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Abstract

Smartphones provide an ideal platform for colorimetric measurements due to their low cost,

portability and image quality. As with any imaging-based colorimetry system, ambient light

and device variations introduce error which must be dealt with. We propose a novel process-

ing method consisting of a one-time calibration stage to account for inter-phone variations,

and an innovative use of ambient light subtraction with image pairs to account for variation

in ambient light. Data collection is kept very simple, making it particularly useful for use in

the field, since nothing additional is required in the images. Ambient subtraction is first dem-

onstrated for a range of colors and phones (Samsung S8 and LG Nexus 5X), and the Sub-

tracted Signal to Noise Ratio (SSNR) is defined as a metric for assessing whether an image

pair is appropriate at the time of image capture. The experimentally determined SSNR

threshold below which to suggest retaking the images is 3.4. The classification accuracy for

results using the proposed calibration pipeline is then compared to the simplest image meta-

data-based alternative and is found to be greatly superior. Finally, a custom colorcard is

shown to improve the accuracy of device-independent results for known smaller ranges of

colors over a standard colorcard, making this a possible application-specific modification to

the overall processing pipeline.

Introduction

The desire for quantitative measurements of color exists across many fields. For example,

quantifying colorimetric urine tests for measurements of pH and glucose [1–4] or determining

saliva alchohol concentration [5]. As well as test strips, within medicine there are further appli-

cations which aim to quantify colorimetric biomarkers of the human body to detect conditions

such as jaundice [6–8], anaemia [9] and the eye condition anterior blepharitis [10]. Applica-

tions continue beyond medicine, for example in testing water quality [11] or improving the

rigour of marine monitoring [12].

Commercial devices for contact measurements of color exist which are becoming more

affordable, for example the X-Rite CAPSURE [13], but for many of the above applications a

contact measurement is not possible. Imaging presents an attractive non-contact alternative.

Digital cameras provide the best image quality, but can still be expensive and bulky to
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transport. Smartphones, on the other hand, are incredibly portable. Until recently, the crucial

access to raw images from smartphone cameras was highly limited, but this is becoming

more common. Additionally smartphones are becoming even cheaper and more ubiquitous,

with over 8 billion subscriptions by 2018 [14]. With a smartphone, unlike with a digital cam-

era, it is possible to create an app which combines the image capture with the required addi-

tional processing to produce results in real time. All of these factors, combined with the

continued increase in smartphone image quality, makes them the ideal candidate for use in

colorimetry.

Unlike the human visual system, cameras don’t account for changes in ambient light auto-

matically. This means that different color values will be recorded for the same object under dif-

ferent lighting conditions. For consistent colorimetry, this effect must be mitigated. Previous

work has utilised a variety of approaches to tackle this problem. A simple approach is to cali-

brate the phone before every new measurement [1], however this increases the capture time

for every single capture and so is not very efficient. An alternative is to include a standardised

white card in every image, using white balance to account for lighting changes [15]. This again

complicates the image capture process. Another approach is to remove the ambient light

entirely, and use either the flash of the phone or an alternative light source as a fixed illumina-

tion [5, 7, 11]. This does remove the impact of ambient light, but requires a custom setup for

every phone, and for some applications it may not be a viable approach. It is challenging to

find an approach to deal with ambient light which is both general and simple enough.

The second challenge of using imaging for colorimetric measurements is that different

phones will record significantly different values even under identical conditions. The sim-

plest approach would be to limit the technique to a single phone. However, for a method to

be more broadly applicable it is better for it to work on multiple phone types. One way to

tackle this problem is to use machine learning [3, 16]. This approach can deal with changes in

lighting and the use of different phones in one stage, however it requires very large training

sets which continue to increase in size the more general you would like to be. Additionally,

depending on the particular method, it is common to require internet access to store and

apply the resulting model. This is a large problem for use in low and middle-income coun-

tries, where the need for cheap and portable approaches is most high. The color science

approach to deal with variations between phones is to move from values which are specific to

a phone to device-independent values using a mapping. Open source software dcraw [17]

uses information stored in the image metadata to do this. Metadata methods are optimised

for a particular light and additionally do not account for variations between devices of the

same model, which can lead to unreliable results [18]. It is also possible to account for inter-

device variations by including a card with a standardised range of colors on it in every image

[19] and so develop a mapping. This greatly increases the complexity of image capture, par-

ticularly for human subjects.

