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Abstract

In this thesis we investigate the volume preserving mean curvature �ow (VPMCF) of a

closed and convex hypersurface M inside of a compact Riemannian manifold N . When

the ambient manifold is the Euclidean space, long time existence and convergence of

the solution to a sphere have been already proved. In the general Riemannian case, this

approach cannot be readily generalised, because of the interaction between the evolving

hypersurface and the geometry of the ambient space.

Alikakos and Freire overcome these di�culties, using although an in�nite-dimensional

dynamical systems approach and results from semigroup theory. In our work, instead,

we o�er a classical and more geometric outlook. We therefore exploit the isoperimetric

nature of the �ow: the hypersurface M is in fact moving inside N in a way to keep

the volume of the region it encloses �xed, while its area is strictly decreasing. Thanks

to this isoperimetric characteristic, we prove that, if the initial hypersurface is close

enough to a small geodesic ball in N (a bubble), it keeps itself close even at the �nal

existence time T (short time existence). The last fact, combined with good estimates

of the major geometric quantities of M , allows us to extend the �ow inde�nitely for all

times (immortal �ow) and therefore to study its asymptotic behaviour. This is quite

interesting, since, except for special cases, geodesic spheres are not equilibria for the

VPMCF and, in general, the existence of time independent solutions is a non trivial

issue.

We conclude our work by studying the asymptotic behaviour of a solution of the

VPMCF. We prove that there exists at least a subsequence of times such that a subse-

quence of the family of bubbles converges to a limit surface of constant mean curvature.
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Impact statement

Mean curvature �ow has been a very productive and �ourishing area of the Geometric

Analysis over the past decades. It arises naturally in problems where a surface energy

is relevant because of its property of being the gradient-like �ow of the Area functional.

It occurs, for example, in the description of the evolution of the interfaces in several

multiphase physical models and, very recently, algorithms based on MCF have been

developed extensively in the �eld of automatic treatment of digital data, in particular

of images, due mostly to its parabolic nature.

From a more theoretical perspective, motivations to study the MCF come from geo-

metric applications, in analogy with the Ricci �ow: the techniques here developed have

been widely used as a tool to obtain classi�cation results for hypersurfaces with cer-

tain curvature conditions, to derive isoperimetric inequalities or to produce minimal

surfaces. It is therefore clear that a research work in the mean curvature �ow or, as

in this present thesis, in the volume preserving mean curvature, it is relevant for both

theoretical and applicative aspects.

Our research project o�ers results already known in the literature. However, these ex-

isting results have been proved by using techniques coming from very di�erent areas

of mathematics, based on centre manifold analysis, with tools from semigroup theory

or in�nite dimensional systems, and therefore far from the traditional approach. One

of the main problems that comes by using these techniques is that it is pretty much

unclear how the shape of the initial hypersurface a�ects the convergence of the �ow.

It has been felt the necessity to present these results in a more classical way. Our work

is very e�ective and geometric: it proceeds in an intrinsic fashion, by starting with

natural conditions on the geometry of the initial hypersurface, deducing subsequently

some important geometric properties and studying the evolution equation of the main

geometric quantities.

In our work, the reader will immediately feel at ease, thanks to the maximum principle

for parabolic equations and by exploiting the isoperimetric nature of the �ow.

Observe that the traditional approach has never been attempted so far. The reason is

simply because is not an easy task, since in the Riemannian setting the �ow is a result

of a complicated interaction between the geometry of the evolving hypersurface and the

geometry of the ambient space, and, therefore, standard results like convexity proper-

ties may not be preserved if the initial surface is immersed in a general Riemannian

manifold.

Our work can also be considered as a starting point for further developments and results.
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6 Impact statement

In fact, it would be desirable to obtain, similarly to the Euclidean case, the fully con-

vergence of the �ow and the uniqueness of such limit. Moreover, it would be interesting

to prove that the limit constant mean curvature sphere is a leaf of the local foliation

around a critical point of the scalar curvature, which is assumed to be nondegenerate.
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Introduction

The mean curvature �ow is a nonlinear geometric evolution equation where a subman-

ifold evolves in the direction of the gradient of the area functional, in order to decrease

over time its area as rapidly as possible. Since during the evolution each point moves in

the direction of the mean curvature vector with speed given by the mean curvature, we

have that convex points move inwards, concave points move outwards, and the manifold

moves faster where the curvature is larger. Therefore MCF can be seen as the negative

gradient �ow for the area functional and it is formally similar to the ordinary heat equa-

tion, with some important di�erences: MCF behaves like the heat equation only for a

short time, making the solution smoother; however, after more time, the nonlinearities

dominate and the solution becomes singular.

