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We study the scaling of (i) numbers of workers and aggregate
incomes by occupational categories against city size, and
(ii) total incomes against numbers of workers in different
occupations, across the functional metropolitan areas of
Australia and the USA. The number of workers and aggregate
incomes in specific high-income knowledge economy-related
occupations and industries show increasing returns to scale
by city size, showing that localization economies within
particular industries account for superlinear effects. However,
when total urban area incomes and/or gross domestic products
are regressed using a generalized Cobb–Douglas function
against the number of workers in different occupations as
labour inputs, constant returns to scale in productivity against
city size are observed. This implies that the urbanization
economies at the whole city level show linear scaling or
constant returns to scale. Furthermore, industrial and
occupational organizations, not population size, largely explain
the observed productivity variable. The results show that some
very specific industries and occupations contribute to the
observed overall superlinearity. The findings suggest that it is
not just size but also that it is the diversity of specific intra-city
organization of economic and social activity and physical
infrastructure that should be used to understand urban
scaling behaviours.
1. Introduction
Urban scaling relationships summarize how the size of a city,
usually measured by its total population size, can be used as a
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predictor for its socio-economic and spatial characteristics [1,2]. The standard urban scaling model used

in this domain takes the following form:

y ¼ aXb, (1:1)

where y is an urban indicator, X is the size of the city, usually represented as the residential population of
a city, α is a constant of proportionality and β is the scaling exponent. One of the most common uses of y
is as a productivity indicator, where y represents income, gross domestic product (GDP) or wages. Thus,
this scaling model can be used to evaluate how the productivity of a city varies with the size of its
population, and how big a role does city size play in explaining overall productivity of a city. It has
been shown in previous research that the above relationship between urban size and productivity in
cities across several countries including the USA, China and Germany manifests a superlinear increase
of total economic output against city size, or increasing returns to scale [1]. However, other studies
have shown that variations on the definitions of what a ‘city’ is can show a linear increase of total
economic output against city size, or constant returns to scale [3].

The general form of the scaling function derives from a more general two-factor Cobb–Douglas
production function [4]

y ¼ aLbK1�b, (1:2)

where L represents labour input, K represents capital input, α could be a constant of proportionality or it
could take a more complex form as a function of the population, i.e. α= g(X ). If the constraint that the
exponents should add up to 1 is removed, then the form would be y ¼ aLb1Kb2 , where β1 + β2 could
add up to any value (less than 1, equal to 1 or more than 1). Output y is then dependent on the
factors of production L and K, and on α as a function of population.

For the Cobb–Douglas form, similar to the urban scaling form, if the exponents sum to 1, a linear or
constant returns to scale is assumed; if the exponents sum to a value between 0 and 1, a sublinear
or decreasing returns to scale relationship is assumed; if they sum to greater than 1, a superlinear or
increasing returns to scale relationship is assumed. Parallels between urban scaling behaviour and
Cobb–Douglas formulations have been explored in previous papers [2,4,5].

Another series of papers from the 1960s to the 1980s also explore the relationship between the
productivity of a city as a function of its size, using generalized Cobb–Douglas functions [6–10]: output
is dependent on a number of inputs, most commonly capital, labour and city size, but organized into
finer distinctions of capital and labour. The production functions studied are generalized Cobb–Douglas
of the form

y ¼ g(X)f(L, K), (1:3)

where the term g(X ) captures the effects of population size, and the term f(L,K) captures the effects of labour
and capital inputs. These individual terms are complex in themselves and capture multiple types of input
from population size, labour and capital (for example, regional population effects, multiple types of capital
inputs coming in from plants or physical infrastructure, or multiple types of labour inputs, coming in say
fromdifferent industry types). The terms g(X ) and f(L,K) can bemodelledmathematically using the scaling
idea that each input component explaining overall productivity scales with a different exponent

y ¼ aXb0
Y

j

L
b j

j

Y

m
Kbm
m , (1:4)

where Xb0 as before captures the effects of population, and a number of L and K inputs could be used, each
with its own exponent. In a log-transformed linear regression of the above, the estimated coefficients β0, βj
and βm would then reveal the importance of population size, or specific labour and capital inputs,
respectively, in explaining total productivity or output y.

