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Abstract

This thesis consists of three chapters that theoretically consider different ways

in which incentives can be provided through information. Chapter 1 is an infor-

mation design with moral hazard problem in which a planner wants to optimally

motivate a time-inconsistent agent by providing feedback. I provide conditions

under which the optimal feedback takes a simple form of a cutoff. Chapter 2 and

3 consider whether or not a firm would want to choose to be transparent about

pay within the organisation. Chapter 2 considers a static set-up, and Chapter 3

considers a dynamic set-up. The main finding—across the two chapters—is that

as the value of retaining the best workers goes up, then transparency becomes

more favourable.
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Introduction

This thesis consists of three chapters, connected by a common theme: how to

provide incentives through information. I use theoretical models to bring new

insights to informational problems encountered by individuals and organisations.

In Chapter 1, I study how a time-inconsistent agent can be incentivised by

a planner who is able to commit to provide feedback on the agent’s output. The

leading example I consider is how a benevolent supervisor—aligned with the

long-run interests of the student—would want to incentivise a time-inconsistent

student who works on a project of unknown quality over two periods. The

student makes unobserved effort choices that produce output that only the su-

pervisor can observe. The supervisor is able to commit to provide feedback based

on her observation. From a theoretical perspective, this is an information design

problem (Kamenica and Gentzkow (2011)) but with moral hazard—meaning

that the state variable is endogenously generated by the agent’s effort choice. I

show that the supervisor’s feedback can motivate the student to take a higher ef-

fort in the first period than he would do without feedback. First, I show that the

optimal mechanism always takes the simple form of recommending an action to

the agent. Then, I provide sufficient conditions under which the feedback takes

the simple form of a cutoff. The main normative result is that incentivising a

time-inconsistent agent in this way makes all ‘selves’ of the agent unambiguously

better off—this is not the case when a time-inconsistent agent is incentivised with

monetary instruments.

In Chapters 2 and 3, I analyse when a firm would want to make pay trans-

parent within their organisation. In order to answer this question I use a mul-

tidimensional signalling model (as in, for example, Bénabou and Tirole (2006)).

The key result—that provides a clear, testable prediction—is that as the value of

retaining the best workers goes up, then transparency becomes more favourable.

The intuition behind the model is as follows. Workers are unsure about their

future prospects at the firm, and want to learn about this in order to decide

whether or not to take an outside option. The firm, who has an information
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advantage and wants to retain all workers, signals to them about their prospects

through bonus payments. The firm also may face a cost shock—that affects

their marginal cost of paying bonuses at that time—meaning it is possible it

does not have resources to pay bonuses. In the equilibrium that I focus on, the

firm only pays bonuses to the better workers when there is no cost shock—this

makes the best workers more optimistic. The positive effect of transparency is

that a worker becomes less pessimistic when he does not receive a bonus and

observes that other workers also don’t receive a bonus—this means that the firm

was more likely to note be able to pay a bonus. The negative effect is when a

worker does not receive a bonus but sees that another worker is paid a bonus.

In this case he becomes more pessimistic since it is clear that the firm was able

to pay a bonus. The firm needs to balance this trade-off when deciding whether

or not to commit to transparency.

In Chapter 2, I analyse the static game—where continuation payoffs are

exogenously given—which allows me to provide sufficient conditions for the exis-

tence and uniqueness of the separating equilibrium of interest. I can also derive

comparative statics on the firm’s value of retaining different quality workers. I

consider a number of extensions of the static model that demonstrate the robust-

ness of the comparative statics and provide some further insights. The model also

provides a rational explanation for empirical findings in the relative pay literature

that have thus far been explained by non-standard preferences.2 I demonstrate

this by considering the results in a prominent paper in this literature—Card et al.

(2012). The explanation provided in the paper for their reduced-form empirical

findings is that workers have social preferences. I show that my model—where

agents are rational and have standard preferences—can provide an alternative

explanation, and that this alternative explanation is important since it leads to

different policy implications.

The theoretical innovation of the model, compared with the existing litera-

ture on multidimensional signalling, is that I consider how a sender would want

to optimally design the informational environment in which the signalling game

with multiple receivers takes place. From a technical perspective, in order to

refine equilibria in my game, I introduce an appropriate intuitive criterion re-

finement that is appropriate for a game with multiple receivers, and I argue that

it is in the spirit of the original refinement (Cho and Kreps (1987)).

In Chapter 3, I analyse a dynamic version of the model—where continua-

tion payoffs become endogenised. This is a much richer model where workers’

2Relative pay is where a researcher analyses how a worker reacts to learning about a
coworker’s pay.
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productivity changes over time. I show that an equilibrium exists in which in

every stage game the principal plays the same strategy as in the equilibrium of

interest in the static game—i.e. only pays bonuses to good workers when funds

are available. Although I cannot obtain closed form solutions to obtain compar-

ative statics, numerical results suggest that the comparative static results from

the static model continue to hold. From a theoretical perspective the model

contributes to the literature on reputations with changing types (for example,

see Phelan (2006)).
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Chapter 1

Motivation and Information

Design1

1 Introduction

Imagine a supervisor who wants to motivate a student prone to procrastination

to work on a long-term project. In each period the student finds work costly,

but would find it worthwhile if the project is of a sufficiently high quality. To

begin with both the student and supervisor are unsure of the underlying quality

of the project and the prior is such that there is a conflict of interest: the

supervisor would prefer the student to work on the project while the student

would prefer to shirk. This conflict of interest arises because the supervisor

wants to maximise the student’s long term interests, while the time-inconsistent

student wants to maximise from today’s perspective in which future returns to

effort are discounted more heavily.

Typically, in economic theory, monetary instruments are used to overcome

such incentive problems. I assume that the supervisor does not have access to

monetary instruments and instead can only incentivise the student by commit-

ting to provide feedback on the output she observes. I provide conditions in

which feedback can be designed in such a way to incentivise effort today even in

the presence of moral hazard—when the supervisor cannot observe effort. To do

this it must be that exerting effort today makes it more likely that the feedback

induces the student’s future self to choose a more favourable level of effort from

today’s perspective. I provide conditions under which the feedback will take the

particularly simple form of recommending working in future only if the earlier

1A version of this chapter has been published in Journal of Economic Behavior & Organi-
zation, Volume 169, January 2020, Pages 1-18.
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output is above a certain level—a cutoff. The main contribution of the chapter

is to formalise a mechanism under which moral hazard can be overcome in a

setting where it occurs naturally, but where monetary incentives are not avail-

able. I also analyse the characteristics of the optimal mechanism, provide some

testable implications and discuss welfare.

Formally, I study a persuasion game with three players. There is a planner

(the supervisor) and two incarnations of a time-inconsistent agent (the student):

Self 1 and Self 2 (today’s self and tomorrow’s self). Players have a common

prior on an unknown state (the underlying quality of the project). In periods 1

and 2 the respective Self chooses an action from a binary set. The action is not

observed by the planner. The action, together with the state, produces a payoff

relevant output that is not observable to the agent. The agent incurs immediate

costs for actions and enjoys output in the future. At the beginning of the game

the planner chooses a mechanism that generates a signal conditional on Self 1’s

output. Self 2 is then able to learn about the state from this signal. Since the

planner and Self 2 have different preferences over Self 2’s choice of action, the

game is similar to the standard Bayesian persuasion set up of Kamenica and

Gentzkow (2011) (henceforth KG), but with the signal being conditioned on a

variable that is endogenised by the third player (in this case Self 1).

First, I establish that any optimal mechanism is ‘straightforward’ in that

the signal recommends an action to Self 2.2 This is not a simple application of

existing revelation principle results, this includes the ones in KG and Myerson

(1986). The reason is that in my model the planner must commit to a mechanism

before some players take private actions. In Myerson (1986) there is a different

sequence of events: at the end of each stage the players privately report their

private information to the mediator who then recommends actions for the next

stage and so the mediator’s recommendation can directly take into account the

player’s private actions. In the Appendix I provide an example of a three player

game with the same sequence of events as my model, but where such a revelation

principle result does not hold.

Then, I establish conditions under which the optimal feedback is a cutoff—

where the high action is recommended if and only if output is above a given

level. This includes the case when the project’s quality is uniformly distributed.

I provide a counter-example to show that a cutoff is not always optimal. The

intuition behind this counter-example is as follows. There is an intermediate

2Since the set of actions is binary this means that it is without loss for there to be just two
signals. Each of the two signals results in a posterior that results in Self 2 choosing one of the
two different actions.
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part of the distribution of quality with low density. The level of output resulting

from high effort and this intermediate level of quality should not be rewarded

by providing a useful signal, which in this case will be a signal recommending

a high action. This is because rewarding this output makes low effort—which

is more likely to result in this output—more favourable from the perspective of

Self 1.3

Finally, I consider the welfare of the agent and show that the ability of the

planner to commit to a mechanism makes both Self 1 and Self 2 better off from

an ex ante point of view in expectation. This would not necessarily be the case

if the agent was being motivated by monetary instruments.

In the final section of the chapter I discuss how changes in the preferences

affect the results for the three player persuasion game I have analysed includ-

ing, for example, a principal-agent problem where the agent is no longer time-

inconsistent and the principal wants the agent to exert more effort than the agent

would otherwise exert. In such a setting it is no longer without loss to use a

straightforward mechanism that recommends an action. In my setting, the key

thing that drives the revelation principle result is that the planner and Self 1

have the same preferences over Self 2’s choice of action.

My model could also apply to other settings. For example, it might shed

light on the design of messages sent by a fitness tracker phone application. Such

devices are able to measure an individual’s performance (for example, how many

steps they take in a day) and can be programmed to send users messages con-

ditional on the observed performance in order to encourage them to exert effort

in the future.

2 Related literature

The model is related to several strands of literature. First, it fits into the growing

literature on Bayesian persuasion following Kamenica and Gentzkow (2011). Sec-

ond, it is related to the literature within contract theory that analyses provision

of feedback to agents. Third, it is related to motivation of a time-inconsistent

agent as in Bénabou and Tirole (2002).

Several recent papers also analyse a three player persuasion game where

the state is endogenous. Rodina (2017) studies a two period career concerns

model. However, unlike my model, the focus is on conditions for which full

disclosure of output is optimal from the perspective of the principal who designs

3This is related to the MLRP for monotone rewards in a setting with moral hazard and
monetary instruments.
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the information structure. Farragut and Rodina (2017) characterise optimal

disclosure policies for a school trying to induce effort from students through

its grading system that affects students’ employment prospects. Their analysis

assumes that either effort or talent are perfectly revealed by output (or the

‘score’) of the agent. In my model, there will always be output levels for which

there will be a signal extraction problem in the sense that multiple effort/talent

pairs can generate the same output. Boleslavsky and Kim (2018) study a similar

three player game with more general preferences but with a finite state space and

continuous action space. This difference, and the more specific set of preferences

I consider, allow me to show that a binary signal is optimal (there no is equivalent

result in their paper), and highlights what specific features of my environment

make this the case. The structure I impose also allows me to characterise when

the optimal mechanism is a cutoff.

My model is also related to Kolotilin et al. (2017) who study a two player

sender-receiver game where the receiver has private information. Before receiv-

ing a signal from the sender, the receiver is able to communicate his private

information to the sender. The sender is able to commit in advance to a mecha-

nism that sends signals conditional on this report. My setting is different for two

reasons: first, the receiver (the agent in my model) does not have any private

information at the start of the game, this private information is endogenous in

that it is the effort choice of the receiver (the Self 1 incarnation of the agent) and

this choice can be affected by the sender’s (the planner’s) choice of mechanism;

second my receiver is actually two separate players (Self 1 and Self 2 incarnation

of the agent) with different preferences.

A number of papers in contract theory analyse the role of feedback as a tool

for providing incentives. Lizzeri et al. (2002) analyse feedback provision of an

agent within a two period dynamic moral hazard model and so they combine

information disclosure with monetary instruments. The feedback after the first

period is a choice of either full revelation (feedback) or no revelation (no feed-

back) rather than more complicated information structures. The main result is

that when rewards are designed by the principal to minimize costs along with

the choice of feedback, no feedback is always optimal. Hansen (2013) studies

optimal interim feedback in a two period additively-separable career concerns

model. After two periods of costly effort the agent wants to induce a posterior

belief of his talent to be above a given threshold. Effort and talent are assumed

to be substitutes rather than complements (as in my model). This means that,

unlike my model, raising the posterior belief on talent does not always induce

higher effort in future, i.e. there is no demand for self confidence. The role of
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feedback in this setting is to induce effort in the first period through a ‘ratchet

effect’ rather than directly manipulating his future self’s belief over the uncer-

tain state of as in my model. This difference, along with the fact that the agent

only wants to manipulate the belief of unknown talent above a certain threshold,

mean that the optimal feedback rule is qualitatively very different to the one I

find. In particular, to maximise the joint surplus, interim output is precisely

disclosed only when period 1 output is close to the required threshold, allowing

the agent to fine-tune effort in period 2. There are also a number of papers that

study interim feedback in a tournament setting, for example, see Ederer (2010).

Bénabou and Tirole (2002) study a time-inconsistent agent’s demand for self

confidence. A person might not want to know their talent precisely since it will

discourage their future self from taking action that the current self would want to

take.4 In their model, the focus is on intra-personal strategies that distort one’s

memory. In a later paper, Bénabou and Tirole (2004) analyse how today’s (Self

1’s) action can signal private information about the return on effort to a future

self. In this setting memories are again—endogenously—distorted by the agent

himself. In my model, I introduce a planner, who I think of as an outside agency,

that is able to exploit the demand for self confidence—through influencing what

the agent learns from his past actions—and so influence effort both today and

in future. In contrast to Bénabou and Tirole (2004), what Self 2 will learn from

Self 1’s action is exogenously determined by the planner. In a similar setting,

Mariotti et al. (2018) analyse optimal ex ante information disclosure in order to

have a time-inconsistent agent take the most appropriate action given the state

in each of two periods. Their information influences both Self 1’s and Self 2’s

actions in the same way and so is similar to a static Bayesian persuasion model

as studied by KG without moral hazard. In contrast, in my model Self 1 is

incentivised to take an otherwise undesirable action in order to provide Self 2

with the information which will enable him to take the appropriate action from

Self 1’s perspective.

3 The model

In this section I introduce the formal model and then discuss my modelling

assumptions.

4This observation was first made in Carrillo and Mariotti (2000).
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1

M chosen by
the planner

a1 chosen
by Self 1

b1 realised
signal s realised

a2 chosen
by Self 2 b2 realised

2 3 t

Figure 1.1: Sequence of events.

3.1 Set-up

There are three periods t = 1, 2, 3. There are two economic actors: an agent

(he) and a planner (she). The agent’s project has quality θ ∈ [0, 1] drawn from

a distribution F (θ) with density f(θ). F (θ) is assumed to be continuous (i.e.

there are no mass points).

Actions. In each period t = 1, 2 the agent chooses how much costly effort

to exert at ∈ A =
{
aH , aL

}
, where aH > aL > 0. I will assume that aH = 1

(this is without loss). Effort results in output bt = atθ.

The planner commits to a mechanism that sends a message to the agent

at the start of period 2 depending on the output b1. Formally a message is a

functionM : [0, 1]×
{
aH , aL

}
→ S when the planner observes Self 1’s action; and

M : [0, 1]→ S when the planner does not observe Self 1’s action. In both cases

S is the space of signals (restricted to be finite for simplicity) and M denotes

the set of all possible message functions. The sequence of events is depicted in

Figure 1.1.

Payoffs. The agent’s effort incurs an immediate cost and a long run benefit.

Effort in period t incurs a cost ct(at), where ct(a
H) = c > 0 and ct(a

L) = 0.

Benefits are enjoyed in period 3.5 So the flow payoff of the agent in period t is

given by

ut = −ct, for t = 1, 2;

ut = b1 + b2, for t = 3.

The agent has time-inconsistent preferences, as in Laibson (1997), that are

modelled by a different ‘self’ acting in each period. Preferences for Self 1 and 2

5Since there will be no long run discounting, this assumption is equivalent to benefits being
consumed the period after they are produced. The key assumption is that benefits are enjoyed
at some point in the future.
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are given by:

U1 = u1 + βu2 + βu3, (3.1)

U2 = u2 + βu3, (3.2)

where β ∈ (0, 1) is the short run discount factor that captures present bias.6

The planner has preferences aligned with a fictitious Self 0 and so is aligned

with the ‘long run’ interests of the agent. Formally, her preferences are given by:

U0 = u1 + u2 + u3. (3.3)

Information. Players start with a common prior on θ. The agent does not

see outputs until they are consumed in period 3, but does recall past actions. I

analyse two cases for the planner: one in which she observes the agent’s actions

and another in which she does not.

Strategies. The planner’s strategy is a choice of message function M. Self

1’s strategy is a function of the planner’s choice of message σ1 : M → A. Self 2’s

strategy is a function of Self 1’s action, the message function and the realisation

of the signal. It is given by σ2 : M × S ×A→ A.

Equilibrium. I assume that the agent is sophisticated in the sense that

Self 1 correctly anticipates the decision of Self 2. So the three players (Self 1,

Self 2 and the planner) play a game of incomplete information and the relevant

solution concept is perfect Bayesian equilibrium.7 In equilibrium:

• Self 2 correctly updates his prior on θ given the choice of message function,

realised signal and Self 1’s action and then chooses a2 to maximise his

utility;

• Self 1 correctly anticipates Self 2’s choice of a2 and chooses a1 to maximise

his utility based on his prior on θ and the expected outcome of the signal

given the choice of message function;

• The planner correctly anticipates the choice of action of Self 1 and 2 and

chooses a message function to maximise her expected utility.

6I have taken δ, the long run discount factor, to be δ = 1 to simplify the analysis.
7Equilibrium is also KG’s ‘sender preferred’ perfect Bayesian equilibrium meaning that the

action taken is the one preferred by the information designer which in my setting is the planner.
This refinement is not important in my setting since indifference happens with zero probability
in equilibrium I consider.
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Assumptions. I make several assumptions to make sure that the analysis

will be interesting. I maintain these assumptions throughout the chapter

Assumption 1. c̄ ≡ c
β(aH−aL)

< 1.

This rules out the case that a2 = aH will never be chosen by Self 2 for any

posterior belief of θ.

Assumption 2. E[θ] ∈ (βc̄, c̄).

This means from the planner’s (Self 0’s) perspective it is best for the agent

to choose a1 = aH but from a Self 1 perspective it is best to choose a1 = aL.

This tension means that the planner wants to incentivise Self 1 to choose the

action that he wouldn’t otherwise take.

Assumption 3. E[θ|θ ≥ βc̄] < c̄.

The planner wants the agent to choose at = aH when θ ≥ βc̄ while each self

in period t wants to take at = aH when θ ≥ c̄. This assumption ensures that the

planner is not able to simply recommend a2 = aH for values of θ that benefit

her and have the agent follow the recommendation. For this assumption to hold

it must be that β is sufficiently below 1.

3.2 Discussion of the model

A critical part of the model is that rewards are realised in the future while

costs are immediate. For the settings I have in mind, such as working on an

academic project, this assumption makes sense. It is also important that the

output function captures a complementarity between the quality of the project

and effort. This means that the marginal return on effort is greater for higher

(expected) quality projects. This is also an assumption that makes sense in the

settings I have in mind.8

I assume that the agent sees his effort but not the output. In a student-

supervisor relationship the student sees how much effort he put in but might

find it difficult to evaluate the quality of output. Instead it is the supervisor

(planner) who has the expertise to evaluate the quality of output. In the main

part of the analysis (Section 4.2) I assume that the planner cannot see the effort

exerted by the agent. This is a standard moral hazard assumption that makes

sense in the setting I have in mind: the supervisor cannot or finds it too costly

to monitor the student at all times.9

8Both these assumptions are similar to the ones made in Bénabou and Tirole (2002).
9These assumptions, and the reasoning behind them, are similar to those in the literature

on ‘subjective evaluations’ in moral hazard, see for example, MacLeod (2003).
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I assume that the planner can commit to a mechanism in line with the

Bayesian persuasion literature following KG. In a student-supervisor relationship

there are a number of possible justifications for this. One possibility that is often

used is that reputational concerns could ensure that a supervisor will provide

the feedback that she has committed to provide. An alternative interpretation

is that although the planner may not be able to commit to a mechanism, she

may be able to commit to limit her attention to interpreting the agent’s output.

This could be done in such a way that it only allows her to determine if output is

above or below a given threshold. Such a commitment might be made by limiting

her time, or limiting her attention to only look at certain aspects of the project.

This justification makes sense particularly when the optimal mechanism takes

the form of a cutoff—as is the case in Propositions 4 and 5—and so highlights the

importance of these results. In the other setting discussed in the introduction,

a fitness tracker, the commitment assumption is much easier to implement. A

mobile phone application (the planner) can be programmed in order to send

messages dependent on data it collects about the agent’s performance. Also, as

mentioned by other authors in the literature, even when full commitment is too

strong an assumption it provides a useful benchmark for what can be achieved.

An important insight from KG is that signals can be designed so that a

single state can result in more than one signal. I have assumed that each out-

come (equivalent to the state in KG) can only result in a single signal. With a

continuous outcome space with no atoms, this assumption is without loss.10

Finally, I assume that the agent is sophisticated in the sense that he antici-

pates his time-inconsistency. There is a lot of evidence that people underestimate

their self control problems. In my model the results would be qualitatively un-

changed so long as the agent is not completely naive, i.e. they do understand

that they have some level of time-inconsistency.

4 Analysis

In Section 4.1, I analyse the case in which the planner observes Self 1’s action

and so can make the signal contingent on this action. The planner’s optimal

mechanism is a binary signal recommending an action to Self 2 when Self 1

10Formally, this can be seen by generalising the linear programming problem used in proofs
of Proposition 3, 4 and 5 by allowing w(θ) and wL(θ) to be in [0, 1] rather than in {0, 1}.
The definitions of these choice variables would become and . The interior values represent
mixed signals—sending different signals with positive probability for the same outcome. It
is straightforward that the maximisation problem in the proof has the ‘bang-bang’ property
meaning that these interior choices of w(θ) can never be optimal—this uses the fact that the
distribution of θ has no atoms. It follows that the assumption made is without loss.
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0 βc̄ c̄

Planner prefers a1 = aH

Self 1 prefers a1 = aH

1 θ

Figure 1.2: Conflict of interest between the planner and Self 1 over Self 1’s choice
of action.

takes the desired action (a1 = aH), and a single (uninformative) signal when

Self 1 does not take the desired action. The recommendation of an action to Self

2 when a1 = aH acts as a ‘reward’ since Self 2 takes the desired action (from the

perspective of Self 1) more often. In contrast, the uninformative signal acts as a

‘punishment’ since it means that Self 2 will always take a2 = aL which from the

perspective of Self 1 is not necessarily optimal.

In Section 4.2, I analyse the more interesting case in which Self 1’s action

is not observable—this introduces moral hazard. Here the ‘punishment’ for de-

viating to a1 = aL cannot be in the form of a completely uninformative signal.

Instead, Self 1 is punished by having Self 2 being recommended the action that

Self 1 wants Self 2 to take less often when a1 = aL is chosen compared to when

a1 = aH is chosen.

4.1 Actions observable to the planner

First, I consider the incentives of Self 1 with no informative signal. In this case

it is clear that Self 1 cannot influence Self 2’s action. Keeping Self 2’s action

fixed, Self 1 gets a payoff βaHθ − c from taking a1 = aH and βaLθ from taking

a1 = aL. Comparing the value of these expressions means that Self 1 prefers

a1 = aH if and only if θ ≥ c̄. Similarly the planner prefers a1 = aH if and only

if θ ≥ βc̄. The conflict of interest between the planner and Self 1 over Self 1’s

choice of action is depicted in Figure 1.2. Note that the conflict over Self 2’s

action from the perspective of either the planner or Self 1 and Self 2 could be

depicted in the same way.

Due to Assumption 2 (E[θ] ∈ (βc̄, c̄)), the planner wants to incentivise the

agent to choose a1 = aH , which Self 1 wouldn’t otherwise choose, and can only

do this through the use of an informative signal which will have a favourable

effect on Self 2’s action.

To ensure that Self 1 takes the desired action, a mechanism needs to be

incentive compatible. This means that Self 1 finds it ‘useful’ in the sense that

he benefits from Self 2 choosing a2 = aH some of the time when Self 2 would
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not make this choice without an informative signal, and loses relatively little

from choosing a1 = aH over a1 = aL. The mechanism must also deter Self 1

from deviating by providing the ‘worst’ possible signal. I show later that this is

a completely uninformative signal. Formally, the constraint that makes Self 1

chooses a1 = aH over a1 = aL is

βaHE[θ]− c+ βEθ,a2 [a2θ − c(a2)|M, a1 = aH ] ≥ 2βaLE[θ], (4.1)

where the second expectation on the LHS is over the expected value of θ and

a2 given the signal that will result from a1 = aH . The first part of the LHS

is the expected benefit and cost of choosing a1 = aH , and the second part is

the expected benefit and cost of the action that Self 2 will choose given the

mechanism and Self 1’s choice of action. The RHS is the payoff from at = aL

in both periods since Self 2 will not update his prior and so will always choose

a2 = aL.

If the signal when a1 = aH is in the form of a cutoff where s = h (a signal

that induces a posterior such that a2 = aH is chosen) is sent if and only if b1 ≥ θ̂,
then the constraint can be written as11

βaHE[θ]− c+ β

∫ 1

θ̂
(aHθ − c) dF (θ) + β

∫ θ̂

0
(aLθ) dF (θ) ≥ 2βaLE[θ]. (4.2)

Since a1 is known, θ can be perfectly inferred from b1 and so a cutoff value for b1

is equivalent to a cutoff value for θ (recall I assume that aH = 1). The optimal

cutoff θ̂ is given by θ∗ and is the optimal disclosure that Self 1 would design in

order to motivate Self 2 if he were free to choose the mechanism himself.12,13

Formally, θ∗ solves the equation∫ 1

θ∗
(βaHθ − c) dF (θ)−

∫ 1

θ∗
(βaLθ) dF (θ) = 0. (4.3)

The optimal choice of mechanism for the planner is summarised in the fol-

lowing Proposition.

Proposition 1. If θ̂ = θ∗ satisfies inequality 4.2, when a1 is observable the

planner can incentivise Self 1 to choose a1 = aH and the following mechanism

is optimal:

11A cutoff will be the optimal mechanism from the perspective of Self 1. For details see the
proof below and Appendix 1.

12The condition for this is derived in Appendix 1. From a technical perspective this is
effectively a static persuasion game as in KG.

13Assumption 3, that says E[θ|θ ≥ βc̄] < c̄, rules out the case where θ∗ ≤ βc̄.
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• if a1 = aH then send s = h if b1 ≥ θ∗ and s = l otherwise;

• if a1 = aL then send s = l for all b1.

If θ̂ = θ∗ does not satisfy 4.2 then the planner cannot incentivise Self 1 to choose

a1 = aH .

Throughout the thesis, proofs not in the main body of text are in the relevant

Appendix.

In this section, with a1 being observable to the planner, it is easy to deter Self

1 from choosing a1 = aL by having a completely uninformative signal following

this action. In the next section, when a1 is not observable, it is still possible

to deter Self 1 from choosing a1 = aL, but now it may be that Self 2 receives

a favourable signal (from the perspective of Self 1) even when Self 1 chooses

a1 = aL. The key to incentivising a1 = aH will be to ensure that the favourable

signal is received more often and is of more value when a1 = aH compared to

when a1 = aL.

4.2 Actions not observable to the planner

Now, I analyse what happens when the planner cannot see the action taken

by Self 1. The signal the planner sends to Self 2 will be contingent only on

the realisation of b1 (the only information the planner will have other than the

prior). The planner will be able to incentivise a1 = aH since a higher action will

induce a set of signals that is more likely to have Self 2 take the more favourable

action (from the perspective of Self 1). I illustrate this through an example and

then discuss the more general problem. I then establish conditions when the

optimal mechanism is monotone partitional—i.e. takes the form of a cutoff.

Example

The project’s quality is distributed as θ ∼ U [0, 1]. The other parameter values

are aH = 1, aL = 1
2 , c = 1

9 , β = 1
3 (and so c̄ ≡ c

β(aH−aL)
= 2

3).

As derived in the previous section, with no informative signal, Self 1 prefers

a1 = aH if and only if θ ≥ c̄ and the planner prefers a1 = aH if and only if

θ ≥ βc̄. With the parameter values above this means that the planner would

like Self 1 to choose a1 = aH iff θ ∈ [2
9 , 1] and Self 1 would choose a1 = aH

iff θ ∈ [2
3 , 1]. Since E[θ] = 1

2 without any feedback Self 1 will choose a1 = aL,

which is not the planner’s preferred action—this means that Assumption 2 is

satisfied.14

14Note also that it is easily verified that Assumption 3 is satisfied; and since c̄ < 1, Assump-
tion 1 is also satisfied.
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Now consider the following mechanism:

s =

{
h if b1 ∈ (1

2 , 1],

l if b1 ∈ [0, 1
2 ].

If Self 1 chooses a1 = aL, then he cannot learn anything from the resulting

signal and so enjoys no benefit from improving Self 2’s action. To see this, note

that if Self 1 chooses a1 = aL then b1 ∈ [0, 1
2 ] and so s = l for any θ. Self 2 will

always have the same prior and will choose a1 = aL.

If Self 1 chooses a1 = aH , then there is some potential benefit. In particular,

if θ is sufficiently high, then Self 2 will update his posterior on θ and take an

action that is desirable from the perspective of Self 1. To see this, first note that

if a1 = aH , then b1 ∈ [0, 1] and so both signals s = l, h are possible. If s = h,

then E[θ|s = h, a1 = aH ] = 3
4 ; and if s = l, then E[θ|s = l, a1 = aH ] = 1

4 . Notice

that following s = h the posterior is sufficiently high (≥ 2
3) such that Self 2 will

choose a2 = aH—the action that is preferred by Self 1 for the corresponding

values of θ.