The mean curvature �ow originated in the materials science literature, where for almost

a century it has been used to model structures such as cell, grain and bubble growth. For

example, around the 1950s, von Neumann studied soap foams whose interface tends to

have constant mean curvature, whereas Mullins describes coarsening in metals. Partly

as a consequence, Mullins [33] might have been the �rst to write down explicitly the

MCF equation in general. Subsequently, MCF and related �ows have been studied

extensively in applied mathematics, image processing and other areas of science and

engineering.

As we brie�y explain in the second chapter, the simplest case is when the submani-

fold is a simple closed curve. A remarkable result of Grayson [15] from 1987, based

on a joint work of Gage and Hamilton [12], shows that any simple closed curve in the

plane remains smooth under the �ow until it disappears in a point in a �nite amount

of time. Right before it shrinks to a point, the curve will be an almost round circle:

by Grayson's theorem, the curve thus remains smooth until its length (area) becomes 0

and, as a corollary, one gets an exact formula for the lifespan of any curve. Therefore,

in the case of curve shortening �ow, as is called the MCF in the one dimensional case,

each �ow has only one singularity in all of space and time and the singularity looks just

like a shrinking circle.

In higher dimensions, Huisken [18] proved in 1984 that closed convex hypersurfaces re-

main convex and �ow smoothly until they become extinct at a point; in particular, they

are almost round just before extinction. However, unlike the case of curves, there are

many new types of singularities when the initial hypersurface is not convex. Therefore

the analogue of Grayson's theorem does not hold for submanifolds of dimension n ≥ 2.

The main tool for analysing these di�erent types of singularities is a blow-up method,
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12 Introduction

similar to tangent cone analysis for minimal varieties, that relies on Huisken's mono-

tonicity formula. The �ow once again has a self-similar structure near the singularities,

but there are in�nite families of di�erent possible self-similar structures. Recent years

have seen a great and �ourishing activity in this area, with constructing examples, clas-

sifying the possibilities in certain cases, and understanding which types of singularities

are generic.

In the present work, we want to investigate the volume preserving mean curvature �ow

(VPMCF) of a closed and convex hypersurface M inside of a compact Riemannian

manifold N . We thus consider a family of immersions F : M × [0, T ) → N which

satis�es
∂

∂t
F (x, t) = [−H(x, t) + φ(t)] · ν(x, t),

where

φ(t) =
1

|Mt|

∫
M
Hdµt,

and ν(x, t) is the unit normal vector to Mt = Ft(M) in x ∈Mt and |Mt| is the surface
area of Mt at the time t ∈ [0, T ). Thus under VPMCF the family of immersions are

evolving in a way to keep �xed the volume of the region enclosed by Mt.

Having in mind the crucial result of Huisken, where every compact convex hypersurface

evolving by standard mean curvature shrinks to a point in a �nite time and becomes

spherical under rescaling, a behaviour which is usually called convergence "to a round

point", one expects that under the volume preserving mean curvature �ow the evolution

of a convex hypersurface is de�ned for all times and converges, in the Euclidean space,

to a sphere as t→∞.

When the ambient manifold N is indeed the Euclidean space, Huisken [20], for exam-

ple, provided the expected result, by exploiting an initial condition on the principal

curvatures. We have in fact that:

Theorem. If the initial hypersurface Mn
0 ⊂ Rn+1, n ≥ 2, is uniformly convex, then the

VPMCF has a smooth solution Mt for all times 0 ≤ t < ∞ and the Mt converges to a

round sphere enclosing the same volume as M0 in the C∞−topology as t→∞.

However, in the general Riemannian case, the �ow is a result of a complicated in-

teraction between the geometry of the evolving hypersurface and the geometry of the

ambient space, and the methods developed by Huisken himself cannot be readily gen-

eralised, since, in view of the term φ(t) in the evolution equation, the local evolution

of M depends heavily on the global shape of the hypersurface inside N . Moreover, it

can be shown that even the convexity properties of M0 may not be preserved if M0 is

immersed in a general Riemannian manifold. The main reason is that the evolution

law is non-local and thus the maximum principle for parabolic equations is much more

subtle and di�cult to apply: as a consequence, initially embedded hypersurfaces may

develop self-interactions.