While it would be ideal to have a simpler model where fewer inputs could lead to the best fit, the
possibility that labour and capital variations in combinations, covering factors such as industrial
specialization and diversity, could explain productivity in addition to population size should also be
considered. One could then check whether population size remains significant and relevant as an
explanatory variable as the models grow in complexity and numbers of inputs. All these historical
studies collectively find that population size alone does not explain productivity differentials, and that
labour and capital variations significantly account for regional variations of productivity [6–8].
Moomaw [7,8] finds that doubling population results in a 1.5% rise in productivity, while Hyclak [6]
finds this value to be 4.5%, with a range of other values reported from other studies. The effect of
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population size in these estimates is much lower than the findings in [1,2,4], where only a single factor

input, namely population size, is considered. Furthermore, in the more detailed models, it is found that
capital and labour have statistically significant and stronger effects than population size alone, signalling
that types of occupations and industries as well as types of capital inputs can affect the productivity
significantly. Overall, these findings show that local conditions (that appear as heteroskedastic
fluctuations around the average in the scaling law in equation (1.1)) could significantly vary
depending on specific industry or population mixes, and can affect overall productivity for a city.
In particular, some authors have shown that the maturity of the specific industry is a more relevant
determinant for the exponent than population size, and connect the value of scaling exponents with
the stage of activities in a hierarchical diffusion process of innovation waves within the system of
cities within a geographical evolutionary theory of urban systems framework [11–15].

Rosenthal & Strange [16] briefly note that while agglomeration economies are particularly
pronounced as localization economies (economies of scale arising within particular industries), they
are much less pronounced and not strong at the level of urbanization economies at the metropolitan
level (economies of scale due to city size). This implies that empirical evidence on the scaling
behaviour of particular industries and occupations should be studied along with city-level or
metropolitan-level scaling behaviour, something that also emerged from previous findings [17].

The observed superlinear growth of economic output against city size has also been explored from
several other parallel directions. One such direction established spatial aggregation as an important
factor, where it was shown that when urban area boundaries or city definitions are varied, many
urban indicators that show superlinear scaling under one definition end up showing linear scaling
under other varying spatial aggregation schema [3]. Similarly, varying urban area definitions showed
that scaling of CO2 emissions by city size could fall in the superlinear or sublinear regime, dependent
on adopting two different types of metropolitan area definitions [18]. Furthermore, assuming different
generative models for the data, it was shown that alternative functional forms could well explain the
observed scaling behaviours [17,19].

Another direction of inquiry brings into focus the question of distribution as an important factor.
While scaling laws in their current form consider only aggregative characteristics, in the form of total
incomes or wages, total GDPs, or other such aggregated values measured against total population
size, it was shown that when distributions are considered, different parts of the income distribution or
housing cost distributions may scale in different regimes [20,21]. In particular, while lower income
and housing cost categories were shown to scale sublinearly or linearly with city size, highest housing
costs and income categories emerged as scaling superlinearly, thereby showing an emergent
distributional inequality in which larger cities disproportionately agglomerate the richest sections of
the population. This result shows that while aggregate quantities show an overall scaling, parts of the
distributions of the aggregate may show differential scaling in all three regimes, sublinear, linear or
superlinear. A similar observation was also reported with different industry types at different stages
of evolution in a separate geographical context [13].

In the present paper, we focus on a third direction (different from spatial aggregation or income/
living cost category aggregation): this is on sectoral and occupational aggregation. This direction
delves further into the distributional questions [13,20,21] of how differential scaling of productivity
may emerge depending on occupational categories or industry sectors [16,22,23].

The rest of the paper is organized as follows. Section 2 provides evidence for the existence of localization
economies, as when aggregate income outputs or number of workers from different occupations are
regressed against total population size of an urban area, evidence for differential scaling may be seen:
lower- or middle-income occupations scale very differently from high-income occupations. For certain
very high-income occupations, there is a critical size below which they do not occur, showing that
specific economic functions emerge in cities beyond an agglomeration threshold, supporting recent
observations on the presence of valuable information measured through the absence of information [24].