So Self 1 faces a tradeoff: choosing a1 = aL is preferred if Self 2’s action did

not matter, but choosing a1 = aH means that it is more likely that Self 2 takes

Self 1’s preferred action. It is straightforward to compute the expected payoffs

in each case. Formally, Self 1 prefers a1 = aH if:

βE[θ]aH−c+β

∫ 1
2

0
(aLθ)dθ+β

∫ 1

1
2

(aHθ−c)dθ ≥ βE[θ]aL+β

∫ 1

0
(aLθ)dθ. (4.4)

Notice that this is the same as 4.2 from the previous section but with θ̂ = 1
2 .

The reason for this is that with the given mechanism s = h is sent when it must

be the case that a1 = aH . With the given parameter values this inequality is

satisfied.15

Although this mechanism incentivises a1 = aH (an improvement on no mech-

anism), it is not optimal. The optimal mechanism is:

s =

{
h if b1 ∈ (b̂, 1],

l if b1 ∈ [0, b̂];
(4.5)

where b̂ ≈ 0.42. Optimality is proved later—see Corollary 1. Choosing a1 = aL

with this mechanism can lead to s = h. It is for intermediate values of θ that

choosing a1 = aH rather than a1 = aL leads to s = h instead of s = l.

15Calculations are in the Appendix 2.
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Notice that this optimal mechanism takes a very simple form. First, there

are just two signals meaning that a signal effectively recommends actions to Self

2. Second, the mechanism is also monotone partitional—i.e. it takes the form

of a cutoff. The first property holds generally, but the second does not.

An example of a setting in which a non-monotone partition is optimal is

as follows. F (θ) is a uniform distribution with a ‘hole’ in the interval [4
9 ,

1
2 ],

formally:

f(θ) =

{
18
17 if θ ∈ [0, 4

9 ] ∪ (1
2 , 1],

0 otherwise.

The other parameter values are as before: aH = 1, aL = 1
2 , c = 1

9 , β = 1
3 . It

is still the case that for θ ≥ 2
9 the planner wants Self 1 and 2 to take at = aH

and that for θ ≥ 2
3 Self 1 and 2 themselves want to take at = aH ; and now

E[θ] = 307
612 ≈ 0.5 ∈ (2

9 ,
2
3) so Self 1 and the planner still have a conflict over a1.16

The optimal mechanism is:

s =

{
h if b1 ∈ (b̄, 4

9 ] ∪ (1
2 , 1],

l if b1 ∈ [0, b̄] ∪ (4
9 ,

1
2 ],

(4.6)

where b̄ ≈ 0.30. It is straightforward to verify that Self 1 would prefer to choose

a1 = aH over a1 = aL and that following s = h Self 2 will choose a2 = aH .17

Beyond simply showing that a non-monotone mechanism may be optimal,

there are some insights that can be taken from this example. In particular,

the recommendation of a2 = aH will not be made for a particular outcome

b1 when the low action a1 = aL is more likely to result in that particular b1.

The example takes this to the extreme: it is not possible to achieve outcomes

b1 ∈ (4
9 ,

1
2 ] with a1 = aH . The intuition is similar to the monotone likelihood

ratio property (MLRP) that drives a monotonic reward structure in a standard

moral hazard problem with monetary incentives. The equivalent conditions in

this environment are in Propositions 4 and 5, where I provide conditions for a

monotone partitional mechanism to be optimal.

The general case

Now I consider the general problem. As illustrated in the example, to incentivise

a1 = aH an IC constraint for Self 1 needs to be satisfied. This trades off the

increased likelihood of a benefit from a signal that induces Self 2 to take the

desired action and the immediate cost of taking the less desirable action.

16Note that it is easily verified that Assumptions 1 and 3 are also satisfied.
17For details of why this is optimal see Appendix 3.
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Let Bj = {b1 :M(b1) = j} for j ∈ S = {h, l} which is the set of outputs

that result in the signal j; and let Θj
i ≡ {θ : aiθ ∈ Bj} which are the qualities θ

for which the action i leads to the signal j.18 The planner maximises over the

sets Bh,Bl.19

The planner’s problem when trying to incentivise a1 = aH is:20

sup
Bh,Bl

{
aHE[θ]− c+

∫
θ∈ΘhH

(aHθ − c) dF (θ) +

∫
θ∈ΘlH

(aLθ) dF (θ)

}
,

subject to:

βaHE[θ]− c+ β

∫
θ∈ΘhH

(aHθ − c) dF (θ) + β

∫
θ∈ΘlH

(aLθ) dF (θ) ≥

βaLE[θ] + β

∫
θ∈ΘhL

(aHθ − c) dF (θ) + β

∫
θ∈ΘlL

(aLθ) dF (θ) (IC),

E[θ|θ ∈ Θh
H ] ≥ c̄ (H),

E[θ|θ ∈ Θl
H ] < c̄ (L).

The first constraint (IC) is the incentive compatibility constraint for Self 1. The

second constraint (H) ensures that the signal s = h leads to Self 2 taking the

high action. The third constraint (L) ensures that the signal s = l leads to Self 2

taking the low action and is implied from the constraint (H) and the prior belief

(see Lemma 1). The problem can be simplified to:

18I have assumed that the signal is binary. I prove later that this is without loss.
19I assume that the sets are measurable and note that it must be that Bh ∩ Bl = ∅ and

Bh ∪ Bl = [0, 1] .
20I use ‘sup’ rather than ‘max’ since a solution to the problem may not exist. The analysis

is focused on the cases where the solution does exist, and where necessary I state the conditions
under which a maximum exists.
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sup
Bh,Bl

{
(aH + aL)E[θ]− c+

∫
θ∈ΘhH

((aH − aL)θ − c) dF (θ)

}
,

subject to:

βE[θ](aH − aL)− c+ β

∫
θ∈ΘhH

((aH − aL)θ − c) dF (θ)

−β
∫
θ∈ΘhL

((aH − aL)θ − c) dF (θ) ≥ 0 (IC),

E[θ|θ ∈ Θh
H ] ≥ c̄ (H),

E[θ|θ ∈ Θl
H ] < c̄ (L).

This formulation of the IC has the following interpretation. The first part

of the LHS is the net benefit of choosing aH over aL (this is negative under the

assumptions on E[θ]) and the two integrals are the benefit that taking aH over

aL has on the signal sent to Self 2 from the perspective of Self 1.

Proposition 2. In the planner’s problem the use of binary signals is without

loss of generality.

Proposition 1 of KG states that in their two player persuasion game it is

without loss to focus on ‘straightforward signals’. Straightforward means that a

signal recommends an action to the receiver. The result above is not a trivial

application of the result in KG. The reason is that the agent induces different

distributions of b1 based on the choice of a1.21 In the proof I consider which

signals result in different actions from Self 2. I show that if more than one signal

results in the same action then the outcome would be the same if an alternative

mechanism were used where these different signals were combined into just one

signal. A difficulty in this environment is that such a change can have different

effects to posterior beliefs on and off the equilibrium path. However, I show that

21Note also that it is also not possible to just use the revelation principle of Myerson (1986)
to prove that a straightforward signal is without loss (as, for example, is done in Lemma 1 of
Kremer et al. (2014)). The reason is that the planner must commit to a mechanism before Self
1 privately chooses an action. In a communication equilibrium with a mediator, the players
report their private information to the mediator after which it recommends an action to them.
So the communication equilibrium might require that for a given b1, depending on the choice
of a1 the mediator might want to recommend different actions to Self 2 corresponding to the
implied value of θ. The fact that in general more than two signals might be necessary here
is similar to the result in Boleslavsky and Kim (2018) that optimal signal may induce three
posterior beliefs when the state is binary. In Appendix 6 I provide an example of when reducing
three signals to two is not without loss.
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when these effects differ, it always results in the constraints being relaxed, which

means that the alternative mechanism still results in the same outcome.

The problem can be simplified by showing that the constraint (L) is redun-

dant. This will be useful for the next part of the analysis.

Lemma 1. For any choice of Bh and Bl in the planner’s problem, when (H) is

satisfied (L) is also satisfied.

Next I provide necessary and sufficient conditions for when it is possible to

incentivise Self 1 to choose a1 = aH . To simplify notation, define

v(θ) ≡

{
(aH − aL)θ − c if θ ∈ [0, 1],

0 otherwise;

and

h(θ) ≡ v(θ)f(θ)− 1

aL
v(θ/aL)f(θ/aL).

v(θ) is the net benefit of choosing aH over aL for a given θ from the long run

perspective of the agent. Notice that for small θ (θ < βc̄) v(θ) is negative, and

for large θ (θ > βc̄) v(θ) is positive.

h(θ) can be interpreted as follows. For any θ ∈ Θh
H it is the benefit to Self

1 from influencing Self 2’s action when choosing a1 = aH minus any benefit for

these θ’s when deviating to a1 = aL. This is weighted by the respective densities

following the different choices of a1 and multiplied by a factor 1/β throughout

since the benefit is discounted by Self 1. Notice that for θ > aL the second

term—which represents the benefit from getting s = h following a1 = aL—

vanishes since s = h will never be realised following a1 = aL. Also notice that

for values of θ close to βc̄ this will be negative since v(βc̄) = 0 and v(βc̄/aL) > 0.

Proposition 3. (Necessary) For it to be possible for the planner to be able to

incentivise a1 = aH , h(θ) must satisfy∫
{θ:h(θ)≥0}

h(θ)dθ ≥ −E[v(θ)] +
1− β
β

c.

(Sufficient) The planner is able to incentivise a1 = aH if h(θ) is such that the

following inequalities are satisfied∫
{θ:h(θ)≥0}

h(θ)dθ ≥ −E[v(θ)] +
1− β
β

c,

E[θ|θ ∈ {θ : h(θ) ≥ 0}] ≥ c̄.
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The planner incentivises a1 = aH by choosing M such that θ ∈ Θh
H if and only

if h(θ) ≥ 0.

The proof, in Appendix 1, reformulates the problem as a linear programming

problem. The first statement (necessity) requires that the maximum possible

benefit from choosing a1 = aH rather than a1 = aL derived from inducing a

more favourable action from Self 2 (LHS of the inequality) is greater than the

direct cost (RHS of the inequality). The second statement (sufficiency) adds the

fact that a mechanism that recommends a2 = aH whenever it is beneficial from

the perspective of Self 1, must also induce a posterior sufficiently high such that

Self 2 is obedient.

The previous result focused on when a1 = aH could be incentivised. Now

I turn attention to analysing what form the optimal mechanism takes. I am

particularly interested in understanding when the optimal mechanism will be

monotone partitional (i.e. a2 = aH is recommended iff b1 ≥ b̂), as I claimed was

the case in the earlier example. I consider two cases:

• when the cutoff b̂ is such that b̂ ∈ [aL, 1],

• when the cutoff b̂ is such that b̂ ∈ [0, aL) (as in the example with a uniform

distribution).

The first case will require a weaker set of assumptions to ensure that the

optimal mechanism is monotone partitional. The reason for this is that in the

first case Self 2 only gets the message s = h when Self 1 chooses a1 = aH

(the maximum value of b1 when a1 = aL is b1 = aL). In effect, the resulting

distribution of posteriors is similar to the posteriors resulting from the optimal

mechanism when a1 was observed in Section 4.1: only following a1 = aH does

Self 2 get an ‘informative’ signal.

The following Proposition provides conditions when the optimal solution is

monotone partitional and the cutoff lies in the interval b̂1 ∈ [aL, 1]. It will require

one additional assumption on the distribution of θ.

Assumption 4. f(θ)v(θ) is increasing for θ ∈ [βc̄, 1].

Assumption 4 informally means that f(θ) is not decreasing too quickly for

higher values of θ. For example, for a uniform distribution, where f(θ) = 1,

this assumption is satisfied. This assumption rules out distributions where the

density vanishes for higher values of θ which may be of interest. However, note

that the previous result (Proposition 3) does not rely on Assumption 4 and so
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even for distributions where the density vanishes for high values of θ my results

show when the planner can incentivise a1 = aH .

Define θ̄ to satisfy E[θ|θ ≥ θ̄] = c̄.

Proposition 4. A solution exists if∫ 1

θ̄
h(θ)dF (θ) ≥ −E[v(θ)] +

1− β
β

c.

If a solution exists, Assumption 4 is satisfied and E[θ|θ ≥ aL] < c̄, then the

optimal mechanism will be monotone partitional with the signal s = h if b1 ≥ θ̄

and the signal s = l otherwise.

The first part of the Proposition provides conditions when a solution exists

(similar to Proposition 3) and the second part states that when a solution ex-

ists what additional conditions guarantee that the optimal mechanism will be

monotone partitional and what the optimal mechanism will be.

The condition E[θ|θ ≥ aL] < c̄ means that if a mechanism was chosen

with Θh
H =

{
θ : θ ≥ aL

}
, Self 2 will not follow the recommendation from the

signal s = h (i.e. condition (H) will be violated). This means for a mechanism

to be monotone partitional then it must have a cutoff b̂ > aL. The intuition

for why Assumption 4 must be satisfied is that if f(θ) is not decreasing too

quickly, it means the that most ‘useful’ recommendations given to Self 2 (from

the perspective of Self 1) will be the highest θ’s (or equivalently b1’s), since this

is where v(θ) is greatest and there is a sufficiently high mass at this point in the

distribution from the density of f(θ).

The next result provides a condition when the optimal mechanism will be

monotone partitional when the cutoff b̂ might be such that b̂ ∈ [0, aL). It no

longer relies on the condition E[θ|θ ≥ aL] < c̄ that was assumed in Proposition 4

that meant that the cutoff was such that b̂ ∈ [aL, 1], instead it imposes another

condition on the distribution of θ.

Assumption 5. v(θ/aL)f(θ/aL)
v(θ)f(θ) is decreasing for θ ∈ [βc̄, aL].

Proposition 5. If Assumptions 4 and 5 are satisfied then the optimal mechanism

(if it exists) is monotone partitional.

When E[θ|θ ≥ aL] < c̄, as in Proposition 4, the cutoff will be such that

b̂ > aL and so Assumption 5 is redundant. When E[θ|θ ≥ aL] > c̄, if the

optimal mechanism is monotone partitional, the cutoff will be such that b̂ < aL.

Now Assumption 5 is important. The reason for this is that now the optimal

mechanism will have θ′ ∈ Θh
H where θ′ < aL, i.e. s = h for some θ < aL. This
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means that a deviation by Self 1 (a1 = aL) can lead to s = h. What now becomes

important for ensuring that the optimal mechanism is monotone partitional is

that in the region [βc̄, aL) it is the highest values of θ that derive the greatest

benefit from choosing a1 = aH over a1 = aL through their influence over Self 2’s

action. This is the case when Assumption 5 is satisfied. Note that this condition

can be seen as an analogue of the MLRP in a standard moral hazard problem

with monetary incentives.

Corollary 1 shows when θ ∼ U [0, 1], as in the example, the optimal mecha-

nism is always monotone partitional.

Corollary 1. θ ∼ U [0, 1] the optimal mechanism (when it exists) is monotone

partitional.

When Assumption 5 is not satisfied it is still possible to find the optimal

mechanism. The objective function is maximised when Bh is chosen such that

the θ ∈ Θh
H minimise

v(θ/aL)f(θ/aL)

v(θ)f(θ)
,

and this should be done until one of the two constraints binds.

5 Discussion

5.1 Welfare

A difficulty of time-inconsistent preferences is in making statements about wel-

fare. The seminal paper O’Donoghue and Rabin (1999) use a ‘long run utility’

as a welfare criterion and most papers continue to use this.22 In my model this

corresponds to the planner’s (or ‘Self 0’s’) preferences. This criterion is prob-

lematic since it may be that a future self is worse off as a result of the earlier self

becoming better off. A stronger criterion, that is not liable to this criticism, is

a Pareto improvement for all selves, which is used in, for example, Carrillo and

Mariotti (2000). The following Proposition says that in my setting the use of

information to incentivise the agent is a Pareto improvement over the situation

in which no information can be provided to the agent.

Proposition 6. The ability of the principal to commit to a mechanism leads to

a (weak) increase in the (ex ante) expected payoff for all selves compared with

the case in which there is no mechanism.

22For example Galperti (2015) comments: ‘as in most of the literature, this paper uses time-1
preferences to measure efficiency’ (here time-1 is in effect Self 0).

42



It should be noted that typically contracting with time-inconsistent indi-

viduals involves transfers or restricting the action set.23 These often lead to

situations in which a self is made worse off. For example, if someone wanted

to ensure that they would carry out an exercise regime in the future they could

sign a contract which imposes a large fine at a future date if they fail to exercise.

The current self (who signs the contract) is better off, whereas the future self

(who does the exercise but would prefer not to) is worse off.

Note that compared to a benchmark of full information revelation, the op-

timal mechanism will never be a Pareto improvement since Self 2 would always

prefer more information. However, comparing to a benchmark where there is

no feedback seems the most appropriate to measure the welfare implications of

an intervention. This is comparing a situation in which someone does not have

access to feedback and has access to feedback that is optimally designed from

the perspective of their long run self.

5.2 Testable implications

With either observable or unobservable a1 (Sections 4.1 and 4.2 respectively), I

have provided conditions under the planner can incentivise a1 = aH . How does

this condition change as the parameters of the model change? The comparative

statics lead to intuitive results. In particular making at = aH less costly (de-

creasing c) or reducing the time-inconsistency problem of the agent (increasing

β) both lead to the incentive constraints being relaxed which makes it easier to

implement a1 = aH .24

Now, I compare different set-ups and their respective optimal mechanism in

order to highlight the key differences and to propose some testable implications

of the model. Consider the following three set-ups of the model:

1. Observable a1;

2. Unobservable a1 and E[θ] ≥ c̄;

3. Unobservable a1 and E[θ] ∈ (βc̄, c̄).

Case 1 and 3 correspond to those studied in Sections 4.1 and 4.2 respec-

tively. Case 2 represents the situation in which although a1 is unobservable,

since Self 1 will choose a1 = aH (the desired action from the perspective of the

planner) the problem is similar to when a1 is observable. A testable implication

23See, for example, Amador et al. (2006) and Galperti (2015).
24The derivations are straightforward, and are given in Appendix 9.
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of the resulting optimal mechanism is that a non-monotone partitional mecha-

nism should only be observed when there is unobservable effort and E[θ] ∈ (βc̄, c̄)

(case 3 above). Note that this is a necessary but not sufficient condition for a

non-monotone partitional mechanism.

5.3 Reformulating the model without time-inconsistency

An alternative formulation of the model is with a time-consistent agent who

again is unsure of the quality of the project and a planner who has preferences

that are no longer aligned with the agent. This formulation could represent an

ambitious supervisor and a time-consistent student, but, for example, no longer

makes sense in the case of a supervisor who is benevolent in the sense that they

want to maximise the student’s true long run utility (since then all parties would

have aligned interests).

In the reformulated version of the problem studied in Section 4.2, Self 0 still

wants Self 1 and 2 to take the costly action for a greater set of θ’s than they

do themselves. The difference in the optimal mechanism will be with the IC

constraint: Self 1 no longer wants to manipulate Self 2’s beliefs but just inform

Self 2 of the true state. Essentially now the planner uses the fact that Self 1

wants to inform Self 2 as precisely as possible and chooses the mechanism in a

way that induces a high action. However, there is a technical problem with this

formulation: Proposition 2, that means that the use of binary signals is without

loss, may no longer hold. In the proof of Proposition 2 I exploit the fact that the

planner and Self 1 are aligned about Self 2’s choice of action.25 In Appendix 6 I

provide a set of preferences for a three player game where having a third signal is

not without loss. Understanding for which preferences the use of binary signals

is without loss is an interesting question that I leave for future research.

25In particular this means that (aH − aL)θ − c > 0 ∀ θ ∈ Θh
L may not necessarily be true.
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Appendix to Chapter 1

1 Optimal θ∗ for Proposition 1

Below I characterise the optimal mechanism that Self 1 would choose to optimally

motivate Self 2 that is used in Proposition 1.

Lemma 2. The optimal signal will recommend an action to Self 2, i.e. s ∈
{h, s}.

Proof. This follows from Proposition 1 in KG.

Lemma 3. The optimal signal will be cutoff so that above a certain level of

θ = θ∗ the signal recommends taking action a2 = aH with the signal s = h.

Proof. This follows from Proposition 1 and the example in section 5.2 in Ivanov

(2015).

The cutoff is pinned down by making Self 2 indifferent between actions. The

condition for the agent to prefer taking action aH over aL on receiving the signal

s = h is ∫ 1

θ̂
(βaHθ − c) dF (θ) ≥

∫ 1

θ̂
(βaLθ) dF (θ) (1.1)

Lemma 4. Let θ̂ = θ∗ solve the inequality 1.1 when it binds. If E[θ] < c̄

then max {θ∗, βc̄} defines an optimal cutoff. If E[θ] ≥ c̄ then if βaHE[θ] − c <∫ 1
θ∗(βa

Hθ− c) dF (θ) +
∫ θ∗

0 (βaL)θ dF (θ) then max {θ∗, βc̄} defines the cutoff for

the optimal signal, otherwise an uninformative signal is optimal.26

Proof. When E[θ] < c̄ then without any more information a2 = aL and so the

agent can only gain from additional information that will lead to the action

being changed appropriately. When E[θ] ≥ c̄ the inequality condition above

ensures that remaining ignorant is not in the best interest of the planner. This

26An uninformative signal has |S| = 1 or equivalently M(b) = s for all b.
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would be the case if the prior was sufficiently high that all selves would choose

a = aH without further information and that the optimal signal would cause

more harm when it is revealed that θ ∈ (βc̄, θ∗) than benefit when it is revealed

that θ ∈ [0, βc̄].

2 Calculations for example in Section 4.2.1

In this section I provide calculations for the examples provided in the main text.

For the mechanism

s =

{
h if b1 ∈ [0, 1

2 ]

l if b1 ∈ [1
2 , 1]

(2.1)

The IC constraint given by inequality 4.4 is

βE[θ]aH − c+β

∫ 1
2

0
(aLθ)dθ+β

∫ 1

1
2

(aHθ− c)dθ ≥ βE[θ]aL+β

∫ 1

0
(aLθ)dθ (2.2)

The RHS

βE[θ]aH − c+ β

∫ 1
2

0
(aLθ)dθ+ β

∫ 1

1
2

(aHθ− c)dθ =
1

6
− 1

9
+

1

54
+

1

8
=

43

216
(2.3)

The LHS

βE[θ]aL + β

∫ 1

0
(aLθ)dθ =

1

12
+

1

12
=

36

216
(2.4)

and so for the parameter values the inequality is satisfied.

The proof that for f ∼ U [0, 1] a monotone partition is optimal is in Corollary

1. As in the proof of Proposition 5 the cutoff is reduced until either (IC) or (H)

binds. In this case it will be that (IC) binds first at b̂1 ≈ 0.42. This can been

seen from the calculation below for (IC)

βE[θ]aH − c+ β

∫ b̂1

0
(aLθ)dθ + β

∫ 1

b̂1

(aHθ − c)dθ

− βE[θ]aL − β
∫ 2b̂1

0
(aLθ)dθ − β

∫ 1

2b̂1

(aHθ − c)dθ ≈ 0 (2.5)

and (H)

E[θ|θ ≥ b̂1] > c̄. (2.6)
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3 Optimality of non-monotone partitional example

Consider the mechanism given in the text

s =

{
h if b1 ∈ (b̄, 4

9 ] ∪ (1
2 , 1],

l if b1 ∈ [0, b̄] ∪ (4
9 ,

1
2 ],

(3.1)

where b̄ ≈ 0.30. To show this is optimal first it must be shown that it is both

incentive compatible (i.e. induces a1 = aH) and Self 2 follows the recommen-

dation (i.e. following s = h Self 2 chooses a2 = aH). Both of these can easily

be verified numerically. Note that the incentive constraint is slack, while the

constraint on the recommendation to Self 2 is binding.

To see that this mechanism is optimal consider changes to send the signal

s = h for other values of b1.

First, consider the effect of sending the signal s = h in the interval b1 ∈ (4
9 ,

1
2 ].

If Self 1 chooses a1 = aH , this will not change the values of θ for which Self 2

gets the signal s = h. The only changes are when Self 1 deviates to a1 = aL.

This means that Self 2 takes a more favourable action only off the equilibrium

path, which strengthens the incentive constraint and leaves the objective function

unchanged. Such a change in the mechanism does not benefit the principal.

Second, consider the effect of sending the signal s = h when b1 ≤ b̄. For

b1 < 2
9 this means that when Self 1 chooses a1 = aH Self 2 is recommended

the action a2 = aH for values of θ for which the planner (and Self 1) would

not want Self 2 to take this action. This cannot improve the mechanism. If

s = h for some b1 ∈ [2
9 , b̄) then without any other changes Self 2 would no longer

follow the recommendation to choose a2 = aH following s = h. It might be

possible that ‘swapping’ some higher b1’s with b1’s in the interval [2
9 , b̄) might

lead to the recommendation still being followed and also an increase in the

planner’s objective function. The formal argument for why this cannot be the

case follows from a very similar argument to the ones given in Propositions 4

and 5. The intuition is that shifting higher levels of θ from those for which Self

2 is recommended a2 = aH cannot benefit the principal. This is the case with

the given distribution since the density is equal for all θ.
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4 Proofs

4.1 Proof of Proposition 1

If the IC constraint (4.2) is satisfied Self 1 will choose a1 = aH . So the (unin-

formative) signal sent in the case that a1 = aL does not affect Self 1’s payoff

(it is off the equilibrium path). The payoff of Self 1 will be the LHS of the IC

constraint. The first part is the payoff from choosing a1 = aH and the second

part is from the optimal choice of mechanism to influence Self 2 to take the

desired action (follows from the derivation in the Appendix 1). Adjusting the

signal in the case that a1 = aH (i.e. changing θ∗) cannot improve the payoff of

the planner, since by design it is the best policy from the perspective of Self 1

(recall that the planner and Self 1 have aligned interests over Self 2’s choice of

action).

To show that if 4.2 is not satisfied there is no way for the planner to create

better incentives for Self 1 to choose a1 = aH , it is also necessary to show that

following a1 = aL the uninformative signal is the worst punishment that the

planner is able to do to Self 1. The reason that this must be the case is as

follows. For an M to result in a lower payoff for Self 1 it must be that there

is some signal s′ ∈ S that is sent with positive probability that results in Self

2 changing his action (i.e. choose a2 = aH). For this to be the case it must be

that E[θ|s = s′] ≥ c̄. Since Self 1 has preferences such that a2 = aH is preferred

when E[θ|s = s′] ≥ βc̄, following any such signal s Self 1’s payoff has improved

compared with the case in which there is no informative signal. Therefore, it

is not possible to construct an M that lowers Self 1’s payoff following a1 = aL

compared to when he receives a completely uninformative signal.

4.2 Proof of Proposition 2

I begin by proving that if there is an optimal mechanism with three signal out-

comes it is without loss to reduce this to a mechanism with just two signal

outcomes. I then extend my argument to prove the case with more than three

signal outcomes.

I will use the notation a∗2(s, a1) ≡ arg maxa2
a2(s, a1). Informally this is

the optimal action of Self 2 following the signal s and action a1 for a given

mechanism.27

27Note that the assumption that the equilibrium is ‘sender preferred’ means that that in the
case of indifference the action favours the planner and Self 1 who have aligned preferences over
Self 2’s actions.
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b1

s = l s = m s = h

a∗2(s, aH) = aL a∗2(s, aH) = aH

b1

s = l s = m s = h

a∗2(s, aL) = aL a∗2(s, aL) = aH

Figure 1.3: Actions induced on and off equilibrium path: The top line
represents the resulting actions on the equilibrium path, i.e. following a1 =
aH .The bottom line represents the resulting actions off the equilibrium path, i.e.
following a1 = aL.

Three signal outcomes. Suppose that there is a mechanism with three

signal outcomes S = {h,m, l}. Note that any optimal mechanism must have at

least one signal s ∈ S with a∗2(s, aH) = aH . If not, incentivising a1 = aH will not

be possible since Self 2 will just take the same action as if Self 1 takes the less

costly action a1 = aL (the prior on θ is never updated). It also cannot be the

case that all signals s ∈ S result in a∗2(s, a) = aH for any a ∈ A since this would

violate Bayesian consistency. So in an optimal mechanism with three signals,

either one or two of the three possible signals must result in a∗2(s, a) = aH for

a ∈
{
aH , aL

}
. I now show that when more than one signal results in the same

action for Self 2, it is without loss to replace these signals with a single signal

which in effect recommends an action to Self 2.

Begin with the case where only one signal s results in a∗2(s, aH) = aH ,

without loss let this be s = h and so s = m, l means Self 2 chooses a∗2(s, aH) = aL.

Consider what happens after Self 1 deviates and chooses a1 = aL. Following the

realisation of s the agent will have a different posterior of θ compared with what

he would have if he had not deviated and chosen a1 = aH . If for all s ∈ S

a∗2(s, aH) = a∗2(s, aL) then clearly it is without loss to replace l,m with a single

signal l′. However it might be that s = m,h means Self 2 chooses a∗2(s, aL) = aH

and s = l means Self 2 chooses a∗2(s, aL) = aL. This scenario is depicted in Figure

1.3. In this situation combining the signals m, l will have a different impact on

and off the equilibrium path and so it is not immediate that replacing m and l

with l′ is going to be without loss.

Now I show that in this case it is indeed without loss to combine the signals

s = m, l. On the equilibrium path combining the signals m, l will have no

49



b1

s = l′ s = h

a∗2(s, aH) = aL a∗2(s, aH) = aH

b1

s = l′ s = h

a∗2(s, aL) = aL a∗2(s, aL) = aH

Figure 1.4: Actions induced on and off equilibrium path with two sig-
nals: Combining the signals m, l into a single signal l′. Note that compared to
Figure 1.3 in the lower line, off the equilibrium path, Self 2 has changed action
for b1 that previously resulted in s = m.

effect. Off the equilibrium path the potentially problematic case is where the

agent deviates to a1 = aL and s = m results in a∗2(m, aL) = aL rather than

a∗2(m, aL) = aH . This is depicted in Figure 1.4. To verify that this will not

change the outcome of the optimisation problem we need to verify that the

constraints are still satisfied and that there is no change to the objective function.