Here, we suggest an overall approach tackling both problems. Variations in ambient light at

the image capture stage are accounted for using the technique of ambient subtraction—a pair

of flash no-flash images are captured, and a subtraction removes the effect of the ambient light

[20, 21]. Variations between devices are tackled by carrying out a one-time calibration for each

device, resulting in a mapping which is specific to that phone and its flash illumination, and

which can therefore be used on data which has been ambient subtracted. This combined

approach means that data captured is consistent over different lighting environments and

phones, and hence the link from measured color to the application specific scale, for example

jaundice or pH, only needs to be determined once. In this paper, we describe the theory behind

the two major stages and present data demonstrating the quality of the approach.
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Theory

The theory required to understand how an image is formed and recorded by a smartphone is

described, highlighting the challenges which need to be overcome before reliable colorimetric

measurements are possible. The two steps of our proposed pipeline which deal with these

issues are then covered in more detail.

Image formation

There are three key factors involved in forming an image, and the interplay between them

determines the final image. The first factor is the illumination, or lighting, of the surroundings.

The spectral power distribution of the illumination determines its color, for example the yel-

lowness of daylight compared to the blueness of fluorescent lighting. Color constancy is an

automatic property of the human visual system, whereby changes in ambient illumination

color are accounted for, and our perception of colors remains stable. This is not the case for a

camera, and so recorded values for an image are greatly influenced by the illumination.

The next factor in image formation is the scene that is being imaged, the actual objects of

interest—this is the component of the three that we are interested in extracting information

about. Elements of the scene can reflect or absorb the light. Materials that selectively absorb

wavelengths modulate the light spectrum and hence appear a different color. The spectrum of

light resulting from a scene will therefore depend on both space and wavelength. As well as the

object’s spectral properties, the light recorded also depends on the object geometry with

respect to the light source.

The third key factor in forming an image is the camera itself. The incident energy must be

recorded in a reproducible way. Cameras achieve this by describing the light as a sum of three

channels—red, green and blue (R, G, B from here on), similar to the human visual system.

Each of the RGB channels will span a certain range of wavelengths, with a peak sensitivity in

the red, green and blue regions of the visible light spectrum respectively. Combining these

three factors of image formation in equation form, the values measured by a camera in each

color band, c 2 {R, G, B}, are given by

f cðxÞ ¼ mðxÞ
R

o
sðl; xÞeðlÞrcðlÞdl ð1Þ

wherem(x) gives the geometric dependence of the reflectance, ω represents the visible spec-

trum, s(λ, x) relates to the spectral reflectance properties of the surface, e(λ) is the illumination

of the scene and ρc(λ) is the spectral sensitivity of the camera in each color band [22].

Measuring the full RGB values for every sensor site would be very complex and would

make cameras prohibitively expensive. Instead, imaging sensors are used in combination with

a pattern of red, green and blue filters which allow light of just that wavelength band through

at each pixel. Each sensor then has a sensitivity determined by the filter, which can be under-

stood as the probability for that sensor to detect a photon of a given wavelength. The filters are

arranged in a pattern known as a Bayer pattern [23], and this results in a given pixel containing

information about one of red, green or blue light. The spectral sensitivity of smartphones will

vary between manufacturers and even between devices of the same make and model, meaning

that the values recorded by two phones of identical objects under the same illumination will be

different. This variation is clearly an issue which needs to be tackled for a colorimetric method

to be generalisable.

From the recorded Bayer pattern image, various stages of processing are carried out auto-

matically by the camera to yield the JPEG images we are used to seeing. These stages include

interpolation to obtain an RGB value for every pixel, but also scaling of the color channels and

compression. The resulting images are unsuitable for scientific use for two reasons. Firstly, the
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compression means that there has been a loss of information. Secondly, given that we are aim-

ing to quantify colors, having unknown modification happening to the color channels intro-

duces unnecessary uncertainty. Our approach is therefore based on analysis of the raw

recorded Bayer pattern images.

It is clear from inspection of Eq 1 that it is not simple to separate out the influence of the

lighting or the camera from the object on the final pixel values. We have therefore devised a

two step process to account for their influence.

Ambient subtraction

The overall aim of ambient light correction is to remove the effect of ambient light on the

image and allow comparison of images from capture sessions under different lighting condi-

tions. To maintain a simple procedure for image capture, we required that the method did not

involve introducing anything additional into each image. There are many approaches which

attempt ambient correction by first estimating the illumination and then removing its effect

[24–26]. These approaches assume access to only a single image of the scene, however using a

smartphone it is simple to capture a pair of images which expands the techniques available.

