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Abstract—As a typical non-Gaussian vector variable, a neutral
vector variable contains nonnegative elements only, and its l1

norm equals one. Additionally, its neutral properties make it
significantly different from the commonly studied vector variables
(e.g., Gaussian vector variables). Due to the aforementioned
properties, the conventionally applied linear transformation ap-
proaches (e.g., principal component analysis (PCA), independent
component analysis (ICA)) are not suitable for neutral vector
variables, as PCA cannot transform a neutral vector variable,
which is highly negatively correlated, into a set of mutually
independent scalar variables and ICA cannot preserve the bound-
ed property after transformation. In recent work, we proposed
an efficient nonlinear transformation approach, the parallel
nonlinear transformation (PNT), for decorrelating neutral vector
variables. In this paper, we extensively compare PNT with PCA
and ICA, through both theoretical analysis and experimental
evaluations. The results of our investigations demonstrate the
superiority of PNT for decorrelating the neutral vector variables.

Index Terms—Neutral vector variable, neutrality, decorrela-
tion, nonlinear transformation, non-Gaussian

I. INTRODUCTION

DEcorrelation of a random vector variable plays an es-
sential role in multivariate data analysis, signal process-

ing, pattern recognition and machine learning [1]–[4]. It can
transform a correlated vector variable into a set of mutually
uncorrelated scalar/sub-vector variables. That is, although the
covariance matrix of the vector variable may not be diagonal,
the covariance matrix of the resultant scalar variables can be
made diagonal by a decorrelation transform; in other words,
the correlations between the variables have been removed by
the decorrelation transform.
A process closely related to decorrelation is called whiten-

ing, which removes not only the correlations between variables
but also the variances of variables, transforming the original
covariance matrix into an identity matrix. To achieve whiten-
ing of a vector variable, there are many linear transforms
including the Mahalanobis transform, Cholesky decomposition
and eigen-decomposition of the precision matrix (i.e. the in-
verse of the covariance matrix) [2]. However, using whitening
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transforms for decorrelation has a limitation. After whitening
transformation, every uncorrelated scalar variable has unit
variance; this means the uncorrelated scalar variables are
not distinguishable from each other in terms of variance
(or “energy”). It is possible to further recover the original
variances (on the diagonal entries of the original covariance
matrix) to the uncorrelated variables [2], but this also means
the distribution of the variance over the elements of the vector
variable does not change after transformation. A distributional
change like concentration of variance, such that the resultant
uncorrelated scalar variables can be better distinguished, is
often desirable in practice for tasks such as data compression,
dimension reduction and feature selection. To this end, one
can resort to linear orthogonal transforms.
Linear orthogonal transforms, including the renowned

Fourier transform, discrete cosine transform and Karhunen-
Loève transform, are not only able to decorrelate the elements
of a vector variable to various extents, but also able to
concentrate the “energy” (in terms of variance) of the vector
in a small number of scalar variables obtained from the
transformation [5]. Hence, linear orthogonal transforms are
widely used to decorrelate a vector variable.
Karhunen-Loève transform, also better-known as principal

component analysis (PCA) [6], among others, is an ubiqui-
tously applied linear orthogonal transformation method that
can decorrelate a vector variable into a set of uncorrelated
scalar variables. Moreover, if the original vector variable
follows a multivariate Gaussian distribution, PCA can yield
a set of mutually independent scalar variables. By applying
eigenvalue analysis to the covariance matrix of vectors, PCA
linearly maps the original vector into a space spanned by the
covariance matrix’s eigenvectors [1]. If we treat the eigen-
value as the “energy” of corresponding variable and select
K eigenvectors that correspond to the top K eigenvalues as
the representative features, PCA serves as a feature selec-
tion/dimension reduction approach to the vector [6]. The PCA-
based feature selection/dimension reduction approach (and its
extended versions, e.g., kernel PCA [7], [8]), which can also be
considered as low-rank matrix approximation, has been widely
applied in face recognition [9], [10], speech enhancement [11],
text analysis [12], blind source separation [13], [14], source
coding [15], [16], etc.
In order to get mutually independent variables with PCA,

the multivariate Gaussian assumption is usually applied to the
original vector. However, it is uncommon to have true Gaus-
sian distributed data in real-life applications [17]. For example,
the grey or color pixel values in image processing [18], the
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rating scores to an item in a recommendation system [19], [20],
and the genome-wide DNA methylation level value in bioin-
formatics [21], [22] are all strictly bounded and distributed in
the interval [0, 1]. The speech signal’s spectrum coefficients
are distributed as x ∈ (0,+∞), which is semi-bounded [23].
The l2 norms of the spatial fading correlation and the yeast
gene expressions [24] are all equal to 1, and such data convey
directional property (i.e., ∥x∥2 = 1). Another type of data is
the proportional/compositional data [25], which are nonnega-
tive and have a l1 norm equal to one. The aforementioned data
all have asymmetric or constrained distributions [26] and they
do not match the natural definition of Gaussian distribution
(i.e., the definition domain is unbounded and the distribution
shape is symmetric). Hence, these data are non-Gaussian
distributed [27]. Recently, it has been demonstrated in many
studies that explicitly utilizing the non-Gaussian characteristics
can significantly improve the practical performance [18], [23],
[24], [27]–[29]. Applying PCA to non-Gaussian distributed
data can only get uncorrelated but not independent variables,
and therefore, the consequent performance, which requires the
variables’ mutual independence, will be decreased [27], [29],
[30].
Independent component analysis (ICA) can decorrelate any

vector variable (observed data) into a set of mutually inde-
pendent scalar variables (data sources) [31], [32], with the
assumption that the data sources are mutually independent
and non-Gaussian distributed. Hence, applying ICA to non-
Gaussian distributed vectors can lead to not only decorrela-
tion but also independence. However, ICA is computation-
ally costly because it requires several preprocessing steps,
including centering, whitening, and/or dimension reduction
before implementation [33]. ICA has been widely applied
in several fields, such as face recognition [34], blind source
separation [35], and wireless communications [36].
Neutral vector variables [37], [38] are a typical non-

Gaussian vector variable. The non-Gaussian properties of a
neutral vector variables are: 1) all the elements in a neutral
vector variable are nonnegative; and 2) the l1 norm of a
neutral vector variable equals one. Neutral vector variable
has been widely applied in many real-life applications. In
biological research, the neutral vector had been applied to
data on bone composition in rats and scute growth in tur-
tles [37]. To describe the characteristics of the proportion-
al data/compositional data, neutral vector variable has been
extensively applied in document analysis [39], [40], image
processing [41], and speech signal processing [42], [43]. A
typical distribution for modeling the distribution of a neutral
vector variable is the Dirichlet distribution [44]. As a classi-
cal method for constructing non-parametric models, several
Dirichlet distribution based Dirichlet process models have
been proposed for the purpose of feature selection [45], [46],
cognitive radios [47], [48], etc. In order to explicitly explore
the properties of the neutral-like data1, the Dirichlet distribu-
tion and the corresponding Dirichlet mixture model (DMM)
have been applied to model the underlying distributions of
1“Neutral-like” data denotes data simply satisfying the nonnegative and unit

l1 norm properties. However, these data may not have all the neutral vector
variable’s properties.