In this present work we nevertheless want to prove that if the initial hypersurface M0 is

"close enough" to a small geodesic sphere, the volume preserving mean curvature �ow

has a smooth convex solution and exists for all positive times.
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The main ingredient in our work is the isoperimetric nature of this �ow: the volume of

the region enclosed initially by M0 is preserved under the �ow, while the area of Mt is

strictly decreasing over time. Short time existence for these types of �ows are already

known in literature. However, by exploiting its isoperimetric nature, we are able to

show that if our initial hypersurface M0 is close enough to a small geodesic sphere in

N , it keeps itself close even at the maximal existence time T . The last fact, combined

with good estimates of the major geometric quantities of MT , allows us to extend the

�ow inde�nitely for all times and therefore to study its asymptotic behaviour. This is

quite interesting, since, except for special cases, geodesic spheres are not equilibria for

the VPMCF and, in general, the existence of time independent solutions is a nontrivial

issue.

Our approach is very e�ective and geometric and proceeds in intrinsic fashion, by study-

ing the evolution of the geometric quantities of M . In the �rst chapter we introduce

some useful notions and de�nitions of Riemaniann geometry and we derive the evolu-

tion equations of the main geometric quantities which are going to be essential in our

work, together with the maximum principle for parabolic equations, and we conclude

the chapter with some important isoperimetric inequalities in both Euclidean and Rie-

mannian settings.

We then continue with a review of the main existing results in the literature. After

starting with Huisken's cornerstone work in MCF and the generalisations to other �ows

where the speed is represented by symmetric, positively homogeneous functions of the

principal curvatures, we introduce the main results in the volume preserving mean cur-

vature �ow in the Euclidean ambient manifold and the further attempts to generalise

the same results to the noneuclidean case. In particular, we dedicate time to introduce

the approach of Alikakos and Freire who obtain our same results. Their work is inter-

esting mainly because it is entirely based on semigroup theory and dynamical systems

analysis, therefore far from the traditional approach which we do follow here.

In Chapters 3 and 4 we give a full, complete proof of our main result both in the Eu-

clidean (Ch. 3) and Riemannian case (Ch.4). The reason to distinguish between the

�at and non-�at case arises for two main purposes: �rstly, even if the exact same re-

sults are already known in the literature, dealing with the Euclidean case allows us to

explain well the ideas and the strategy which we are going to apply to the Riemannian

case, given the fact that all the quantities and the evolution equations are much simpler

and easy to treat, since the Riemann tensor is null. On the other hand, we are not

able to replicate the full convergence to a limiting sphere and the exponential decay

of the speed of the �ow (and therefore of the other main quantities), if the ambient

manifold is non-�at. In the Euclidean space, in fact, the full convergence is assured

by the combination of three main facts: the volume-preserving nature of the �ow, the

use of the Alexandrov's Theorem (the only compact embedded hypersurfaces with con-

stant mean curvature are the round spheres) and indeed the fact that the speed decays

exponentially. In a general Riemannian manifold, the Alexandrov's Theorem does not

hold and the average term of the mean curvature introduces a non-local e�ect to all

the evolution equations, which are now much more complicated to treat. Therefore we
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are only able to guarantee the existence of a subsequence of surfaces converging to a

surface of constant mean curvature. However, this leads to problematic situations, like

the fact that the solution of the �ow could converge to two (or more) di�erent surfaces

of the same constant mean curvature H̄, or that the �ow could move around the limit

surface without ever reaching it. It would be interesting to overcome these problematic

situations and prove full convergence also in the Riemannian case, but this needs the

introduction of new ideas and techniques, which however goes beyond the scope of the

present work.

We conclude this Introduction by summarizing the main results that we present in

this thesis.

In both the Euclidean and the Riemannian case, we have proved the monotonicity

of the isoperimetric ratio. When the ambient manifold is the �at Euclidean space,

we have established the long time existence for this particular class of VPMCF, the

exponential decay of the speed of the �ow and of the main geometric quantities, which

leads to the full convergence of the solution to the unit sphere at an exponential rate.

In the Riemannian case, we have shown the long time existence of the �ow and the

subsequential convergence of the solution to a small bubble of constant mean curvature.