We have previously introduced a novel approach using subtraction of flash no-flash pairs of

images [21]. A pair of images of the scene is captured in quick succession, one using a phone-

provided illumination and one without, keeping the exposure time and ISO fixed. The pixel

values of the flash image are given by

f FþA ¼ f F þ f A ð2Þ

where the values result from a sum of the two different sources present—flash, F, and ambient

light A. The pixel values for the no-flash, or ambient, image are simply given by fA. It is impor-

tant that the ambient lighting remains constant over the short time needed to capture the two

images, else the contribution of fA would change. Additionally, it is important that the

response of the sensors across the three channels is linear with increasing intensity—doubling

the intensity should double the pixel values. This linear response is expected over the mid-

ranges of smartphone sensors. Where these conditions are met, it can therefore be seen that

the subtraction yields pixel values influenced only by the flash illumination

f FþA � f A ¼ ðf F þ f AÞ � f A ¼ f F ð3Þ

The resulting data is under a standardised illumination, and hence data taken by the

same device in different capture sessions can be directly compared. In the case of smart-

phone cameras, the ‘flash’ can be provided either by turning the screen backlight on and off

in combination with the front facing camera or using the built-in LED flash with the rear

facing camera.

Subtracted Signal to Noise Ratio (SSNR). In order to avoid time-consuming recapturing

of data, or loss of data, a metric to give an indication of whether the images captured are suit-

able is required at the time of capture. For the ambient subtraction method to yield good

results, the flash must dominate over the ambient light. A simple intensity ratio of the flash to

no-flash image seems to be a good option, however this does not take into account additional

noise introduced if the overall signals are small. For a pixel value in the midrange of the sensor,

as is typical when auto-exposure is used, shot noise dominates which can be described by a

Poisson distribution [27]. In this case, the noise is simply given by the square root of the signal.
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We suggest the Subtracted Signal to Noise Ratio (SSNR) as a suitable metric, given by the

signal to noise ratio of the flash only pixel values obtained after subtraction

SSNR ¼
f F

noiseðf FÞ
¼

f FþA � f A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f FþA þ f A

p ð4Þ

where f F+A and f A are the pixel values recorded in the flash and no-flash images respectively,

and the positive sign in the denominator is due to the summation of errors in quadrature [28].

To avoid introducing error from motion between images, this calculation is not performed

pixelwise but instead the average signal for the region of interest is calculated for flash and no-

flash images and a global SSNR calculated. Note that demosaiced images should be used to

avoid biasing the results towards the green channel. The definition of the SSNR makes simpli-

fying assumptions about sources of noise so that no other information is needed and the calcu-

lation can be based simply on the pixel values. In order to get a gauge of what the lower limit

SSNR cutoff for ambient light-independent colorimetric measurements should be, an experi-

ment was carried out. The results are presented later in this paper.

Device independence

After performing ambient subtraction, results for a given phone are compatible over different

lighting environments. However, to account for variations in the spectral sensitivity and spec-

tral power distributions of different phone cameras and flashes, a conversion from phone

native space to a device independent space is required. A reference space is defined as a color

space which contains all possible colors and is device independent. The most common refer-

ence space is CIE XYZ space. This space was derived from the human visual system, with the

aim of producing XYZ tristimulus values describing which combinations of light appear the

same for a standard observer. Since its introduction in 1931, other spaces such as L�a�b� space

have been designed for increased perceptual uniformity however these spaces are all based on

transforms from XYZ space. The aim of this research is not to mechanize human color judge-

ments but rather to obtain repeatable digital color descriptors that can then be linked to the

application specific scale. Therefore, XYZ space has been used as a standard device indepen-

dent color space. The conversion to this space accounts for variations in the phone spectral

sensitivities, but it is also necessary to account for the different flash illuminations. To do this a

set standard illuminant, here CIE D50, is chosen for the XYZ values. This means that XYZ val-

ues resulting from a conversion from two different phones should match.