such data [29], [49], [50]. Bayesian estimation of DMM with
variational inference, which provides analytically tractable
solution for parameter estimation, has been proposed in [51].
The neutral vector variable can be considered as a point

process distributed variable in the plane of
∑N

i=1 xi = 1.
Both of them are used for analyzing bounded data. However,
the point process focuses on discussing spatial and temporal
relationships between data points and is mainly for mod-
elling data with three types: 1) Sequential data in continuous
time [52], [53], 2) spatial representations of locations [54],
[55], and 3) spatio-temporal data [56], [57], while the neutral
vector variable can be applied for modelling not only spatio-
temporal data, but also other data without temporal and spatial
correlations. Thus, the point process distributed variable can
be considered as a special case of the neutral vector variable
in the fields of applications.
Obviously, directly applying PCA to neutral vector variable

can only yield uncorrelated variables. The mutual indepen-
dence, which is required in many cases, is not guaranteed,
due to the non-Gaussian properties. With linear projection,
Dirichlet component analysis (DCA) was proposed to replace
PCA for Dirichlet variable decorrelation and dimension re-
duction [58]. Although DCA preserves the relevant constraints
among the elements of the vector variable, it can only guar-
antee that the mapped component are decorrelated as much as
possible. Mutual independence cannot be obtained by DCA,
either. With ICA, mutually independent scalar variables can be
obtained after decorrelation. However, the bounded property
cannot be preserved.
By explicitly exploring the completely neutral property [38],

we have proposed a special nonlinear transformation strat-
egy, namely the parallel nonlinear transformation (PNT), to
decorrelate the neutral vector variable into a set of mutually
independent scalar variables or a set of mutually independent
sub-vector variables [29], [59]. The PNT has been successfully
applied in many areas, such as speech linear predictive coding
(LPC) model quantization [29] and feature selection for EEG
signal classification2 [30].
For neutral vector variable decorrelation, PNT, PCA, and

ICA have several similarities: 1) all of them transform a
vector variable into a set of uncorrelated scalar variables;
2) by yielding uncorrelated variables, they can all serve
as feature selection methods. However, there are also some
dissimilarities among these methods: 1) PCA and ICA are
linear transformations while PNT is nonlinear; 2) PCA is
optimal3 for Gaussian vector variables, ICA is optimal for any
non-Gaussian sources, and PNT is optimal for neutral vector
variables; 2) neither PCA or ICA can perserve bounded sup-
port property while PNT preserves it; 4) eigenvalue analysis is
the prerequisite for conducting linear transformation in PCA,

2Part of the work in the submitted manuscript (The RBF-SVM+PCA and
the RBF-SVM+PNT results in Fig. 7(c)-7(f)) has been published in [30].
Focusing on the general framework for decorrelating completely neutral
vector, this paper introduces the concept of completely neutral vector and
demonstrates the advantages (by comparing with PCA and ICA) of this
framework with both synthesized data and real-life data applications. In
contrast, the work in [30] is only a use-case of the proposed methods.
3Hereby, “optimal” means that the transformation can yield not only

uncorrelated but also mutually independent scalar variables.

Page 6 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3

several preprocessing steps are required for ICA, while PNT
does not require the computation of statistical properties in its
implementation. Hence, it is of sufficient interest to conduct
extensive comparisons among these strategies for the neutral
vector variables.
Several improved variants of PCA or ICA exist, such as non-

linear PCA [60], fast robust PCA [61], kernel PCA [62], kernel
ICA [63], and binary ICA [32]. However, the purpose of this
paper is to analyze and compare the fundamental decorrelation
methods for neutral vector variables, rather than involving
the improved variants of them. Hence, we compare only the
proposed PNT with the original PCA or ICA.
The contribution of this work can be summarized as follow:
• We provide a through study of the so-called PNT decor-
relation strategy for non-Gaussian neutral vector variable,
which is optimal, preserves the non-Gaussian properties,
and does not need to calculate the statistical properties
during operation.

• Intensive comparisons between the proposed PNT and the
conventionally used PCA and ICA have been conducted.
Theoretical analysis and synthesized and real data eval-
uations demonstrate the effectiveness and the robustness
of the proposed method.

The remaining parts of this paper are organized as follows:
in Sec. II, we briefly introduce the neutral vector and its related
concepts and properties. The details of PNT, PCA, and ICA
will be provided in Sec. III. Extensive comparisons among
these methods, with theoretical analysis and data evaluations,
will be conducted in Sec. IV. We will draw some conclusions
in Sec. V.

II. NEUTRAL VECTOR VARIABLE
Assuming we have a random vector variable x = [x1, x2,

. . . , xK , xK+1]T, where xk > 0 and
∑K+1

k=1 xk = 1. Let xk1 =
[x1, . . . , xk]T and xk2 = [xk+1, . . . , xK+1]T. The vector xk1

is neutral if xk1 is independent of wk = 1
1−sk

xk2 (i.e., xk1 ⊥

wk), for 1 ≤ k ≤ K [37], [38], where sk =
∑k

i=1 xi and
s0 = 0. If for all k, xk1 are neutral, then x is defined as a
completely neutral vector variable [37], [64]. A (completely)
neutral vector variable with (K + 1) elements has K degrees
of freedom.
A completely neutral vector variable has the following rel-

atively proportional properties [59]:
Property 2.1 (Mutual Independence): For completely neu-

tral vector variable x, define zk = xk
1−sk−1

and z1 = x1, we
have z1, z2, . . . , zK are mutually independent.
Property 2.2 (Aggregation Property): For a completely

neutral vector variable x, when adding any adjacent elements
xr and xr+1 together, the resulting K-dimensional vector
x
r"r+1 = [x1, . . . , xr + xr+1, . . . , xK+1] is a completely
neutral vector again.
Property 2.3 (Exchangeable Property): For a completely

neutral vector variable x, if any arbitrarily permuted version
of x is still completely neutral, then this vector variable
is exchangeably completely neutral.
For the convenience of expression, we use “neutral vector
variable” to represent the term “completely neutral vector
variable” for short.

 x=[x1,x2,...,xK+1]
T

Is L even?

l=1

x1=x, i=2

L<= L/2

< 1

L=length(xi-1)-1

l=1

xl,i=x2l-1,i-1+x2l,i-1

ul,i-1=x2l-1,i-1/xl,i
l++

<

 xi=[x1,i,,...,xl,i,xL+1,i-1]
T

 ui-1=[u1,i-1,...,ul,i-1]
T

1

L<(L+1)/2

xl,i=x2l-1,i-1+x2l,i-1

ul,i-1=x2l-1,i-1/xl,i
l++

<

xi=[x1,i,...,xl,i]
T

 ui-1=[u1,i-1,...,ul,i-1]
T

1

length(xi)==2

<

1

ui=x1,i

u=[u1
T,...,ui

T]T

i++

Fig. 1. Flow chart of PNT.