Section 3 demonstrates the parallels of mathematical form between urban scaling functions and
Cobb–Douglas production functions. It then uses a generalized urban production function in which
total economic output (total income, wages, GDP etc.) is modelled as a function of total population
size of a city as well as several other input factors, such as workers employed in different
occupational categories or industrial categories.

In §3 also, urbanization economy effects are shown. The coefficients of this more generalized
production function are estimated using data from Australia and the USA, and it is shown that when
populations are disaggregated in the form of labour input in this way, the total output shows constant
returns to scale.
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Section 4 offers an overall critique of urban scaling laws and the production function connection, reflects
on the current state of research, and establishes some open questions in this line of research. In particular, it is
established that while these systematic mathematical relationships exist and show empirical robustness,
generative models of underlying processes explaining these empirical regularities are missing.

Two principal observations emerge. First, size is not the only determinant of economic and social
performance. In particular, productivity is a function also of industry and occupational organization
or functions. The variance observed in urban scaling laws (cities of the same size showing fluctuations
around the mean expected behaviour) can be explained by the specifics of these, since different
industries and occupations are likely to be organized through different agglomeration economies
(localization and urbanization), and specific combinations of these in each individual city would then
govern city-wide behaviour.

Second, the results show that localization economies may show increasing returns to scale, but
urbanization economies may show constant returns to scale. Thus, the observation that specific cities
or city systems follow increasing returns to scale may well be a consequence of some of the industries,
which are themselves organized around increasing returns, being disproportionately present in these
cities. For the same reason, some small cities that agglomerate particular industries where increasing
returns operate emerge as outliers or large heteroskedastic fluctuations in the overall scaling plot [21].
sci.7:191638
2. Examining localization economies: scaling of number of workers and
total income in specific occupations

In this section, we study scaling of the aggregate numbers of workers and the aggregate incomes in
different occupational categories against total population size for Australian urban areas, which are
called significant urban areas (SUAs). The basis for using SUAs as a functional metropolitan region has
been discussed in [20]. The SUAs range from urban denoted populations of 10 000 up to 5 million. We
find that larger cities, in general, attract more workers in the highest paid occupations and industries.

2.1. Total personal income against city size
First, we study the scaling of total personal income against city population size. The total personal income
earned in 2015–2016 is extracted per statistical area level 2 (SA2) and then aggregated to the SUA level (SA2s
are the smallest statistical geography-based areas for which complete Census data is available in Australia).
This total income is a measure of income from all persons who submitted a tax return, and includes income
from employee income, income from own unincorporated business, income from investment and income
from pensions and annuities.

Using the scaling form in equation (1.1), we first ran an overall regression for total personal income
(employee, own unincorporated business, investment, and superannuation and annuities) against total
population size. All linear regressions in the manuscript were performed using the Matlab regression
package fitlm. For the maximum-likelihood estimation (MLE) methods, the original code provided by
the authors of [19] was used.

For the overall regression on total income, the value of the scaling exponent βwas 1.05 (Adj R2 = 0.98)
by the ordinary least-squares (OLS) method. Through the MLE method [19], the estimate was for a
scaling model estimate of 1.05 ± 0.01. This is mildly superlinear, and less than the estimates for the
USA, which were reported as close to 1.12–1.15 [1,4]. When total income was divided by the total
number of workers to compute income per worker, however, the β estimate was only 0.02 (Adj R2 =
0.02). This observation, that per capita estimates are much noisier than expected when compared to
estimates based on aggregate data, was also earlier noted by Shalizi [17].

2.2. Total number of workers and total income in occupations by city size
Occupational categories in Australia are defined at four levels with increasing granularity of job
definitions: OCCP1 (eight categories), OCCP2 (51 categories), OCCP3 (134 categories) and OCCP4
(474 categories) following the Australian and New Zealand Standard Classification of Occupations
(ANZSCO). These data are extracted using the Census Table Builder facility offered by the Australian
Bureau of Statistics.