The simplest way to achieve the conversion from phone native space to XYZ space is to uti-

lise the commonly used open-source software dcraw [17]. The software uses information

stored in the image metadata to do the conversion, but this information is optimised for

images under a particular illumination and for a generic phone of that model. This means it

does not take into account inevitable inter-device variations or the use of a different illumina-

tion [18]. An alternative approach is to use a colorcard such as the Macbeth ColorChecker

Classic, which has 24 patches covering a wide range of colors and neutral shades. The XYZ val-

ues for each patch are provided, or can be measured with a spectrophotometer, and by captur-

ing an image of the colorcard using each phone under the flash illumination a corresponding

set of RGB values is produced. It is then possible to obtain a 3×3 device specific mapping,M,

from native RGB to XYZ using a linear least squares approach

M ¼ ðRTRÞ� 1RTH ð5Þ

where R andH are N×3 matrices of RGB and XYZ values respectively, and N is the number of

patches [29]. A common alternative to the linear approach is to use a polynomial mapping,
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where R is expanded to include higher order power and cross terms in RGB [30]. To allow

images to be taken at different illumination intensity levels without affecting the resulting col-

ors, we require that the mapping used be exposure time independent. Since polynomial map-

ping terms are not raised to the same power, output values will be non-uniformly affected by a

change in exposure time. A polynomial mapping would therefore not be appropriate here. A

root polynomial approach is exposure time independent [31], but can lead to overfitting when

only 24 patches are used. The simple linear mapping was therefore deemed most appropriate.

Metamerism owing to the Luther condition not being met for the cameras means that the aim

is always to find the closest approximation for the transformation to XYZ space from native

space [32]. Note that the calibration stage to move from RGB to XYZ must be carried out on a

per-device basis in order to achieve the higher accuracy, due to inter-device variation [18, 19,

33]. Whilst this may sound onerous, the use of this calibration step in combination with ambi-

ent subtraction means that it need only be carried out once—the mapping is optimised for the

specific illumination provided by the phone which is always the resulting illumination after

ambient subtraction. Data collection then becomes very simple, not requiring a colorcard to

be included in each image.

Custom mapping. The use of a standard colorcard means that a variety of colors can be

mapped with reasonable precision and accuracy, however in some cases the card may not

yield precise enough results or may not cover the range of colors required. If the color in

question is out of the gamut of the colorcard, the mapped value is likely to be highly inaccu-

rate. Akkaynak et al suggested an approach for scene-specific color calibration which

involves measuring the radiance of different parts of the scene and then calculating the cor-

responding XYZ values, as well as simulating the RGB values through additional calibration

of the camera or obtaining them as above [19]. This approach is ideal for complex environ-

ments, such as underwater marine monitoring, however for more typical environments the

additional complexity and specialised equipment required outweighs the benefit. The idea of

developing a mapping which is targeted to a smaller range of colors, and which therefore

maps them more precisely, remains desirable. In many colorimetric applications, the task is

to discriminate between different levels of a particular color—for example red for anaemia

[9], or yellow for jaundice [6]. In these cases the expected range of colors is known. It is

therefore viable to create a physical custom colorcard with patches spanning the required

colors. The use of a physical card means that the user does not need to have access to any

equipment other than the colorcard and the phone they intend to use. Previous work on

developing custom colorcards of this kind exists in areas such as agricultural plant monitor-

ing [34], chronic wound monitoring [35] and characterising artwork [36]. We have taken

the example of jaundice and have created a custom yellows card with the aim of increasing

the accuracy of mapped yellow values. Experimental results demonstrating the concept are

presented later in the paper.

Chromaticity

Even after removing the effects of ambient light and moving to a device-independent space,

the data from two phones will still not necessarily match. The image capture stage is flexible

and hence photos may be captured at different distances and exposure times, meaning that the

color channels will be subject to an unknown scaling factor. In addition, the region of interest

within the image is likely to be affected by geometric shading, meaning that pixels which

should have the same value will again be scaled differently. The approach to deal with these

effects is to use chromaticity values rather than the raw channel values. Chromaticity is defined
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as a channel value divided by the sum of all three channels,

x ¼
X

X þ Y þ Z
; y ¼

Y
X þ Y þ Z

; z ¼
Z

X þ Y þ Z
ð6Þ

where lower-case letters are used to denote a chromaticity value, and any scaling factor across

the channels will cancel out [22]. Chromaticity values sum to 1, meaning that our data has

been reduced from three dimensions to two. After ambient subtraction, we apply the device-

specific calibration and finally calculate device-independent x and y chromaticity values.

Methods

In this section, the methodology for calibration and data collection are described, followed by

a description of the experimental testing carried out to validate the overall method. Unless oth-

erwise stated, all processing was carried out using MATLAB (MathWorks r2018a).

Processing pipeline

One-time calibration. The first step when introducing a new phone for data collection is

to carry out the one-time calibration required to make data from different phones compatible.