The Dirichlet variable is a typical case of neutral vec-
tor variable [1], [65], it contains nonnegative elements with
summation equals one. The probability density function of a
(K + 1)-dimensional Dirichlet distribution, given parameter
vector α = [α1,α2, . . . ,αK+1]T, is defined as

Dir(x;α)=
Γ(

∑K+1
k=1 αk)

∏K+1
k=1 Γ(αk)

K+1∏

k=1

x
αk−1
k , xk≥0,

K+1∑

k=1

xk=1,αk >0. (1)

The covariance matrix of the Dirichlet distribution is [66]

Cov[x]i,j =

⎧
⎨

⎩

αi(s−αi)

s2(s+1)
i = j

−αiαj
s2(s+1)

i ≠ j
, (2)

where s =
∑K+1

k=1 αk. Obviously, the covariance matrix of the
Dirichlet vector variable is negatively correlated (off-diagonal
elements are negative), which reflects the proportional property
of the neutral vector variable.
In summary, a neutral vector variable should satisfy
• nonnegative elements and unit l1-norm;
• relatively proportional properties;
• negatively correlated covariance matrix.

III. DECORRELATION APPROACHES
Both PCA and ICA are commonly known for the com-

munities of signal processing, pattern recognition, machine
learning, etc. Due to the limitation of space, we skip the
introduction to the technical details of these two methods and
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x1

x2,1

x3,1

x4,1

x5,1

x1,2

x2,2

x3,2

x1,3

u1

u2

u4

1

u6

x1,1

x6,1

u3

x7,1 x4,2

x2,3

u5

R

R

R

R

R

Fig. 2. An example of PNT with K = 6. The transformed coefficients
are u1 = x1,1/x1,2, u2 = x3,1/x2,2, u3 = x5,1/x3,2, u4 = x1,2/x1,3,
u5 = x3,2/x2,3, and u6 = x1,3. R represents the reciprocal operation.

focus on PNT in this paper. Detailed information of PCA and
ICA can be found in, e.g., [1].
With the aforementioned properties, a neutral vector vari-

able exhibits a particular type of statistical independence
among its elements [37]. In order to explicitly explore such
type of independence, we proposed a so-called parallel non-
linear transformation (PNT) scheme to transform a neutral
vector variable into a set of mutually independent scalar
variables [59]. For a neutral vector variable, PNT carries out a
nonlinear transformation according to the procedure illustrated
in Fig. 1.
For a (K+1)-dimensional neutral vector variable, K mutu-

ally independent scalar variables, each of which is distributed
in the interval [0, 1], can be obtained. The proof of mutually
independence has been presented in [59]. An example for
applying PNT to a 7-dimensional (i.e., K = 6) neutral vector
variable is shown in Fig. 2. A fast implementation of PNT
(FPNT), which involves zero-padding, was introduced in [59].
Note that the proposed PNT scheme can be simply im-

plemented by iterative element-wise summation and division
operations. No statistical information of the variables, e.g.,
covariance matrix, is required. In other words, unlike PCA
or ICA, which needs to get eigenvalues and eigenvectors in
advance, the PNT can be carried out based on the neutral
vector variable itself.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

PNT is a nonlinear decorrelation method specially designed
for neutral vector variables. Meanwhile, PCA or ICA is a
typically and widely applied decorrelation method, which can

also be applied to neutral vector variables. Hence, in terms
of decorrelation performance for neutral vector variables, it
is of sufficient interest to conduct extensive comparisons for
these two methods, with theoretical analysis, synthesized data
evaluation, and real data evaluation.

A. Comparisons with Theoretical Analysis

1) Mutual Independence: The importance of independence
arises in many applications. With the scheme introduced
in Sec. III, a neutral vector can be transformed to a set
of mutually independent scalar variables by PNT, in a nonliner
manner. PCA can be applied to transform any vector variable,
with a linear manner, to a set of uncorrelated scalar variables.
However, PCA can yield mutually independent scalar variables
only when the vector variable is multivariate Gaussian. With
ICA, a neutral vector variable can be transformed into a set
of mutually independent scalar variables as well, which is due
to the principles of ICA.
Hence, in terms of mutual independence, PNT and ICA are

optimal for neutral vector variables.
2) Computational Complexity: In practical applications, the

computational complexity of decorrelation is usually an essen-
tial concern. We now compare the computational complexities
of PNT, PCA, and ICA.
PNT can be conducted in a parallel manner. According

to the algorithm described in Fig. 1, it requires at most
⌈log2 (K + 1)⌉ iterations. Within each iteration, about L/2
summations and L/2 divisions with an even L or (L + 1)/2
summations and (L+1)/2 divisions with an odd L are needed.
Therefore, if we treat the summation as one floating-point
operation and the division as eight times of that4, the com-
putational complexity for PNT is O(K logK), since L = K
at the first iteration and L will reduce to (approximately) half
in each of the consequent iteration.
Implementation of PCA generally contains two stages: 1)

eigenvalue analysis of the covariance matrix and 2) linear
mapping of the vector via eigenvectors. To our best knowl-
edge, the fastest method for eigenvalue analysis so-far is
the method proposed by Luk et al. [68]. With the method
proposed in [68], the computational cost of eigenvalue analysis
is about O(K2 logK) for a K × K covariance matrix. For
the linear mapping, multiplying a vector with the eigenvector
matrix has a computational cost aroundO(K2). Therefore, the
computational cost for PCA is, on average, O(K2 logK).
In terms of source separation, ICA has robust performance.

However, one drawback of the algorithms designed for car-
rying out ICA is the high computational load required in
implementation [69]. Generally speaking, algorithms for ICA
requires centering, whitening, and dimension reduction as the
preprocessing steps for the purpose of facilitating calculation.
As mentioned in [33], the computational cost for ICA is
O(MK2), whereM denotes the number of iterations required.
This indicates that the convergence of ICA depends on the
number of iterations as well.

4According to T. Minka’s Lightspeed Matlab toolbox [67].
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TABLE I
PROPERTIES OF PNT, PCA, AND ICA FOR DECORRELATION OF N

SAMPLES. SEE TEXT FOR ANALYSIS.

Method Analytically Computational NG property
tractable solution complexity preservation

PNT
√

O(K logK)
√

PCA
√

O(K2 logK) ×
ICA × O(MK2) ×

As PNT avoids the eigenvalue analysis/whitening for P-
CA/ICA, the computational complexity is significantly re-
duced. For neutral vector variable decorrelation, PNT has less
computational cost than both PCA and ICA.
3) Preservation of Non-Gaussian Property: An important

property of neutral vector is its bounded support property.
It is usually required such property can be preserved af-
ter transformation. The proposed PNT method meets this
requirement with its division operation. Neither PCA nor
ICA can perserve the bounded support property5, as there
is no constraint applied during transformation to ensure the
resultant scalar variables (uncorrelated or independent) have
unconstrained support range.
In terms of non-Gaussian property preservation only, PNT

is capable and thus outperforms PCA and ICA.
4) Discussions: The summary of the aforementioned theo-

retical comparisons are listed in Tab. I. It is observed that PCA
and ICA both have more computational complexity than the
PNT method. ICA usually has a larger computational cost than
PCA, sinceM is a number larger than logK . Meanwhile, ICA
needs many iterations to converge and analytically tractable
solution does not exist. In terms of non-Gaussianity, PNT is
the only one that preserves the bounded support property.
In summary, for neutral vector variables, PNT performs bet-

ter than PCA and ICA, in terms of decorrelation, computation-
al complexity, and non-Gaussianity preservation. Compared
with PNT and PCA, ICA does not have analytically tractable
solution. Therefore, ICA algorithms typically resort to itera-
tive procedures with either difficulties or high computational
load.Moreover, although ICA can yield mutually independent
scalar variables (PNT can do this as well for neutral vector
variable), it cannot preserve the NG property and is not a
“suitable” method for fair comparisons. Hence, we compare
only PNT and PCA in the following parts.