The only relevant constraint to consider is the IC. This is because this is the

only place where off path deviations enter into the maximisation problem. The

set Θh
L will be smaller following the change in signals and so the IC will still

be satisfied (note that this follows since what is inside the relevant integral is

always positive: (aH − aL)θ − c > 0 ∀ θ ∈ Θh
L).

The second case I consider is where 2 signals, s = m,h, result in a∗2(s, aH) =

aH . In this case I show that due to the nature of the preferences it must be that

off the equilibrium path Self 2 makes the same choices (i.e. a∗2(s, aH) = a∗2(s, aL)

for all s). This means it will be without loss to combine the signals s = m,h.

It cannot be that a∗2(s, aL) = aH for s = l,m, h due to Bayesian consistency.

So the only cases to consider are that a∗2(s, aL) = aH for either s = h or for no s.

These cases both mean that given a signal s, a1 = aL leads to a more pessimistic

expectation of θ compared to a1 = aH since a2 = aH . I rule these two cases out

meaning it must be that a∗2(s, aL) = aH for s = m,h.

To do this I show that it must be the case that E[θ|θ ∈ Θs
L] ≥ E[θ|θ ∈ Θs

H ]

for s ∈ {h,m, l} and so it is not possible that for some s ∈ S that a∗2(s, aL) = aL

whilst a∗2(s, aH) = aH . To see this first note that @ θ′ ∈ Θs
H s.t. θ′ > sup Θs

L

and @ θ′′ ∈ Θs
L s.t. θ′′ < inf Θs

H . Now define Θ̂s ≡ Θs
H ∩Θs

L (this is the intersect
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of the two sets). Using this

E[θ|θ ∈ Θs
H ] = p1E[θ|θ ∈ Θ̂s] + (1− p1)E[θ|θ ∈ Θs

H \ Θ̂s]

≤ E[θ|θ ∈ Θ̂s]

≤ p2E[θ|θ ∈ Θ̂s] + (1− p2)E[θ|θ ∈ Θs
L \ Θ̂s]

= E[θ|θ ∈ Θs
L];

where p1 ≡ Pr[θ ∈ Θ̂s|Θs
H ] and p2 ≡ Pr[θ ∈ Θ̂s|Θs

L]. The equality in the first

line just follows from the law of total probability. The inequality going from the

first to the second line follows from the fact E[θ|θ ∈ Θ̂s] ≤ E[θ|θ ∈ Θs
H \ Θ̂s] (this

is due to @ θ′ ∈ Θs
H s.t. θ′ > sup Θs

L). In a similar way I derive the inequality

going from the second to the third line. The final equality again just follows

from the law of total probability.

More than three signal outcomes. When |S| > 3 a similar argu-

ment can be used to eliminate the need for signals until |S| = 2. Let Sji =

{s : a∗2(s, ai) = aj}. First note that it must be SHH ⊆ SHL since following a1 = aL

and a given realisation of s Self 2 will have a more optimistic (higher) posterior

of θ than when a1 = aH and so will never take a lower action. If SHH = SHL then

replacing the message function so that all signals in SHH are replaced by a single

signal s = h and all signals all signals in SHL are replaced by a single signal s = l

can be done without loss. If SHH ⊂ SHL then as discussed in the three signal case,

replacing signals with s = h and s = l will have a different effect on and off the

equilibrium path. However, as in the three signal case, replacing signals in SHH
by a single signal s = h leads to the signals that were previously in SHL \ SHH to

now lead to a2 = aL following a1 = aL. As in the three signal case this leads to

the IC being weakened and so can be done without loss of generality.

4.3 Proof of Lemma 1

Assume (H) is satisfied so E[θ|θ ∈ Θh
H ] ≥ c̄. By Assumption 2, E[θ] < c̄. Define

p ≡ Pr[θ ∈ Θh
H ]. The result follows from:

pE[θ|θ ∈ Θh
H ] + (1− p)E[θ|θ ∈ Θl

H ] =E[θ]

pE[θ|θ ∈ Θh
H ] + (1− p)E[θ|θ ∈ Θl

H ] < c̄

pc̄+ (1− p)E[θ|θ ∈ Θl
H ] < c̄

E[θ|θ ∈ Θl
H ] < c̄.
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Where the first line just follows from the law of total probability; the second

line follows from Assumption 2; the third line follows from (H); and the final

line is straightforward algebra.

4.4 Proof of Proposition 3

In order to facilitate the analysis I rewrite the optimisation problem as a linear

programming problem. Choosing the sets Bh and Bl is equivalent to choosing

values of θ ∈ [0, 1] to include in the set Bh. The maximisation is now over w(θ)

which is defined as

w(θ) ≡

{
1 if θ ∈ Θh

H ,

0 otherwise.

The problem can be written as:

sup
{w(θ)}θ=1

θ=0

{∫
v(θ)w(θ) dF (θ)

}
,

subject to:∫
v(θ)w(θ) dF (θ)−

∫
v(θ)wL(θ) dF (θ) ≥ −E[v(θ)] +

1− β
β

c (IC),

∫
θw(θ) dF (θ)∫
w(θ) dF (θ)

≥ c̄ (H),

wL(θ) = w(aLθ) (W).

Note that in choosing w(θ) for all θ pins down the sets Θh
L, Θl

H and Θl
L

(using (W)). Substituting (W) into (IC) gives∫
v(θ)w(θ) dF (θ)−

∫
v(θ)w(aLθ) dF (θ) ≥ −E[v(θ)] +

1− β
β

c.

To simplify, I change variables in the second integral on the LHS by making
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the substitution θ′ = aLθ. This simplifies the inequality to∫
v(θ)w(θ) dF (θ)− 1

aL

∫
v(θ′/aL)w(θ′) dF (θ′) ≥ −E[v(θ)] +

1− β
β

c,∫ [
v(θ)f(θ)− 1

aL
v(θ/aL)f(θ/aL)

]
w(θ) dθ ≥ −E[v(θ)] +

1− β
β

c,∫
h(θ)w(θ) dθ ≥ −E[v(θ)] +

1− β
β

c.

Now I derive the necessary condition. When w(θ) is chosen such that w(θ) =

1 for θ if and only if h(θ) ≥ 0, the LHS of the IC attains its maximum possible

value. Note the choice of w does not affect the RHS. So if the inequality is

not satisfied for this choice of w(θ) then it will not be possible to satisfy the

inequality for any other choice of w(θ) and hence a solution to the optimisation

problem does not exist.

In the sufficient condition, choosing w(θ) = 1 for θ if and only if h(θ) ≥ 0,

must satisfy both inequality constraints. In particular, the second condition

provided ensures that for this choice of w(θ) the inequality constraint (H) is also

satisfied and therefore provides a sufficient condition for existence of a solution.

4.5 Proof of Proposition 4

First note that E[θ|θ ≥ aL] < c̄ means there exists a unique θ̄ ∈ [aL, 1] that

satisfies E[θ|θ ≥ θ̄] = c̄ due to the Intermediate Value Theorem.28 Next note

that it must be that θ̄ ≥ βc̄. To see this if θ̄ < βc̄ then E[θ|θ ≥ βc̄] ≥ c̄

which violates the assumption E[θ|θ ≥ βc̄] < c̄. θ̄ ≥ βc̄ implies v(θ) ≥ 0 for all

θ ∈ [aL, 1].

The planner’s maximisation problem for the region θ ∈ [aL, 1] is:29

sup
{w(θ)}θ=1

θ=aL

{∫
w(θ)v(θ)f(θ) dθ

}
,

subject to:∫
w(θ)v(θ)f(θ)dθ ≥ −E[v(θ)] +

1− β
β

c (IC),

E[θ|θ ∈ Θh
H ] ≥ c̄ (H).

Since v(θ) > 0 in this region choosing any positive value for w(θ) for any θ

28If F has a hole in its support–so f(θ) = 0 for some interval–then it might be that there is
an interval of θ which all satisfy this equation. In this case take θ̄ = sup {θ′ : E[θ|θ ≥ θ′] = c̄}.

29I’ve continued to use the notation Θh
H rather than w(θ) in (H) to simplify notation.
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will relax (IC) so (IC) will not need to be a binding constraint. Similarly choosing

any positive value for w(θ) for any θ will increase the objective function. For

the constraint (H), choosing w(θ) = 1 for all θ ∈ [c̄, 1] will violate the constraint.

Therefore it will be optimal to choose w(θ) = 1 for all θ ∈ [c̄, 1].

(H) must be the binding constraint. So I consider the relaxed problem for

θ ∈ [aL, c̄) without (IC). This can be written in the form:

sup
{x1(θ)}θ=c̄

θ=aL

{∫
x1(θ) dθ

}
,

subject to:∫
x1(θ)dθ ≤ K1 (H);

where K1 > 0 is a constant and x1(θ) ≡ θf(θ)w(θ).

It cannot be that w(θ) = 1 (or equivalently x1(θ) = θf(θ)) for all θ ∈ [aL, c̄]

because E[θ|θ ≥ aL] < c̄ and so (H) would be violated. So at the maximum it

must be that w(θ) < 1 for at least some θ. Due to Assumption 4 the objective

function is maximised when w(θ) = 1 (or equivalently x1(θ) = θf(θ)) for higher

θ. So maximum is attained when w(θ) = 1 for θ down to the point (H) is binding

which is by definition θ = θ̄. At this point (IC) is satisfied iff
∫ 1
θ̄ h(θ)dF (θ) ≥

−E[v(θ)] + 1−β
β c.

4.6 Proof of Proposition 5

When E[θ|θ ≥ aL] < c̄ the result just follows from Proposition 4.

Now consider what happens when E[θ|θ ≥ aL] ≥ c̄. Choosing to send the

signal s = h only for values of b1 that are unattainable when a1 = aL (i.e.

w(θ) = 1 for θ ∈ [aL, 1] and w(θ) = 0 otherwise) will no longer be optimal. The

reason is the objective function will be increased if w(θ) = 1 for some θ < aL

where v(θ) > 0.

The optimal mechanism must have w(θ) = 1 for θ ∈ [aL, 1]. Suppose that

this was not the case. Since h(θ) ≥ 0 for all θ ≥ aL, for θ where w(θ) = 0,

choosing w(θ) = 1 will weaken (IC) and increase the objective function. Also

since E[θ|θ ≥ aL] ≥ c̄ (H) will also be weakened. This leads to a contradiction.

The relaxed problem (without (H)) and taking w(θ) = 1 for θ ∈ [aL, 1] as

given, can be written as:
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sup
{w(θ)}θ=aLθ=0

{∫
v(θ)w(θ)f(θ) dθ

}
,

subject to:∫ aL

0
w(θ)h(θ)dθ ≥ −E[v(θ)] +

1− β
β

c−
∫ 1

aL
v(θ)f(θ)dθ (IC).

Since h(θ) is now not necessarily monotonic the same arguments as before

cannot be applied.30 Define x2(θ) ≡ −h(θ)w(θ). The relaxed problem becomes:

sup
{x2(θ)}θ=−h(θ)

θ=0

{∫
v(θ)f(θ)

−h(θ)
x2(θ) dθ

}
,

subject to:∫ aL

0
x2(θ)dθ ≤ K2 (IC);

where the constant K2 ≡ −
[
E[v(θ)] + 1−β

β c−
∫ 1
aL v(θ)f(θ)dθ

]
. Note that

−h(θ) > 0 for θ ∈ [βc̄, aL]–i.e. in this region there is always a negative impact on

the influence on Self 2’s action from the signal sent. This means that while (IC)

is slack it is optimal to choose x2(θ) = −h(θ) for θ where v(θ)f(θ)
−h(θ) is maximised.

Since
v(θ)f(θ)

−h(θ)
=

1
1
aL

v(θ/aL)f(θ/aL)
v(θ)f(θ) − 1

it follows that this is equivalent to choosing θ that minimises

v(θ/aL)f(θ/aL)

v(θ)f(θ)
. (4.1)

When 4.1 is decreasing for all θ ∈ [βc̄, aL] it is clear that choosing x2(θ) = −h(θ)–

or equivalently w(θ) = 1–for the highest values of θ until the IC constraint binds

will be optimal.

For f(θ) = 1 this is simply minimised for the highest values of θ. So as before

w(θ) = 1 for the highest values of θ until either (IC) and (H) bind. Therefore

30For example in the earlier (non-monotonic) example h(θ) is increasing on θ ∈ [aL, 1] but
decreasing on θ ∈ [0, aL].
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the optimal mechanism will be a cutoff.

4.7 Proof of Proposition 6

The planner (Self 0) cannot be worse off from the mechanism since it could

just design a completely uninformative signal structure and be equally well off

compared to the setting in which she cannot provide any information.

Self 2 is rational in a Bayesian sense and myopically maximises her payoff

based on the expected value of θ, so providing further information about the

state cannot make her worse off.

The optimal choice of mechanism by the planner to induce Self 1 to choose

a1 = aH instead of a1 = aL so Self 1 will be better off than when choosing

a1 = aL. With no information Self 1 and 2 would both choose at = aL. So to

make Self 1 worse off the mechanism would have to be such that when Self 1

chose a1 = aL it would lead to Self 2 choosing a2 = aH when Self 1 would not

want this (i.e. when E[θ] < βc̄). However to induce Self 2 to choose a2 = aH it

must be that conditional on the realisation of the signal E[θ] ≥ c̄. So it cannot

be that the mechanism would make Self 1 worse off. Therefore Self 1 can always

achieve at least the payoff that she would achieve without any mechanism.

5 Comparative statics on the incentive constraints

Here I provide a formal argument for the comparative statics discussed in Section

5.2.

Consider the inequality 4.2 which gives the incentive constraint in the case

that there is observable a1

βaHE[θ]− c+ β

∫ 1

θ̂
(aHθ − c) dF (θ) + β

∫ θ̂

0
(aLθ) dF (θ) ≥ 2βaLE[θ]. (5.1)

This can be rewritten as

aHE[θ]− c/β +

∫ 1

θ̂
(aHθ − c) dF (θ) +

∫ θ̂

0
(aLθ) dF (θ) ≥ 2aLE[θ]. (5.2)

From this it is straightforward to see that if β is increased or c is decreased

it leads to an increase in the LHS and no change in the RHS which means the

IC constraint is easier to satisfy.

The incentive constraint for unobservable a1 is similar, and so I omit the

formal argument.
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6 Use of three signals is without loss

Here I discuss a three player game with the same actions and structure as in

my model but with different preferences. This illustrates a setting in which

restricting the signal space to two signals is no longer without loss of generality.

The planner and Self 2 have the same preferences as before but Self 1 now has

preferences such that he would prefer Self 2 to always take the action a2 = aL.

So the planner and Self 1 have a conflict over what they want Self 2 to do.

Suppose there are three signals S = {h,m, l}. Using the same notation as

in the proof Proposition 2, suppose the preferences and signals were such that

a∗2(h, aH) = aH and a∗2(m, aH) = a∗2(l, aH) = aL, so that following a1 = aH

only s = h results in Self 2 choosing a2 = aH ; and a∗2(h, aH) = a∗2(m, aH) = aH

and a∗2(l, aH) = aL, so that following a1 = aL both s = m,h result in Self 2

choosing a2 = aH . Suppose also that the signals are such that the IC constraint

is satisfied so a1 = aH is ‘on the equilibrium path’. Now consider what happens if

the signals s = m, l are replaced by a single signal s = l′. On the equilibrium path

this clearly has no effect, but off the equilibrium path this makes a difference.

Since following a1 = aL it cannot be that Self 2 always chooses a2 = aH it must

be that a∗2(l′, aL) = aL. But since Self 1 wants Self 2 to always choose a2 = aL

this makes the RHS of the IC greater and may lead to it being violated. So, in

this example, it will not always be without loss to reduce the signals from three

down to two.
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Chapter 2

Pay Transparency in

Organisations—A Static

Model

1 Introduction

Private organisations are increasingly committing to pay transparency—making

the amount each worker is paid observable to all others within the firm. In a sur-

vey of 715 UK businesses, 18% reported an increase in disclosure of pay outcomes

between 2015 and 2017, while almost none reported a decrease (CIPD (2017)).1

There is also anecdotal evidence that pay transparency is being used in technol-

ogy start-ups. For example, the start-up SumAll has committed to disclose the

pay of its workforce internally—the management’s rationale for transparency is

given in the following quote:

When Dane Atkinson started social analytics platform SumAll in

2011, he too was looking for a way to attract and retain talented peo-

ple. Informed by two decades of experience as a serial entrepreneur,

board member, advisor and executive, he was also trying to mitigate

several factors that contributed to high turnover of staff at other com-

panies.2

A benefit of committing to transparency is that it gives an employer cred-

ibility, enabling her to demonstrate that she is treating everyone in the same

1I focus on the impact of internal disclosure. Some organisations have even started disclosing
pay externally.

2www.theguardian.com/business/2015/jul/10/salary-wage-glassdoor-payscale-buffer-
sumall. Last accessed 27/08/2019.
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way. For example, if a worker sees that not only did he not receive a bonus (or

equivalently, a pay rise), but also that none of his peers received a bonus, he

will infer that it is more likely that the employer was not able to pay anyone

a bonus because funds were not available. On the other hand, a downside to

transparency is that it enables workers to compare themselves to others. In par-

ticular, when a worker sees that he was paid less than a peer, he will infer that

his employer values the peer more than him, meaning he will become discouraged

and potentially leave the firm or exert less effort. The main contribution of this

chapter is to propose a model to formalise this trade-off and to derive testable

predictions.3 A further contribution is to use the model to provide a rational

explanation for empirical findings in the relative pay literature that have thus

far been explained by non-standard preferences.

In the model a principal employs two agents. At the start of the game, the

principal can commit to make bonuses either transparent or not transparent.

After this, the principal privately learns the agents’ match qualities with the

firm (from now on I refer to this as ‘productivity’). The principal knows that

the agents will receive outside offers and wants to encourage them to stay at the

firm. I assume that more productive agents produce a greater surplus if they stay

at the firm, and the additional surplus is shared such that both the principal and

the agent enjoy greater benefits. The principal also privately learns the marginal

cost of paying bonuses—variation in this cost may be due to a lack of funds or

the opportunity cost of investing elsewhere. The principal uses discretionary

bonuses to signal to more productive agents that they have good prospects at

the firm and that they will benefit from staying.

When deciding about transparency, the principal faces a trade-off. The

benefit of transparency comes when both agents do not receive a bonus. Here,

transparency means that agents become less pessimistic about their productivity

compared to when they receive no bonus under no transparency. This is because

they attribute a greater probability to the principal not being able to pay them

a bonus. However, transparency comes at a cost. When an agent sees the other

agent has received a bonus, but he does not receive a bonus himself, he becomes

more pessimistic about his productivity than if he did not see the other agent’s

bonus. This is because, having seen a bonus being paid to the other agent, it is

clear that the principal was able to pay bonuses. Therefore, since she chose not

to pay a bonus to the agent, she must have learned that the agent was of low

3There are a number of other factors that may affect firms’ decisions on pay transparency
that I do not analyse. These include discrimination and the gender pay gap (Baker et al.
(2019)), and public aversion to high pay (Mas (2017)).
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productivity.

For some parameters of the model the principal will prefer transparency, and

for others she will prefer no transparency. The comparative statics of the equilib-

rium payoffs shed light on what features of the environment makes transparency

more favourable. The key result is that increasing the difference between the

value of retaining high and low productivity agents makes transparency more

favourable. This is consistent with transparency being used in technology start-

ups where it is likely that there is a lot of heterogeneity in the productivity of

workers. The intuition for this result is as follows. Recall, transparency is ben-

eficial when both agents are not paid a bonus. When this is the case, a high

productivity agent is less likely to quit compared to when he receives no bonus

under no transparency. Thus, when retaining him becomes more valuable for

the principal, transparency becomes more beneficial. In contrast, the downside

of transparency is that a low productivity agent is more likely to quit, and so

decreasing the value of retaining a low productivity agent dampens this negative

effect.

A number of empirical papers have studied the behavioural effects of work-

ers seeing the pay of their peers—referred to in the literature as ‘relative pay’.

Card et al. (2012) conduct an experiment within Californian state universities—

where pay is publicly available—varying the salience of this information. Their

reduced-form findings show that when workers learn that they are paid below

the median compared to other workers in similar roles, they report lower job

satisfaction and are more likely to search for another job compared to when they

receive no information. In contrast, when workers learn they are paid above the

median there are no equivalent positive effects. They suggest that this ‘asym-

metric response to the information about peer salaries’ can be explained by a

non-standard utility function which has a component that explicitly takes into

account ‘feelings arising from relative pay’. Furthermore, they argue that one

implication of their finding is that pay transparency will never be beneficial for a

private firm. My model provides an alternative explanation for this asymmetric

response that does not rely on a non-standard utility function. It also shows

that a firm might want to commit to pay transparency even when workers react

to relative pay in an asymmetric way. I discuss this in more detail in Section 4.

In the final part of the chapter, I consider some extensions of the static

model. In order to derive some further insights, I allow the agents to want to

stay at the firm, not only if they think they are a good match with the firm,

but also if they think that the firm has a greater ability to pay bonuses. This

is because a firm with the ability to pay high bonuses today is more likely to
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be able to pay high bonuses in the future. I incorporate this directly into the

preferences of agents. In this setup, it is possible that when an agent learns

that he is paid less than the other agent he sees this as ‘good news’—a very

high bonus for others reveals that the firm is able to pay high bonuses. What

is now key, is whether the agent prefers to be of high productivity at a low

paying firm, or of low productivity at a high paying firm. The comparative

statics depend on this preference ordering. For example, if an agent prefers to

be a low productive worker at a high paying firm rather than vice versa, my

model predicts increasing the difference between the value of retaining high and

low productivity agents results in transparency becoming less favourable.4 Other

extensions of the static model demonstrate the robustness of the results from the

main trade-off. For example, I consider wage increases in place of bonuses and

also a richer (continuous) set of possible bonuses—in both cases the comparative

statics remain unchanged.

1.1 Related literature

From a theoretical point of view, the model is a multidimensional signalling

model where the sender (principal) has multiple dimensions of private informa-

tion (her own cost of paying bonuses and the agents’ productivities) and the

signalling (bonuses) is in a single dimension.5 As is typical in such models, in

some instances it is not possible for the receiver (agent) to attribute the sig-

nal (bonus) to the type of the sender, leading to a signal extraction problem.

Multidimensional signalling models where the signalling takes place in a single

dimension have been studied in other contexts. Bénabou and Tirole (2006) study

a model in which signalling prosocial behaviour (e.g. giving money to charity)

can be attributed to either altruism or a desire to impress others. Frankel and

Kartik (2019) study a multidimensional signalling model in which the focus is on

comparative statics with respect to the informativeness of the set of equilibria

as the ‘stakes’ of the game change—the stakes can be thought of as a larger

audience of receivers.6 In all existing papers in this literature, the sender wants

to induce a higher belief about the same dimension of the state for all members

of the audience. In contrast, in my model different parts of the audience (agents)

4For this to be the case there are some additional conditions that need to be satisfied, see
Proposition 10 for details.

5This is different to multidimensional signalling models in which there are both multiple di-
mensions of private information and multiple dimensions of signals available, as in, for example,
Quinzii and Rochet (1985) and Engers (1987).

6Other papers that analyse multidimensional signalling models include Austen-Smith and
Fryer (2005), Esteban and Ray (2006) and Bagwell (2007).
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are interested in different dimensions of the state—their own productivity and

the ability of the principal to pay a bonus (and not the productivity of other

agents). A novelty of my model is the trade-off the principal faces when design-

ing the informational environment in which the signalling game, with multiple

receivers, takes place. In publicly revealing the signal sent to each agent, she

potentially reveals information about the state to other agents, and depending

on the state, this might be beneficial or detrimental to her.7

There is also some similarity between my model and the signalling model in

Kamenica (2008). His model has a seller who is informed of a ‘global preference

parameter’ that affects the preferences of all buyers. This means that the buyers

make inferences about the value of this parameter from the product line that

the seller chooses, including the products that are not designed for buyers of his

own type. The global preference parameter plays a similar role to the principal’s

costs in my model. The main contribution of the paper is to provide a rational

explanation for seemingly non-standard choice behaviour from consumers facing

different product lines—this application is also somewhat similar to my rational

explanation for findings in the relative pay literature.

There are a number of other theoretical models with an informed principal

who uses bonuses to signal her private information to an agent. Bénabou and

Tirole (2003) and Fuchs (2015) both study settings with a single agent. Having

a principal who is informed about an agent’s productivity is also related to

the literature on subjective (or private) evaluations—see, for example, MacLeod

(2003).

A different strand of theoretical models study the effect of controlling the

informational environment in contests. Ederer (2010) studies whether a princi-

pal should commit to provide feedback in a dynamic contest between two agents.

Halac et al. (2017) consider whether a principal should commit to disclose pub-

licly whether a contestant has made a breakthrough or not in an innovation

contest. They combine this choice of information disclosure with a choice over

the distribution of prizes to find the overall optimal policy that induces the

maximum level of innovation.

Cullen and Pakzad-Hurson (2018) study the equilibrium effects of pay trans-

parency within an organisation both theoretically and empirically. However, the

trade-off that they analyse is different to mine. In particular, they consider an

7In another related paper, Ali and Bénabou (2019) modify Bénabou and Tirole (2006) so
that a planner can control the privacy (or conversely the transparency) within a society where
agents must choose a costly prosocial action. The planner wants to learn the underlying state
and uses transparency in order to affect the benefits of signalling for the agents and, in turn,
what information she will learn from the signals they choose.
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organisation with many workers with homogeneous productivity. In their model,

the effect of increased transparency is that it commits the firm to negotiate more

aggressively with workers in future because it does not want to be seen by other

workers to pay high wages.

2 Model

In this section I begin by describing the model. Then, I discuss the modelling

assumptions and their connection to the literature.

2.1 Set-up

Players. There is a principal (she) and two agents (he), indexed by i = 1, 2.

Information. Each agent’s productivity (or firm specific match) is given

by θi ∈ {H,L}. The productivity of each agent is independently drawn with

the probability of high productivity given by Pr[θi = H] = p0 ∈ (0, 1). The

principal faces uncertainty on the marginal cost of paying bonuses given by λ.

This is drawn from λ ∈ {1, λH}, where λH ∈ (1,∞) ∪ {∞} and is referred to

as the ‘high cost state’. The prior probability of the ‘low cost state’ is given by

Pr[λ = 1] = q ∈ (0, 1). Each agent receives an outside option—this is drawn

independently from ui ∼ F [0, 1] and it is assumed that F has full support and no

atoms. At the start of the game the productivity of each agent, the marginal cost

of paying bonuses, and the outside option of each agent is drawn independently

and unknown to all players who share a common prior.

Actions and timing.

1. The principal decides on a level of transparency. Denote this decision by

aP ∈ {N,T} where N and T denote no transparency and full transparency.

2. The principal privately learns the productivity of the agents (θ1, θ2) and

the marginal cost of paying a bonus (λ).

3. The principal chooses whether or not to pay each agent a bonus, bi ∈ R+.

If aP = N (no transparency) agent i only learns bi, while if aP = T

(transparency) agents learn both b1 and b2.

4. The agents learn their outside options ui.
8

8The analyse does not rely on this being privately learned.
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5. The agents simultaneously choose whether to stay at the firm or to quit.

Denote this decision by aAi ∈ {S,Q}.

6. The players receive their payoffs that are given below.

Beliefs and strategies. The principal’s strategy is to choose a level of

transparency aP ∈ {N,T} in the initial node. She updates her belief once

she has private information about (θ1, θ2) and λ, and then given the choice of

transparency, she chooses a distribution over bonuses

σ : {N,T} × {H,L}2 × {1, λH} → ∆
(
R2

+

)
.

Agent i updates his belief about his productivity (θi) and the principal’s

costs (λ) following his own bonus bi, and in the case of aP = T , the other agent’s

bonus bj .
9 He then chooses a quitting decision formally given by

aAi :R+ × [0, 1]→ {S,Q} ,

aAi :R2
+ × [0, 1]→ {S,Q} ,

in the case of no transparency and transparency respectively.10

Payoffs. The principal’s payoff is given by

V =
∑
i

−λbi + 1[aAi = S]gPθi ,

where gPθ is the expected future surplus that the principal will earn from an agent

with productivity θ. Assume that gPH > gPL > 0—which means that the principal

wants to retain all agents, but prefers to retain agents with high productivity.

Agent i’s payoff is given by

Ui = bi + 1[aAi = S]gA(θ, λ) + 1[aAi = Q]ui,

where gA(θ, λ) is the expected future surplus if an agent of productivity θ stays

at a firm with cost λ. I assume gA(θ, 1) ≥ gA(θ, λH) for all θ—meaning that

conditional on her productivity, an agent (weakly) prefers to say at a firm

that has lower costs today (and is able to pay higher bonuses). I also assume

9Note that agent i may also make inferences about θj . However, this will never be relevant
for his quitting decision.

10I assume that in the case of indifference the agent chooses to stay and so the agent will
never play a mixed strategy. This will be without loss in equilibrium due to the assumptions
on F .
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gA(H,λ) > gA(L, λ) for all λ—meaning that conditional on the principal’s costs,

an agent prefers to stay if he has high productivity. Finally, I assume that

1 > gA(H, 1) and gA(L, λH) = 0.

Equilibrium. The equilibrium concept is perfect Bayesian equilibrium.11

In equilibrium, upon observing the bonuses, each agent i updates his belief about

θi and λ given the principal’s strategy using Bayes rule. They then best respond

given this updated belief and their outside options. The principal chooses a

strategy aP ∈ {N,T} to maximise her expected payoff for the rest of the game

given her strategy b1, b2 (once she learns θ1, θ2 and λ) and the agents’ best

responses. After learning θ1, θ2 and λ, the principal chooses (a distribution

over) a pair of bonuses (b1, b2) that maximise her expected payoff given her

choice of transparency, the beliefs this induces for the agents and the agents’

corresponding best responses.