Two flash/ no-flash pairs of images should be captured, one of the colorcard and one of a neu-

tral grey card. The phone should be positioned at approximately 45˚ to the cards to minimise

any specular reflection, and ambient light should be minimised. The grey card images are

required to correct for the intensity non-uniformity of the smartphone flash. For this correc-

tion to work well, it is crucial that the phone remain as static as possible between the two sets

of images. A low-cost phone tripod is ideal but where necessary, handheld measurements

would be sufficient if done with great care. It was found that standard white printer paper is

fairly non-uniform in reflectance and prone to specular reflection, hence the use of a grey card

for the Intensity Non-Uniformity Correction (INUC).

Once the images have been captured, the mapping from phone native space RGB values to

device-independent XYZ values is carried out as depicted in Fig 1. The raw images are first lin-

earised and subtracted. The grey card image is then demosaiced using dcraw (Dave Coffin ver-

sion 9.27, 2016) and the green channel values selected as indicative of the overall intensity of

Fig 1. Calibration pipeline. The processing required to generate a device-specific RGB to XYZ mapping from flash no-flash image pairs captured of a

colorcard and grey card with no ambient light. The subtracted RGB values for each colorcard patch are divided by the corresponding grey card intensity

values obtained from the green channel to perform an Intensity Non-Uniformity Correction (INUC). The linear least squares mapping (M) is then

constructed from known XYZ values (H) and the extracted RGB values (R). Note that due to the use of ambient subtraction this calibration needs only

to be carried out once per device.

https://doi.org/10.1371/journal.pone.0230561.g001
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the illumination. The extracted RGB values for each colorcard patch are then divided by the

corresponding grey card intensity, and combined with the known XYZ values (provided by

the card manufacturer or previously measured using a spectrophotometer) to give a mapping

from RGB to XYZ, i.e.H = RM.

Data collection. Once the one-time calibration has been carried out, the data collection

and following analysis process is extremely simple. Fig 2 shows the steps involved. First, an

image pair containing the region of interest is captured, for example a patient’s eye or a test

strip, ensuring that a good SSNR is obtained. Median RGB values for the particular region of

interest are calculated for the flash and no-flash image, and the results are subtracted. This pro-

cess accounts for any motion between images. The previously determined device-specific map-

ping (M) is applied to convert the subtracted RGB values into XYZ values. Finally the device

and ambient light-independent xy chromaticity values are calculated. Datasets containing

results from more than one phone are then compatible.

Testing

In order to test the proposed methodology, two different models of phone were considered—

the Samsung S8 and the LG Nexus 5X, referred to throughout the paper as simply S8 and

Nexus. For image capture, the S8 rear camera was used with illumination provided by the LED

flash, whereas the front-facing camera of the Nexus was used with a white screen as the illumi-

nation. Since it may be more useful to use either the front or rear-facing camera depending on

the application, an example of both was considered. To investigate the variability of these

phones within a specific model, two devices of each model were used. The linearity of the

response of each phone to incident light was verified before use.

Ambient subtraction and SSNR threshold. The ambient subtraction method was tested

for a wide range of colors by imaging 172 patches of the Macbeth ColorChecker DC card

(excluding the repeating neutrals from the boundary of the chart and the reflective patches).

Images of the DC card were captured with no ambient light, to provide a ground truth, and

under daylight and fluorescent lighting. To evaluate this stage alone, the impact of ambient

subtraction was considered in the phone native space by investigating the shift in rg values.

Red and green chromaticity values, r and g respectively, were used to remove the effects of

intensity and geometric shading.

The following experiment was carried out to provide guidance on the level of SSNR

needed to produce useful data. The phone was held static at a 45˚ angle to a Macbeth Color-

Checker Classic card, which has 24 patches, and flash/ no-flash image pairs were captured. A

TaoTronics TT-DL09 LED desk lamp was used to provide a controlled ambient light with a

correlated color temperature of 3850K, and image pairs were captured as the intensity was

Fig 2. Data analysis pipeline. An image pair of the colorimetric subject is captured. The subtracted RGB value for the particular region of interest is

then calculated by subtracting the median RGB values for each image. The previously calculated RGB to XYZ mapping (M) is then applied and xy

chromaticity values are calculated, yielding device and ambient light independent color values.

https://doi.org/10.1371/journal.pone.0230561.g002
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gradually increased. For each image pair the rg chromaticity values for each patch after sub-

traction were calculated and the distance to the corresponding ground truth rg values (GT),

from a no ambient light image set, was calculated. The distance was defined as the Euclidean

distance

rg distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrtest � rGTÞ
2
þ ðgtest � gGTÞ

2

q
ð7Þ

where r and g are red and green chromaticities for the patches, and the test and GT sub-

scripts refer to data under ambient and no ambient light respectively. This rg distance was

then plotted as a function of the SSNR for each patch calculated according to Eq 4. The

smallest rg distance achievable in practice was estimated by taking a series of no ambient

light images of the Classic card over different capture sessions, and the average rg distance

between the same patches imaged multiple times was calculated. This rg distance for each

phone was then used to determine the suggested SSNR cutoff for practical use.