The main analysis presented in this paper focuses on the OCCP1 and OCCP2 levels. In principle, it is
possible to analyse the OCCP3 and OCCP4 levels using exactly the same framework as presented here,
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but with further levels of granularity the number of zero or absent values increases (numbers of workers

in a certain occupation are missing in a city), and it becomes difficult to decide whether the zero number
of workers corresponds to a city-specific characteristic (the city does not specialize in that occupation, but
other cities of the same size may have workers in this occupation) or whether the zero value emerges
from a size issue (the city’s size is predictive of no workers in that occupation since the occupation
only occurs beyond a critical size threshold) [24]. An example of the former would be a specific
economic activity like mining: some small towns specialize in the activity, but others do not. An
example of the latter would be the occupations within the finance industry: the industry itself occurs
in large cities because of the ties and dependencies it shares with other industries (e.g. finance,
investment banking), such that it would be rare to find its presence in a small city. Thus, the analysis
is restricted to OCCP1 and OCCP2 levels, but the observed patterns are sufficiently strong to provide
evidence for the claims in the paper.

The number of workers in each OCCP1 and OCCP2 level is tabulated for 101 SUA, which are
designated as urban in Australia [20].

To extract total income in each occupation, income data has to be extracted filtered by occupational
class. In the 2016 Census, 13 income categories or bands are defined ranging from $1–$149 weekly
(or $1–$7799 yearly) to more than $3000 weekly (or $156 000 yearly). Thus, data can be extracted per
SUA for the count of the number of workers in each income category.

Using the data described above, the aggregate number of workers per occupational category per SUA
is counted. Furthermore, total aggregate income in a single occupation is measured by counting the
number of people employed in that occupation per income category, multiplying by the income
earned in each of these categories and then adding them

Ic ¼
Xm

i¼1

niai, (2:1)

where there are m income categories, ni is the number of people in an occupation in income category i
and ai is the median or mean income earned in a single income category. Then, Ic is the total income
defined in a single occupation and this value can be computed for all the different n occupation
categories, c=1…n.

Then, for the sectorally disaggregated analysis, in a first set of regressions we let y represent the total
number of workers in an occupation, and study the scaling of this y against city size for all the n
occupation categories. In a second set of regressions, we let y represent the total aggregate income
earned in an occupation, and study the scaling of this y against city size for all the n occupation
categories. In all these sets of regression, we estimate the value of the exponent β.

We compute the β estimates using both (i) OLS regression of the log-transformed model of the scaling
equation ln y= ln α+ β lnX, and (ii) a generalized MLE-based optimization (with the constant variance
assumption or the homoskedasticity assumption in OLS relaxed to allow for other likelihood
functions) in which two models are compared: a lognormal model (representing the scaling model)
and a fixed β=1 linear model. If either of the models are statistically significant, then we choose β
from that model. If both models are not significant, then we choose the β from the model with the
least Bayesian information criteria (BIC) statistic [19]. The application details of the MLE-based
process are described in detail in [21] using the framework proposed in [19]. In general, the estimates
from OLS and MLE were similar, but OLS estimates ranging from 0.98 to 1.02 were estimated as
linear (i.e. the linear model was preferred over the scaling model) by the MLE approach.

Tables 1 and 2 show the scaling exponents for the number of workers and the aggregate income per
occupation in occupational levels 1 and 2 (OCCP1 and OCCP2) categories, respectively. In the tables
below, an income cluster label is computed, to identify low/medium/high-income occupations. The
occupations are classified into low-, medium- and high-income occupations in order to explore
whether there is a correlation between a specific occupation, its broad income categorization, and its
scaling characteristics. This is an important point to explore because we have found in previous work
[20] that higher incomes scale superlinearly by city size, while lower and medium incomes scale
linearly or sublinearly. Since incomes earned are correlated to the specific occupations in which they
are earned, it could well be the case that the scaling of incomes ultimately ties to the scaling of
specific occupational categories. For example, it is well known that knowledge- or finance-based
occupations are typically high income and are seen mostly in the largest cities.