B. Comparisons through Synthesized Data Evaluation
1) Decorrelation Effect on Neutral Vector Variables: Vec-

tors generated from a Dirichlet distribution are completely
neutral. In order to illustrate the decorrelation effect of the
PNT and PCA on neutral vector variables, we generated
vectors from a given Dirichlet distribution with parameter
α = [3, 5, 15, 9, 12, 8, 7, 20]T. PNT and PCA were applied to
this generated data set, respectively.
In order to measure the decorrelation effect quantitatively,

the distance correlation (DC) [70], [71] was calculated to
evaluate the mutual independence after decorrelation. The
conventionally used Pearson correlation coefficient [72], [73]

5Some kernel methods can be applied to preserve the bounded support
property, however, it is out of the scope of this paper.

(a) PNT, N = 100. (b) PNT, N = 200. (c) PNT, N = 400.

(d) PCA, N = 100. (e) PCA, N = 200. (f) PCA, N = 400.

Fig. 3. Decorrelation performances of PNT and PCA measured with p-values.
See text for details.

can only measure correlations between two random variables.
Unlike the Pearson correlation coefficient, the DC is zero if
and only if the random variables are mutually statistically in-
dependent [74]. Given a set of paired samples (Xn, Yn), n =
1, . . . , N , all pairwise Euclidean distances aij and bij are
calculated as

aij = ∥Xi − Xj∥, bij = ∥Yi − Yj∥, i, j = 1, . . . , N. (3)

Taking the doubly centered distances, we have
Aij = aij − āi· − ā·j + ā··, Bij = bij − b̄i· − b̄·j + b̄··, (4)

where āi· denotes the mean of the ith row, ā·j is the mean
of the jth column, and ā·· stands for the grand mean of the
matrix. The same definitions apply to b̄i·, b̄·j , and b̄··. The DC
is calculated as

DC =

√√
√
√
√

∑N
i,j=1 AijBij

√∑N
i,j=1 A2

ij

∑N
i,j=1 B2

ij

. (5)

In order to evaluate the statistical significance of the DC, a
permutation test is employed. The p-value for the permutation
test is calculated as follows:
1) For the original data (Xn, Yn), create a new data set

(Xn, Yn∗), where n∗ denotes a permutation of the set
{1, . . . , N}. The permutation set is selected randomly
as drawing without replacement;

2) Calculate a DC for the randomized data
3) Repeat the above two steps a large number of times, the

p-value for this permutation test is the proportion of the
DC values in step 2 that are larger than the DC from
the original data.

The null hypothesis in this case is that the two variables
involved are independent of each other (the DC is 0). When the
corresponding p-value is smaller than 0.05, the null-hypothesis
is rejected so that these two variables are not independent (but
could still be uncorrelated). Hence, p-value greater than 0.05
indicates mutual independence. We choose the significance
level as 0.05 in this paper.
The decorrelation performance, with different amounts of

generated data, are illustrated in Fig. 3. PNT and PCA were
applied to transform the generated vectors, respectively. The
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Fig. 4. Effect of PNT vs. PCA on energy distribution.

p-values of the transformed data were calculated. We chose
0.05 as the threshold to encode the p-values to black (if p-
value is smaller than 0.05, which indicates dependency) or
grey (otherwise).
When the amount of data is small (e.g., N = 100),

the generated data cannot reveal obvious complete neutral
properties. Hence, both PCA and PNT perform well and they
can decorrelate such a “semi”-neutral vector variable into a
set of mutually independent scalar variables.
As the amount of generated data increases, clear complete

neutrality can be expected. It can be observed that PNT always
transforms a neutral vector variable into a set of mutually inde-
pendent scalar variables (The diagonal elements of the p-value
matrix are smaller than 0.05 and all the off-diagonal elements
are larger than 0.05, as shown in Fig. 3(a), 3(b), and 3(c)).
PCA does not perform well, in terms of yielding mutually
independent scalar variables, when applied to neutral vector
variables (Some of the off-diagonal elements are smaller than
0.05, as shown in Fig. 3(e) and Fig. 3(f).)
Similar performances can be obtained when choosing other

parameter settings and we show only one example. For neutral
vector decorrelation, PNT outperforms PCA.
2) Effect on Energy Distribution: In pattern recognition

applications, getting a set of independent/uncorrelated vari-
ables from a correlated vector variable is helpful for feature
selection. Given the independent/uncorrelated features, we can
select features to construct a new subspace, in which it is easier
to distinguish data according to their labels 6. It is generally
useful to select the dimensions that have relatively large vari-
ances such that the multi-modality of the data distribution is
preserved. From the perspective of information theory, feature
selection always favors the dimensions with relatively large
differential entropies. In this paper, we treat either variance or
differential entropy as the “energy” of the dimension. In this
case, the feature selection task aims at selecting the dimensions
with relatively large energies.
With similar Dirichlet parameter settings as in Sec. IV-B1,

we generated 5, 000 vectors from a Dirichlet distribution. After
applying PNT and PCA on these data, separately, we compared
the energy distributions yielded by these two schemes. The
variances of the scalar variables after transformation are firstly

6For classification task, each data sample has a class label. These labels
are known for the training set and unknown for the test set. For clustering
task, we assume that the class labels are the missing underlying variables that
need to be estimated.

TABLE II
FC AND KLD COMPARISONS.α2 IS THE SWITCHED VERSION OF α1 ,

WHERE THE SWITCHED ELEMENTS ARE HIGHLIGHTED WITH UNDERLINE.
FCV AND FCE DENOTE FC CALCULATED BASED ON THE NORMALIZED
VARIANCE RATIO AND DIFFERENTIAL ENTROPY, RESPECTIVELY. THE

SAME DEFINITION APPLIES TO KLD.

FCV KLDV FCE KLDE

PNT PCA PNT PCA PNT PCA PNT PCA
α1 0.1142 0.0801 0.2204 0.1726 0.0225 0.0201 0.0103 0.0091
α2 0.0658 0.0790 0.1014 0.1697 0.0172 0.0185 0.0065 0.0077

α1 = [3, 5, 15, 9, 12, 8, 7, 20]T, α2 = [15, 5, 3, 9, 12, 8, 7, 20]T

normalized to have a unit l1-norm and then sorted in descend-
ing order. The normalized variance distributions obtained via
PNT and PCA are shown in Fig. 4(a). We also calculated the
differential entropies of each dimension after PNT and PCA
transformations. The differential entropies obtained from each
scheme were sorted in descending order as well. Comparisons
of differential entropies are shown in Fig. 4(b).
For feature selection, it is usually preferred to have energies

concentrated at a few dimensions. The largest normalized
variance ratio (1st dimension) in the PNT scheme is larger
than that in the PCA scheme. Similar phenomenon is also
observed for the differential entropy case. This indicates that
PNT can make better energy concentration than PCA, when
applying them to decorrelate neutral vector variables.
In order to make fair comparisons for the aforementioned

energy distributions, we defined a so-called “flatness coeffi-
cient (FC)” as the measurement. The FC for the normalized
variance ratio case is defined as the standard deviation as