Device independence. The Macbeth ColorChecker Classic card (24 patches) was used for

the one-time calibration for each phone, and then the testing was carried out using 148 patches

from the Macbeth ColorChecker DC card (additionally excluding those out of the gamut of

the Classic card). The ground truth xy chromaticity values for each card were measured using

the X-Rite ColorMunki spectrophotometer. A procedure to calculate the Classification Accu-

racy for Multiple Phones (CAMPn, where n is the number of phones considered) was defined

in order to compare our proposed overall pipeline to dcraw. Both mapping approaches were

applied to the data and different subsets of the DC card patches were selected with varying

allowed minimum separations in xy chromaticity space. The mapped values for each phone

and patch were classified to the ground truth values using a nearest neighbour classification—

the classification was deemed successful only if all four phones correctly classified a patch. In

other words, to calculate the CAMP4 data presented later in the paper, these steps were

followed:

• For a given minimum allowed xy separation

• Select a subset of DC card points which are all at least this far apart

• For each phone (1—n)

• Do a nearest neighbour classification for all subset points of mapped to ground truth

data

• CAMPn = percentage of points for which all phones gave the correct classification

• Repeat for a minimum of 1000 unique point set permutations and find the average

CAMPn

This classification process was carried out for image sets captured with no ambient light as

well as for the image sets captured under daylight and fluorescent lighting, and the results

compared. Finally, the concept of a custom colorcard was investigated for the example of yel-

lows. Two custom cards were created, one for training and one for testing. The training card

contained 30 patches covering yellows and neutrals and the testing card contained 24 patches

of varying hue and saturation. The impact of using this custom card for mapping on the

CAMP4 was compared to the Classic colorcard mapping approach for three different lighting

conditions.
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Results and discussion

Ambient subtraction

To test the ambient subtraction method, the DC card was imaged under daylight and fluores-

cent lighting. It was also imaged under no ambient lighting to provide a ground truth. Fig 3

shows the results before and after subtraction for an example Nexus phone under fluorescent

lighting—results for all phones were similar in form, and fluorescent lighting results have been

presented here as an example. From Fig 3 it is clear to see that the patch values after subtrac-

tion move towards the ground truth values, as the subtraction removes the impact of the ambi-

ent light on the pixel values. The average rg distance between corresponding pairs of ground

truth and ambient light influenced values decreases significantly after subtraction, as demon-

strated by the histograms inset in Fig 3.

To aid a clearer visualisation of the impact of ambient subtraction, a subset of 10 points

from the DC card is shown in Fig 4. The outer bounds of the total group of ground truth

patch values from Fig 3 is shown with a blue dashed line, for reference. The subset of patches

was chosen to be representative of the whole spread of points, with each ground truth value

shown as a filled colored circle corresponding to the actual color of the patch. The values

before and after subtraction are shown connected by an arrow. With the smaller set of points

it is now even easier to see how much the ambient subtraction helps to standardise the data.

The data presented here is again for fluorescent lighting, but similar results were found for

daylight.

SSNR

It is important to be able to know at the time of image capture whether an image set will be

useable, to avoid loss of data. The SSNR gives information about the signal to noise ratio of

the post-subtracted signal. However, there is not an intuitive value above which the images

will be reliably useful. For this reason an experiment imaging the Classic colorcard under

varying controlled levels of ambient light was carried out as described in the Methods section.

Fig 5 shows the rg distance for each subtracted patch value from its corresponding ground

truth value as a function of the SSNR for that patch for an example S8 phone. At a certain

point, one would expect that increasing the SSNR would no longer improve (reduce) the rg

distance significantly. This is evident in Fig 5, but it is hard to see where the rg distance stops

improving. To provide a target rg distance threshold, the approach described in the Methods

section was followed and the experimentally determined intrinsic rg distance error is shown

in Fig 5 along with the value plus one standard deviation. For a practical limit, we deem that

once all points are within this higher threshold they will not be limited by the SSNR. The

inset of Fig 5 shows the ground truth rg value for an example patch along with some sub-

tracted results with varying SSNR. The practical rg distance threshold is also marked in the

inset, and it can be seen that above a certain SSNR the results remain within the threshold.