2.2 Discussion of the model

In the model, the principal has a better knowledge of the agents’ productivity

than the agents have themselves. In many organisational settings—for example,

in professional services—the principal is more experienced and can assess an

agent’s productivity from observing him work. This assumption is similar to

the assumption of subjective (or private) evaluations, the relevance of this is

discussed in the survey by Prendergast (1999), and a similar assumption has

been made in many other recent papers.

Agents’ productivities are independent by assumption. In other papers

where agents learn about themselves through peers, correlation in agents’ types

are used to drive results. For example, this is the case in Battaglini et al.

(2005) and Halac et al. (2017). Papers that include a contest where types are

heterogenous among contestants (such as Ederer (2010)) may not have explicit

correlation between peers, but still have the effect that the marginal benefit of

effort depends on the type of peers. Although these assumption may be valid in

some organisational settings, I have made the independence assumption in order

to not obfuscate the informational trade-off I wish to analyse.

There is uncertainty on the marginal cost of paying a bonus and this is pri-

vately known by the principal. All firms will have some uncertainty on the op-

portunity costs of paying bonuses. This will be particularly pertinent in smaller

11Note that this does not pin down off-path beliefs and so in each subgame there will possibly
be multiple equilibria. I discuss later which equilibria I choose to focus on among those that
are possible.
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organisations or start-ups that are more likely to be cash constrained or have to

allocate resources into new projects (i.e. λH could be very large—see Sections

3 and 5.2).12 In terms of information, more junior employees won’t necessar-

ily have good knowledge of how the firm is performing, and consequently what

funds are available to pay bonuses. Even if this was public information, the man-

agement (principal) will almost certainly hold some private information about

possible future investment opportunities that will affect the opportunity cost of

paying bonuses today. In a different setting, Li and Matouschek (2013) make

similar assumptions on the uncertainty of the marginal cost of paying bonuses.13

The parameters gPθ and gA(θ, λ) are the expected future surplus received by

the principal and agent when an agent with productivity θ stays at a firm with

costs λ. The assumption is that both parties are better off in the future when

the agent is more productive which makes sense in any organisational setting.

This is a key assumption in my model that allows for a separating equilibrium—

which, as will be clear in Section 3, is the equilibrium of interest. In Chapter

3, I analyse a dynamic version of the model that provides micro-foundations for

these assumptions.

Agents (weakly) prefer to stay at a firm with lower costs of paying bonuses:

gA(θ, λ) is decreasing in λ. It is reasonable that the costs of paying bonuses

are persistent across time and so, regardless of his productivity, an agent would

prefer to stay at a firm which has a greater ability to pay bonuses. In Section 3, I

consider the case where the agent is indifferent about the principal’s costs—this

represents the case where there the costs are independent over time; in Section

5.1, I consider the case where the agent does have a strict preference—which

corresponds to persistence in the principal’s costs.

The assumption gPL > 0 means that the principal always wants an agent to

stay at the firm regardless of his productivity. This makes sense particularly if

the cost of hiring a new worker is high. The assumption that 1 > gA(H, 1) means

that even if an agent was certain they had high productivity (θi = H) and at a

firm with low costs (λ = 1), i.e. the best outcome for the agent, it is still possible

that he will quit. The assumption that gA(L, λH) = 0 is a normalisation and is

without loss.

In the model agents do not share information with each other about their

12As discussed on p.59 in Bewley (1999), the most common way that firms react to financial
distress is to freeze wages or reduce bonuses or raises.

13They study relational contracts in which the principal privately learns the cost of paying
a bonus to the agent. They motivate uncertainty on the cost of paying workers from a well
known case study describing the situation Lincoln’s Electric faced following financial difficulty
after expanding to foreign markets—Hastings (1999).
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pay. This is consistent with evidence from the field—Cullen and Perez-Truglia

(2018) find in a large commercial bank that although employees have a high

willingness to pay for accurate information about the salary of their peers, they

are not able to report them accurately. Obviously, in my model agents would

benefit from learning the other agent’s bonus. But since they do not benefit

from sharing their own bonus, agents do not have an incentive to do this.14

Finally, I have assumed that the principal has the ability to commit to full

transparency or no transparency about the agent’s bonuses. I do not allow the

principal to commit to more general mechanisms that may partially reveal the

bonus of the other agent, or reveal information about the principal’s costs (λ).

Commitment can be a difficult assumption to justify, particularly when the out-

come is stochastic—as in Kamenica and Gentzkow (2011). However, within an

organisation, full transparency or no transparency is a very easy policy to imple-

ment and commit to, since if the principal reneges deviations can be detected,

and reputational costs will deter such deviations.15 In contrast, it is more dif-

ficult for the principal to commit to a stochastic experiment about the bonus

of other agents since it is harder to detect deviations. In the case of disclosing

information about costs, it might be possible to commit to disclose information

about their balance sheet, however, there are always outside opportunities that

affect the opportunity cost of paying bonuses that are always the private informa-

tion of the management (principal). In addition, even if there is a more general

mechanism that is optimal, by considering only (full) transparency and no trans-

parency, my finding that no transparency is sub-optimal in some circumstances

is still valid.

3 Two bonus levels: The key trade-off

In this section I analyse a simplified version of the model to illustrate the key

trade-off in the principal’s transparency decision. I provide sufficient conditions

for the equilibrium of interest to be uniquely selected. The key results are the

comparative statics on the principal’s equilibrium payoffs.

For the rest of the section, I make the following assumption:

Assumption 6. λH =∞; gA(θ, λ) ≡ gAθ for all θ, λ; and bi ∈ {0, 1}.

14If there is a small preference for privacy, agents would have a strict preference for not
sharing their bonus.

15The assumption of commitment to a disclosure policy in an organisational setting is also
made in Jehiel (2015). Here the disclosure is not about the pay of other workers, but about
other unknown features of the environment—e.g. the monitoring technology.
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The first part means that in the high cost state the principal will never want

to pay a bonus.16 The second part means that when the agents are deciding

whether or not to stay at the firm, they value only their own productivity within

the firm, and not the ability of the firm to pay bonuses. The final part restricts

the set of possible bonuses that the principal can pay. The assumption that the

positive level is bi = 1 is without loss.17

These assumptions effectively mean that when λ = 1 the principal has a

budget of 2 units for paying bonuses, and when λ = λH the principal has no

budget for paying bonuses. More precisely, the model could be adjusted in the

following way that would not affect the results. In the description of the model,

the costs of the principal (λ) are replaced by a ‘bonus pool’ B ∈ {0, 2}, that is

unknown with players sharing a common prior Pr[B = 2] = q. The principal

then chooses bonuses (b1, b2) such that b1 + b2 ≤ B, and her payoffs are given by

V =
∑
i

−bi + 1[aAi = S]gPθi .

3.1 Pure strategy separating equilibrium

Following the principal’s transparency decision (aP ) there are two subgames. I

will refer to these as the no transparency subgame and the transparency subgame

throughout the rest of the chapter. As is typical in signalling games, in each

subgame there will potentially be multiple equilibria. I will focus on the pure

strategy separating equilibrium.

Definition 1. A pure strategy separating equilibrium has the principal pay

a bonus bi = 1 if and only if θi = H and λ = 1.18

In this equilibrium, the principal uses a bonus to signal to an agent that he

has high productivity. The agents have beliefs consistent with this strategy—

and so they are more likely to stay at the firm following a bonus. Note that

there are no off-path actions and so off-path beliefs do not need to be specified.

Intuitively, such an equilibrium exists if there is a strong incentive to only pay

16All results will continue to hold if λH is finite and very large—the intuition is that it is
still too costly to ever pay a bonus when λ = λH .

17The value of the bonus only enters the decision of the principal, and here it only matters
as a ratio of gPH and gPL .

18Note that it is not possible to have a pure strategy equilibrium in which bi = 1 iff θi = L
in the subgame following aP = N . In the transparency subgame, it is possible to have such
an equilibrium but I explicitly rule out such an equilibrium since I don’t find it realistic. Also
note that as discussed in Section 5.3, using increases in wages in place of bonuses rules out
such an equilibrium. For the rest of this subsection I will assume that this equilibrium does
not occur—and note that Assumption 7 formally rules out such an equilibrium in Proposition
7.
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bonuses to high productivity agents—as will be formalised later, this requires

gPH to be large and gPL to be small.

Now, I describe the beliefs of the agents in this equilibrium. I start by

considering the no transparency subgame. Fix the action of the principal to pay

a bonus bi = 1 to agent i if and only if θi = H and λ = 1. The updated beliefs

of agent i following realisations of bi are given by

Pr[θi = H|bi = 1] = 1,

Pr[θi = H|bi = 0] =
p0(1− q)
1− p0q

.

Define pN ≡ p0(1−q)
1−p0q

as the belief of the agent following no bonus. These beliefs

are illustrated in Figure 2.1.

Now, consider the transparency subgame. As before, fix the action of the

principal to pay a bonus bi = 1 to agent i if and only if θi = H. The updated

beliefs of agent i following realisations of bi and bj (j 6= i) are given by

Pr[θi = H|bi = 1] = 1 for any bj ,

Pr[θi = H|bi = 0, bj = 0] =
p0(1− q)

1− 2p0q + p2
0q
,

Pr[θi = H|bi = 0, bj = 1] = 0.

Define pT ≡ p0(1−q)
1−2p0q+p2

0q
as the belief of the agent following no bonus and

having observed that the other agent also received no bonus. Notice that pT >

pN . This is because under transparency, when an agent does not receive a bonus

and sees the other agent also does not receive a bonus, it is more likely the the

principal could not pay bonuses (λ = λH) compared to when he did not receive

a bonus under no transparency. This difference will be critical when I analyse

the principal’s optimal choice of transparency. These beliefs are illustrated in

Figure 2.2.

In the next subsection, I analyse the best responses of the agents given these

equilibrium beliefs. I use these to derive sufficient conditions for the principal’s

best response to be the separating strategy—this provides sufficient conditions

for the equilibrium to exist. Then, I provide sufficient conditions for the equilib-

rium to be uniquely selected by the intuitive criterion.
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0 pN pT p0 1 p

Figure 2.1: Posterior beliefs of agent i under no transparency. Posterior
beliefs do not depend on the other agent’s bonus.

0 pN pT p0 1 p

Figure 2.2: Posterior beliefs of agent i under transparency. Posterior
beliefs depend on the other agent’s bonus: the blue line represents when bj = 1
and the red line represents when bj = 0.

3.2 Existence and uniqueness of the pure strategy separating

equilibrium

It is trivial that when λ = λH the principal has no decision to make. For the

rest of Section 3, to simplify notation, whenever I discuss a strategic decision for

the principal, I am referring to the case when she has learned that λ = 1.

Under no transparency, agent i’s best response is given by

aAi =

{
S if bi = 1 and ui ≤ gAH ; or bi = 0 and ui ≤ pNgAH ,
Q otherwise.

Note that the best response does not depend on the bonus payment of agent

j 6= i since agent i does not see this under no transparency—this means that

I can consider the incentives for the principal to pay a bonus to each agent

separately.

Now, I provide conditions under which this strategy from agent i induces the

principal to pay a bonus bi = 1 to agent i if and only if θi = H. First, consider

the case in which θi = H. Paying a bonus is optimal if

−1 + Pr[ui ≤ gAH ]gPH ≥ Pr[ui ≤ pNgAH ]gPH ,

⇐⇒
(
F (gAH)− F (pNg

A
H)
)
gPH ≥ 1. (3.1)
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Second, consider the case in which θi = L. Not paying a bonus is optimal if

Pr[ui ≤ pNgAH ]gPL ≥ −1 + Pr[ui ≤ gAH ]gPL ,

⇐⇒ 1 ≥
(
F (gAH)− F (pNg

A
H)
)
gPL . (3.2)

Notice that 3.1 and 3.2 will both be satisfied for any values of p0 and q and

any distribution F if gPH and gPL are respectively chosen to be arbitrarily large

and small.

Under transparency, agent i’s best response is given by

aAi =


S if bi = 1 and ui ≤ gAH ; or bi = bj = 0 and ui ≤ pT gAH ;

or bi = 0, bj = 1 and ui ≤ 0,

Q otherwise.

Note that, unlike in the no transparency case, this does depend on the bonus

payment of agent j 6= i since agent i revises his beliefs of λ (and hence his

productivity θi) based on bj .

As before, I provide conditions under which this strategy of agent i induces

the principal to pay a bonus bi = 1 to agent i if and only if θi = H. First,

consider the case in which θi = H and θj = L (j 6= i). Paying a bonus to agent

i is optimal if

−1 + Pr[ui ≤ gAH ]gPH + Pr[uj ≤ 0]gPL ≥ Pr[ui ≤ pT gAH ]gPH + Pr[uj ≤ pT gAH ]gPL ,

⇐⇒
(
F (gAH)− F (pT g

A
H)
)
gPH − F (pT g

A
H)gPL ≥ 1. (3.3)

The expected payoffs from the other agent are also included in this condition

since the belief of this agent is affected by the choice of bonus (bi = 1 reveals

that it must be that λ = 1 to agent j). The first inequality is the case in which

θj = L. The condition would be weaker if θi = θj = H (in this case paying agent

i a bonus does not affect the posterior belief of agent j).

Second, consider the case in which θi = L and θj = H. Not paying a bonus

to agent i is optimal if

Pr[uj ≤ 0]gPL ≥ −1 + Pr[ui ≤ gAH ]gPL ,

⇐⇒ 1 ≥ F (gAH)gPL . (3.4)

As before, the condition would be weaker if θi = θj = L.

Notice that 3.3 and 3.4 will again both be satisfied for any values of p0 and
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q and distribution F if gPH and gPL are respectively chosen to be arbitrarily large

and small.

Now, I provide sufficient conditions on the parameters for the pure strategy

separating equilibrium to be the unique equilibrium that is selected. In order

to discuss mixed strategy equilibria, it will be helpful to introduce some new

notation. Recall that given λ = 1, the strategy of the principal is a mapping

from a pair of productivities (θ1, θ2) to (a distribution over) a pair of bonuses

(b1, b2)

{H,L}2 → ∆
(
{0, 1}2

)
.

Let

σ
bibj
θiθj
≡ Pr[b1 = bi, b2 = bj |θ1 = θi, θ2 = θj ]

denote the (mixed) strategy of the principal and let σ be the vector of the

principal’s entire strategy. I restrict attention to symmetric equilibria so that

each agent is treated in the same way (in expectation) given their productivity.

Definition 2. A symmetric equilibrium restricts σ so that

σ
bibj
θiθj

= σ
bjbi
θjθi

,

for any realisations of θi, θj, and choice of bi and bj.

Assumption 7. Restrict attention to symmetric equilibria.

I also restrict equilibria so that if one agent is of high productivity and the

other agent is of low productivity, the principal will never only pay a bonus to

the low productivity agent.19

Assumption 8. Restrict equilibria such that in any equilibrium it must be that

σ01
HL = σ10

LH = 0.

In order to provide the uniqueness result below I also need to make some

parameter restrictions. Define pH ≡ 1
2−p0

.

Assumption 9. For all (p1, p2) where
{

(p1, p2) ∈ [0, 1]2 : p1 + p2 ≥ 1
}

it must

be that

F (p1g
A
H) + F (p2g

A
H) > 2/gPH + 2F (p0g

A
H), (3.5)

F (p1g
A
H) + F (p2g

A
H) > −1/gPH + 2F (pHg

A
H). (3.6)

19As already noted, there exists an equilibrium in pure strategies with the high type receiving
no bonus and the low type receiving a bonus which was explicitly ruled out. This assumption
is stronger, and obviously rules this equilibrium out.
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To demonstrate when this is satisfied, consider the case in which F is

uniform—a sufficient condition is now:

2

1− p0
< gPHg

A
H <

2− p0

p0
. (3.7)

To show that parameters can be found to satisfy both these inequalities consider

the following. For any p0, for a given gAH , gPH can be chosen to be sufficiently

large such that the left hand inequality on 3.7 is satisfied. For any gAH and gPH ,

p0 can then be made sufficiently small such that the right hand inequality on 3.7

is satisfied.

Note that this is not a limit result—for fixed gPH and gAH , any p0 below a

threshold the assumption will be satisfied. When F is not uniform, the inequal-

ities 3.5 and 3.6 become non-linear and so it is not possible to characterise a

sufficient condition for the assumption as above. However, the intuition is as

before, and the assumption will be satisfied for sufficiently small p0.

The intuitive criterion is the standard refinement in signalling games to

discipline off-path beliefs. However, note that in the transparency subgame

the intuitive criterion needs to be adapted since there are multiple ‘receivers’

(agents). I provide a formal definition of the ‘multi-receiver’ intuitive criterion

adapted for my setting in Appendix 2. It is very much in the spirit of the original

definition in Cho and Kreps (1987)—off path actions should only be attributed

to ‘types’ that could possibly want to make this deviation. There are several

features of my environment that allow this definition to be adapted in a natural

way, these are that:

1. Agent i’s payoff does not depend on agent j’s action;

2. Agents’ productivities are independent;

3. Agent i’s payoff does not depend on agent j’s productivity θj .

I discuss why each of these features is important in Appendix 2.

Proposition 7. In both subgames, if gPH is sufficiently large and gPL is suffi-

ciently small, then the pure strategy separating equilibrium exists. Assume that

Assumptions 7, 8 and 9 are satisfied, then:

i) in the no transparency subgame, if gPH is sufficiently large and gPL is suffi-

ciently small, then the unique equilibrium satisfying the intuitive criterion

is the pure strategy separating equilibrium;
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ii) in the transparency subgame, if gPH is sufficiently large, gPL is sufficiently

small, then the unique equilibrium satisfying the multi-receiver intuitive cri-

terion is the pure strategy separating equilibrium.

Proofs are omitted from the main part of the text and can be found in the

Appendix. Note that this result is not a limit result—it does not require gPH and

gPL to be arbitrarily large and small.

As already discussed, the existence of a pure strategy separating equilibrium

requires gPH and gPL to be sufficiently large and small respectively. When this

equilibrium exists, in the no transparency, the intuitive criterion rules out a

pooling equilibrium where no bonus is ever paid. The intuition is that when

θi = L and gPL is sufficiently small, the principal would never want to pay a

bonus regardless of the (off-path) belief that this induces. This means that

agent i attributes off-path action bi = 1 to θi = H, meaning that when θi = H

the principal would benefit from a deviation—and so the equilibrium fails the

intuitive criterion. In the no transparency subgame there is only one possible

mixed strategy equilibrium: the principal mixes—i.e. pays a bonus and no

bonus with positive probability in the same state—only when θi = H (and

λ = 1). When gPH becomes sufficiently large, this equilibrium no longer exists.

Intuitively, this is because the principal will want to retain a high productivity

worker so much, so when she can, she will want to pay him a bonus to induce

a higher belief. Things are more complex in the transparency subgame since

there are many more combinations of mixed strategies to rule out and possible

equilibria with off-path actions to refine. However, the intuition is similar, when

gPH becomes sufficiently large and gPL becomes sufficiently small, then ‘higher’

types no longer want to mix and pool with lower types.20 The restrictions

on the parameters are required in order to apply the intuitive criterion in this

subgame. To see why, consider a pooling equilibrium at b = (0, 0). In such an

equilibrium, only types (H,H), (H,L) and (L,H) can possibly benefit from a

deviation to b = (1, 1)—there are no beliefs for which type (L,L) can benefit

from this deviation. The parameter restrictions ensure that type (H,H) must

always benefit from a deviation to b = (1, 1) given any belief that is concentrated

on these three types (and not type (L,L))—this means that the equilibrium fails

the (multi-receiver) intuitive criterion.

20Here ‘types’ refer to the productivity of the two agents that the principal observes. ‘Higher’
types means that the productivity of agent 1 and 2 are both weakly higher.
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3.3 Optimal choice of transparency for the principal

Now, I return to the economic question of interest—the optimal choice of trans-

parency for the principal. I compare the expected payoff of the principal under no

transparency and transparency assuming that in both subgames a pure strategy

separating equilibrium exists and is selected. Define EV (aP ) as the expected

value of the principal in the subgame following aP ∈ {N,T}. The following

expression captures the difference in payoff between transparency and no trans-

parency:

1

2
DTN ≡

1

2
(EV (T )− EV (N))

=
(
(1− q)(p0g

P
H + (1− p0)gPL ) + q(1− p0)2gPL

) (
F (pT g

A
H)− F (pNg

A
H)
)

− qp0(1− p0)gPLF (pNg
A
H).

(3.8)

The first line of the expression is positive. It represents the benefit of trans-

parency from not discouraging agents as much when they receive no bonus and

they see the other agent also received no bonus. The first part (multiplied by

(1− q), the probability of the high cost state) is when the principal cannot pay

bonuses meaning agents will always be less discouraged under transparency. The

second part (multiplied by q) is when the principal can pay a bonus but chooses

not to pay either agent a bonus—again agents are less discouraged under trans-

parency. The benefit in both cases is the difference between: the probability of

an agent staying under transparency when neither he nor the other agent re-

ceived a bonus, and the probability of the agent staying under no transparency

when he did not receive a bonus.

The second line of the expression is negative. It represents the cost of trans-

parency from when the principal can pay bonuses, but only pays a bonus to one

agent causing more discouragement for the other agent who did not receive a

bonus under transparency.

Depending on the parameters of the model, either the positive or negative

parts of this expression will dominate.

Proposition 8. Assume that in both subgames the pure strategy separating equi-

librium exists and is selected. For some parameters (p0, q, g
P
H , g

P
L , g

A
H , F (·)), no

transparency (aP = N) is optimal, and for others transparency (aP = T ) is

optimal.

Since the parameter space is very large, it is difficult in general to charac-

terise when transparency is better than no transparency. Transparency is always
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optimal when F is uniformly distributed.21 For no transparency to be optimal

it must be that F (pT g
A
H) and F (pNg

A
H) are close—minimising the benefits of

transparency. This happens, for example, when F is concave.22

To understand the implications of the model and the testable predictions

it generates, I will consider comparative statics on DTN . In reality, when a

firm considers whether or not to commit to transparency, there are other factors

to consider beyond my stylised model. So, considering how DTN varies, helps

uncover what drives a firm to want to be transparent in the type of environment

that fits my model. I consider two comparative statics. The first is what happens

when gPH , the benefit of retaining a high productivity agent for the principal,

goes up, while everything else remains unchanged. The second is what happens

when gPH − gPL , the difference between the benefit of retaining a high and low

productivity agent, goes up, while keeping the ex ante expected future benefit

constant. In effect, the latter considers different mean preserving spreads of

retaining agents of different productivities. Define: ∆ ≡ gPH − gPL and ḡP ≡
p0g

P
H + (1− p0)gPL .

Proposition 9. Assume in both subgames the pure strategy separating equilib-

rium exists and is selected, then:

1. increasing gPH while keeping all other parameters (gPL , g
A
H , p0, q, F (·)) con-

stant leads to an increase in DTN ;

2. increasing ∆ while keeping all the parameters gAH , p0, q, F (·), and ḡP , con-

stant leads to an increase in DTN , if and only if

F (pNg
A
H)− (1− p0)F (pT g

A
H) > 0. (3.9)

The intuition behind part (1) of the result is as follows. Transparency max-

imises the probability of retaining workers with high productivity. The reason

for this is if the firm is able to pay a bonus (i.e. λ = 1), then transparency

doesn’t make a difference for retention of high productivity workers. However,

when the firm is not able to pay a bonus (i.e. λ = λH), the high productiv-

ity workers become less discouraged when there is transparency since they will

see that the other agent also has not been paid a bonus. So as retaining high

productivity workers becomes a greater priority (i.e. gPH goes up), transparency

becomes more beneficial.

21The formal result—Corollary 2—and proof are in Appendix 1.
22For example, no transparency is optimal when F (x) = x1/4; q = 0.5; p0 = 0.5, gPH =

11; gPL = 1.2; gAH = 0.4.
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For part (2) of the result, for DTN to be decreasing in ∆ it must be the

case that F is increasing very quickly between pNg
A
H and pT g

A
H . The economic

interpretation of this condition is that it is very likely that the agent will receive

a wage offer in this particular interval. For most distributions this is not the

case, for example, for a uniform distribution it must always be the case that

DTN is increasing in ∆.23

When the principal is not able to pay a bonus (λ = λH), a change in ∆ while

keeping ḡP constant will have no effect on DTN . The reason for this is that the

expected productivity of an agent (given λ = λH) remains unchanged and the

principal will not pay a bonus regardless of the value of gPH and gPL . Also, note

that when both agents have high productivity and the principal can pay a bonus

(λ = 1), the choice of transparency makes no difference.

Where a change in ∆ does make a difference is when the principal is able

to pay a bonus (λ = 1) and when either both agents have low productivity

or only one agent has low productivity. In the case when one agent has high

productivity and the other low productivity, transparency is detrimental since

it discourages the worker with low productivity (it has no effect on the worker

with high productivity). So when ∆ is increased while keeping ḡP constant,

it means that gPL falls and so the negative effects of transparency are reduced

(so there is a positive effect on DTN ). In the case when both agents have

low productivity, transparency is beneficial because both agents will attribute

a greater probability to the possibility that the principal could not pay them a

bonus (and that they could be of high productivity). So now when ∆ is increased

while keeping ḡP constant, it reduces this benefit of transparency. The size of

this reduction in benefit is proportional to difference in the likelihood of the

agent leaving under transparency and no transparency F (pT g
A
H)−F (pNg

A
H). So

when this is relatively small, the increase in DTN from when one agent has high

productivity and the other low, outweighs the decrease in DTN from when both

agents have low productivity.

In terms of testable predictions, part (1) of Proposition 9 suggests trans-

parency is more likely to occur in industries where firms have a very high value

for the most productive workers. Part (2) of the result has a similar prediction

(so long as the necessary condition 3.9 is satisfied). These features match the

motivating examples of technology start-ups where high level of heterogeneity in

the productivity of workers or worker-firm matches are likely. They also match

23The formal result—Corollary 3—and proof are in Appendix 1. This continues to hold
for other distributions as well, for example, the distribution F (x) = x1/4 and parameters in
footnote 22.
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other features of the model such as few verifiable measures of output as well as

uncertainty on available funds. To summarise, the reason that transparency is

favoured is because the firm can retain high productivity workers more often

when the firm is not able to pay them a bonus—this captures the rationale of

the entrepreneur in the introduction.

4 Application of the model to empirical work on rel-

ative pay: Comparison to results in Card et al.

(2012)

As discussed in the introduction, Card et al. (2012) empirically find an ‘asym-

metric’ response when workers learn about their peers’ pay. They suggest their

finding is due to non-standard preferences—whereas, in my model, there can

be a similar asymmetric response, but driven by workers rationally reacting to

their informational environment. Furthermore, Card et al. (2012) conclude that

the preferences that induce the asymmetric response mean that a private firm

would never choose to be transparent about pay. In contrast, my model can

have transparency being optimal and an asymmetric response from workers.

Card et al. (2012) assume a relative income model where job satisfaction

S(·, ·) is given by:

S(w, I) = u(w) + v(w − E[m|I]) + e. (4.1)

The arguments are w, the worker’s wage, and I, the agent’s information set (what

agents learn about their peers’ wages). The components of the utility function

are as follows: u(·) is the utility from his own pay, e is random taste variation,

and v(·) are what they call ‘feelings arising from relative pay comparisons’. As

in my model, they consider two different information sets, the first is I0, where

the worker only sees his own wage, and the second is I1, where the worker sees

the wages of all his peers. The median wage is the reference point and is given

by m. It is assumed that when I = I0 the median is given by m = w, it is

also assumed, without loss, that v(0) = 0 (these imply that v(w − E[m|I0]) = 0

for any w). They test for the concavity of v(·) by assuming a piecewise linear

functional form. They find that the slope is decreasing for w < 0 and flat for

w ≥ 0. This means that v(w) < 0 for w < 0 and v(w) = 0 for w ≥ 0, which

is what they describe as an ‘asymmetric’ impact of relative pay. They suggest

that these findings are in line preferences that capture ‘inequity aversion’—Fehr

and Schmidt (1999).
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My model, in Section 3, generates a similar ‘asymmetric response’.24 Intu-

itively, this can be seen by comparing the reaction of agents who are paid and

not paid a bonus. First, consider an agent who receives a bonus. The agent

is either at or above the median. Regardless, the agent’s likelihood of staying

at the firm is the same—he learns for sure that he has high productivity. Now

consider an agent who does not receive a bonus. The agent is either at or below

the median. How he compares to the other agent now matters. If he is at the

median—meaning the other agent was also not paid a bonus—he is more opti-

mistic about his productivity, and is therefore more likely to stay. Combining

these two reactions generates an asymmetric response.

To formalise this intuition, I calculate v(·) by comparing the expected utility

of the agent under transparency and no transparency for different realisations of

the state (θ1, θ2, λ). In effect, this is as if data is being generated from exogenous

variation in aP in different states of the world—which is exactly how Card et al.

(2012) estimate v(·) in their paper. S(w, I) is the agent’s (expected) utility in

my model. From 4.1, it follows that

S(w, I1)− S(w, I0) = v(w − E[m|I1])− v(w − E[m|I0]). (4.2)

S(w, I1)−S(w, I0) is known from the agents’ utilities. Given the bonuses, E[m|I1]

can easily be calculated. E[m|I0] can also be calculated—note that, given his

own bonus, the agent can rationally compute the expected bonus of the other

agent.25

First, I calculate the expected median when the agent does not see the bonus

of the other agent:

E[m|I0, bi = 1] =
1 + E[bj |I0, bi = 1]

2
=

1 + p0

2
;

E[m|I0, bi = 0] =
E[bj |I0, bi = 0]

2
=
qp0(1− p0)

2(1− qp0)
.

Now I consider the four cases for the bonuses paid to agent i and j.

Case 1: bi = 1 and bj = 1.