The labels are computed using a spectral clustering algorithm for bipartite networks/data, using the
singular value decomposition [25], where the OCCP1 or OCCP2 categories form the rows, and the



Table 1. Scaling exponent values estimated for aggregate numbers of workers and total income in OCCP1 categories against population
size. Results from both the OLS and the MLE approach are presented. The β-estimate column specifies whether the lognormal model is
chosen, or the linear model is chosen in each case. The income cluster label identifies whether worker distributions in each occupation
by income bands lead to an occupation being classified as a high or medium-low income occupation through clustering analysis. The
colour in the final column shows the ‘high’ and ‘medium-low’ category clusters for the different occupation classes.

occupations
(OCCP1) total
number of workers
in each category

β estimate
(OLS estimate)
[Adj R2]
(aggregate
workers)

β estimate ± error
(MLE estimate)*
(aggregate
workers)

β estimate
(OLS) [Adj R2]
(aggregate
income)

β estimate ±
error (MLE
estimate)*
(aggregate
income)

income
cluster

managers 1.07 [0.98] 1.07 ± 0.01

(lognormal)

1.11 [0.97] 1.11 ± 0.02 high

professionals 1.13 [0.98] 1.12 ± 0.03

(lognormal)

1.15 [0.97] 1.14 ± 0.02 high

technicians and

trades workers

0.99 [0.98] 1.00 (fixed

β= 1)

0.99 [0.93] 1.00 (fixed

beta)

medium-low

community and

personal

services

workers

1.02 [0.99] 1.00 (fixed

β= 1)

1.01 [0.98] 1.00 (fixed

beta)

medium-low

clerical and

administrative

workers

1.08 [0.99] 1.07 ± 0.03

(lognormal)

1.10 [0.98] 1.10 ± 0.05 medium-low

sales workers 1.02 [0.99] 1.00 (fixed

β= 1)

1.05 [0.99] 1.05 ± 0.01 medium-low

machinery

operators and

drivers

0.93 [0.91] 1.00 (fixed

β= 1)

0.90 [0.82] 0.90 ± 0.02 medium-low

labourers 0.95 [0.98] 0.95 ± 0.02

(lognormal)

0.95 [0.96] 0.95 ± 0.02 medium-low

royalsocietypublishing.org/journal/rsos
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income bands form the columns, and each matrix entry is a count of the number of workers in each
occupation in each income level for the whole of Australia. The clustering shows two principal
clusters for the OCCP1 level, corresponding to high and medium-low incomes, and three principal
clusters for the OCCP2 level, corresponding to high, medium and low incomes. In some cases,
category splits occur. For example, while machinery operators and drivers at the OCCP2 level are a
medium-low category occupation, at the OCCP3 level a split of this category, machinery and
stationary plant operators move to the high-income cluster, while mobile plant operators move to the
medium income cluster. This could be due to the higher skills required in plant operators within
specific industries (e.g. mining and metallurgical processes), where higher specialized sets of skills
could be correlated with higher returns.

Table 1 shows conclusively that the number of workers as well as the incomes in the highest paid
knowledge economy occupations (managers and professionals) are superlinear with city size, whereas
the lower paid occupations are either linear or sublinear. The only category of low-paid occupations
that is superlinear in both the number of workers as well as the income earned is clerical and
administrative workers, who would be in supporting roles to managers and professionals. The
category of community and personal services workers is linear in the number of workers, but is
slightly superlinear in the income earned.

Table 2 shows the same pattern as in table 1, but with finer granularity. In particular, it is very clear
scaling parameters for the large variety of medium- and low-paid service provision occupations are
sublinear or linear in both the number of workers as well as the aggregate incomes in that category.



Table 2. Scaling exponent values estimated for aggregate numbers of workers and aggregate income in OCCP2 categories
against population size. Results from only the OLS regression are presented, since these are very close to the MLE results. The
colour in the final column shows the ‘high’, ‘medium’ and ‘low’ category clusters for the different occupation classes. The orange
colour in the other columns shows all the exponent beta in the scaling analysis that are above a value of 1.0.