For each phone in the study, the threshold SSNR was calculated using the baselines specific

to that phone. The SSNR values yielded were similar for each phone and an average over the

four phones results in a threshold SSNR of 3.4, marked in Fig 5. When capturing data using

ambient subtraction, images should be retaken until the region of interest has an SSNR above

this threshold.

Device independence

For colorimetric applications, it is important to establish how well phones agree with each

other as well as how precise the results are. For certain applications, it will only be necessary to
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Fig 3. Impact of ambient subtraction. DC card rg chromaticity patch values for ambient fluorescent lighting are

shown for an example Nexus phone before (A) and after (B) subtraction, as pale pink triangles and dark pink

diamonds respectively. The ground truth rg values are denoted by blue circles, and the histogram of rg distances from

the ground truth is shown as an inset in each subfigure. Note that after subtraction the match is greatly improved and

the average rg distance decreases dramatically as the ambient subtraction minimises the effect of ambient light.

https://doi.org/10.1371/journal.pone.0230561.g003
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Fig 4. Visualisation of ambient subtraction. A subset of the example Nexus phone DC card patches shown in Fig 3

are shown to enable a clearer visualisation of the impact of ambient subtraction. An image of the DC card is shown in

A with the selected patches outlined in yellow. The impact of ambient subtraction on these patches is shown in B. The

outer limit of the ground truth rg values is shown with a blue dashed line and the subset of points have been selected to

cover the gamut. The ground truth values are shown using large filled colored circles, where the circle color is given by

the ground truth color of the patch. The values before and after subtraction are denoted by pale pink triangles and dark

pink diamonds respectively, as before, and corresponding points are joined by an arrow. Note how in all cases the

subtracted points move into close proximity of the ground truth value.

https://doi.org/10.1371/journal.pone.0230561.g004
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discriminate between a few very different colors, but some will have many more. In order to

test our approach, the CAMP4 was calculated for subsets of DC card patches with a range of

minimum xy separations as described in the Methods section.

Fig 6 shows the CAMP4 of both approaches over a range of average minimum xy separa-

tions for images captured under fluorescent lighting. It is clear from Fig 6 that our approach

provides higher accuracy for smaller point separations—to achieve a 90% classification accu-

racy the xy separation required for the dcraw approach is over 0.12, whereas this level is

reached for our approach at xy separations of under 0.05. Results were very similar for all three

lighting environments, with a spread in the xy separation required for 90% accuracy for the

different approaches of less than 0.01, highlighting further the power of ambient subtraction.

Example subsets of the DC patches are shown below the main figure for separations yielding a

90% CAMP4 for the two methods. Note how much more similar colors are classified correctly

for our approach. For applications where it is only necessary to discriminate between a few

very different colors, the required accuracy may be provided by using dcraw or an alternative

Fig 5. Determination of SSNR threshold. The Classic card was imaged under varying intensity ambient light. The rg

distance of each patch from the ground truth, found using images under no ambient light, is plotted as a function of

the SSNR value for the patch for an example S8 phone. The color of the points varies from black to pale grey according

to increasing SSNR. The intrinsic threshold rg distance and the threshold plus one standard deviation are shown with

dashed lines in blue and green respectively. The required SSNR for useable data is defined as the point at which all

points are below the upper line, and therefore not limited in accuracy by SSNR. The overall experimentally determined

SSNR threshold is 3.4, shown as a solid vertical green line. Additionally, an inset shows a subset of data points for an

example patch. The square pale orange point represents the ground truth rg value for the selected patch, where the

color of the square is given by the ground truth color of the patch. The green dashed line shows the threshold rg

distance determined for adequate SSNR. Finally, the grayscale circles outlined in pink (as also outlined in pink in the

main figure) show the initial large impact of increasing SSNR on the rg distance until the threshold where the results

are comparable even for increased SSNR.

https://doi.org/10.1371/journal.pone.0230561.g005
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method using the metadata information. However, when more similar colors are included

then our approach provides a significant increase in classification accuracy. Note that for this

increase in accuracy to be maintained, it is important to use a device-specific calibration. If

instead a model level calibration level is used, for example one calibration for all S8 phones,

the accuracy will be reduced [18]. However, since this device-specific calibration need only be

carried out once per device it is not too onerous.