24The purpose of this section is to show how similar results are generated within my model,
and so there is no need to consider a more complex set up.

25This is different to the assumption in Card et al. (2012), where it is assumed that E[m|I0] =
m for any wage. Clearly in my model, where agents update rationally from their prior in the
game played, this does not hold. However, if I was to impose this on agents’ beliefs, the model
still generates asymmetric updating—the intuition described above does not change.
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Under no transparency, agent i believes he is above the median. Whereas,

under transparency, he learns that he is paid the median. The likelihood of

him remaining at the firm is the same in both cases, and so the expected utility

remains unchanged. This means that he does not have additional utility (or

‘satisfaction’) from being above the median. Formally, S(1, I1) − S(1, I0) = 0.

Now v(·) can be calculated using 4.2

v(w − E[m|I1])− v(w − E[m|I0]) = 0,

v(0)− v((1− p0)/2) = 0.

Assume, without loss, that v(0) = 0. This means v((1− p0)/2) = v(0) = 0.

Case 2: bi = 1 and bj = 0.

Under transparency, agent i learns that he is paid even further above the

median, which again does not change the likelihood of him remaining at the firm.

A similar calculation to the one above shows v(1/2) = v((1− p0)/2) = 0.

Case 3: bi = 0 and bj = 0.

Under no transparency, agent i believes he is paid below the median. Whereas,

under transparency, agent i learns that he is actually paid the median. This

means that26

v(0)− v(−qp0(1− p0)/2(1− qp0)) = S(0, I1)− S(0, I0),

=⇒ v(−qp0(1− p0)/2(1− qp0)) =
1

2
(gAH)2(p2

N − p2
T ) < 0.

Case 4: bi = 0 and bj = 1.

Under transparency, agent i learns that he is paid even further below the

median, and this decreases the likelihood of him remaining at the firm. A similar

calculation to the one above shows

v(−1/2)− v(−qp0(1− p0)/2(1− qp0)) = −1

2
(pNg

A
H)2,

and so v(−1/2) = −1
2(pT g

A
H)2.

26The calculation has been done with F (x) = x to ease exposition. The final equality holds
for any F , so the results for both this case and the later cases continue to hold.
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Figure 2.3: ‘Feelings arising from relative pay’ generated from my model.

The values of v(·) are plotted in Figure 2.3. So, as in Card et al. (2012)

the agent updates ‘asymmetrically’ in the sense that learning that he received a

bonus below the median gives him lower feelings arising from relative pay, while

learning that he received a bonus above the median has no effect.

5 Extensions

In this section I return to the static model from Section 3 and consider a number

of natural extensions. These demonstrate the robustness of results from this

simple model, and also provide some other economic insights.

5.1 Agents having preferences on the principal’s costs

In this subsection, I assume when agents make their decision to stay or quit the

firm, they not only value their own productivity type (θi), but also the ability

of the principal to pay a bonus (λ). This is incorporated directly into their

preferences. The motivation for this is that a firm with the ability to pay high

bonuses today is more likely to be able to pay high bonuses in the future. To

highlight the novel effect this has, I allow the principal to pay three different

bonuses and to have the ability to pay bonuses in both the low and high cost

states. Formally, for the rest of the section, I make the following assumption:

Assumption 10. λH ∈ (1,∞); gA(θ, 1) > gA(θ, λH) for all θ; and bi ∈ {0, 1, 2}.
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There are now four possible productivity/principal cost pairs. To simplify

notation, let η = (θi, λ) denote a generic pair and define η0 ≡ (L, λH), η1 ≡
(H,λH), η2 ≡ (L, 1), and η3 ≡ (H, 1). Note that the assumptions I have made,

do not specify whether an agent prefers η1 to η2 or vice versa. This preference

ordering will be important in the results that follow.

I assume that the parameters are such that in both subgames there is an

equilibrium where the principal pays:

• bi = 0 when η = η0;

• bi = 1 when η = η1 or η2;

• bi = 2 when η = η3.

Assumption 10 plays a critical role in the existence of this separating equi-

librium. First, by allowing the principal to pay three distinct bonus levels, the

only possibility for the agent to be unsure of his type is when he receives a bonus

bi = 1, where he is unsure whether he is type η1 or η2—this would not be possible

with only two bonus levels. Second, if the high costs was not finite, it would

not be possible for the principal to pay a bonus to type η1 and for there to be

pooling of types η1 and η2.

I omit the conditions in which the equilibrium exists in each respective sub-

game from the main text since the intuition and derivations are similar to Section

3. However, note that unlike before, this equilibrium may not be unique. Details

of the sufficient conditions for existence can be found in Appendix 3.

Now, I formalise the agents’ beliefs in the equilibrium described above in

order to provide comparative statics. Under no transparency, the posterior prob-

ability of agent i being of high productivity given that he receives a bonus bi = 1

is given by

Pr[θi = H|bi = 1; aP = N ] =
(1− q)p0

(1− q)p0 + q(1− p0)
≡ p̂N .

Similarly, under transparency, the posterior probability of agent i being of high

productivity given that he receives a bonus bi = 1 and he sees the other agent

receives a bonus bj = 1 is given by

Pr[θi = H|bi = bj = 1; aP = T ] =
(1− q)p2

0

(1− q)p2
0 + q(1− p0)2

≡ p̂T .

To simplify notation denote Fk ≡ F (gA(ηk)), Fp̂N ≡ F (p̂Ng
A(η1)+(1−p̂N )gA(η2))

and Fp̂T ≡ F (p̂T g
A(η1) + (1− p̂T )gA(η2)).
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The difference in payoff between the two choices for the principal is

1

2
D′TN ≡

1

2
(EV (T )− EV (N))

= p0(1− p0)
(
(1− q)(F1 − Fp̂N )gPH + q(F2 − Fp̂N )gPL

)
+ (Fp̂T − Fp̂N )

(
p2

0(1− q)gPH + (1− p0)2qgPL
)
. (5.1)

The first line of the expression is the difference in payoff when one agent has high

productivity and the other has low productivity. There are two cases. The first

is when the principal has high costs (λ = λH). Here, the difference is in the belief

of the high productivity agent (who is paid bi = 1) and transparency reveals to

him that he is type η1 = (H,λH). The second case is when the principal has

low costs (λ = 1). In this case the difference in payoff comes from the change in

beliefs of the agent with low productivity. The value of the two cases is given

by the first and second parts inside the square brackets. The sign of F2−F1, or

equivalently whether an agent prefers to be of high productivity in a firm with

high costs or of low productivity in a firm with low costs, determines the sign

of each component. The two expressions on the first line always go in opposite

directions.

On the second line, the expression (Fp̂T −Fp̂N ) is the difference in the prob-

ability that the agent quits when b1 = b2 = 1 under transparency and no trans-

parency. When agent i is paid bi = 1 and sees the other agent is paid bj = 1, this

can be ‘good news’ or ‘bad news’.27 In particular, the sign of p̂T − p̂N depends

on p0: p̂T > p̂N if and only if p0 > 1/2. The sign of Fp̂T − Fp̂N depends both

on the sign of p̂T − p̂N and also the agents’ preferences over η1 and η2. So this

part of the expression is positive if and only if p0 > 1/2 and η1 � η2 or p0 < 1/2

and η2 � η1.28 The intuition is as follows. If it is likely the agent has high

productivity (p0 > 1/2) and the agent prefers to be of high productivity at a

high cost firm (η1 � η2), then when he is paid bi = 1 and learns that the other

agent is also paid bj = 1 it makes it more likely that he is of high productivity.

Since he prefers to be of high productivity at a high cost firm, transparency is

beneficial in this case—Fp̂T > Fp̂N .

A difference between the predictions of this section comapred to Section 3,

is that here when an agent learns that he is paid less than the other agent it is

possible that this is good news, while in the previous section this was always bad

27Note that this is in contrast to Section 3 where when agent i saw that bj = 0 (and bi = 0)
this was always good news since it made it more likely that he was of high productivity. This
was because pT > pN for all parameter values.

28Where A � B is a preference relation—meaning the agent prefers A over B.
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news. The reason for this difference is as follows. When an agent learns that the

other agent is paid a higher bonus, it can increase the likelihood that the firm is

able to pay high bonuses, which is good news only when gA(·, 1) > gA(·, λH)—as

is the case here, and not in Section 3.29 A number of empirical papers find that

workers are more likely to leave a firm after they learn they are paid less than

their peers.30 The model in Section 3 unambiguously makes this prediction,

whereas the model in this section may lead to the opposite prediction.

Turning to comparative statics, I again evaluate what happens when the

difference in productivity is increased while keeping the ex ante expected pro-

ductivity unchanged. The results can be derived from this calculation:

1

2

∂D′TN
∂∆

∣∣∣∣
ḡP

= p0(1− p0) ((1− q)(1− p0)(F1 − Fp̂N )− qp0(F2 − Fp̂N ))

+ (Fp̂T − Fp̂N )p0(1− p0)(p0 − q). (5.2)

Proposition 10. Assume in both subgames an equilibrium in which the principal

pays agent i bi = 0 if η = η0, bi = 1 if η = η1 or η2, and bi = 2 if η = η3 exists

and is selected.

1. If p0 = 1/2, increasing ∆ while keeping all the parameters gAH , p0, q, F (·),
and ḡP , constant leads to an increase in D′TN , if and only if gA(H,λH) >

gA(L, 1);

2. If F is uniform, increasing ∆ while keeping all the parameters gAH , p0, q, F (·),
and ḡP , constant leads to an increase in D′TN , if and only if gA(H,λH) >

gA(L, 1);

3. If p0 > max
{
q, 1

2

}
and gA(H,λH) > gA(L, 1), increasing ∆ while keeping

all the parameters gAH , p0, q, F (·), and ḡP , constant leads to an increase in

D′TN ;

4. If q > p0 > 1
2 or 1

2 > p0 > q and gA(L, 1) > gA(H,λH), increasing ∆

while keeping all the parameters gAH , p0, q, F (·), and ḡP , constant leads to

a decrease in D′TN .

29These two effects combine the effects in the two separate models discussed in Sections 2.1
and 2.2 of Card et al. (2010).

30For example, Card et al. (2012) which was discussed earlier in the chapter. Rege and Solli
(2014) find evidence that workers do indeed leave a firm if they learn they are paid less than
their peers. They study the effects of transparency of pay in all of Norway following the public
release of tax returns in 2001. They find that workers who are relatively low earners (compared
to their peers) become more likely to quit following the information shock. Similar evidence
is found in Cullen and Perez-Truglia (2018) who find that an increase in perceived peer salary
makes it more likely that the workers leaves the firm.
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The conditions in part (1) and (2) above allow for clear predictions in the

direction of the comparative static for any preference ordering over the cross

types. When these conditions are not satisfied the comparative static is ambigu-

ous since the first or second part of the expression 5.2 may dominate. However,

as in part (3) and (4), additional restrictions can provide sufficient conditions for

the comparative static to be in a certain direction for a given preference ordering

over the cross types.

Assuming that the conditions in part (1) or (2) are satisfied, the interpreta-

tion of the results is as follows. Increasing the value of retaining high productivity

agents makes transparency more favourable if and only if an agent prefers to be

of high productivity at a high cost firm rather than of low productivity at a low

cost firm. These comparative statics line up with those in Section 3. Consider

the case where the agent prefers to be of high productivity at the high cost firm

compared to of low productivity at the low cost firm. Now, his preferences are in

line with what was assumed in Section 3—where the agent only had preferences

over his own productivity—and so it makes sense that the comparative statics

go in the same direction.

The intuition for part (1) is most informative. Assume that the agent prefers

to be of high productivity at the high cost firm (i.e. η1 � η2). When bi = 1,

agent i is unsure whether he is of high or low productivity (η1 or η2). With

transparency, he also learns the bonus of the other agent which, when bj 6= 1,

reveals whether he is of high or low productivity. When the agent learns he is

of low productivity (and the principal has low costs), he becomes discouraged

compared to when there is no transparency and he did not learn about his

productivity (since F2 − Fp̂N < 0). On the other hand, when he is of high

productivity (and the principal has high costs), he becomes encouraged (since

F1 − Fp̂N > 0). Increasing ∆ makes the high productivity agents more valuable

for the principal meaning that the encouragement—when the agent learns he is

of high productivity—is more valuable. Note that when p0 = 1/2 the difference

in agents’ beliefs between transparency and no transparency when bi = bj = 1

is zero. The intuition for the result will continue to hold if p0 ≈ 1/2 and this

difference is relatively small (i.e. p̂T ≈ p̂N ).

5.2 Continuous choice of bonus

Now I consider the setting in Section 3 with Assumption 6, and relax the restric-

tion on the possible bonuses the principal can pay (so bi ∈ R+). With continuous

bonuses, transparency will always be preferred to no transparency assuming that

in both subgames the pure strategy separating equilibrium that survives the in-
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tuitive criterion is selected—this is in effect the separating equilibrium where

the principal pays the lowest possible bonuses to ensure separation. The result

is driven by the fact that there is no longer a limitation on the actions of the

principal (the set of bonuses it can pay). This means that now the incentive con-

straints bind, while with discrete bonuses they were not binding and they were

tighter under transparency compared to no transparency. However, as discussed

in the next subsection 5.3, if wage increases are used in place of bonuses it is

again possible for both transparency or no transparency to be optimal for the

principal, even when wage increases are continuous. With continuous bonuses,

comparative statics in line with Proposition 9 can still be derived, demonstrating

that the results in Section 3 are robust. I leave the formal analysis and a more

detailed discussion to Appendix 4.

Another natural question is what would happen if (θi, θj) and λ were also

continuous? In particular, would it be possible for no transparency and trans-

parency to be optimal for different parameter values? And would the com-

parative statics continue to yield similar insights? Bénabou and Tirole (2006)

analyse a multidimensional signalling model with continuous states and signals

within a linear-quadratic-normal framework. However, they make a simplify-

ing assumption in their payoffs—that the benefit of inducing higher beliefs is

independent of the state (see footnote 9 in their paper). In contrast in my pay-

offs, inducing higher beliefs is more beneficial when the state (productivity) is

higher—meaning that introducing continuous states with my payoffs would pose

technical challenges.

5.3 Wage increase in place of bonuses

Thus far, the principal has paid bonuses to the agents. This enabled me to isolate

the signalling effects of bonuses since they do not enter the agents’ decision

problems. However, in reality, as discussed in the survey Prendergast (1999),

the majority of employers don’t use bonuses, but instead increase the wage of

their employees.

In this section I discuss how the model can be reformulated to have the prin-

cipal increasing the wage of agents rather than paying bonuses. The difference

is that in order to realise an increased wage, the agent must stay at the firm,

whereas with a bonus the worker can receive the bonus and still quit the firm—

this means the wage increase has an incentive effect as well as the signalling

effect that has already been seen. Similarly, the principal only incurs the cost if

the agent actually stays. For simplicity, I consider the model of Section 5.2 with
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λH =∞ and gA(θ, λ) ≡ gAθ . The payoff of the prinicipal and agent i are now

V =
∑
i

1[aAi = S](−λwi + gPθi),

Ui = 1[aAi = S](gAθi + wi) + 1[aAi = Q]ui,

where wi ∈ R+ is the wage increase offered to agent i (this takes the place of bi

in the original formulation).31

With wage increases in place of bonuses, the analysis changes slightly. In

particular, in the no transparency subgame, assuming that the principal increases

the wage by wi = w iff θi = H, the best response of agent i is

aAi =

{
S if wi = w and ui ≤ w + gAH ; or wi = 0 and ui ≤ pNgAH ,
Q otherwise.

There is a similar change in the transparency subgame. In the no trans-

parency subgame, the incentive compatibility constraints for the principal be-

come

(
F (w + gAH)− F (pNg

A
H)
)
gPH ≥ F (w + gAH)× w,

F (w + gAH)× w ≥
(
F (gAH)− F (pNg

A
H)
)
gPL ,

These are analogous to 3.1 and 3.2 in Section 3. There is a similar change

in the transparency subgame. As before, if gPH and gPL are sufficiently high and

low, these inequalities will be satisfied. Note that the right hand side of the first

inequality and the left hand side of the second inequality, F (w + gAH) × w, is

strictly increasing in w, meaning that for given parameter values there will be a

unique w that makes each inequality bind.

When wi ∈ {0, 1}—analogous to the set up in Section 3—it is straightfor-

ward that the comparative static result will remain unchanged. When wage

31An interpretation of this reformulated model is as follows. There are discrete time periods
t = 0, 1, 2, and without loss it is assumed there is no discounting. At time t = 0 the two agents
start working for the principal and are paid a wage normalised to 0. At the start of period
0 the principal commits to a transparency decision aP ∈ {N,T}. The principal observes the
agents working in period t = 0 and at the end of the period learns their productivities, θi’s.
The principal then chooses whether or not to increase each agent i’s wage for the next period
by wi. At this point the agent also learns his outside option ui. If the agent chooses to take
his outside option he receives the outside option for the following period. If the agent chooses
to stay at the firm he gets the increased wage and also the future surplus that depends on his
type, θi. This future surplus can be thought of as expected future wage increases after period
t = 2.
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increases are continuous (wi ∈ R+) there is added complexity and so it is not

always the case—as in Proposition 12 (in Appendix 4)—that transparency al-

ways leads to a higher payoff for the principal. As discussed in the previous

subsection, with continuous bonuses, the principal can reduce bonuses under

transparency and leave the signalling incentives unchanged. In contrast, with

continuous wage increases, reducing wages can leave the signalling incentives

unchanged but reduce the incentive effects. It is difficult to provide a characteri-

sation of when either transparency or no transparency will be preferred, however

there are examples when either will be preferred.32

5.4 Correlation in agent’s productivity and outside options and

agents receiving informative signals

A simplification of the model of Section 3 is that the agents’ outside options are

not correlated with their productivities. In reality, a productive agent is likely to

receive better outside options from other firms. In Appendix 5, I show that the

results in Section 3 do not qualitatively change when the outside option has full

support for both levels of productivity. This holds regardless of whether or not

the productivity and the outside option are positively or negatively correlated.33

Note that a correlation between the agents’ outside option and their productivity

is equivalent to agents receiving an informative (but not fully informative) signal

about their productivity. This means that if agents were to receive an informative

signal about their productivity (before making their stay/quit decision) then the

results also remain qualitatively unchanged.

5.5 No bonus as perfect bad news

In the pure strategy separating equilibrium of Section 3, receiving a bonus is

‘perfect good news’—it reveals to the agent that he is certainly of high produc-

tivity. In contrast, in the case of no transparency, receiving no bonus leaves the

agent uncertain whether or not he is of high productivity. There are parame-

ters for which it becomes possible to have an equilibrium where no bonus acts

as a ‘perfect bad news’ signal. More specifically, the pure strategy separating

equilibrium is such that a bonus is always paid to the agent, unless he is of low

productivity and the firm has high costs. The key finding is that the comparative

32For parameters
{
F (x) = x; gAH = .5; gPH = .4; gPL = .1; p0 = .4; q = .4

}
, the wage increase

under no transparency is 0.0751623, and under transparency are 0.0834506 and 0.0402955
when both or only one agent receives the increase. The expected difference in payoff between
no transparency and transparency is 0.00301823.

33Clearly positive correlation is the more realistic case.
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static result of Section 3 remain unchanged—increasing how much the principal

values retaining high productivity agents makes transparency more favourable.

I leave the formal analysis and a more detailed discussion to Appendix 6.

6 Discussion and conclusion

6.1 The role of commitment

As already argued, commitment to transparency (or no transparency) of pay

is plausible in many organisational settings. However, to illustrate the impor-

tance of the commitment assumption in the model, I consider what happens if

the principal cannot commit to transparency. The result is reminiscent of the

unravelling result in Milgrom (1981): the principal is forced to be transparent

in all cases since not being transparent means that the principal is choosing to

hide bad news. In this case ‘bad news’ is that there are bonuses available and

that the principal chose not to pay one of the agents a bonus.

To relax commitment, I consider the set up in Section 3 but where the

timing is changed so that the principal chooses the level of transparency after

learning (θ1, θ2) and λ.34 The incentive of the principal to signal to each agent is

unchanged, so paying a bonus (bi = 1) is only worthwhile if the agent is of high

productivity (θi = H) and the bonus signals this to them. I also assume that

following any choice of aP the principal chooses bi = 1 if and only if θi = H,

and so as before, the pure strategy separating equilibrium is selected. Finally, I

assume in the case of indifference the principal chooses aP = T over aP = N .35

Proposition 11. In the game without commitment, if the principal plays a

pure strategy separating equilibrium in every subgame following aP , then in any

equilibrium the principal chooses transparency (aP = T ) for any realisation of

θ1, θ2 and λ with probability 1.

6.2 Concluding remarks

In this chapter, I propose a theory that allows me to analyse what features of

a firm make pay transparency more favourable. The key result—which pro-

vides a clear, testable prediction—is that increasing the difference between the

value of retaining high and low productivity workers makes transparency more

favourable.

34Formally (1) and (2) in the ‘Actions and timing section’ are switched.
35This rules out an equilibrium in which the principal always plays aP = T except when

λ = 1, θ1 = θ2 = H.
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Throughout the chapter it has been assumed that the principal can only com-

mit to two extreme information structures—transparency or no transparency—

on the information agents get about the bonus of the other agent. I also do

not allow the principal to commit to disclose anything about her costs (λ). As

already discussed, I believe that these assumptions are reasonable based on what

firms are actually able to commit to in reality. Nonetheless, from a theoretical

point of view, it may be interesting to investigate more general mechanisms and

to characterise the optimal mechanism in future work. Such mechanisms could

allow for ‘experiments’ that disclose a signal about the other agent’s bonus as

in Kamenica and Gentzkow (2011); they can also allow for an experiment that

discloses a signal about the principal’s costs. Intuitively, consider the choice the

principal would want to make about committing to disclose information about

her costs. If the value of retaining high productivity workers (gPH) is sufficiently

high, she would want to commit to fully disclose her costs. The reason is that,

in doing so, the high productivity agents never become pessimistic—either they

learn they are high productivity when a bonus can be paid, or they learn nothing

when a bonus cannot be paid—and when gPH is high, maximising the belief of

high productivity agents is the principal’s priority. There are also other ques-

tions of interest that could be answered by allowing for a more general class

of mechanisms for disclosing information about bonuses. For example, if from

an ex ante point of view, one of the two agents was more likely to have high

productivity, should the principal commit to disclose more or less information

about the realised bonus of the ‘good’ or the ‘bad’ agent?

The model has also abstracted from how a decision to commit to trans-

parency affects the composition of workers within a firm. In a well known em-

pirical study, Lazear (2000) finds that performance pay has a significant effect

on the sorting into a firm—the introduction of performance pay means that the

firm’s workforce becomes more productive. A natural (theoretical) question is:

what effect does transparency have on the sorting of workers into firms? The

theoretical model in Cullen and Pakzad-Hurson (2018) addresses this question

within a simple framework with homogeneous workers, but it is not clear what

will happen with heterogeneous workers within the signalling framework I have

developed.
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Appendix to Chapter 2

1 Proofs

1.1 Proof of Proposition 7

Existence simply follows from inequalities 3.1, 3.2, 3.3, 3.4 and the discussion

following them.

For uniqueness, I start by considering (the simpler case) of no transparency.

First, using the intuitive criterion, I rule out equilibria where there is an off-path

choice of bonus. Then, I show that there can only be a single mixed strategy

equilibrium, and when gPH is sufficiently large and gPL is sufficiently small this

does cannot exist. In the case of transparency, however, there are many types of

equilibria to rule out. I start this section of the proof by outlining the key steps

to ruling out other possible equilibria and then fill in the details.

No Transparency.

Consider each agent i separately (this can be done since the payoffs of the

principal is separable across agents). There are two types of equilibria where

either bi = 0 or bi = 1 are played with zero probability when λ = 1.

First, there cannot be an equilibrium with pooling on bi = 1 since type36

θi = L will always have an incentive to deviate to bi = 0. The agent’s beliefs

following bi = 0 is p0 (note that this belief if pinned down since it is ‘on-path’

when λ = λH) and means such a deviation benefits the principal.

Second, the intuitive criterion can rule out an equilibrium with pooling on

bi = 0. To support such an equilibrium, it must be that following the off-path

action bi = 1 agent i’s belief of his productivity is sufficiently pessimistic that

neither type, in particular type θi = H, will have an incentive to deviate.37 The

principal’s (expected) equilibrium payoff for type θi is

36In this context ‘type’ is the productivity of agent i that the principal has observed. Also
recall that when I discuss a strategic decision by the principal it is assumed that λ = 1.

37I use the textbook notation in Fudenberg and Tirole (1991).
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V ∗(θi) = F (p0g
A
H)gPθi . (1.1)

Now consider the maximum possible payoff for the principal following a

deviation to bi = 1 and a best response from the agent given any beliefs that the

agent can have. For each type, the maximum payoff is obtained when the agent

is as optimistic as possible—i.e. when agent i’s belief is that following bi = 1

he has productivity θi = H with probability one. In this case, the (expected)

payoff for type θi is from a deviation that induces the most optimistic belief is

E [V (θi)] = −1 + F (gAH)gPθi . (1.2)

From 3.2 type θi = L does strictly worse from this deviation (because pN <

p0). If gPH is sufficiently high, type θi = H does benefit from this deviation

(because p0 < 1). This means that following a deviation to bi = 1 agent i

assigns probability 0 to type θi = L. Such an equilibrium will fail the intuitive

criterion since—given that a deviation must be by type θi = H—type θi = H

gets a strictly higher payoff from deviating.

I now rule out all possible mixed strategy equilibria—note that such equi-

libria never have off-path actions and so the intuitive criterion has no bite.38 I

begin with the following Lemma.

Lemma 5. There cannot be an equilibrium where bi = 1 is played with positive

probability when θi = L and bi = 0 is played with positive probability when

θi = H.

Proof. This can be shown by contradiction. Suppose such an equilibrium existed,

it would be the case that the following two inequalities must be satisfied

F (p̄0g
A
H)gPH ≥ −1 + F (p̄1g

A
H)gPH ,

−1 + F (p̄1g
A
H)gPL ≥ F (p̄0g

A
H)gPL ,

where p̄0 = Pr[θi = H|bi = 0;σ] and p̄1 = Pr[θi = H|bi = 1;σ] and σ is the

principal’s strategy in the candidate equilibrium. Rearranging these inequalities

gives

1/gPH ≥ F (p̄1g
A
H)− F (p̄0g

A
H) ≥ 1/gPL ,

which leads to a contradiction since gPH > gPL > 0.

38Also note that any possible mixed strategy equilibria must have the same mixing for both
types under the Assumption 7.
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Next, I show that when conditions 3.1 and 3.2 are satisfied—so that a pure

strategy separating equilibrium exists—I show there is at most one mixed strat-

egy equilibrium. In this equilibrium only one type mixes and so it can be de-

scribed as a ‘partially separating equilibrium’. Then, I provide a condition such

that the pure strategy separating equilibrium still exists and the mixed strategy

equilibrium does not exist.

Lemma 6. When 3.1 and 3.2 are satisfied there is at most one mixed strategy

equilibrium. In this equilibrium the principal plays bi = 0 with probability 1 when

θi = L and λ = 1 and mixes between bi = 0 and bi = 1 when θi = H and λ = 1.

If (
F (gAH)− F (p0g

A
H)
)
gPH > 1,

this equilibrium does not exist.

Intuitively, this final condition is required for this result because if the payoff

from inducing a high posterior (gPH) is sufficiently high, it cannot be the case that

the principal would ever be indifferent between paying a bonus (and inducing a

high posterior) and not paying a bonus (and inducing a lower posterior).

Proof. From Lemma 5 there cannot be an equilibrium in which both types both

mix over bi = 0 and bi = 1. First consider if type L mixes and type H plays

bi = 1 with probability 1. Type L’s indifference condition is given by

F (p̄1g
A
H)− F (p̄0g

A
H) =

1

gPL
,

where p̄1 and p̄0 are defined as before. Since p̄1 < 1 and p̄0 > pN it follows that

3.2, the incentive constraint that ensures that the low type does not want to pay

a bonus, is violated.

So the only possible mixed strategy equilibria have type H mixing and type

L playing bi = 0 with probability 1. In such an equilibrium type H’s indifference

condition is given by

F (p̄1g
A
H)− F (p̄0g

A
H) =

1

gPH
. (1.3)

Note that in such an equilibrium it is the case that p̄1 = 1. Furthermore, note

that 3.1 and 3.2 can also be satisfied under such an equilibrium. The equilibrium

is pinned down by p̄0. Inverting 1.3 gives

p̄0 =
1

gAH
F−1

[
1

gPH
+ F (gAH)

]
. (1.4)

Calculating p̄0 by Bayes rule gives
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p̄0 =
p0(1− qσH)

1− qp0σH
, (1.5)

where σH ≡ Pr[bi|θi = H;σ]. Since 1.5 decreases in σH when p0 ∈ (0, 1), it

must be that there is a unique σH that solves 1.4 and 1.5. It follows that there

is a unique mixed strategy equilibrium.

Furthermore since p0 > p̄0 when σH ∈ (0, 1),

F (gAH)− F (p0g
A
H) < F (p̄1g

A
H)− F (p̄0g

A
H) =

1

gPH
,

where the equality follows from 1.3. Therefore if gPH is sufficiently large and

F (gAH)− F (p0g
A
H) >

1

gPH
,

this leads to a contradiction—so a mixed strategy equilibrium does not exist.

Note that this condition can be consistent with 3.1 and 3.2—since it essentially

requires gPH to be sufficiently large—and so a pure strategy separating equilibrium

still exists.

Transparency.

Recall the notation introduced in the main text to denote mixed strategies

in the transparency subgame:

σ
bibj
θiθj
≡ Pr[b1 = bi, b2 = bj |θ1 = θi, θ2 = θj ].

There are many possible strategies in the case of transparency. In order

to make the exposition more clear, I graphically illustrate the strategies that I

consider for the principal (when λ = 1) as in Figure 2.4.