FC =

√√
√
√ 1

K − 1

K−1∑

k=1

(nvark − nvarmean)2, (6)

where nvark is the normalized variance ratio for the kth

dimension and nvarmean is the mean of all the ratios. A large
FC means the energy distribution to be non-flat. Therefore, the
larger the FC, the better the scheme. In addition to FC, the
Kullback-Leibler Divergence (KLD) of the energy distribution
from the uniform distribution is also calculated as a metric
to measure how likely the energy distribution is uniformly
distributed. Larger KLD indicates better energy distribution.
The ratios of variance/differential entropies are treated as
probability distribution in the KLD calculation. The FCs and
KLDs for PNT and PCA are listed in Tab. II. In the first row
of Tab. II, all the FCs and KLDs (under both the normalized
variance ratio and differential entropy cases) obtained via
PNT are larger than those obtained via PCA, respectively.
With such observations, we conclude that PNT can yield a
feature distribution which is favorable in feature selection.
Feature selection performance for real data will be presented
in Sec. IV-C.
According to the nonlinear transformation procedure (the

summation and division operations), the results of PNT depend
on the order of dimensions in the neutral vector variable
(However, PCA will not be affected by the permutation of
dimensions). With the exchangeable property, any permuted
version of a neutral vector variable can also be optimally
decorrelated by PNT. Hence, the order of dimensions have
significant effect on the resulting energy distribution. In order
to demonstrate such effect, we repeat the above procedures
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TABLE III
SAMPLE COVARIANCE MATRICES OF LN-DISTRIBUTED DATA AND DC MATRICES OF THE ORIGINAL AND THE TRANSFORMED DATA.

(a) FN: covariance matrix (in ×10−3)
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

43.87 -7.42 -7.10 -6.91 -7.28 -7.22 -7.16 -0.79
44.73 -7.24 -7.15 -7.45 -7.23 -7.42 -0.81

43.43 -6.87 -7.20 -7.00 -7.20 -0.81
42.72 −7.07 -7.09 -6.88 -0.75

44.20 -7.17 -7.13 -0.91
43.63 -7.11 -0.81

43.80 -0.88
5.76

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(b) FN: DC matrix, original
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.00 0.26 0.16 0.21 0.19 0.19 0.17
1.00 0.27 0.27 0.35 0.29 0.26

1.00 0.17 0.18 0.30 0.30
1.00 0.22 0.17 0.17

1.00 0.24 0.22
1.00 0.87

1.00

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(c) FN: DC matrix, with PNT
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.00 0.06 0.08 0.10 0.21 0.07 0.23
1.00 0.07 0.06 0.17 0.08 0.15

1.00 0.06 0.06 0.90 0.49
1.00 0.08 0.13 0.08

1.00 0.07 0.27
1.00 0.50

1.00

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(d) FN: DC matrix, with PCA
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.00 0.53 0.31 0.29 0.23 0.18 0.18
1.00 0.50 0.36 0.28 0.19 0.20

1.00 0.487 0.29 0.17 0.19
1.00 0.46 0.26 0.25

1.00 0.47 0.45
1.00 0.33

1.00

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(e) PN: covariance matrix (in ×10−3)
⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.54 0.22 0.01 0.06 -0.87 0.01 0.00 0.01
84.99 0.24 -0.42 -85.15 0.07 0.00 0.05

0.48 0.05 -0.81 0.00 0.00 0.01
4.72 -4.54 0.04 0.00 0.10

91.71 -0.14 0.00 -0.19
0.04×10−1 0.00 0.00

3.12×10−7 0.00
0.01

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(f) PN: DC matrix, original
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.00 0.26 0.16 0.21 0.19 0.19 0.17
1.00 0.27 0.27 0.35 0.29 0.26

1.00 0.17 0.18 0.30 0.30
1.00 0.22 0.17 0.17

1.00 0.24 0.22
1.00 0.87

1.00

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(g) PN: DC matrix, with PNT
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.00 0.06 0.08 0.10 0.21 0.07 0.23
1.00 0.07 0.06 0.17 0.08 0.15

1.00 0.06 0.06 0.90 0.49
1.00 0.08 0.13 0.08

1.00 0.07 0.27
1.00 0.50

1.00

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(h) PN: DC matrix, with PCA
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.00 0.53 0.31 0.29 0.23 0.18 0.18
1.00 0.50 0.36 0.28 0.19 0.20

1.00 0.487 0.29 0.17 0.19
1.00 0.46 0.26 0.25

1.00 0.47 0.45
1.00 0.33

1.00

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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(a) Comparisons of normalized variance
ratio.
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(b) Comparisons of differential entropy.

Fig. 5. Effect of PNT vs. PCA on energy distribution, with the 1st and the
3rd dimensions switched.

with a Dirichlet distribution where the parameter setting is
α2 = [15, 5, 3, 9, 12, 8, 7, 20]T. This is a permuted version of
α1 = [3, 5, 15, 9, 12, 8, 7, 20]T by switching the 1st and the
3rd elements. A set of 5, 000 data samples were generated
from this Dirichlet distribution. The aforementioned energy
distribution evaluation procedure was applied to these data.
The effect of PNT and PCA on energy distribution are shown
in Fig. 5, where the largest normalized variance ratio in the
PNT scheme is smaller than that in the PCA scheme. Mean-
while, the differential entropy in PNT is also smaller than that
obtained via PCA. Comparing with the procedure (with α1),
this observation yields opposite comparison results on energy
distribution. Moreover, when comparing the FCs and KLDs
(listed in the second row of Tab. VI), PNT underperforms
PCA in resulting in a more favorable feature distribution.
With α1 and α2, we have obtained opposite performance

rankings of the two methods, only by permuting the neutral
vector variable. This indicates that the permutation of neutral
vector variable (the order of neutral vector elements) has effect
on the energy distribution after applying PNT. It remains
future work to design a strategy to find the optimal permuted
version of a neutral vector variable such that the energy
distribution obtained by PNT is the best among all the possible
permutations.
3) Decorrelation Effect on Neutral-like Vector Variables:

Definition A vector x of dimension (K +1) is referred to as
a neutral-like vector if xk, k = 1, 2...,K + 1, satisfies xk ≥ 0
and

∑K+1
k=1 xk = 1.

Neutral vector is a sub-type of compositional data. Compo-

sitional data are commonly present in real problems so testing
the performance of PNT in such a more general data class
is important. In this section, we extend our experiment to
the compositional data. Compositional data may not satisfy
neutral vector’s neutrality properties, so we call this kind of
vector variables neutral-like variables. In order to illustrate the
decorrelation effect of PNT and PCA on neutral-like vector
variables, we implement an experiment, which is similar to
the experiment in Sec. IV-B1, on a neutral-like dataset (i.e.,
logistic normal distributed data).

Definition A (K + 1) part composition x = [x1, ..., xK+1]T

is said to have a K dimensional additive logistic normal (LN)
distribution LK(µ,Σ), when y = [y1, , ..., yK ]T (where yi =
log( xi

xK+1
), i = 1, 2...,K) follows a K-dimensional normal

distribution NK(µ,Σ).