OCCP2 categories
β-estimate (OLS)
aggregate workers

Adj
R2

β-estimate (OLS)
aggregate income

Adj
R2

income
cluster

chief executives, general managers and

legislators

1.17 0.95 1.19 0.94 high

specialist managers 1.14 0.97 1.16 0.96 high

business, human resource and marketing

professionals

1.23 0.97 1.25 0.96 high

design, engineering, science and

transport professionals

1.16 0.93 1.15 0.90 high

education professionals 1.04 0.98 1.04 0.97 high

health professionals 1.09 0.97 1.11 0.96 high

ICT professionals 1.47 0.93 1.43 0.93 high

legal, social and welfare professionals 1.11 0.96 1.14 0.95 high

engineering, ICT and science technicians 1.07 0.94 1.05 0.88 high

electrotechnology and

telecommunications trades workers

1.00 0.94 0.99 0.88 high

protective service workers 1.04 0.89 1.02 0.88 high

office managers and

programme administrators

1.10 0.98 1.14 0.96 high

sales representatives and agents 1.14 0.97 1.16 0.96 high

machine and stationary plant operators 0.85 0.70 0.81 0.59 high

farmers and farm managers 0.70 0.46 0.65 0.57 medium

hospitality, retail and service managers 1.02 0.99 1.04 0.98 medium

arts and media professionals 1.21 0.96 1.16 0.95 medium

automotive and engineering

trades workers

0.89 0.88 0.89 0.79 medium

construction trades workers 1.07 0.95 1.08 0.94 medium

food trades workers 1.02 0.98 1.01 0.98 medium

skilled animal and horticultural workers 0.99 0.95 0.96 0.95 medium

other technicians and trades workers 1.03 0.98 1.02 0.93 medium

health and welfare support workers 0.97 0.96 0.96 0.96 medium

personal assistants and secretaries 1.10 0.97 1.10 0.97 medium

general clerical workers 1.05 0.98 1.06 0.96 medium

inquiry clerks and receptionists 1.08 0.98 1.08 0.98 medium

numerical clerks 1.09 0.98 1.12 0.98 medium

clerical and office support workers 1.04 0.98 1.02 0.97 medium

other clerical and administrative workers 1.10 0.96 1.09 0.95 medium

mobile plant operators 0.93 0.91 0.90 0.89 medium

road and rail drivers 0.96 0.96 0.94 0.91 medium

storepersons 1.17 0.92 1.07 0.90 medium

construction and mining labourers 1.00 0.95 1.00 0.91 medium

factory process workers 1.01 0.72 0.97 0.72 medium

(Continued.)
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Table 2. (Continued.)

OCCP2 categories
β-estimate (OLS)
aggregate workers

Adj
R2

β-estimate (OLS)
aggregate income

Adj
R2

income
cluster

carers and aides 0.99 0.99 0.98 0.98 low

hospitality workers 1.07 0.97 1.04 0.97 low

sports and personal service workers 1.11 0.98 1.10 0.97 low

sales assistants and salespersons 0.99 0.99 1.00 0.99 low

sales support workers 1.04 0.99 1.01 0.98 low

cleaners and laundry workers 0.95 0.98 0.96 0.97 low

farm, forestry and garden workers 0.80 0.81 0.77 0.84 low

food preparation assistants 1.00 0.98 0.95 0.98 low

other labourers 0.96 0.97 0.94 0.93 low

royalsocietypublishing.org/journal/rsos
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Overall, the results show that within the knowledge industry categories and supporting occupational
categories, there is a superlinear effect observed against city size: numbers of workers and income earned
shows increasing returns to scale by city size. The medium- and low-income occupation clusters do not,
on the whole, show this effect. To the contrary, they only scale linearly or sublinearly with city size. This
provides evidence for localization economies operating in high-income occupations: when these specific
occupations agglomerate in a particular city, a large part of the total output or income of the city will
come from these occupations. Furthermore, the results show that these industries show a tendency to
agglomerate in the largest cities, and thus, the larger the city, the higher the proportion of its overall
income that is earned in these occupations.
3. The relationships between a generalized production function and
scaling laws