The proof here will rule out all possible ‘diagonal’ mappings on the diagram

above such as the bold line in Figure 2.4 from (H,H) to (1, 0) which would

represent σ10
HH . There are two possible types of strategies that must be ruled out

in any equilibria. The first is where there is a bonus pair that is not played (when

λ = 1); the second is where there is mixing by one type from the principal.39

The first possibility occurs in the mapping in Figure 2.4; the second occurs in

the mapping in Figure 2.5—where types (H,H) and (L,L) mix over (1, 1) and

(0, 0) as depicted by the bold lines. Before making the formal arguments, I

39In this context ‘type’ refers to the pair of productivities for the agents when λ = 1. I will
also write the strategy of the principal as a pair (bi, bj) to simplify notation.
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(L,L)

(L,H)

(H,L)

(H,H)

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Figure 2.4: Example of a strategy resulting in an off-path action: On the
left hand side is the productivity of the agents (θ1, θ2)—or ‘type’ of the principal;
on the right hand side is the bonus (b1, b2) that the principal pays. The bonus
pair (1, 1) is never played with this set of strategies.

outline the steps in the proof, then I provide the details. Note that each step

builds on previous steps, and throughout I assume that I can make gPH and gPL
sufficiently large and small as required, and when other parametric restrictions

in Assumption 9 are required, I note that this is the case.

Step 1: Rule out equilibria where types (H,H) and (L,L) ‘cross over’, so it is not

possible to have an equilibrium with both σ11
LL > 0 and σ00

HH > 0 (as, for

example, in Figure 2.5). ‘Cross over’ refers to the diagonals crossing each

other as in Figure 2.5.

Step 2: Rule out equilibria where two other types ‘cross over’, e.g. it is not possible

for both σ11
HL > 0 and σ10

HH > 0 to be the case in an equilibrium.

Step 3: Show that in any equilibrium it must be that σ00
LL = 1.

Step 4: Rule out equilibria where σ11
θiθj

= 0 for all (θi, θj) (as, for example, in Figure

2.4) with the intuitive criterion. Note that this requires the restrictions on

parameters from Assumption 9. Combining Steps 1, 2 and 4 means that

it must be that σ11
HH > 0.

Step 5: Show that in an equilibrium where σ11
HH > 0 it must be that σ11

HH = 1.

Step 6: Show that in an equilibrium where σ11
HH = 1 and σ00

LL = 1 it must be that

σ10
HL > 0. This step requires ruling out equilibria where σ10

θiθj
= 0 for all

(θi, θj) with the intuitive criterion. Note that this requires the restrictions

on parameters from Assumption 9.
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(L,L)

(L,H)

(H,L)

(H,H)

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Figure 2.5: Example of a strategy with mixing: Types (H,H) and (L,L)
mix by paying bonuses (1, 1), (0, 0) with positive probability.

Step 7: Show that in an equilibrium where σ11
HH = 1, σ00

LL = 1 and σ10
HL > 0 it

must be that σ11
HL = 0.

Step 8: Show that in an equilibrium where σ11
HH = 1, σ00

LL = 1 and σ10
HL > 0 it

must be that σ00
HL = 0. Combining Steps 6, 7 and 8 means that it must be

that σ10
HL = σ01

LH = 1.

Now I turn to the formal argument to fill in the details on the steps above.

Define the posterior probabilities of agent i, given the principal’s strategy σ,

following bonuses bi and bj as

p̄bibj ≡ Pr[θi = H|bi, bj ;σ].

Step 1.

A similar result to Lemma 5 can be derived—this rules out equilibria with

‘cross overs’ described above and illustrated in Figure 2.5.

Lemma 7. There is no equilibrium with σ00
HH > 0 and σ11

LL > 0.

Proof. If σ00
HH > 0, type (H,H) must (weakly) prefer to pay bonuses (0, 0) to

(1, 1). Similarly, if σ11
LL > 0, type (L,L) must (weakly) prefer to pay bonuses

(1, 1) to (0, 0). These inequalities are

2F (p̄00g
A
H)gPH ≥ −2 + 2F (p̄11g

A
H)gPH ,

−2 + 2F (p̄11g
A
H)gPL ≥ 2F (p̄00g

A
H)gPL .
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(L,L)

(L,H)

(H,L)

(H,H)

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Figure 2.6: Mixing by both type (H,H) and types (H,L) and (L,H).

Rearranging and combining these inequalities gives

1/gPH ≥ F (p̄11g
A
H)− F (p̄00g

A
H) ≥ 1/gPL .

Since gPH > gPL > 0 this leads to a contradiction.

Step 2.

Now, I show that mixing across the other types, as, for example, in Figure

2.6, can also be ruled out. I start with a Lemma similar to Lemma 7.

Lemma 8. There is no equilibrium with both σ10
HH = σ01

HH > 0 and σ11
HL =

σ11
LH > 0; there is no equilibrium with both σ00

HL = σ00
LH > 0 and σ10

LL = σ01
LL > 0.

The proof is very similar to the proof of Lemma 7 and is omitted.

Step 3.

Now I show that in any equilibrium it must be σ00
LL = 1. The intuition

for this is that if gPL is sufficiently small there is no possible benefit that makes

incurring the cost of a bonus worthwhile for type (L,L).

Lemma 9. In any equilibrium it must be that σ00
LL = 1.

Proof. This is shown by contradiction. Suppose that there was an equilibrium

with σ00
LL < 1 and in this equilibrium type (L,L) plays (b′1, b

′
2) 6= (0, 0) with

positive probability and this action induces a posterior belief for the two agents of

(p′1, p
′
2) ∈ [0, 1)2. Also suppose that choosing b = (0, 0) induces belief (p̄00, p̄00)—

note that this is pinned down since even if σ00
LL = 0 is not off-path. It must be
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that (b′1, b
′
2) is weakly preferred to b = (0, 0) by type (L,L)

−(b′1 + b′2) + F (p′1g
A
H)gPL + F (p′2g

A
H)gPL ≥ F (p̄00g

A
H)gPL + F (p̄00g

A
H)gPL .

Rearranging this gives

F (p′1g
A
H)− F (p̄00g

A
H) + F (p′2g

A
H)− F (p̄00g

A
H) ≥ (b′1 + b′2)/gPL .

Since F (p′1g
A
H)− F (p̄00g

A
H) + F (p′2g

A
H)− F (p̄00g

A
H) ≤ 2, for sufficiently small gPL

this leads to a contradiction for any p′1, p
′
2.

Step 4.

Now I use the multi-receiver intuitive criterion refinement to rule out equi-

libria where σ11
θiθj

= 0 for all (θi, θj).

Lemma 10. Under the multi-receiver intuitive criterion refinement there cannot

be an equilibrium with σ11
θiθj

= 0 for all (θi, θj).

Proof. In order to apply the intuitive criterion refinement, the equilibrium pay-

offs of each type of principal need to be determined. However, there are multiple

equilibria in which σ11
θiθj

= 0 for all (θi, θj). Since in any equilibrium it must be

that σ00
LL = 1, only the actions of types (H,H), (H,L) and (L,H) need to be

determined. By Lemma 8, there are only three possible equilibria:

1. σ00
LL = σ00

LH = σ00
HL = 1 and σ10

HH = σ01
HH = 1/2;

2. σ10
HH = σ01

HH = 1/2, σ00
LL = 1 and σ10

HL = σ01
LH ∈ (0, 1];

3. σ00
θiθj

= 1 for all (θi, θj).

(1) cannot be an equilibrium for large gPH since type (H,L) and (L,H) will have

an incentive to deviate to (1, 0) or (0, 1) and induce a belief of (1, 1).

The intuitive criterion can rule out putative equilibrium (2). The argument

is as follows. The equilibrium payoffs of the types are:40

V ∗(H,H) = −1 +
(
F (p̄10g

A
H) + F (p̄01g

A
H)
)
gPH ,

V ∗(H,L) = −1 + F (p̄10g
A
H)gPH + F (p̄10g

A
H)gPL ,

V ∗(L,L) = 2F (p̄00g
A
H)gPL .

However, note that the strategies above imply that p̄10 = 1 while p̄01, p̄00 < 1.

Consider a deviation to the off-path action b = (1, 1). The most favourable

40Note I omit type (L,H) since the analysis is identical to that of type (H,L).
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belief that this could induce a principal of any type is (1, 1). However, if gPL
is sufficiently small then neither types (L,L) nor (H,L) will benefit from this

deviation. If gPH is sufficiently large then type (H,H) will benefit, and thus be

the only type that does not get deleted at the first round of iterations. Now with

only type (H,H) remaining, the deviation to b = (1, 1) will clearly give this type

a greater payoff than her equilibrium payoff and thus this equilibrium will fail

the (multi-receiver) intuitive criterion.

An equilibrium (3) can exist with off-path beliefs following b 6= (0, 0) that

are the same as the on-path belief p0 for both agents. The intuitive criterion can

rule out such an equilibrium under Assumption 9. In such an equilibrium, the

equilibrium payoffs of the types are:

V ∗(H,H) = 2F (p0g
A
H)gPH ,

V ∗(H,L) = F (p0g
A
H)(gPH + gPL ),

V ∗(L,L) = 2F (p0g
A
H)gPL .

Consider a deviation to the off-path action b = (1, 1). Clearly if gPH is sufficiently

large and gPL is sufficiently small then under the most favourable belief, (1, 1),

type (H,H), (H,L) and (L,H) all benefit from such a deviation, and type (L,L)

does not benefit from such a deviation. This means that the deviation cannot

be made by type (L,L) and this type is eliminated.

So the remaining types are (H,H), (H,L) and (L,H) and so the possi-

ble beliefs that can be induced by a deviation to b = (1, 1) are (p1, p2) where{
(p1, p2) ∈ [0, 1]2 : p1 + p2 ≥ 1

}
. In order to show that the equilibrium fails the

intuitive criterion, I show that type (H,H) always benefits from this deviation

for any belief that this induces within the set above. More formally, following

the definition in Appendix 2, for b = (1, 1), J(b) = (L,L) and θ′ = (H,H), I

show that

V ∗(θ′) < min
(ūA1 ,ū

A
2 )∈(BR1(Θ\J(b),b),BR2(Θ\J(b),b))

V (b, ūA1 , ū
A
2 , θ

′).

Note that the best responses of the agents correspond directly to the beliefs that

are induced by deviation. The inequality above can be verified by checking that

the following holds for all beliefs (p1, p2)

−2 +
(
F (p1g

A
H) + F (p2g

A
H)
)
gPH > 2F (p0g

A
H)gPH .

Rearranging this give the first inequality in Assumption 9, and so this is satisfied
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by assumption.

By Lemma 10 it must be that σ11
θiθj

> 0 for some (θi, θj), and by Lemmas

7 and 8, it cannot be the case that σ11
θiθj

> 0 for some (θi, θj) 6= (H,H) and

σ11
θiθj

= 0 for (θi, θj) = (H,H). Therefore it must be that σ11
HH > 0.

Step 5.

Now I show that if gPH is sufficiently large, σ11
HH > 0 implies that σ11

HH = 1.

Lemma 11. If gPH is sufficiently large then in any equilibrium where σ11
HH > 0

it must be that σ11
HH = 1.

Proof. If gPH is sufficiently large it has already been shown that σ00
HH = 0. So if

σ11
HH < 1 it must be that σ10

HH = σ01
HH > 0. The indifference condition for type

(H,H) is

−1 +
(
F (p̄10g

A
H) + F (p̄01g

A
H)
)
gPH = −2 + 2F (p̄11g

A
H)gPH .

Rearranging this gives

1/gPH = 2F (gAH)−
(
F (p̄10g

A
H) + F (p̄01g

A
H)
)
,

= ε > 0.

The final inequality follows since p̄01 < 1 unless σ01
LH = 0. However it must be

that σ01
LH > 0, because if not then p̄11 = p̄01 and so type (H,H) strictly benefits

from playing (0, 1) meaning that σ11
HH = 0.

So now I have restricted equilibria to those that take the form as in Figure

2.7.

Step 6.

Since it has already been established that in any equilibria σ11
HH = σ00

LL = 1,

it is now only required to consider the strategy of types (H,L) and (L,H). Now

I rule out the other possible type of equilibria with ‘off-path’ actions—where

σ10
θiθj

= σ01
θiθj

= 0 for all (θi, θj).

Lemma 12. The multi-receiver intuitive criterion rules out equilibria with σ11
HH =

σ00
LL = 1 and σ10

θiθj
= σ01

θiθj
= 0 for all (θi, θj).

Proof. Type (H,L) must either play (0, 0) or (1, 1) in such an equilibrium. I first

show that if gPH is sufficiently large it must be the case that σ00
HL = 0. To see this
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(L,L)

(L,H)

(H,L)

(H,H)

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Figure 2.7: Type (H,H) plays σ11
HH = 1 and types (H,L) and (L,H) mix

σ11
HL, σ

10
HL, σ

00
HL ∈ [0, 1].

consider an equilibria where σ00
HL > 0. It must be that the principal (weakly)

prefers to play (0, 0) over (1, 1), and so

F (p̄00g
A
H)(gPH + gPL ) ≥ −2 + F (p̄11g

A
H)(gPH + gPL ).

It must be the case that p̄00 < p̄11, and so if gPH is sufficiently large, this inequality

is not satisfied.

So now consider an equilibrium with σ11
HH = σ00

LL = σ11
HL = 1, the equilibrium

payoffs are:

V ∗(H,H) = −2 + 2F (pHg
A
H)gPH ,

V ∗(H,L) = −2 + F (pHg
A
H)(gPH + gPL ),

V ∗(L,L) = 2F (pT g
A
H)gPL .

Recall that pH is defined as pH ≡ 1
2−p0

. Now consider a deviation to b =

(1, 0). As in the proof of Lemma 10, first type (L,L) can be eliminated if gPL
is sufficiently small. The possible beliefs that can be induced by a deviation

from the remaining types are (p1, p2) where
{

(p1, p2) ∈ [0, 1]2 : p1 + p2 ≥ 1
}

. As

before, I show that given type (L,L) has been eliminated, type (H,H) will want

to deviate for any belief that is induced.

To verify that type (H,H) always benefits from the deviation the payoffs

in equilibrium must be strictly less than the payoff of a deviation that induces

belief (p1, p2), this is given by the following inequality

−1 +
(
F (p1g

A
H) + F (p2g

A
H)
)
gPH > −2 + 2F (pHg

A
H)gPH .
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Rearranging this give the second inequality in Assumption 9, and so this is

satisfied by assumption.

Now I rule out type (H,L) and (L,H) playing strategies b 6= (1, 0) and

b 6= (0, 1).

Step 7.

Lemma 13. If 3.4 is satisfied then in any equilibrium where σ10
HL = σ01

LH > 0

and σ11
HH = 1 it must be that σ11

HL = σ11
LH = 0.

Proof. If σ11
HL = σ11

LH > 0 and σ10
HL = σ01

LH > 0 then

−2 + F (p̄11g
A
H)(gPH + gPL ) = −1 + F (p̄10g

A
H)gPH + F (p̄01g

A
H)gPL .

Rearranging this gives

(
F (gAH)− F (p̄11g

A
H)
)
gPH +

(
1− F (p̄11g

A
H)gPL

)
= 0. (1.6)

To get this expression I have made use of the fact that σ01
LL = σ10

LL = 0 and σ11
HH =

1 meaning that p̄10 = 1 and p̄01 = 0. Since p̄11 < 0, if gPH is sufficiently large and

gPL is sufficiently small, then the LHS of equation 1.6 is strictly positive—which

leads to a contradiction.

Step 8.

Lemma 14. In any equilibrium where σ11
HH = σ00

LL = 1 and σ10
HL = σ01

LH > 0 it

must be that σ00
HL = σ00

LH = 0.

Proof. If σ00
HL = σ00

LH > 0 and σ10
HL = σ01

LH > 0 then

F (p̄00g
A
H)(gPH + gPL ) = −1 + F (gAH)gPH .

Since p̄00 < 1, if gPH is sufficiently large this equality will no longer hold.

So it must be that σ10
HL = σ01

LH = 0. This completes the proof of Proposition

7.

1.2 Proof of Proposition 8 and Corollary 2

The proof just requires the calculation of DTN in the two examples, F (x) = x

and F (x) = x1/4; q = 0.5; p0 = 0.5, gPH = 11; gPL = 1.2; gAH = 0.4.
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Corollary 2. Assume that in both subgames the pure strategy separating equi-

librium exists and is selected. If F is uniform transparency is optimal.

Proof. Substitute F (x) = x, pN and pT into 3.8 to get

1

2
(EV (T )− EV (N)) =

2gAH(gPH − gPL )(1− p0)p3
0(1− q)2q

(1− p0q)(1− 2p0q + p2
0q)

.

The numerator is clearly positive, and the denominator is also positive since

1− 2p0q + p2
0q = q(1− p0)2 + (1− q) > 0.

1.3 Proof of Proposition 9

Part (1) is immediate from 3.8 since the first half (which is positive) is increasing

in gPH and the second half is not dependent on gPH .

Part (2) is as follows. First, note that gPH = ḡP+(1−p0)∆ and gPL = ḡP−p0∆.

Applying this to 3.8 gives

1

2

∂DTN

∂∆

∣∣∣∣
ḡP

=
1

2

∂DTN

∂gPH

∂gPH
∂∆

+
1

2

∂DTN

∂gPL

∂gPL
∂∆

= q(1− p0)p0

(
F (pNg

A
H)− (1− p0)F (pT g

A
H)
)
.

So ∂DTN
∂∆

∣∣∣
ḡP
> 0 if and only if

F (pT g
A
H)

F (pNgAH)
<

1

1− p0
.

1.4 Corollary 3 and proof

Corollary 3. When F is uniform the comparative static in part (2) of Proposi-

tion 9 is always strictly positive.

When F is uniform:

∂DTN

∂∆

∣∣∣∣
ḡP

= F (pNg
A
H)− (1− p0)F (pT g

A
H)

=
p2

0(1− q)2

(1− p0q)(1− 2p0q + p2
0q)

gAH > 0.

It follows that condition to ensure that the comparative static in part (2) of

Proposition 9 satisfied, and so the comparative static is strictly positive.
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1.5 Proof of Proposition 10

Recall that ∆ and ḡP are defined as ∆ ≡ gPH − gPL and ḡP ≡ p0g
P
H + (1− p0)gPL .

Substituting these into 5.1 and taking the derivative gives

1

2

∂D′TN
∂∆

∣∣∣∣
ḡP

= p0(1− p0) [(1− q)(1− p0)(F1 − Fp̂N )− qp0(F2 − Fp̂N )]

+ (Fp̂T − Fp̂N )p0(1− p0)(p0 − q). (1.7)

Part (1) just follows from the fact that when p0 = 1/2, p̂N = p̂T meaning

that the second part of 1.7 is zero.

For part (2) when F (x) = x, then

Fp̂N = p̂NF1 + (1− p̂N )F2,

Fp̂T = p̂TF1 + (1− p̂T )F2.

Substituting this into 1.7 gives

1

2

∂D′TN
∂∆

∣∣∣∣
ḡP

= (F1 − F2)p0(1− p0)×

[((1− q)(1− p0)(1− p̂N )− qp0p̂N ) + (p̂T − p̂N )(p0 − q)] ,

= (F1 − F2)p0(1− p0)
(1− q)q(q(p0 − 1)3 − p3

0(1− q))
((p0 − q)2 + q(1− q))(−q(1− p0)− p0(1− q))

.

The final expression is clearly positive if and only if F1 > F2, or equivalently if

and only if gA(H,λH) > gA(L, 1).

Part (3) follows from the fact that when gA(H,λH) > gA(L, 1) the first part

of 1.7 is positive and when p0 > max
{
q, 1

2

}
the second part is also positive.

Part (4) follows from the fact that when gA(L, 1) > gA(H,λH) the first part

of 1.7 is negative and when q > p0 >
1
2 or 1

2 > p0 > q the second part is also

negative.

1.6 Proof of Proposition 11

The unknown state (which was previously (λ, θ1, θ2)) can effectively be reduced

to the bonus that the principal will pay following aP which is (b1, b2) ∈ {0, 1}2.41

Note that if λ = λH then the state is (0, 0) for any θ1 and θ2. I begin by explaining

why such a simplification is possible. Within the state (0, 0) the principal has

different productivity types and thus different incentives to deviate, but for any

41In this context I refer to this pair as the ‘state’.
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productivity type pair it is the case that the principal prefers to induce a higher

posterior belief for either agent. Note that when the state is (0, 0) the posterior

of the agents is determined purely through the choice of aP since there will never

be a bonus. If there was an equilibrium in which the principal chose a different

aP within the state (0, 0), and these choices induced different posterior beliefs

for the agents then the principal would have an incentive to deviate to the aP

that induced the higher posterior belief. This means that the principal must

play the same aP for any realisation within the state (0, 0).

Now I show that in any equilibrium the principal must choose transparency

(aP = T ) in every state. I begin by considering what happens in the state (1, 1).

Here, since the beliefs of the agents will both be that θi = H with probability 1,

the principal is indifferent between aP = T and aP = N and so by assumption

the principal chooses aP = T . Now consider the other states (1, 0), (0, 1) and

(0, 0). Assume that in an equilibrium the principal plays aP = N in some state.

I show by contradiction that such an equilibrium cannot exist.

First, consider a possible equilibrium in which the principal plays aP = N

only in state (0, 0). Here the posterior belief of agent i following aP = N and

seeing bi = 0 is Pr[θi = H|aP = N, bi = 0] = pT and following aP = T and

seeing bi = 0 is Pr[θi = H|aP = T, bi = 0] = 0. So the principal can gain from

a deviation in which she chooses aP = N when the state is (0, 1). Here the

posterior belief of agent i is increased from 0 to pT and the posterior belief of

agent j 6= i remains unchanged.

Second, consider a possible equilibrium in which the principal plays aP = T

when the state is (0, 0) and aP = N otherwise. Here the posterior belief of the

agents will remain unchanged if aP = T is played in place of aP = N (since

when agent i sees aP = N and b = 0 he has a posterior of 0). This means that

by assumption the principal will play aP = T instead of aP = N .

Finally, consider a possible equilibrium in which the principal plays aP = N

in all three states (1, 0), (0, 1) and (0, 0). Here the posterior belief of agent i

will be Pr[θi = H|aP = N, bi = 0] = pN if they get no bonus and 1 if they

get a bonus. When the state is (0, 0) the principal can deviate to aP = T and

increase the posterior belief of agent i from pN to pT and so this cannot be an

equilibrium.

This means that in any equilibrium it must be the case that aP = T .42

42Note that there are different equilibria, that have different off-path beliefs in the no trans-
parency subgame.
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1.7 Proof of Proposition 12

The expected payoff (in the equilibrium selected by the intuitive criterion) when

aP = N is

1

2
EV (N) = q

(
p0(−b∗N + F (gAH)gPH) + (1− p0)(0 + F (pNg

A
H)gPL )

)
+(1−q)(ḡPF (pNg

A
H)),

where ḡP ≡ p0g
P
H + (1− p0)gPL . Substituting in b∗N = ∆Ng

P
L gives

1

2
EV (N) = q

(
p0(F (gAH)(gPH − gPL ) + F (pNg

A
H)gPL )

)
+ (1− q)(ḡPF (pNg

A
H)).

The expected payoff (in the equilibrium selected by the intuitive criterion)

when aP = T is

1

2
EV (T ) = q(p2

0(−b̄∗T + F (gAH)gPH) + p0(1− p0)(−b∗T + F (gAH)gPH) + (1− p0)2F (pT g
A
H)gPL )

+ (1− q)(ḡPF (pT g
A
H)).

Substituting in b∗T = ∆T g
P
L − F (pT g

A
H)gPL and b̄∗T = ∆T g

P
L gives

1

2
EV (T ) = q(p0(F (gAH)(gPH − gPL ) + F (pT g

A
H)gPL + (1− q)(ḡPF (pNg

A
H)).

Combining these gives

1

2
D′′TN ≡

1

2
(EV (T )− EV (N))

=
(
F (pT g

A
H)− F (pNg

A
H)
) (
qgPL + (1− q)ḡP

)
> 0.

(1.8)

1.8 Proof of Proposition 13

Both parts are immediate from the functional form of D′′TN in 1.8.

2 Definition of Intuitive Criterion with multiple re-

ceivers

As mentioned in the main text, the intuitive criterion is not defined for the

class of games with multiple receivers (agents in my terminology). In general

this potentially complicates things. For example, following the action of the

sender (and beliefs induced), if the receivers actions influence each other’s payoffs

(i.e. there is a game), it is not clear what set of potential outcomes should be
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considered for each possible belief induced. In the setting with a single receiver,

the intuitive criterion compares the payoff for the principal when the receiver best

responds to the sender’s equilibrium payoff. In my setting, since the receivers

(agents) have payoffs that do not depend of the belief of the other agent—and

so a game is not induced following the sender (principal’s) action—the best

responses can still be used as before, thus allowing the intuitive criterion to be

extended in a natural way.

The procedure I propose is as follows. As in the standard intuitive criterion,

at the stage where some types are excluded from a particular deviation, I con-

sider whether each type can possibly get a higher payoff than their (expected)

equilibrium payoff from that particular deviation given any possible beliefs of all

agents (receivers).43 Then having excluded these types, as in the single receiver

definition, an equilibrium fails the intuitive criterion if there is a type such that

a deviation gives a strictly higher payoff compared to the equilibrium payoff for

any best response of the agents (receivers) given that the type cannot be any of

those excluded.

More formally, I adapt the Definition 11.4 in Fudenberg and Tirole (1991).

Before going into the definition, I simplify the latter part of the game tree so

that the agents’ action is a choice of cutoff for which outside option they will

accept, rather than having a realisation of outside option then a binary stay/quit

decision—this is strategically equivalent to the game described in the text. De-

note the vector of cutoffs that the agents choose by ūA =
(
ūA1 , ū

A
2

)
∈ [0, 1]2,

so that aAi = Q if and only if ui < ūAi . I also introduce notation for best

responses given an action from the principal and belief that it induces. Let

T ⊆ Θ where Θ is the set of all possible θ = (θ1, θ2) ‘types’ of the principal

(productivity of the agents she employs). Let Ti denote the ith projection map

of T , Ti = proji(T ). Let µi ≡ µ(θi|b) be the beliefs of agent i following bonuses

b = (b1, b2).44 Denote the (expected) payoff of agent i in terms of the cutoff

strategy ūAi by Ui(b, ū
A
i , θi)—note that ūAi and θi do not affect the payoff of

agent j 6= i. Denote the principal’s (expected) payoff by V (b, ūA1 , ū
A
2 , θ). The set

of best response vectors for agent i when θ ∈ T and a bonus b is paid is given by

BRi(T, b) =
⋃

µi:µ(Ti|b)=1

BR(µi, b),

where

43The standard definition considers only the belief and action of the single receiver.
44Note that since θ1 and θ2 are independent, µ(θi|b) does not impose any restrictions on the

values that µ(θj |b) can take.
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BR(µi, b) = arg max
ūAi ∈[0,1]

∑
θi∈Ti

µ(θi|b)Ui(b, ūA1 , θi).

Definition 3 (Multi-receiver intuitive criterion). Fix a vector of equilibrium

payoffs for the principal: V ∗(·). For each strategy vector b, let J(b) be the set of

all θ such that

V ∗(θ) > max
(ūA1 ,ū

A
2 )∈(BR1(Θ,b),BR2(Θ,b))

V (b, ūA1 , ū
A
2 , θ).

If there exists θ′ and b such that

V ∗(θ′) < min
(ūA1 ,ū

A
2 )∈(BR1(Θ\J(b),b),BR2(Θ\J(b),b))

V (b, ūA1 , ū
A
2 , θ

′),

then the equilibrium fails the multi-receiver intuitive criterion.

The key features of the setting that allow the intuitive criterion to be ex-

tended in this way are:

1. Agent i’s payoff does not depend on agent j’s action. If this were not

the case then BR(µi, b) would not be defined in the way it has been above.

Instead the principal’s choice of b and the corresponding belief would induce

a game played between the two agents which means that the definition

would have to be adapted further;

2. Agents’ productivities are independent and so µ(θi|b) does not impose any

restrictions on the values that µ(θj |b) can take;

3. Agent i’s payoff does not depend on θj . Combined with independence

assumption above, this means that for a given b, BRi(T, b) does not re-

strict BRj(T, b) in any way. This means that the ‘max’ and ‘min’ over the

principal’s expected utility within the definition can be done dimension by

dimension.

3 Constraints from Section 5.1

In this Appendix I provide sufficient conditions for the equilibrium described in

Section 5.1 to exist in both subgames. I also verify that there exist parameter

values that satisfy these conditions.
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3.1 No transparency

Consider an equilibrium in the no transparency subgame where the principal

pays agent i bi = 0 if η = η0, bi = 1 if η = η1 or η2, and bi = 2 if η = η3. There

are 8 incentive constraints ensuring that each type does not deviate to one of

the other two possible bonus levels. As with 3.1 and 3.2, in Section 3, these will

be satisfied when gPL is small and gPH is large. It must also be the case that λH is

not too different from gPH/g
P
L . Intuitively, this latter condition means that types

η1 and η2 have similar incentives to deviate which means that in equilibrium

they pool.

The 8 constraints are as follows. Recall the notation from the main text—the

posterior probability of agent i being of high productivity given that he receives

a bonus bi = 1 is given by

p̂N ≡ Pr[θi = H|bi = 1; aP = N ]

=
(1− q)p0

(1− q)p0 + q(1− p0)
,

Fk ≡ F (gA(ηk)) and Fp̂N ≡ F
(
p̂Ng

A(η1) + (1− p̂N )gA(η2)
)
. I also normalise

F0 = 0.

The first two constraints ensure that type η0 does not choose bi = 1 and

type η1 does not choose bi = 0.45 These are given by

−0 + F0g
P
L ≥ −λH + Fp̂N g

P
L ,

−λH + Fp̂N g
P
H ≥ −0 + F0g

P
H .