The logistic normal distributed data can have an either
fully negative (FN) covariance matrix or partially negative
(PN) covariance matrix, which is more flexible in topic model
applications [75]. We generated two data sets, one with an FN
covariance matrix and one with a PN covariance matrix, each
with 400 samples (N = 400), from two logistic normal distri-
butions with sample covariance matrices shown in Tab. III(a)
and III(e).
In order to investigate whether PCA and PNT can reduce

the mutual dependence evaluated by DC, we first computed
the DCs of the original data, PCA and PNT were then applied
to transform the data separately, and finally the DCs of the
transformed data obtained by PCA and PNT were computed.
The DC matrices of the original and transformed data are
shown in Tab. III(b)- III(d) and Tab. III(f)- III(h), respectively.
It can be observed that, for neutral-like vector variables,

most of the DCs were reduced by PNT. In contrast, most of the
DCs were increased after PCA. The average DCs before and
after transformation are listed in Tab. IV. From these results,
we can conclude that PCA is incapable of reducing neutral-
like vector variable’s dependence as measured by DC while
PNT is capable of to some extent. Similarly to Sec. IV-B1, we
implemented a permutation test, and the experimental results
of the p-value matrix are shown in Fig. 6, for PNT and
PCA, respectively. From Fig. 6, we can observe that PNT
outperforms PCA in terms of mutual independence measured
by DC, although some p-values are less than 0.05. (In contrast,
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TABLE IV
COMPARISONS OF AVERAGE DCS.

Cov. matrix
Average DC Raw data PNT PCA

FN 0.18 0.12 (↓) 0.27 (↑)
PN 0.34 0.21 (↓) 0.46 (↑)

(a) FN & PNT (b) FN & PCA (c) PN & PNT (d) PN & PCA

Fig. 6. The p-values of PNT and PCA on FN and PN logistic normal data,
respectively. The significance level is 0.05.

for PCA, almost all p-values are equal to zero, which means
the null hypothesis of mutual independence was rejected.)
With other logistic normal distribution’s parameter settings,
similar results can also be obtained.
In the experiments above, PNT can significantly reduce the

DCs, although the transformed data may not be fully mutually
independent, and it outperforms PCA in this sense.

C. Comparisons with Real Data Evaluation

1) EEG Signal Classification: As a typical signal that can
reflect the brain activities, the Electroencephalogram (EEG)
signal is the most studied and applied one in the design of
a BCI system [76], [77]. A BCI system connects persons
with the external devices by recording and analyzing signals
through a communication pathway. For those who suffer from
neuromuscular diseases, a BCI system plays an important role
in assisting them to communicate with others.
In order to classify the EEG signal properly, various types

of features have been proposed. The marginal discrete wavelet
transform (mDWT) vector, among others, has been widely
adopted [78]–[80], as the elements in a DWT vector reveal
features related to the transient nature of the EEG signal. To
make the DWT vector insensitive to time alignment [78], the
marginalization operation is applied. Therefore, the mDWT
vector contains nonnegative elements and has unit l1-norm,
which is a type of “neutral-like” data.
The EEG signal data used in this paper are from the

BCI competition III [81]. The data set contains two types of
actions: a subject performed imagined movement of left small
finger or the tongue. The classification task is then a binary
one. The electrical brain activity was picked up during these
trials using an 8 × 8 ECoG platinum electrode grid which
was placed on the contralateral (right) motor cortex. In total,
64 channels of EEG signals were obtained. For each channel,
several trials of the imaginary brain activity were recorded. In
total, 278 trials were recorded as the labeled training set and
100 trials were recorded as the labeled test set. In both the
training set and test set, the data are evenly recorded for each
imaginary movement. All the data were labeled according to
their ground-truth. For each trial, 64 channel data of length
3, 000 samples were provided.

TABLE V
SUMMARY OF BEST CLASSIFICATION RATES.D = 4 IS THE CASE WITH

LINEAR/NONLINEAR TRANSFORMATION BUT WITHOUT FEATURE
SELECTION.m DENOTES THE NUMBER OF CHANNELS THAT HAVE BEEN

SELECTED ACCORDING TO FR OR GEE.

Channel selection Classifier Best performance

FR

RBF-SVM
72%(m = 25)(no transformation)

RBF-SVM+PCA (D = 4) 73%(m = 6)
RBF-SVM+PCA (D = 3) 72%(m = 5, 6, 7)
RBF-SVM+PCA (D = 2) 73%(m = 7)
RBF-SVM+PCA (D = 1) 59%(m = 7)
RBF-SVM+PNT (D = 4) 75%(m = 17)
RBF-SVM+PNT (D = 3) 74%(m = 15, 18, 19, 20)
RBF-SVM+PNT (D = 2) 75%(m = 19,20)
RBF-SVM+PNT (D = 1) 69%(m = 11)

GEE

RBF-SVM
72%(m = 12, 17, 27)(no transformation)

RBF-SVM+PCA (D = 4) 72%(m = 10, 11)
RBF-SVM+PCA (D = 3) 72%(m = 11)
RBF-SVM+PCA (D = 2) 72%(m = 11, 12)
RBF-SVM+PCA (D = 1) 59%(m = 22, 26, 27, 28)
RBF-SVM+PNT (D = 4) 74%(m = 10, 25)
RBF-SVM+PNT (D = 3) 75%(m = 4, 5, 7)
RBF-SVM+PNT (D = 2) 77%(m = 4)
RBF-SVM+PNT (D = 1) 71%(m = 16)

• Channel Selection
The aforementioned EEG signals were recorded from 64
independent channels and these channels were located on
different positions of the scalp. Although it is commonly
recognized that the classification accuracies are highly
correlated with/dependent on the channels (i.e., recording
positions), it is not clear which channels are more relevant
to the imaginary tasks than the rest [82]. Hence, we
applied two criteria, namely the Fisher ratio (FR) [83] and
the generalization error estimation (GEE) [30], to select
the relevant channels such that the irrelevant channels,
which would be considered as noise for the task of
classifications, can be discarded from the data set. The
channels are ranked with FR or GEE, and the best m
channels can be selected for the classification task. More
details for channel selection can be found in [30], [59].

• Feature Selection
Selection of relevant features that correlate with class
label plays an essential role in EEG signal classifica-
tion [30], [59], [84]. For each of the aforementioned chan-
nels, the dimensionality of the extracted mDWT feature
vector is 5. Assuming the mDWT feature vectors from
one channel is neutral, we applied the PNT algorithm to
transform the mDWT vectors into a set of 4-dimensional
vectors, each of which contains mutually independent
scalar elements. The obtained 4 dimensions were sorted
according to their variance in descending order. With
the new order, we selected the relevant D (D ≤ 4)
dimensions for classification task. The above procedure
was applied to both the mDWT vectors from the training
and test sets.