The standard form for urban scaling functions takes the following form as stated in equation (1.1),
repeated here for convenience:

y ¼ aXb, (3:1)

where as before y is total income earned in an urban area, and X is city population. We note here the
similarity of this form with a Cobb–Douglas production function (equation (1.2)) which we also
restate here

y ¼ aLbK1�b, (3:2)

where L represents labour input and K represents capital input, and the exponents sum to 1 (assuming
constant returns to scale). Taking logs on both sides gives us

ln y ¼ lnaþ b ln Lþ (1� b) lnK, (3:3)

and β can be estimated from a linear least-squares regression. Following previous practice [6–10], we
consider a generalized form of the production function as

y ¼ a
Yn

i¼1

Xbi
i , (3:4)

where Xi represents the number of people in occupational sector i, and βi represents the exponents for the
different growth rates (or elasticities) for the different occupational categories. In principle, total
population X is a sum of the total number of workers in each occupational category (Xi) and everyone
else who is not in the labour force (X0), so that X ¼ Pn

i¼1 Xi þ X0 ¼
Pn

i¼0 Xi. Furthermore, if all the
exponents βi sum to 1, then y will show constant returns to scale; if all the exponents βi sum to less
than 1, then y will show decreasing returns to scale; and if all the exponents βi sum to greater than 1,
then y will show increasing returns to scale.



Table 3. Scaling exponent values estimated for aggregate numbers of workers in OCCP1 categories against total income in the
urban area.

Xi
β estimate
R2 = 0.99 p-value Xi

β estimate
R2 = 0.99 p-value

X0 0.00 0.99 SUA total population 0.07 0.49

X1: managers 0.23 0.00 X1: managers 0.24 0.00

X2: professionals 0.24 0.00 X2: professionals 0.24 0.00

X3: technicians and trades

workers

0.59 0.00 X3: technicians and trades

workers

0.58 0.00

X4: community and

personal services workers

0.00 0.99 X4: community and

personal services workers

−0.02 0.77

X5: clerical and

administrative workers

0.12 0.13 X5: clerical and

administrative workers

0.12 0.16

X6: sales workers −0.29 0.00 X6: sales workers −0.32 0.00

X7: machinery operators and

drivers

0.10 0.00 X7: machinery operators and

drivers

0.10 0.00

X8: labourers 0.01 0.82 X8: labourers 0.004 0.94

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191638
9

Taking logs on both sides of the equation above, we will have

ln y ¼ lnaþ
Xn

i¼0

bi lnXi, (3:5)

and the values of the exponents βi can now be estimated using multivariate linear regression on this log-
transformed model.

We run two regressions, first with the number of workers in each OCCP1 category

ln y ¼ lnaþ b0 lnX0 þ
Xn

i¼1

bi lnXi, (3:6)

with X0 representing the number of people who are not in the labour force, and Xi, i=1…n representing
the eight OCCP1 categories. The first two columns of table 3 show the results.

A second regression is run with the number of workers in each OCCP2 category, with Xi, i=1…n
representing the 43 OCCP2 categories. Here, X0 represents the number of people who are not in the
labour force, and Xi, i=1… 43 represents the 43 OCCP2 categories.

For both cases, some clear results and conclusions emerge

(i) The exponent β0 for the OCCP1 case comes out to be virtually zero and not significant (as it has a
large p-value), and for the OCCP2 case comes out to be 0.02 and again not significant.

(ii) The sum of the exponents for the OCCP1 case comes out to be
P8

i¼1 bi ¼ 0:998 � 1:00 (results
shown in the first two columns of table 3) and the sum of the exponents for OCCP2 case
comes out to be

P43
i¼1 bi ¼ 0:977 � 1:00.

(iii) If we replace X0 as the total SUA population, the sum of the exponents is still approximately 1.00,
with the coefficient β0 = 0.07, but is not significant (large p-value) in the OCCP1 case, (results
shown in the last two columns of table 3), and β0 = 0.12 in the OCCP2 case and not significant.
Furthermore, the coefficients for multiple occupational categories come out to be higher than
the population size coefficients and are significant.