The next sets of constraints ensure that type η2 does not choose bi = 2 and type

η3 does not choose bi = 1. These are given by

−1 + Fp̂N g
P
L ≥ −2 + F3g

P
L ,

−2 + F3g
P
H ≥ −1 + Fp̂N g

P
H .

Finally, there are constraints that ensure that type η2 does not choose bi = 0

and type η1 does not choose bi = 2. These are given by

−1 + Fp̂N g
P
L ≥ −0 + F0g

P
L ,

−λH + Fp̂N g
P
H ≥ −2λH + F3g

P
H .

45In this context ‘type’ refers to the agent i that the principal is facing given the agent’s
productivity and the principal’s costs η = (θi, λ).
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Note that if these constraints are satisfied there is no need for constraints that

ensure that type η0 does not choose a bonus level bi = 2 and type η3 does not

choose a bonus level bi = 0. Combining the 6 constraints above gives

(F3 − Fp̂N )gPH ≤ λH
Fp̂N g

P
L ≤ λH ≤ Fp̂N g

P
H

(F3 − Fp̂N )gPL ≤ 1 ≤ (F3 − Fp̂N )gPH

1 ≤ Fp̂N g
P
L .

3.2 Transparency

Consider an equilibrium in the transparency subgame where the principal again

the principal pays agent i bi = 0 if η = η0, bi = 1 if η = η1 or η2, and bi = 2

if η = η3. This equilibrium has an off-path action of paying a bonus pair (2, 0)

(or (0, 2)). To support the equilibrium the agents’ beliefs following this action

is that they are both type η0, the most pessimistic belief.

There are now 8 possible pairs of states that can occur for each agent (note

some of the 16 possible pairs such as (η0, η2) are not possible since λ must be the

same for both agents) and so there are potentially many incentive constraints

to consider. It is sufficient to consider only 18 of these constraints. Since there

are so many constraints it may seem problematic to find parameters that satisfy

all of these constraints, however when gPH/g
P
L = λH and gA(η1) = gA(η2) these

conditions simplify significantly (this is described in more detail later) and so

when this is satisfied it is much more straightforward to find parameters that

satisfy all the constraints.

The 18 constraints are as follows. Recall the notation from the main text—

the posterior probability of agent i being of high productivity given that he

receives a bonus bi = 1 and he sees the other agent receives a bonus bj = 1 is

given by

p̂T ≡ Pr[θi = H|bi = bj = 1; aP = T ]

=
(1− q)p2

0

(1− q)p2
0 + q(1− p0)2

,

and Fp̂T ≡ F
(
p̂T g

A(η1) + (1− p̂T )gA(η2)
)
.

The first 6 constraints are for types where λ = λH .46 First, type (η0, η0)

cannot prefer to pay bonuses (1, 0), and type (η1, η0) cannot prefer to pay bonuses

46Type in this context is a pair (ηi, ηj) for the two agents.
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(0, 0).47 These constraints can be simplified to

F1g
P
L ≤ λH ≤ F1g

P
H .

Next, there is a pair of constraints that ensure that type (η1, η0) does not pay

bonuses (1, 1) and type (η1, η1) does not pay bonuses (1, 0). These constraints

can be simplified to

(Fp̂T − F1)gPH + Fp̂T g
P
L ≤ λH ≤ (Fp̂T − F1)gPH + Fp̂T g

P
H .

Finally, there is a pair of constraints that ensure that type (η0, η0) does

not pay bonuses (1, 1) and type (η1, η1) does not pay bonuses (0, 0). These

constraints can be simplified to

Fp̂T g
P
L ≤ λH ≤ Fp̂T g

P
H .

Notice that when gPH/g
P
L = λH and gA(η1) = gA(η2) these three conditions

are all equivalent.

The next 6 constraints for types where λ = 1 and are similar to those above.

First, type (η2, η2) cannot prefer to pay bonuses (2, 1), and type (η3, η2) cannot

prefer to pay bonuses (1, 1). These constraints can be simplified to

(F3 − Fp̂T )gPL + (F2 − Fp̂T )gPL ≤ 1 ≤ (F3 − Fp̂T )gPH + (F2 − Fp̂T )gPL .

Next, there is a pair of constraints that ensure that type (η3, η2) does not pay

bonuses (2, 2) and type (η3, η3) does not pay bonuses (2, 1). These constraints

can be simplified to

(F3 − F2)gPL ≤ 1 ≤ (F3 − F2)gPH .

Finally, there is a pair of constraints that ensure that type (η2, η2) does

not pay bonuses (2, 2) and type (η3, η3) does not pay bonuses (1, 1). These

constraints can be simplified to

(F3 − Fp̂T )gPL ≤ 1 ≤ (F3 − Fp̂T )gPH .

There next 2 constraints that ensure that type (η1, η1) does not deviate to

47There will obviously be identical constraints for bonuses (0, 1) and types (η0, η1). I omit
these here and also later on when similar symmetric constraints need to be satisfied.
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higher bonuses of either (2, 1) or (2, 2). These constraints can be simplified to

(F3 − Fp̂T )gPH + (F2 − Fp̂T )gPH ≤ λH ,

and

(F3 − Fp̂T )gPH ≤ λH .

Similar to the 2 constraints above, there are 2 constraints that ensure that

type (η2, η2) does not deviate to lower bonuses of either (1, 0) or (0, 0). These

constraints can be simplified to

1 ≤ (2Fp̂T − F1)gPL ,

and

1 ≤ Fp̂T g
P
L .

The final set of 2 constraints ensure that type (η1, η0) does not pay bonuses

(2, 1) and that type (η3, η2) does not pay bonuses (1, 0). These constraints can

be simplified to
1

2
(F3g

P
H + F2g

P
L − F1g

P
H) ≤ λH ,

and

1 ≤ 1

2
(F3g

P
H + F2g

P
L − F1g

P
H).

The following parameters satisfy all 6 constraints under no transparency and

all 18 constraints under transparency: gPH = 10; gPL = 2;λH = 5; p0 = .5; q =

.5; gA(η1) = .7; gA(η2) = .8; gA(η3) = .91;F (x) = x. For these values η2 � η1, if

instead gA(η2) = .7; gA(η1) = .8 the conditions are still satisfied and η1 � η2.

4 Analysis of continuous choice of bonus

Throughout this section, I make a parametric assumption that F (gAH)−2F (pT g
A
H) >

0, which ensures it is possible to a pure strategy separating equilibrium under

transparency. Under no transparency a (pure strategy) separating equilibrium

must have a bonus, bi = bN > 0 when θi = H and λ = 1 and no bonus, bi = 0,

otherwise. To support such an equilibrium the off path beliefs must be such

that if bi ∈ (0, bN ) then agent i assigns probability 1 to θi = L (i.e. pessimistic

beliefs).48 The incentive constraints of the principal to ensure that she pays a

bonus when θi = H and λ = 1 and does not pay a bonus when θi = L and λ = 1

48The beliefs assigned to bi > bN do not matter since regardless of what these are neither
type would deviate to this choice of bi.
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are given by

−bN + F (gAH)gPH ≥ −0 + F (pNg
A
H)gPH ,

−0 + F (pNg
A
H)gPL ≥ −bN + F (gAH)gPL ,

respectively. Combining these gives

∆Ng
P
L ≤ bN ≤ ∆Ng

P
H , (4.1)

where ∆N ≡ F (gAH) − F (pNg
A
H). Applying the intuitive criterion refinement

results in the unique equilibrium with b∗N = ∆Ng
P
L .49

Under transparency a (pure strategy) separating equilibrium potentially has

different bonus levels depending on what both agents’ productivities are. When

λ = 1 the bonuses are given as in the table below.50

H L

H b̄T , b̄T bT , 0

L 0, bT 0,0

As before, the off-path beliefs that support such an equilibrium are that agent

i assigns probability 1 to θi = L when the principal pays a pair of bonuses

(bi, bj) 6= (0, bT ), (bT , 0), (b̄T , b̄T ).

There are now 6 incentive constraints that ensure: type (L,L) doesn’t devi-

ate to (H,L) and vis-versa, type (H,L) doesn’t deviate to (H,H) and vis-versa,

and type (L,L) doesn’t deviate to (H,H) and vis-versa.51 The constraints can

be simplified to

∆T g
P
L ≤ b̄T ≤ ∆T g

P
H ,

F (gAH)gPL ≤ 2b̄T − bT ≤ F (gAH)gPH ,

∆T g
P
L − F (pT g

A
H)gPL ≤ bT ≤ ∆T g

P
H − F (pT g

A
H)gPL ,

where ∆T ≡ F (gAH) − F (pT g
A
H). The unique equilibrium that survives the in-

tuitive criterion is at the intersection at the lowerbound of all of the above

49I omit the arguments for the intuitive criterion refinements in this section, since they are
very similar to the arguments given for Proposition 7.

50Note that in any pure strategy separating equilibrium an agent with productivity θi = L
must get a bonus of 0. If this was not the case the principal could deviate and pay a lower
bonus.

51There are obviously identical constraints for (L,H) but I omit these.
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inequalities. This means that

b∗T = ∆T g
P
L − F (pT g

A
H)gPL ,

b̄∗T = ∆T g
P
L .

Note that since it is assumed that F (gAH) − 2F (pT g
A
H) > 0 it must be that

b∗T > 0.

Proposition 12. Assume an equilibrium exists and is selected in which:

• in the no transparency subgame, the principal pays an agent b∗N if and only

if λ = 1 and the agent is of high productivity, and the principal pays 0

otherwise;

• in the transparency sugame, the principal pays both agents b̄∗T if and only

if λ = 1 and both agents are of high productivity, the principal pays b∗T

and 0 to the agent with high and low productivity respectively if and only

if λ = 1 and there is one agent with high productivity and one agent with

low productivity, and the principal pays 0 to both agents otherwise.

In such an equilibrium aP = T is always strictly preferred by the principal.

When λ = 1, under transparency the principal does not need to pay bonuses

as high as under no transparency. There are two cases where at least one agent

has high productivity and so a bonus is paid. The first has one agent with high

productivity and the other with low productivity. In this case, under trans-

parency, the cost of revealing to the low productivity agent that he is definitely

the low type is internalised by paying a lower bonus to the agent with high

productivity in order to signal to him that he is of high productivity. In effect

the principal can signal to agents that this is the state by paying lower bonuses

(compared with no transparency) because the agents know that this comes at a

cost.52 The second case has both agents with high productivity. Again, under

transparency, the principal does not need to pay bonuses as high as she does

under no transparency. The reason is that when both agents aren’t paid a bonus

agents are more likely to stay at the firm under transparency, but when both

agents are paid a bonus there is no difference under transparency and no trans-

parency. This results in the bonus having to be higher under no transparency to

52In the discrete bonus set-up of the previous section, when there is one high and one low
productivity agent, the principal was forced to pay the same signalling cost. Since the posterior
beliefs in the no transparency subgame were more favourable for this realisation of states, this
resulted in a higher expected payoff for no transparency compared to transparency. Due to the
lower signalling costs, there is no difference in the expected payoff with the continuous bonuses.
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ensure that when the agents have low productivity the principal does not have

an incentive to deviate (and realise a greater increase in the posterior belief). In

addition to the lower bonuses, when no bonus is paid transparency is better for

the principal (since pT > pN ).

As before, I analyse the comparative statics on the difference in the expected

value of transparency and no transparency.

Proposition 13. Assume both transparency and no transparency lead to the

pure strategy equilibrium selected by the intuitive criterion, then:

1. increasing gPH while keeping all other parameters (gPL , g
A
H , p0, q, F (·)) con-

stant leads to an increase in D′′TN ;

2. increasing gPH − gPL while keeping all the parameters gAH , p0, q, F (·), and ḡP

constant leads to an increase in D′′TN .

Part (2) of the result means it must be that the difference in payoff between

transparency and non-transparency is increasing as there is more heterogeneity

in productivity. As in the previous sections, this suggests that a firm facing a

greater level of heterogeneity in productivity would want to commit to trans-

parency.

5 Correlation in agents’ productivity and outside op-

tion and agents receiving informative signals

Formally, I assume that ui ∼ F (ui|θi), and that this has full support for all

θi. The constraints for the principal can be derived in the same way as before.

Note that the belief of the agent is only updated with the additional information

learned from ui when the belief is interior—i.e. not at 0 or 1. For example, 3.1

becomes

[F (gAH |H)− F (p̂N (H)gAH |H)]gPH ≥ 1, (5.1)

where p̂N (θi) is the expected belief of the agent given that his productivity is θi

and he was not paid a bonus under no transparency. This can be computed by

Bayes rule, for example for θi = H

p̂N (H) ≡
∫ 1

0

pNf(u|H)

pNf(u|H) + (1− pN )f(u|L)
du.

Because F (·|θi) has full support, it follows that p̂N (H) < 1. So, as before, if

gPH is sufficiently large, then this constraint will be satisfied. For the other 3
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constraints—equivalent to 3.2, 3.3, and 3.4—it can also be shown that these are

satisfied if gPH and gPL are sufficiently large and small.

Next, the difference between transparency and no transparency can be de-

rived as in 3.8,

1

2
D̂TN ≡

1

2

(
EV̂ (T )− EV̂ (N)

)
= 2gPL

(
(1− q)(1− p0) + q(1− p0)2

) (
F (p̂T (L)gAH |L)− F (p̂N (L)gAH |L)

)
+ 2gPH(1− q)p0

(
F (p̂T (H)gAH |H)− F (p̂N (H)gAH |H)

)
− 2qp0(1− p0)gPLF (p̂N (L)gAH |L),

where p̂T (θi) is is the expected belief of the agent given that his productivity is θi

and he was not paid a bonus under transparency. This can be computed by Bayes

rule in a similar way to p̂N (θi). Since pT > pN , it follows that p̂T (·) > p̂N (·).
This means that the comparative statics on D̂TN with respect to the parameters

gPH and gPL do not change—i.e. Proposition 9 is still valid.

6 No bonus as perfect bad news

In this appendix I provide the formal results for the alternative model of Section

5.5 where no bonuses act as perfect bad news, rather than having a bonus act

as perfect good news (as in Section 3).

The model is as in Section 3, but with λH taking a finite value chosen so

that there exists an equilibrium in which the principal chooses bi = 0 if and only

if λ = λH and θi = L. In order to establish the conditions on the parameters

λH , gPL and gPH for existence, I consider the IC constraints of the principal in

such an equilibrium.

Define:

p̃N ≡ Pr[θi = H|bi = 1] =
p0

q + (1− q)p0
,

p̃T ≡ Pr[θi = H|bi = bj = 1] =
qp0 + (1− q)p2

0

q + (1− q)p2
0

,

and note that p̃N > p̃T .

I start with no transparency (aP = N). The principal must always pay a

bonus when θi = H, clearly it is sufficient to ensure that this is the case when

λ = λH—the constraint is weaker when λ = 1. The constraint is

−λH + F (p̃Ng
A
H)gPH ≥ 0.
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When θi = L the principal must only want to pay a bonus when λ = 1, so there

are two constraints

−1 + F (p̃Ng
A
H)gPL ≥ 0,

−λH + F (p̃Ng
A
H)gPL ≤ 0.

Now I consider the case of transparency (aP = T ). When θi = H the principal

must always pay a bonus. When λ = 1, since the other agent will always be paid

a bonus, the constraint is

−1 + F (p̃T g
A
H)gPH ≥ 0.

When λ = λH , clearly it is sufficient to ensure that the principal pays the bonus

when θj = H, the constraint is

−λH + F (p̃T g
A
H)gPH ≥ 0.

When θi = L and λ = 1, for any θj the constraint to ensure the principal pays

the bonus is

−1 + F (p̃T g
P
L )gPL ≥ 0.

When θi = L and λ = λH , it is sufficient that the constraint

−λH + F (gAH)gPL ≤ 0

is satisfied.

In order to satisfy these constraints, fixing λH , p0, q, the parameters gAH , gPH
and gPL can be chosen to satisfy

gPH ≥ max
{

1/F (p̃T g
A
H), λH/F (p̃Ng

A
H)
}

;

1/F (p̃T g
A
H) ≤ gPL ≤ λH/F (gAH).

Now as in 3.8, I provide an expression for the difference between the expected

value of transparency and no transparency for the principal and then show that

the comparative statics are analogous to those in Proposition 9.
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The expression for the difference is given by

1

2
D̃TN ≡

1

2
(EV (T )− EV (N))

= −q
(
F (p̃Ng

A
H)− F (p̃T g

A
H)
)
ḡP

+ (1− q)p0g
P
H

(
−F (p̃Ng

A
H) + (1− p0)F (gAH) + p0F (p̃T g

A
H)
)
.

If gPL is decreased (and all other parameters are held fixed), then the first

line is increased and the second line stays constant. If ḡP is held fixed and the

difference between gPH and gPL is increased, then the first line is constant and

the second line increases if and only if the expression in the brackets is positive

(which it is if there is not too much density in F between p̃T and p̃N ). This

means the comparative statics are analogous to those in Proposition 9.
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Chapter 3

Pay Transparency in

Organisations—A Dynamic

Model

1 Introduction

In the static signalling game analysed in Chapter 2, the continuation payoffs

of the players are exogenous. Natural assumptions are made so that when the

productivity of an agent is higher, the expected future surplus (or continuation

payoff) going to both the agent and the principal is higher. I provide micro-

foundations for these assumptions by analysing a dynamic model in which the

agents’ productivities evolve over time and the continuation values of the players

arise endogenously.1 The motive for the principal to pay a bonus is as in the static

game—paying a bonus to an agent signals to him that he has high productivity

today and so he is more likely to have high productivity tomorrow (and receive

further bonuses). I show that an equilibrium exists, in which, in every stage

game, the principal’s strategy is the same as the equilibrium of interest in the

static model. In this equilibrium, the principal’s and the agents’ continuation

values are increasing in the agents’ productivities—this matches the ‘reduced-

form’ assumptions in the static model. To demonstrate the robustness of the

comparative statics in the static model, I analyse setups that are analogous to

no transparency and transparency in the static model. I show numerically that

increasing the value of employing a high productivity agent makes transparency

1There is one slight discrepancy: As will become clear, in the dynamic model, given the
productivity of the agent, the principal prefers to retain an agent with a higher belief. This
is not built into the reduced form payoffs in the static model of Chapter 2. However, if they
were, the results would not qualitatively change.
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more favourable.

I start with a single agent which is analogous to no transparency in the static

model.2 Then, I analyse what I call ‘partial transparency’, which is analogous to

the transparency in the static model. Under partial transparency, I assume for

simplicity that only one of the two agents is ‘active’—and so chooses whether or

not to quit based on his (changing) belief. The other agent is assumed to always

get a bonus if the principal has funds available. The difference between a single

agent/no transparency and this setting is that the active agent is still able to

learn from the other agent. For example, if the active agent did not receive a

bonus and the passive agent did, the active agent infers that he must be of low

productivity. First, I show that in both settings an equilibrium exists for some

parameter values. Then, I numerically approximate the expected value of the

principal, and show that the comparative static result in Chapter 2 continues to

hold.

My model is related to reputation models with changing types—for exam-

ple, Phelan (2006). The agent is unsure of the ‘type’ of the principal (his own

productivity), and this evolves over time. His beliefs are updated by observing

the actions of the principal. A key difference between my model and the exist-

ing literature is that both the agents and the principal are long-run players—in

contrast in Phelan (2006), only the principal is a long-run player.

2 Model with a single agent

2.1 Set-up

I analyse a model with a single agent and principal. Time is discrete and infinite

and is denoted by t = 1, 2, ....

In period t, the agent has productivity given by θt ∈ {H,L}. This changes

stochastically over time through a Markov process, with persistence ρ ∈ (1
2 , 1),

so Pr[θt = θt−1] = ρ. The assumption that ρ > 1
2 means that the productivity

is positively correlated across consecutive periods. At t = 1 productivity is

drawn such that Pr[θ1 = H] = p0. In every period, there is a cost shock for

the principal λt ∈ {1,∞}. This is drawn independently over time from the

2Note that in reality it might be that even if the principal committed to no transparency
about bonuses, an agent could observe (and make inferences) from the exit of other agents.
Adding this into the analysis makes the problem intractable as the agent would have to keep
track of the (distribution over) higher order beliefs of the other agent. For this reason, I assume
that when the principal commits to no transparency, the agent observes neither the bonus nor
the exits of the other agent.
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distribution Pr[λt = 1] = q.3 In every period, the agent gets an outside offer ut

that is modelled as a lump sum payment. This is also drawn independently over

time from the distribution ut ∼ F [0, 1] where F has full support and no mass

points.

Stage game.

1. The principal privately learns the productivity of the agent (θt) and the

cost shock (λt).

2. The principal chooses whether or not to pay the agent a bonus, bt ∈ {0, b},
b > 0.4

3. The agent learns his outside option ut.

4. The agent chooses whether to stay at the firm or to quit, denote this

decision by aAt ∈ {S,Q}.

5. The players receive their payoffs for period t as described below. If the

agent chose to stay at the firm (aAt = S) then the players repeat the stage

game in period t+1, if the agent chose to quit the firm (aAt = Q) the game

ends.

Payoffs. Both players discount future periods with a common discount

factor δ ∈ (0, 1). The principal’s period t payoff is

Vt = −λtbt + 1[θt = H]v,

where v > b is the payoff from employing a high productivity worker. The payoff

for employing a low productivity worker is normalised to 0. The agent’s period

t payoff is

Ut = bt + 1[aAt = Q]ut.
5

3The independence across time corresponds to the set up of Section 3 in Chapter 2 in which
the agent does not have preferences over the principal’s costs today when deciding whether or
not to stay. It is also a simplify assumption made to ensure the problem is tractable. In reality
the principal’s costs may be positively correlated across consecutive periods as discussed in
Section 5.1 of Chapter 2. If there was correlation across periods, the principal would retain
private information making the problem much more challenging.

4Note that in the static model it was without loss to assume that b = 1 since it was in effect
a normalisation with the exogenously given continuation payoffs. Here due to the repeated
nature of the game, continuation payoffs become endogenous, this is no longer the case.

5Note that the lump sum payoff for quitting is equivalent to the discounted stream of future
payoffs of ūt in every future period where ūt = δ

1−δut.
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Equilibrium. I focus on Markov perfect equilibria (for the rest of the section

this is just ‘equilibrium’) where the publicly known ‘state’ variable is the agent’s

belief at the start of period t, pt ≡ Pr[θt = H|bt−1], where bt−1 = (b1, ..., bt−1) is

the publicly observed history of bonuses.6

2.2 Analysis of the single agent model

I construct an equilibrium in which, in the period t stage game, when the agent

has a belief pt:

• For any pt, the principal pays a bonus bt = b if and only if θt = H and

λt = 1;

• The agent chooses to stay at the firm (aAt = S) if and only if his expected

value of staying at the firm is greater than quitting the firm, which is the

case when

δU(pt+1(pt, bt)) ≥ ut,

where U(p) is the (expected) value for the agent of having a belief p (defined

formally below), and pt+1(pt, bt) = Pr[θt+1|pt, bt] is the belief in the next

period given the current belief and bonus in the current period (pt, bt).

The belief in period t is updated twice to get the belief in period t+1. First,

the agent observes bt and updates using Bayes rule. Defining p̂t(bt, pt) ≡ Pr[θt =

H|bt, pt] as the update to the belief following bt. Given the strategy described

above, this is

p̂t(1, pt) = 1 for all pt,

p̂t(0, pt) =
pt(1− q)
1− ptq

.

Second, this posterior belief undergoes the Markov transition that dictates how

the productivity evolves between periods, so

pt+1 = ρp̂t + (1− ρ)(1− p̂t).
6Note that this is technically slightly different from the standard concept of Markov equilib-

rium since the principal can condition her action on her private information and so her action
is not measurable with respect to the state. The reason that there is this difference is that the
stage game is in effect an extensive form game, whereas usually the stage game is a normal
form game. However, note that the principal’s strategy will be required to be measurable with
respect to the private information she learns in the current period, and in an equilibrium she
cannot, for example, condition her strategy on private information from previous periods.
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Figure 3.1: An example of agent’s belief path with a single agent.

It will be helpful to define a sequence of beliefs {pn}n=∞
n=1 where

p1 = ρ,

pn+1 =
pn(1− q)
1− pnq

ρ+

(
1− pn(1− q)

1− pnq

)
(1− ρ) for n ≥ 1.

The sequence starts with the most optimistic belief the agent can have, pt =

p1 = ρ, which occurs following a bonus in the previous period. Each step in the

sequence represents the lower belief when there has been an additional period

since the last bonus was paid—so a belief pn means that it has been n periods

since the last bonus was paid. The sequence is bounded below by 1−ρ, since even

if the agent had a posterior after a history of p̂t = 0, the transition probability

brings the belief back up to 1− ρ. Since the sequence is monotonic, this means

that the sequence converges to p∞, which solves the equation

p∞ =
p∞(1− q)
1− p∞q

ρ+

(
1− p∞(1− q)

1− p∞q

)
(1− ρ). (2.1)

I illustrate an example of a path of the agent’s beliefs in Figure 3.1.

Denote the expected value of an agent with belief pn by Un ≡ U(pn).7 These

7Note that this assumes that pt ∈
{
p1, p2, ..., pn, ...

}
for all t which will be the case if

p0 ∈
{
p1, p2, ..., pn, ...

}
. The results in the section continue to hold if this is not the case, but

the sequence of beliefs before the first bonus is paid cannot be written in this way, and so the
difference equations that are derived would also be different.
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can be written as difference equations:

Un = bqpn + qpn
(
Pr[u ≤ δU1]δU1 + (1− Pr[u ≤ δU1])E[u|u > δU1]

)
+(1−qpn)

(
Pr[u ≤ δUn+1]δUn+1 + (1− Pr[u ≤ δUn+1])E[u|u > δUn+1]

)
, for all n.

The first term is the probability that the agent will receive a bonus multiplied

the value of the bonus. The second term on the first line is the continuation

value of the agent when he gets a bonus. If he continues to the next period

his belief will be p1. There are two possibilities, his outside option is below the

(discounted) expected value and so he will stay at the firm; and that his outside

option is better than staying and so he quits. The final line is similar to the

second term on the first line, but the case where the agent does not get paid a

bonus, meaning his belief falls from pn to pn+1. This simplifies to

Un = bqpn+qpn
(
δF 1U1 + (1− F 1)I1

)
+(1−qpn)

(
δFn+1Un+1 + (1− Fn+1)In+1

)
,

(2.2)

where Fn ≡ F (δUn) and In ≡ E[u|u > δUn].8

In order to ensure that the strategy profile described above is an equilibrium,

it must be that the principal is best responding by choosing bt = b if and only

if λt = 1 and θt = H for any belief pt ∈
{
p1, p2, ..., p∞

}
. Before writing the

principal’s incentive constraints, the principal’s value for employing an agent

with given productivity and belief in the candidate equilibrium must be defined.

Define V n
θ as the principal’s expected value from period t onwards, given the

agent has productivity θt = θ and belief pt = pn, but before the principal learns

λt. These values satisfy the difference equations:

V n
H = v − bq + qF 1δ(ρV 1

H + (1− ρ)V 1
L ) + (1− q)Fn+1δ(ρV n+1

H + (1− ρ)V n+1
L ),

V n
L = Fn+1δ(ρV n+1

L + (1− ρ)V n+1
H ), for all n.

(2.3)

Notice that in the first equation, since the agent has high productivity, the

principal enjoys a payoff of v, and with probability q pays the bonus of value

b. In contrast, in the second equation, these benefits and costs do not occur.

The continuation probability and payoffs depend on the agent’s beliefs, which is

determined by whether or not the agent received a bonus. In the first equation,

where it is possible that the agent received the bonus, the belief in the following

8The parameters must be such that for some n, δUn < 1 so that the agent eventually quits
the firm with some probability. For n where δUn > 1, In is undefined, in such a case define
In ≡ 1 (since 1− Fn = 0 this is without loss).
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period is either p1 or pn+1 depending on whether or not the agent received the

bonus. The two terms are the probability of the agent staying at the firm and

the (discounted) expected continuation value of the principal in each of the two

cases. The second equation only has the one case where the agent does not

receive a bonus.

The incentive constraints of the principal ensure that when she sees the

agent has high productivity and she can pay a bonus, she does, and that when

she sees that the agent has low productivity she never pays a bonus. These need

to be satisfied for all possible beliefs that the agent can have. The first set of

constraints are

−b+ F 1δ(ρV 1
H + (1− ρ)V 1

L ) ≥ Fn+1δ(ρV n+1
H + (1− ρ)V n+1

L ), for all n.

The right hand side is the value when the principal deviates and doesn’t pay a

bonus when the agent has high productivity. Note that because the transitions

of θt are Markovian and the cost shocks λt are i.i.d., the principal does not retain

any instrumental private information. This is the reason that the continuation

value functions (V n+1
H and V n+1

L ) remain the same off the equilibrium path—as

on the right hand side of the constraint. The constraints can be simplified to

F 1(ρV 1
H + (1− ρ)V 1

L )− Fn+1(ρV n+1
H + (1− ρ)V n+1

L ) ≥ b/δ, for all n. (2.4)

The second set of constraints are

Fn+1δ(ρV n+1
L + (1− ρ)V n+1

H ) ≥ −b+ F 1δ(ρV 1
L + (1− ρ)V 1

H), for all n.

These can be simplified to

F 1(ρV 1
L + (1− ρ)V 1

H)− Fn+1(ρV n+1
L + (1− ρ)V n+1

H ) ≤ b/δ, for all n. (2.5)

In order to focus on the relevant constraint, some properties of the value

functions need to be understood. It is not possible to solve the difference equa-

tions 2.2 and 2.3, that determine Un, V n
H and V n

L , since there is an infinite set

of equations. However, showing that the value functions are monotonic, means

that two constraints will be sufficient to satisfy all constraints.

First, it can be shown that the sequence {Un}n=∞
n=0 is decreasing. Intuitively

this is because lower beliefs for the agent, correspond to lower expected values

for the agent from future bonus payments.