Fig 6. Classification accuracy. CAMP4 (Classification Accuracy for Multiple Phones, 4 phones) for different subsets

of patches from images of the DC card under fluorescent illumination for our proposed method and dcraw are shown

as a function of the average minimum xy separation. Note the large increase in classification accuracy for our approach

at lower xy separations compared to dcraw, the simplest alternative. The blue dashed lines indicate the xy distance at

which a 90% CAMP4 is achieved for each method, with corresponding example DC patch subsets shown below to

enable a visual understanding of different colors that can be discriminated between with the two approaches. xy

chromaticity diagrams generated using [37].

https://doi.org/10.1371/journal.pone.0230561.g006
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Custom mapping

As previously discussed, the two scenarios where it may be helpful to use a custom colorcard

are when the colors of interest are out of the range of the Classic card, or when the level of

precision and accuracy required in a small color region is very high. Here we consider the

second case, and take the specific example of yellow—high accuracy is required specifically

for levels of yellow when quantifying jaundice. The impact of calibrating using the Classic

card versus a custom yellows card was tested using a second yellows card, with patches from

a different manufacturer and with different reflectance profiles. The same process for find-

ing the CAMP4 of the two methods was used as for the more general classification testing.

Fig 7 shows images of the cards used and the CAMP4 as a function of the mean minimum xy

separation for the subsets with no ambient light. The yellows card approach provides a

higher classification accuracy than the Classic card for all xy separations, with a particularly

large difference for small xy separations. The precision of the mapping is also important,

particularly when focussing on a small region of color space. Table 1 gives the overall mean,

median and 95th percentile xy error distance over the four phones for the two methods.

Using the yellows card for the one-time calibration rather than the Classic card leads to an

increase in accuracy of around 40% based on the median. The aim of this example case was

to demonstrate that an increase in both pure mapping accuracy and CAMP4 can be achieved

when using a custom colorcard which focusses on a smaller range of colors than the Classic

card. For a given application, a custom card could be designed and used for the calibration

stage, leading to more precise color information whilst maintaining a simple calibration

process.

Conclusion

Through the use of our novel processing pipeline for smartphone colorimetric measurements,

the effects of ambient light and inter-device variation can be accounted for and reliable chro-

maticity values obtained. Capturing pairs of flash/ no-flash images and using an ambient sub-

traction technique minimizes the effect of ambient light. Then the application of a device-

specific mapping, developed from images of a standard colorcard, allows the conversion of val-

ues to a device-independent space such as xy space. The extracted color values are then inde-

pendent of the device and lighting. This means that the link from chromaticity values to the

physical scale relevant to the particular application only needs to be developed once and can

be applied to data collected using new phones. Additionally, we propose the use of a physical

custom colorcard for applications where more precise values are required. When the mapping

is focussed on a smaller region of colorspace the results can be more accurate, and the use of a

physical card means that the simple one-time calibration can still be carried out by imaging

the card.

One potential drawback of our proposed method is that it yields just chromaticity color val-

ues, reduced by one dimension. For many applications this is not a problem, however in some

cases crucial information is lost when the dimensionality is reduced. It would be possible to

expand to the full colors by including a white standard in each image, however we have

avoided this due to our aim of keeping the image capture simple. The latest generations of

smartphones are starting to include time of flight cameras which could be integrated into the

method to provide distance information and so normalise the data and enable the full color

values to be extracted.

The one-time calibration method laid out here involves imaging a grey card to correct for

variations in the illumination intensity across the colorcard. Moving forwards, it may be
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possible to further simplify this process by imaging only the colorcard and applying the alter-

nating least squares color correction algorithm proposed by Finlayson et al [38]. This algo-

rithm corrects for the spatial variation and generates the mapping by alternating between the

two steps. Initial tests using the approach are promising, and could make the calibration pro-

cess even more simple.

Our color science-based approach to smartphone colorimetry enables image capture using

multiple phones in different environments. The processing power required is low and so even-

tually the entire system could be integrated within an app which would not require cloud

Fig 7. Custom mapping classification accuracy. An image of the yellows card used for testing is shown in A with the

CAMP4 (Classification Accuracy for Multiple Phones, 4 phones) shown in B. Results are presented for mappings

developed using the Classic card and training yellows card (with images of the cards in the legend) as a function of the

average minimum xy separation for different point subsets of the test yellows card with no ambient light. Note the

increase in classification accuracy for small xy separations when the yellows card approach was used, crucial when

trying to discriminate between very similar colors.

https://doi.org/10.1371/journal.pone.0230561.g007
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access, making the approach fit for use in low resource or remote environments. Additionally,

the one-time calibration and straightforward image capture process make our method a sim-

ple, streamlined approach for smartphone colorimetric measurements.
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