 
localization. Alternatively, artificial objects could be installed 
in the environment to improve map matching performance. 
Furthermore, knowing the specific location of areas of high 
localization error could inform semi-autonomous vehicle 
systems of where to disengage autopilot and to prepare for 
human driver takeover in a timely manner.  

VI. CONCLUSION AND FUTURE WORK 

This study set out to determine if OpenStreetMap can be 
used as a proxy to estimate vehicle localization error. Six map 
evaluation factors were developed for 2D geographic 
information in a vector format, based on the feature sufficiency 
and layout of the map. These factors were used to train six 
different random forest regression models, for an experiment 
path in Shinjuku, Tokyo. The initial experiment results showed 
that using just two unaltered OSM data layers, the model can 
predict localization error with 56.5% accuracy. By improving 
the data quality (consistency and completeness) as well as 
using four data layers, the model prediction accuracy increases 
to 73.1%. This shows that there is potential for OSM to be used 
for estimating vehicle localization error. 

Future work is required in adding more data layers from 
OSM, as well as other layers which may not currently be 
available, such as curb information, road markings, and 
landmarks. In addition, training the model with data from 
wider areas will help make it more generalizable, enabling 
prediction beyond the modeled areas. Furthermore, different 
machine learning models should be investigated to ascertain if 
it can improve prediction accuracy. The method described in 
this study can also be adapted to assess other localization 
approaches, such as camera-based systems. 
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