Lemma 15. Un > Un+1 for all n.
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Although this result is intuitive, it does not follow directly from the differ-

ence equation 2.2. The proof writes the problem with the belief of the agent

as a continuous state variable. The agent’s maximisation problem (taking the

principal’s strategy as given) can then be written as an operator that is shown

to be a contraction. It follows from the contraction mapping theorem that the

agent’s value function has a unique fixed point. It can then be shown that this

is a strictly increasing function in the belief of the agent.

Define Ṽ n
H ≡ ρV n

H+(1−ρ)V n
L . This is the expected value of the principal from

period t onwards, given that in the previous period the agent had productivity

θt−1 = H and in the current period has belief pt = pn, and also that neither

the current productivity (θt) nor the current cost shock (λt) have been learned

by the principal yet. Intuitively, it must be that Ṽ n
H is decreasing in n. This is

because conditional on the productivity of the agent, the principal always wants

the agent to have a higher belief since this will make them more likely to stay

at the firm.

Lemma 16. Ṽ n
H > Ṽ n+1

H for all n.

The proof again writes the problem with a continuous state variable and

by applying the contraction mapping theorem, it shows that the unique pair of

value functions for the principal must be strictly increasing in the belief of the

agent.

Now attention can be restricted to just two of the principal’s incentive con-

straints. In particular, I show that if the value functions are monotonic, con-

straint 2.4 with n = 1 and constraint 2.5 with n = ∞ are sufficient for all

incentive constraints to be satisfied—i.e. they ensure that the respective con-

straints for n > 1 and n <∞ are satisfied. This is shown formally in the proof of

Proposition 14. For constraint 2.4, the intuition is as follows. When a bonus was

paid in the previous period (n = 1), the agent’s beliefs are at their maximum

and so the principal has the least to gain from not paying a bonus in the next

period—the beliefs will only go down to p2 rather than staying at p1 if a bonus

is not paid. So if she is incentivised to pay a bonus when n = 1, she will also be

incentivised when beliefs are lower, i.e. when n > 1. The intuition is reversed

for constraint 2.5.

Proposition 14. There exist parameter values (F (·), v, ρ, q, δ, b) for which there

is an equilibrium with the strategies described above. This equilibrium has the

following properties: the probability that the agent will stay (aAt = S) is always

increasing in his belief that θt = H; and given the agent’s beliefs, the principal

always prefers to retain a high rather than low productivity agent.
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This result establishes the existence of an equilibrium where the continuation

value for the agent is increasing in his belief. These two properties match the

reduced-form assumptions made in the static model of Chapter 2. Note that

this equilibrium is not necessarily unique (as was established under sufficient

conditions in Chapter 2). The proof involves bounding the value functions to find

sufficient conditions for the two incentive constraints that need to be satisfied.

Parameter values can then be found that satisfy these conditions.

I am unable to characterise the set of parameter values for which this equi-

librium exists. However, it is clear that both v and ρ must have intermediate

values. If v is too high then the value of retaining even the low productivity

agent would be sufficiently high meaning the principal would deviate and pay

a bonus to a low productivity agent, similarly if v is too low then the principal

would have no incentive to pay a bonus to retain even a high productivity agent.

If ρ is very high (close to 1), then once the agent knows he has high productivity

it is very likely that he will continue to have high productivity and so if the agent

has a high belief the principal will have an incentive to deviate. If ρ is very low

(close to 1/2), then there is not much more incentive for the principal to keep a

currently high productivity agent compared to a low productivity agent since it

is not that much more likely he will be of high productivity in the future.

3 Dynamic model with (partial) transparency

In this subsection I continue to analyse the interaction of a principal and a

single agent in a dynamic relationship, and in order to capture the notion of

transparency, I assume that there is a ‘passive’ second agent whose bonus the

active agent can observe. I do not model the interaction between the principal

and the passive agent explicitly. Instead, I assume that the principal pays a

bonus to the passive agent if and only if λt = 1—this is as if the passive agent

had a fixed belief of p = 1 (or productivity θt = H for all t) and the principal

plays the same strategy as with a single agent.9 All other features of the model

remain unchanged.

As before, I construct an equilibrium in which, in the period t stage game,

when the agent has a belief pt:

• For any pt, the principal pays a bonus bt = b if and only if θt = H and

λt = 1;

9Fixing p = 1 demonstrates the effect of transparency in the simplest way possible. The
analysis remains similar if the agent had a fixed belief p ∈ (0, 1). I discuss this in more detail
at the end of the subsection. If p = 0 the setting is identical to the single agent setting.
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• The agent chooses to stay at the firm aAt = S if and only if his expected

value of staying at the firm is greater than quitting the firm, which is the

case when

δÛ(pt+1(pt, bt, b
2
t )) ≥ ut,

where Û(p) is the (expected) value for the agent of having a belief p, b2t de-

notes the bonus paid to the passive agent and pt+1(pt, bt, b
2
t ) = Pr[θt+1|pt, bt, b2t ]

is the belief in the next period given the current belief and bonuses in the

current period (pt, bt, b
2
t ).

The belief in period t is updated twice to get the belief in period t+1. First,

the agent observes bt and b2t and updates using Bayes rule. Define p̂t(bt, b
2
t ) ≡

Pr[θt = H|bt, b2t , pt]. Given the strategy described above, unlike under no trans-

parency, there are now three cases:

p̂t(b, b
2
t ) = 1 for any b2t ,

p̂t(0, 0) = pt,

p̂t(0, b) = 0.

Note in the second case, since it must be that λ =∞, the agent does not update

his belief when he receives no bonus.

Second, as before, this posterior belief undergoes the Markov transition that

dictates how the productivity evolves between periods. So

pt+1 = ρp̂t + (1− ρ)(1− p̂t).

It will be helpful to define two sequences of beliefs {pn}n=∞
n=1 and {pn}n=−∞

n=−1

where

p1 = ρ,

pn+1 = pnρ+ (1− pn)(1− ρ) for n ≥ 1;

and

p−1 = 1− ρ,

p−n−1 = p−nρ+ (1− p−n)(1− ρ) for n ≥ 1.

The first sequence starts with the most optimistic belief, pt = p1 = ρ, that

occurs following a bonus in the previous period. Each step represents the decline

in the belief following no bonus for either agent. Note that this is less steep than
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Figure 3.2: An example of agent’s belief path with a second (passive) agent.

with a single agent/no transparency, since here it is definitely the case that

λt = ∞. The sequence converges to p∞ = 1
2 . The second sequence starts with

the most pessimistic belief, pt = p−1 = 1 − ρ, that occurs following no bonus

for the agent and a bonus for the passive agent in the previous period. Each

step represents the increase in beliefs following no bonus for either agent, and

again this converges to p−∞ = 1
2 . I illustrate an example of a path of the agent’s

beliefs in Figure 3.2—note how this contrasts with Figure 3.1.

Proposition 15. In the partial transparency game, there exist parameter values

(F (·), v, ρ, q, δ, b) for which there is an equilibrium with the strategies described

above. This equilibrium has the following properties: the probability that the

agent will stay (aAt = S) is always increasing in his belief that θt = H; and given

the agent’s beliefs, the principal always prefers to retain a high rather than low

productivity agent.

The result is exactly the same as with a single agent, and there are parameter

values for which the equilibrium exists in both settings. In the proof, I construct

the equilibrium in the same way as before: I show that the value functions of

the principal and agent are monotonic (i.e. higher beliefs lead to higher values

for the players), and then I bound the incentive constraints of the principal to

ensure that the strategy above is indeed an equilibrium.
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4 Discussion

It is not possible to derive closed form expressions for the principal’s value func-

tions. In order to understand if the comparative static results in Chapter 2

(Section 3) continue to hold, I approximate the value functions by value func-

tion iteration. Then, I compute the difference between partial transparency and

no transparency as v—the value to the principal of having a high productivity

agent—varies. Figure 3.4 (in Appendix 2) shows the results for a set of parame-

ters for which the equilibrium exists in both settings. The results are in line with

the comparative statics in the static game—as v increases, transparency becomes

relatively more favourable for the principal.10,11 As in the static model, the in-

tuition for this is because under transparency following no bonus, there are two

possible beliefs that can be induced—a more optimistic belief when the other

agent is also not paid a bonus and a more pessimistic belief when the other agent

is paid a bonus. The posterior beliefs under transparency and under no trans-

parency are illustrated in Figure 3.3.12 The high productivity agent can never

get the more pessimistic belief (1 − ρ). This means when no bonus is paid, he

will always be less pessimistic under transparency compared to no transparency.

This makes him more likely to stay at the firm which becomes more beneficial

for the firm as v increases.13,14

I have analysed a game where the passive agent is always paid a bonus if

λ = 1—in effect has a belief p = 1. Now, I discuss briefly how the analysis

changes when p ∈ (0, 1). The main difference is that if both agents receive no

bonus b = (0, 0), it is now possible that λ = 1, meaning that the agent’s belief

changes following the bonuses with

p̂t(0, 0) =
(1− q)pt

(1− q) + q(1− pt)(1− p)
.

The sequence of beliefs, including their limit point p∞, are now different. In

particular, the beliefs fall more sharply for lower p when both agents are not

10Results continue to hold for other parameters for which the equilibria exist in both setups,

at beliefs other than p1 = ρ and also if the value functions Ṽ nH and
˜̂
V nH are used.

11The comparative static here is on v rather than on the continuation values gPH and gPL
used in the static model since these are now endogenous.

12Note that the way the beliefs update is similar to Figures 2.1 and 2.2 in Chapter 2 that
illustrate the case of the static model.

13This is more complicated than the static game because the continuation values are endo-
genised and the agent’s productivity can change over time.

14Another comparative static of interest is how the difference between transparency and no
transparency changes as the persistence parameter, ρ, varies. Numerical results suggest that
this is non-monotonic—meaning there is no clear prediction from the model.
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Figure 3.3: Comparison following no bonus with a single agent (no transparency)
and with a second passive agent (transparency).

paid a bonus. Existence of an equilibrium can be proved in a similar way to

Proposition 15.

Analysing the game with two active agents is more complex—the main rea-

son being that there is now a two dimensional state variable (the belief of each

of the two agents). From a modelling perspective, what happens after one agent

quits would need to be modelled since this affects the continuation value (and

consequently the quitting decisions) of the agents—this is not a problem in the

setting with a single active agent. A possible solution is to have the agent re-

placed with an agent holding an identical belief to the agent who quit would

have had if he had stayed. In addition, to ensure that the principal has an

incentive to retain agents, she would have to incur a cost equal to the continu-

ation value she would have had from that agent if he had stayed. Despite these

difficulties, some new insights may arise from the analysis of this setting and

so it warrants investigation in future work. I also conjecture that it would be

possible to rule out an equilibrium in which, when there is one agent with high

and one of low productivity, the principal only pays a bonus to the agent with

low productivity.15

15Recall, in the static game, it was necessary to explicitly rule out such an equilibrium.
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Appendix to Chapter 3

1 Proofs

1.1 Proof of Lemma 15

Let I ≡ [p∞, ρ] be the domain of beliefs—recall that p∞ is defined in 2.1. Let

β(p) be the Bayesian updating formula for the agent’s beliefs between period t

and t+ 1 when bt = 0, formally defined as

β(p) ≡ p(1− q)
1− pq

ρ+

(
1− p(1− q)

1− pq

)
(1− ρ).

Note that β : I → I, that β(·) is a strictly increasing function.

Let I(I) be the set of all functions h : I → [0, ū] where ū ≡ max
{
qρb+ 1, qρb1−δ

}
.

Define the operator T : I → I as

T ◦ h(p) ≡ max
x,y∈[0,1]

qp [b+ F (x)δh(ρ) + (1− F (x))J(x)]

+ (1− qp) [F (y)δh(β(p)) + (1− F (y))J(y)] ,

where J(x) ≡ E[u|u > x] is the expected value of the outside option if the agent

decides to quit for all u > x. Here the agent’s decision over whether to stay or

quit is given by the choice variables x and y. These define the cutoffs where if

the outside option is above this level the agent quits in the case that a bonus

was paid and not paid respectively. h(·) is the continuation value of the agent

given his belief at the start of the period.

The operator T : I → I is a contraction on the ‘sup norm’ vector space.

This can be verified with Blackwell’s sufficient conditions for a contraction (see

Stokey et al. (1989)). The two conditions (with notation appropriately adapted)

are:

• Monotonicity: for h, h′ ∈ I, if h(p) ≤ h′(p) for all p ∈ I then T ◦ h(p) ≤
T ◦ h′(p) for all p ∈ I;
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• Discounting: there exists some δ′ ∈ (0, 1) such that

[T ◦ (h+ a)] (p) ≤ (T ◦ h)(p) + δ′a

for all h ∈ I, p ∈ I and a ≥ 0.

Monotonicity follows immediately from the definition of the operator T . To

verify discounting it is sufficient to show

[T ◦ (h+ a)] (p) = max
x,y∈[0,1]

qp [b+ F (x)δ(h+ a)(ρ) + (1− F (x))J(x)]

+ (1− qp) [F (y)δ(h+ a)(β(p)) + (1− F (y))J(y)]

≤ max
x,y∈[0,1]

qp [b+ F (x)δh(ρ) + (1− F (x))J(x)]

+ (1− qp) [F (y)δh(β(p)) + (1− F (y))J(y)] + qpδa+ (1− qp)δa

≤ (T ◦ h)(p) + δa,

where in the second line x and y have been taken to be 1 in the part that

multiplies a inside the brackets on the first line.

It follows from the contraction mapping theorem (again, see Stokey et al.

(1989)), that there exists a unique function v ∈ I such that

v(p) = max
x,y∈[0,1]

qp [b+ F (x)δv(ρ) + (1− F (x))J(x)]

+ (1− qp) [F (y)δv(β(p)) + (1− F (y))J(y)] .

Next, I show that v(·) must be a strictly increasing function. First, observe

that the operator T maps non-decreasing functions to non-decreasing functions.

To see this consider for p, p′ ∈ I with p > p′

T ◦ v(p)− T ◦ v(p′) = qpA+ (1− qp)B(p)− qp′A− (1− qp′)B(p′)

≥ q(p− p′)(A−B(p))

≥ q(p− p′)b

> 0,
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where

A ≡ max
x∈[0,1]

b+ F (x)δv(ρ) + (1− F (x))J(x),

B(p) ≡ max
y∈[0,1]

F (y)δv(β(p)) + (1− F (y))J(y).

The first inequality follows since B(·) is non-decreasing if h(p) is non-decreasing;

and the second inequality follows since A ≥ b+B(p) if h(p) is non-decreasing.

Next, note that the set of non-decreasing functions is a closed subset of I.

By Corollary 1 of Stokey et al. (1989) (p.52), the fixed point v(·) must be an

non-decreasing function.16 Finally, note that T maps non-decreasing functions

to strictly increasing functions (a subset of the set of non-decreasing functions),

and thus the fixed point v(·) must be a strictly increasing function.

It follows that since pn > pn+1 for all n that Un > Un+1 for all n.

1.2 Proof of Lemma 16

As in the proof of Lemma 15, let I ≡ [p∞, ρ] be the domain of beliefs and let

β(p) be the Bayesian updating formula for the agent’s beliefs between period t

and t+ 1 when bt = 0.

Let Î(I) be the set of all (bounded) functions h : I → [0, v
1−δ ]2. Define the

operator T̂ :

T̂◦

[
h1(p)

h2(p)

]
=



maxx∈{0,1}

{
v + q

(
1[x = 1](−b+ (F (δU(ρ))δ

(
ρh1(ρ) + (1− ρ)h2(ρ)

)
+(1− 1[x = 1])(F (δU(β(p)))δ

(
ρh1(β(p)) + (1− ρ)h2(β(p))

))
+(1− q)

(
(F (δU(β(p)))δ

(
ρh1(β(p)) + (1− ρ)h2(β(p))

))}
,

maxy∈{0,1}

{
0 + q

(
1[y = 1](−b+ (F (δU(ρ))δ

(
ρh2(ρ) + (1− ρ)h1(ρ)

)
+(1− 1[y = 1])(F (δU(β(p)))δ

(
ρh2(β(p)) + (1− ρ)h1(β(p))

))
+(1− q)

(
(F (δU(β(p)))δ

(
ρh2(β(p)) + (1− ρ)h1(β(p))

))}


(1.1)

Here the principal’s decision over whether to pay a bonus or not after ob-

serving that the agent has high (low) productivity is given by x (y), where 1

represents a bonus, and 0 no bonus. h1(·) and h2(·) are the value functions of

16The proof is in their text. Intuitively start from some f0 ∈ I′, where I′ ⊂ I is the set of
non-decreasing functions. Then repeatedly applying the operator T will get to the fixed point
v(·), and this must also be non-decreasing since the set of non-decreasing functions is closed.
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the principal in the case that the agent is of high and low productivity.17 U(·)
denotes the agent’s value function, and this affects the probability that he will

quit or not for a given belief.

I proceed as in the proof of Lemma 15. First, I show that T̂ is a contrac-

tion mapping. Then, I show that the pair of value functions must be strictly

increasing.

In order to apply the contraction mapping theorem, a metric space in which

a function that maps beliefs into two dimensions needs to be defined. A suitable

metric is the ‘sup-sup’ norm formally given by:

‖h‖ = sup
p∈I

(
sup

i∈{1,2}
|hi(p)|

)
.

It is straightforward to verify that this norm satisfies the required properties and

that ensure that it is a normed vector space (p.45 Stokey et al. (1989)). It is

also possible to extend Theorem 3.1 in Stokey et al. (1989) to show that set of

continuous functions h : I → [0, v
1−δ ]2 with the sup-sup norm forms a complete

normed vector space.18

To show that the operator T̂ is a contraction mapping, Blackwell’s sufficient

conditions can be extended to two dimensions as follows:

• Monotonicity: for h, h′ ∈ Î, hi(p) ≤ h′i(p) for all p ∈ I, i ∈ {1, 2} then

T̂ ◦ hi(p) ≤ T̂ ◦ hi(p) for all p ∈ I;

• Discounting: there exists some δ′ ∈ (0, 1) such that[
T̂ ◦ (h+ a

[
1

1

]
)

]
(p) ≤ (T̂ ◦ h)(p) + δ′a

[
1

1

]

for all h ∈ Î, p ∈ I and a ≥ 0.

It is straightforward from 1.1 that these conditions are satisfied. So, from the

contraction mapping theorem, it follows that there is a unique value function

for the principal. Next, note that the subset of Î(I) of functions that are non-

decreasing in both dimensions is closed.19 Using the same Corollary as in the

proof of Lemma 15, since in both dimensions the operator maps non-decreasing

to non-decreasing functions the value function is non-decreasing in both dimen-

sions. To verify this recall from Lemma 15 that U(·) is strictly increasing. Since

17Note that these represent V nH and V nL rather than Ṽ nH and Ṽ nL in the main text.
18In the proof: |hn(x) − hm(x)| can be replaced with supi∈{1,2} |hni(x) − hmi(x)|; and

continuity can be shown in each dimension of the limiting function in turn.
19The product of two closed sets is also a closed set.
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U(·) and β(·) are both strictly increasing it follows that if h1(·) and h2(·) are

both non-decreasing, then(
T̂ ◦

[
h1(·)
h2(·)

])
1

and

(
T̂ ◦

[
h1(·)
h2(·)

])
2

are also both strictly increasing.20 Finally, since the operator maps a pair of

non-decreasing functions to a pair of strictly increasing functions, the fixed point

must be strictly increasing.

It follows that since pn > pn+1 for all n that V n
H > V n+1

H and V n
L > V n+1

L

for all n and so Ṽ n
H > Ṽ n+1

H and Ṽ n
L > Ṽ n+1

L for all n.

1.3 Lemma 17 and proof

Lemma 17. Ṽ n
H > Ṽ n

L for all n.

From the proof of Lemma 16, there is a unique pair of value functions for

the principal that satisfy the operator in 1.1. It is straightforward to show that

the operator T̂ maps functions where h1(p) ≥ h2(p) for all p, to functions where(
T̂ ◦

[
h1(·)
h2(·)

])
1

>

(
T̂ ◦

[
h1(·)
h2(·)

])
2

for all p.

The subset of Î(I) where the first output is weakly greater than the second

output is a closed subset of the set of Î(I). Thus by the Corollary of the

contraction mapping theorem used above, the fixed point that is the principal’s

pair of value functions must have this property. Finally, as before, since the

output from the operator T̂ has the first output being strictly greater than the

second output, the fixed point must also have this property.

It follows that since Ṽ n
H > Ṽ n

L for all n.

1.4 Proof of Proposition 14

To prove this result, I provide sufficient conditions for the two incentive con-

straints 2.4 and 2.5 to hold, under the assumption that F ∼ U [0, 1]. I start

with 2.4, this incentive constraint that ensures that when the agent has high

productivity the principal will want to always pay a bonus (assuming she can,

i.e. that λt = 1). Define p̃n ≡ qpn.

Lemma 18. If F ∼ U [0, 1] and p̃1 − p̃2 ≥ 1
ρvδ2 then 2.4 is satisfied for all n.

20This can easily been seen by computing the difference between the output of the operator
for p, p′ ∈ I with p > p′ as before.
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Proof. With F ∼ U [0, 1], 2.4 becomes

U1Ṽ 1
H − UnṼ n

H ≥ b/δ2, for all n ≥ 2. (1.2)

Since Un > Un+1 and Ṽ n > Ṽ n+1 (and so U2 ≥ Un and Ṽ 2 ≥ Ṽ n for all

n ≥ 2), if

U1Ṽ 1
H − U2Ṽ 2

H ≥ b/δ2,

then 2.4 is satisfied.

Next, from 2.2

U1 − U2 = b(p̃1 − p̃2) +
1

2
p̃1(δU1)2 +

1

2
(1− p̃1)(δU2)2 − 1

2
p̃2(δU1)2 − 1

2
(1− p̃2)(δU3)2,

= b(p̃1 − p̃2) +
1

2
(1− p̃2)

(
(δU1)2 − (δU3)2

)
− 1

2
(1− p̃1)

(
(δU1)2 − (δU2)2

)
,

> b(p̃1 − p̃2),

where the final line follows from p̃1 > p̃2 and U2 > U3.

Finally, it must be that for all n

Ṽ n
H ≥ ρV n

H ,

≥ ρv,

where the final line is because even if the bonus could be paid, the principal’s

expected value from paying the bonus today, must be less than the future (dis-

counted) benefit. This means that

U1Ṽ 1
H − U2Ṽ 2

H ≥ (U1 − U2)Ṽ 2
H ,

≥ (U1 − U2)ρv.

So if

b(p̃1 − p̃2)ρv ≥ b/δ2,

then 2.4 is satisfied. The result follows.

Now I provide sufficient conditions for 2.5: this incentive constraint that

ensures that when the agent has low productivity the principal will never want

to pay a bonus. I start by defining some combinations of the parameters which

will be used in the result.

Define

Ūn ≡
(1−

√
1− (2bp̃n + 1)δ2

δ2
.
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Define

V̄ 1
H ≡

(1− δρ)(v − bq)
(1− δ)(1 + δ − 2δρ)

,

V̄ 1
L ≡

δ(1− ρ)(v − bq)
(1− δ)(1 + δ − 2δρ)

.

Lemma 19. If F ∼ U [0, 1] and

Ū1(ρV̄ 1
L + (1− ρ)V̄ 1

H)− Ū∞(ρvδ2(1− ρ)Ū∞ + (1− ρ)v) ≤ b/δ2

then 2.5 is satisfied for all n.

Proof. With F ∼ U [0, 1], 2.5 becomes

U1(ρV 1
L + (1− ρ)V 1

H)− Un+1(ρV n+1
L + (1− ρ)V n+1

H ) ≤ b/δ2, for all n. (1.3)

As in the previous result, I will provide an upper bound on the positive (first

part) of the LHS and a lower bound on the negative part (second part).

First note that

U1 = bp̃1 +
1

2
+

1

2
p̃1(δU1)2 +

1

2
(1− p̃1)(δU2)2,

≤ bp̃1 +
1

2
+

1

2
(δU1)2,

where the inequality is due to U1 > U2. Solving this quadratic inequality gives

U1 ≤ Ū1. (1.4)

Next note that

Un > Ū∞ (1.5)

for all n ≥ 2. This is because

U∞ = bp̃∞ +
1

2
+

1

2
p̃∞(δU1)2 +

1

2
(1− p̃∞)(δU∞)2,

≥ bp̃∞ +
1

2
+

1

2
(δU∞)2,

and so U∞ > Ū∞ and Un > U∞ for all n. Next, it must be that

V 1
H ≤ v − bq + δ

(
ρV 1

H + (1− ρ)V 1
L

)
,

V 1
L ≤ δ

(
ρV 1

L + (1− ρ)V 1
H

)
.
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These both represent the best case for the principal, when the agent always stays

to the next period and remains at the most optimistic level (p1) (since V 1
θ > V 2

θ ).

Solving this system gives

V 1
H ≤ V̄ 1

H , (1.6)

V 1
L ≤ V̄ 1

L . (1.7)

Finally, it must be that for all n ≥ 2

V n
H ≥ v, (1.8)

V n
L ≥ (δU∞)(δ(1− ρ)v) ≥ δ2(1− ρ)vŪ∞. (1.9)

The first inequality is from the fact that the principal could just receive today’s

flow payoff of v, not pay a bonus, and not receive any possible continuation

payoff from the relationship. The second inequality follows since δU∞ is the

smallest possible probability that the agent stays and δ(1− ρ)v is the expected

payoff that the principal can guarantee in the next period (if she never pays a

bonus and the relationship never continues).

The result follows from applying 1.4, 1.5, 1.6, 1.7, 1.8 and 1.9 to 2.5.

For the parameter values v = 7, ρ = .9, q = .99, δ = .5, b = .5 there is an

equilibrium with the principal paying a bonus in period t only if θt = H and

λt = 1.

Finally, by Lemma 16 the probability that the agent will stay (aAt = S) is

increasing in his belief that θt = H and given the agent’s beliefs; and by Lemma

17 the principal prefers to retain a high rather than low productivity agent.

1.5 Proof of Proposition 15

As with a single agent, the principal and the(active) agent have value functions

depending on the state (agent’s belief) and the realisation of the agent’s pro-

ductivity. Use ‘hatted’ variables to denote these value functions, i.e. the value

functions of the principal are given by V̂ n
H and V̂ n

L , and the value function of the

agent is given by Ûn.

Analogous results to Lemma 15, 16—that show monotonicity of the value

functions—can be derived. In Lemma 15, the main difference is that the operator

T is defined differently since the agent needs to choose a cutoff strategy in each of

three outcomes—when he receives a bonus, when neither agent receives a bonus
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and when he doesn’t receive a bonus and the other agent does. Formally the

operator becomes:

T ′ ◦ h(p) ≡ max
x,y,z∈[0,1]

qp [b+ F (x)δh(ρ) + (1− F (x))J(x)]

+(1−q)
[
F (y)δh(β̂(p)) + (1− F (y))J(y)

]
+q(1−p) [F (z)δh(1− ρ) + (1− F (z))J(y)] ,

where β̂(p) ≡ ρp+(1−ρ)(1−p) is the updating rule in this setting. It follows,

using a very similar argument as before, that there is a unique fixed point for

the operator and that the fixed point must be a strictly increasing function.

Similarly, for the principal, the operator T̂ becomes:

T̂ ′◦

[
h1(p)

h2(p)

]
=



maxx∈{0,1}

{
v + q

(
1[x = 1](−b+ (F (δU(ρ))δ

(
ρh1(ρ) + (1− ρ)h2(ρ)

)
+(1− 1[x = 1])(F (δU(1− ρ))δ

(
ρh1(1− ρ) + (1− ρ)h2(β̂(p))

))
+(1− q)

(
(F (δU(β̂(p)))δ

(
ρh1(β̂(p)) + (1− ρ)h2(β̂(p))

))}
,

maxy∈{0,1}

{
0 + q

(
1[y = 1](−b+ (F (δU(ρ))δ

(
ρh2(ρ) + (1− ρ)h1(ρ)

)
+(1− 1[y = 1])(F (δU(1− ρ))δ

(
ρh2(1− ρ) + (1− ρ)h1(β̂(p))

))
+(1− q)

(
(F (δU(β̂(p)))δ

(
ρh2(β̂(p)) + (1− ρ)h1(β̂(p))

))}


where the only difference is that after not paying a bonus when λ = 1, the

agent’s belief immediately goes to 1 − ρ. As before, it follows that there is a

unique fixed point that must be strictly increasing in each dimension, and that

the first dimension must be strictly greater than the second.

Turning to the incentive constraints of the principal, these are actually much

simpler than with a single agent. The reason is that if the principal can pay the

agent a bonus (i.e. λt = 1) then the agent’s posterior belief does not depend on

his belief—the belief must either be ρ or 1− ρ in the next period. In the case of

F ∼ U [0, 1], the two incentive constraints are given by

Û1 ˆ̃V 1
H − Û−1 ˆ̃V −1

H ≥ b/δ2,

Û1 ˆ̃V 1
L − Û−1 ˆ̃V −1

L ≤ b/δ2.

Following a very similar argument to before, a sufficient condition for the first
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constraint is

(2ρ− 1)ρqv ≥ 1/δ2.

For the second constraint the sufficient condition is again

Ū1(ρV̄ 1
L + (1− ρ)V̄ 1

H)− Ū∞(ρvδ2(1− ρ)Ū∞ + (1− ρ)v) ≤ b/δ2,

where everything is defined exactly as before.

These conditions are satisfied for the same parameter values as before (v =

7, ρ = .9, q = .99, δ = .5, b = .5) and so there is an equilibrium with the principal

paying a bonus in period t only if θt = H and λt = 1.

2 Numerical results

6.5 6.6 6.7 6.8 6.9 7 7.1 7.2 7.3

v

0.0094

0.0096

0.0098

0.01

0.0102

0.0104

0.0106

0.0108

Figure 3.4: The difference between the value function of the principal (at belief
p = ρ) under partial transparency (V̂ 1

H) and no transparency (V 1
H) for different

values of v. The other parameter values are ρ = .9; b = .5; q = .99; δ = .5.
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