With the above channel and feature selection procedures,
the support vector machine (SVM) [85], [86] with radial basis
function (RBF) kernel was applied to this binary classification
task. With LIBSVM toolbox [85], we adjusted the parameters
in the RBF-SVM so that the cross validation of training accu-
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Fig. 8. Diagram of LPC reconstruction performance comparisons.

racy is the highest. We calculated the classification accuracies
of the test dataset to evaluate the feature selection strategy. To
make comparisons with PCA, a conventional PCA was also
applied to transform the mDWT vectors. The mDWT vectors
in the test set were transformed with the eigenvectors obtained
from the training set. The relevant dimensions were selected
according to their variances (eigenvalues). A RBF-SVM was
also designed and tuned for the PCA-selected features.
The classification accuracies are summarized in Tab. V. The

classification results were obtained with the top m channels
(ranked via FR or GEE). For each channel, the most relevant
D features (ranked via variance) were selected. In total, we
obtained (m×D)-dimensional feature vector to train the RBF-
SVM. It can be observed that the RBF-SVM+PNT yields the
highest recognition accuracies, both for FR case and GEE
cases.
vspace-5mm Figure 7 shows the classification result-

s obtained with top m channels and different amounts
of relevant dimensions. For each channel, the most rele-
vant D dimensions were selected and concatenated to an
(m × D)-dimensional super-vector as classification feature.
Generally speaking, channel selection improves the classi-
fication results by skipping the irrelevant channels. From
Fig. 7(a), 7(b), 7(c), 7(d), 7(e), and 7(f), it can be observed
that the RBF-SVM+PNT method outperforms both the bench-
mark RBF-SVM and the RBF-SVM+PCA method when m
is smaller than 17, 26, 23, 27, 29, and 27. The highest
classification rates for different methods all happen in this
range. The above facts demonstrate that the proposed nonlinear
transformation strategy can indeed improve the classification
accuracy by decorrelation and feature selection. Moreover, it
also shows that, for neutral-like data, the PNT-based nonlinear
transformation is more preferable than the conventionally
applied PCA-based linear transformation. As m increases, the
classification performance decreases due to the fact that more
noisy channels are involved in the classifier. Interestingly,
when only one dimension (D = 1) is selected from each
channel (see Fig. 7(g) and 7(h)), both the RBF-SVM+PNT
and the RBF-SVM+PCA perform worse than the benchmark
method. This is because these two methods ignored too many
dimensions so that valuable information for classification are
also discarded. However, the RBF-SVM+PNT still has higher
classification rate than that obtained by the RBF-SVM+PCA.
This further supports our hypothesis that the PNT-based non-
linear transformation method is better than the PCA-based
linear transformation for the neutral-like data.
In summary, with the nonnegative and unit l1 norm prop-

erties, we assumed that the mDWT vectors are neutral-like
vectors and applied PNT and PCA, separately, to them as

TABLE VI
FC AND KLD COMPARISONS FOR ENERGY DISTRIBUTIONS OF
TRANSFORMED∆LSF VECTORS. FCV AND FCE DENOTE FC

CALCULATED BASED ON THE NORMALIZED VARIANCE RATIO AND
DIFFERENTIAL ENTROPY, RESPECTIVELY. THE SAME DEFINITION APPLIES

TO KLD.

FCV KLDV FCE KLDE

PNT PCA PNT PCA PNT PCA PNT PCA
0.0393 0.0372 0.3884 0.3130 0.0148 0.0054 0.0389 0.0039

feature selection methods. Experimental results demonstrate
that feature selection via PNT significantly improves the
classification accuracy, for both FR and GEE cases.
2) Reconstruction of LPC Model: In speech coding, effi-

cient transmission of the linear predictive coding (LPC) model
plays an essential role [87]. There exist many representations
of the LPC parameters, such as the reflection coefficients (RC),
the arcsine reflection coefficients (ASRC), the log-area ratios
(LAR), the immittance spectral frequencies (ISF), and the line
spectral frequencies (LSF) [29], [87]. The LSF representation,
among others, is the most common used one, because it
has a relatively uniform spectral sensitivity [88], [89]. By
explicitly exploiting the boundary and the order properties,
the LSF vector can be linearly transformed to the so-called
LSF differences vector (∆LSF). The ∆LSF vector has less
variability and the range is more compact compared to the
absolute LSF value [29], [90], [91]. It contains nonnegative
elements and has unit l1 norm and it is natural to model the
underlying distribution of the ∆LSF vectors with a Dirichlet
mixture model (DMM) [29]. Recent studies demonstrated that,
with DMM modeling, the performance of related applications
can be significantly improved, such as LSF quantization in
transmission [29], [91], and LSF vector estimation in packet
networks [42]. This is because that the ∆LSF vector has
neutral-like property and Dirichlet variable is a typical neutral
vector.
In this paper, we study the performance of PNT for the

LPC model reconstruction. The TIMIT dataset [92] was used
for evaluation. The speech data from the TIMIT database have
a sampling rate of 16 kHz and LPC parameters were extracted
and transformed to LSF/∆LSF vector7. With window length of
25 milliseconds and step size of 20 milliseconds, approximate
964k LSF/∆LSF vectors were extracted from the database.
The Hann window was applied to each frame.
According to [29], the LSF vector is 16-dimensional and the

corresponding ∆LSF vector is 17-dimensional (with degrees
of freedom K = 16). For the ∆LSF parameters, we applied
the proposed PNT algorithm to obtain a set of 16-dimensional
scalars. With the assumption that the ∆LSF vector are neutral
vectors, the resultant scalars are mutually independent. These
scalars are sorted in descend order according to their variances.
The FC and KLD comparisons for energy distribution yield by
applying PNT and PCA on∆LSF parameters, respectively, are
listed in Tab. VI.
We evaluate the robustness of the decorrelation strategy with

the following steps:
1) The ∆LSF vectors are decorrelated by the PNT method,
the decorrelated dimensions are sorted according to their

7The details of transformation from LPC to LSF/∆LSF (and its inverse
transformation) can be found in [29].

Page 13 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
50

55

60

65

70

75

80

 

 

RBF−SVM (Benchmark)

RBF−SVM+PCA

RBF−SVM+PNT

Top m channels

C
la
ss
ifi
ca
tio
n
ac
cu
ra
cy
(in

%
)

(a) Channel selection with FR and D = 4.
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

50

55

60

65

70

75

80

 

 

RBF−SVM (Benchmark)

RBF−SVM+PCA

RBF−SVM+PNT

Top m channels
(b) Channel selection with GEE and D = 4.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
50

55

60

65

70

75

80

 

 

RBF−SVM (Benchmark)

RBF−SVM+PCA

RBF−SVM+PNT

Top m channels

C
la
ss
ifi
ca
tio
n
ac
cu
ra
cy
(in

%
)

(c) Channel selection with FR and D = 3.
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(h) Channel selection with GEE and D = 1.

Fig. 7. Classification accuracy comparisons of RBF-SVM (benchmark), RBF-SVM+PCA, and RBF-SVM+PNT. The RBF-SVM+PCA and the RBF-SVM+PNT
results in Fig. 7(c), 7(d), 7(e), and 7(f) have been reported in [30].

variances in descending order;
2) Assume that some dimensions are missing during trans-
mission and we replace these dimensions by their cor-
responding mean values;

3) Reconstruct the LPC model and evaluate the distortion
between the original model and the reconstructed one.