These results thus show that sorting is more important than overall population size in explaining
productivity scaling. The scaling comes from population sorting (i.e. larger cities have more of certain
high-income industries but the industries are the same everywhere they exist). The βs that are larger
than 1 for particular industries are balanced by those in industries below 1, thereby bringing the
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overall scaling into the linear range. Second, in each regression above, the sum of the exponents together

come out to be in the linear range and not in the superlinear range.
In [17], the author showed an effect similar to point (i) above by considering a log-additive model and

considering industry shares as inputs, where it was shown that the explanatory power of the total
population term became much smaller when industry sectors were considered. Here, in addition to
such an effect, we also find that the overall function scales with constant returns to scale, and not
increasing returns to scale.

We re-perform this analysis for data from the USA considering the metropolitan statistical areas
(MSA), with GDP per MSA as the output variable y, and inputs as total population X0, and numbers
of workers in all the 13 industrial categories as follows:

—X0: total population
—X1: agriculture, forestry, fishing and hunting, and mining
—X2: construction
—X3: manufacturing
—X4: wholesale trade
—X5: retail trade
—X6: transportation and warehousing, and utilities
—X7: information
—X8: finance and insurance, and real estate and rental and leasing
—X9: professional, scientific and management, and administrative and waste management services
—X10: educational services, and healthcare and social assistance
—X11: arts, entertainment and recreation, and accommodation and food services
—X12: other services, except public administration
—X13: public administration.

For the USA analysis too, two results emerge:

(i) The exponent β0 comes out to be virtually zero, and
(ii) The sum of the exponents comes out to be

P13
i¼1 bi ¼ 1:03.

Thus, while the USA data does show a total exponent value that is slightly higher than 1, this value is
much smaller than the β=1.12 value that emerges when total GDP is regressed against total
population as reported in previous work [1,17]. Furthermore, the explanatory power of the total
population in the above regression comes out to be weaker than sorting and industrial composition,
which can more strongly explain the GDP output variable.

4. Conclusion: overall critiques of urban scaling theory
In this paper, we studied the scaling behaviour of number of workers and aggregate incomes in different
occupations and industrial categories against city size, and the scaling behaviour of total incomes against
number of workers in different industries. We reflect on the key results here.

First, the number of workers and aggregate incomes in highly paid occupations (usually knowledge
economy and supporting occupations) are correlated with city size with superlinear effects being evident.
Since knowledge economy occupations tend to cluster in the largest cities, regressions against city size are
also likely to show superlinear returns by city size, when in fact the superlinearity may be arising from
occupational or industrial organization and not from population size per se. For example, a smaller city
with very high concentrations of high-income occupations may then emerge as an outlier (as discussed
for Cambridge, for example, in [3], or for Australian mining towns in [21]).

Second, when the number of workers are used as labour factor inputs to total income or GDP as
output, no strong evidence for superlinear scaling of output is found, instead the evidence seems to
tilt towards linear scaling and constant returns to scale. Thus, localization economies for particular
industries and occupations, especially knowledge economy ones, show increasing returns, but
urbanization economies would tend to show constant returns to scale.

Third, putting together the above two results, one is tempted to conclude that while individual ‘organs’
of a city may show increasing returns, the city as a whole operates in the constant returns regime. This
derives from the observation that while incomes in specific occupations are showing superlinear returns,
both in the number of workers as well as the income earned in these specific occupations and industries,
when total city income is regressed against labour input, constant returns are observed.
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Fourth, the conjecture above would be a premature conclusion, since a further generalized Cobb–

Douglas-style function could model capital input components along with labour input components,
and it is as yet unknown what the regression results would be in that case. Specifically, it is
extraordinarily difficult to build up a capital component and should be the topic of future research,
since this would include outputs from the total physical infrastructure of a city, including housing,
roads, factories and plants, equipment, new technology/capital investments into cities, and so on.

Finally, in its current form, urban scaling theory is at best a data fitting method, providing only
preliminary insight into the causal processes by which such effects are observed. Thus, future advances
should look behind causal economic and physical processes that result in observed scaling behaviours.
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