Two metrics, namely the mean squared error (MSE) and
the log spectral distortion (LSD), are used to measure the
distortion. The MSE between the original ∆LSF vector and
the reconstructed one is calculated as

MSE =
1

N

N∑

n=1

(∆LSFn − ∆̂LSFn)2, (7)

where∆LSFn and ∆̂LSFn denote the original and reconstruct-
ed ∆LSF vectors, respectively. With the original/reconstructed
∆LSF vectors, the corresponding LPC models can be ob-
tained. The LSD between the original and reconstructed LPC
models is evaluated as

LSDn =

√
1

Fs

∫ Fs

0

[
10 log10 Pn(f) − 10 log10 P̂n(f)

]2
df, (8)

where n is the index of the vector, Fs is the sampling
frequency in Hz, Pn(f) and P̂n(f) are the original and
quantized LPC power spectra of the nth vector. P (f) and
P̂ (f) are calculated as

Pn(f) = 1/|An(e
j2πf/Fs )|2, A(z) = 1 +

K∑

k=1

akz
−k

P̂n(f) = 1/|Ân(e
j2πf/Fs )|2, Â(z) = 1 +

K∑

k=1

âkz
−k,

(9)

where ak, k = 1, . . . ,K are the corresponding LPC pa-
rameters. From the speech quality point of view, the LSD
is the most preferred objective distortion measure in the
literature [89], both for narrowband and wideband speech [93],
[94]. In order to make comparisons with PCA, we applied
PCA to the ∆LSF vectors as the method of decorrelation.
After transformation, the aforementioned approaches were
conducted to evaluate the reconstruction performance achieved
by PCA. Figure 8 shows the diagram of such procedures.
The overall reconstruction performances are summarized in

Tab. VII and the corresponding (selected) boxplots are illus-
trated in Fig. 10. We randomly selected 20, 000 ∆LSF vectors
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TABLE VII
COMPARISONS OF RECONSTRUCTION PERFORMANCE OF THE LPC MODEL WITH DIFFERENT DECORRELATION METHODS. FOR THE STUDENT’S T-TEST,

THE SIGNIFICANT LEVEL FOR THE NULL HYPOTHESIS THAT PNT AND PCA ARE SIMILAR METHODS IS 0.05.

Metric Method Missing Dimension
♯1 ♯2 ♯3 ♯4 ♯5 ♯6 ♯7 ♯8

MSE (in 10−4) PNT 3.31 3.38 3.26 2.53 2.92 3.25 1.58 3.00
PCA 5.50 16.58 8.97 5.14 6.71 11.30 5.38 9.55

LSD (in dB) PNT 1.06 0.93 0.91 0.82 1.01 0.92 0.88 0.92
PCA 1.48 2.78 1.93 1.57 1.65 2.11 1.49 2.03

p-value MSE 8.77 × 10−23 2.35 × 10−119 1.05 × 10−56 2.06 × 10−32 1.35 × 10−45 1.44 × 10−72 1.56 × 10−59 7.46 × 10−68

LSD 4.19 × 10−38 3.53 × 10−266 7.14 × 10−137 5.85 × 10−102 5.15 × 10−70 2.06 × 10−158 4.71 × 10−78 5.81 × 10−156

Metric Method Missing Dimension
♯9 ♯10 ♯11 ♯12 ♯13 ♯14 ♯15 ♯16

MSE (in 10−4) PNT 7.67 7.70 9.05 10.02 24.07 25.42 72.62 14.00
PCA 19.99 21.95 3.04 17.20 22.55 15.55 4.64 12.00

LSD (in dB) PNT 2.22 1.69 1.79 1.57 3.36 3.46 5.50 2.31
PCA 3.04 2.25 1.19 2.71 3.27 2.72 1.45 2.15

p-value MSE 8.86 × 10−72 2.15 × 10−8 8.46 × 10−62 3.41 × 10−24 1.52 × 10−24 3.60 × 10−69 3.05 × 10−163 5.3 × 10−3

LSD 9.76 × 10−50 5.16 × 10−27 1.38 × 10−50 1.58 × 10−86 1.64 × 10−24 1.18 × 10−33 0 5.4 × 10−3
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(a) Reconstructed spectrum with missing dimension ♯1.
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Fig. 9. Illustration of LPC spectrum reconstructions. The reported LSD value is for the selected frame (LPC vector).

for evaluation and conducted 50 rounds of such simulations.
The mean values are reported in this paper.
It can be observed that, during transmission, decorrelation

of the ∆LSF vector can significantly remove the correlation
among elements and, therefore, the effect of packet loss
(i.e., subvector/element loss in our case) is also reduced.
With MSE and LSD as the measurements for error, applying
PNT to the ∆LSF vector achieves smaller error than PCA,
for a wide range of missing dimensions (i.e., ♯1 − ♯10 and
♯12). For the other dimension indices, PNT performs slightly
worse than PCA, although these dimensions are corresponding
to relatively smaller variances (the dimensions are sorted
according to their variances in descending order). This is
due to the nonlinear transformation procedure of PNT. As
demonstrated in Fig. 2, the elements with larger indices in
the transformed vector u have relatively smaller variances
(the distribution range is relatively compact). When taking the
inverse PNT, the error caused by estimating these elements will
be propagated in the following operations8. Hence, estimation
errors in the dimensions with larger indices will have more
influence than those occurred in the dimensions with smaller
indices. Although PNT has the error propagation effect for
the dimensions with larger indices, it still performs well for
decorrelation of the ∆LSF vectors in most cases. How to
efficiently decrease the error propagation effect is an open

8With the example in Fig. 2, x1,1 = u1 ·u4 ·u6, x3,1 = u2 · (1−u4) ·u6,
and x5,1 = u3 · u5 · (1 − u6). Therefore, estimation error occurred in u6

will have “global” effect while the error in u1 or u2 only has “local” effect.

problem for our future studies.
In order to demonstrate the statistical significance, we

conducted the student’s t-test for the null hypothesis that the
two decorrelation methods are similar. This null hypothesis
is rejected and the p-values are listed in Tab. VII as well.
Figure 9 illustrates the comparisons of the original LPC
spectrum, the reconstructed LPC spectrum via PNT, and the
the reconstructed LPC spectrum via PCA.
From the above analysis, we can conclude that, when

packet loss occurred and there is no estimation available, PNT
outperforms PCA in the LPC model transmission.

V. CONCLUSIONS AND FUTURE WORK

A neutral vector variable is a typical non-Gaussian vector
variable. By explicitly exploring the neutral properties, the
so-called parallel nonlinear transformation (PNT) has already
been proposed for the purpose of efficient and effective
decorrelation of the neutral vector variable. In this paper, we
studied and compared the PNT method with the conventionally
applied principal component analysis (PCA) and independent
component analysis (ICA) methods. Theoretical analysis and
comparisons showed that PNT has the lowest computational
complexity among all the three methods. It can also transform
a highly negatively correlated neutral vector variable into a set
of mutually independent scalar variables, as well as preserve
the bounded support property. With real life data evaluation,
the advantages of the PNT method in EEG signal feature
selection and speech model reconstruction were demonstrated
with extensive experiments.
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Fig. 10. Comparisons of LPC reconstruction performances via boxplots. The missing dimensions are ♯1, ♯8, and ♯16, respectively.

There remains several open problems for future work: 1)
propose a strategy to find the optimal permuted version for
neutral vector variables; 2) study the error propagation control
strategy for the PNT method such that the reconstruction
performance can be further improved; 3) similar as the im-
proved version of PCA or ICA, an improved PNT is expected
to be proposed such that the overall performance can also
be improved; 4) investigate more real-applications with the
proposed PNT and its variants.
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[70] G. J. Székely, M. L. Rizzo, and N. K. Bakirov, “Measuring and testing
independence by correlation of distances,” Annals of Statistics, vol. 35,
no. 6, pp. 2769–2794, 2007.
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