Chapter 1

Preliminary results

1.1 Hypersurfaces in Riemannian manifolds

Let (N, ḡ) be a compact Riemannian manifold of dimension n + 1. We denote by

a bar all the quantities on N . For example we write the metric with ḡ = ḡαβ and

1 ≤ α, β ≤ n+ 1, the coordinates by ȳ = {ȳα}, the Levi-Civita connection Γ̄ = {Γ̄γαβ},
by ∇̄ the covariant derivative and by R̄αβγδ the Riemann tensor. We always make use

of the Einstein summation convention for the sum of repeated indices, unless otherwise

speci�ed. Therefore we write the Ricci tensor as Ric = {R̄αβ} with R̄αβ = ḡγδR̄αγβδ,

and R̄ = ḡαβR̄αβ the scalar curvature of N̄ , where ḡ−1 = ḡαβ is the inverse metric of ḡ.

Let now F : M → N be a smooth hypersurface immersion, i.e. a smooth map such

that its di�erential F∗ is injective at each point and where M is a closed Riemaniann

manifold of dimension n, therefore a compact topological space without boundary. We

denote the induced metric on M by g and in local coordinates we have

gij(p) = ḡ
( ∂F
∂xi

(p),
∂F

∂xj
(p)
)

= ḡαβ
∂Fα

∂xi
(p)

∂F β

∂xj
(p),

for any p ∈ M . We furthermore denote without a bar the intrinsic geometry of the

induced metric g on the hypersurface, i.e. {Γijk}, ∇ and Rijkl with Latin indices i, j, k, l

ranging from 1 to n.

If ν is a local choice of unit normal for F (M), we often work in an adapted orthonormal

frame {ν, e1, . . . , en} in a neighbourhood of F (M) such that e1(p), . . . , en(p) ∈ TpM ⊂
TpN and g(ei, ej)(p) = δij for p ∈M , 1 ≤ i, j ≤ n.
Then the second fundamental form A = hij as a bilinear form

A(p) : TpM × TpM → R,

and the Weingarten map W = hji = gikhkj as an operator

W : TpM → TpM,
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16 Chapter 1

are given by

hij = ḡ (∇̄eiν, ej) = −ḡ (ν, ∇̄eiej).

Since W is a selfadjoint operator, we have that A(p) is symmetric and its eigenvalues

k1(p), . . . , kn(p) are called the principal curvatures of F (M) at F (p). At any given point

p ∈M it is always possible to choose normal coordinates and, possibly after a rotation,

we can always arrange that

gij = δij , ∇eiej = 0, hji = diag(k1, . . . , kn).

We also have that the classical scalar invariants of the second fundamental form are

symmetric homogeneous polynomials in the principal curvatures. We can write the

mean curvature as

H = gijhij = k1 + · · ·+ kn,

and the total curvature as

|A|2 = hjih
i
j = k2

1 + · · ·+ k2
n.

It is also important to recall the rules of computations involving the covariant deriva-

tives, the second fundamental form of the hypersurface and the curvature of the ambient

space. The commutator of the second derivatives of a vector �eld X on M is therefore

given by

∇i∇jXk −∇j∇iXk = Rijlmg
klXm,

and for a one-form ω on M by

∇i∇jωk −∇j∇iωk = −R m
ij kωm = Rijklg

lmωm.

Since we are dealing with hypersurfaces immersed in a Riemannian manifold, it is useful

to recall the Gauss equations which relate the curvature of M with the one of N :

Rijkl = R̄ijkl + hikhjl − hilhjk 1 ≤ i, j, k, l ≤ n,

Rik = R̄ik − R̄nink +Hhik − hilhlk 1 ≤ i, k ≤ n,

R = R̄− 2R̄nn +H2 − |A|2,

where with the index n we indicate the normal direction ν, so for example R̄nn =

Ric(ν, ν). We also keep in mind the Codazzi-Mainardi equations:

∇ihjk −∇khij = R̄njki

∇ihik −∇kH = R̄nk.

We want to introduce the following commutator identities for the second derivatives of

the second fundamental form as in [21], which were �rst found by Simons [45]. They
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provide a crucial link between analytical methods and geometric properties of M and

N . See also [39] for a derivation of the following facts from the structure equations.

Theorem 1.1. The second derivatives of the second fundamental form A satis�es the

following identity:

∇k∇lhij = ∇i∇jhkl + hklhimhmj − hkmhilhmj + hkjhimhml

− hkmhijhml + R̄kilmhmj + R̄kijmhml

+ R̄mjilhkm + R̄ninjhkl − R̄nknlhij + R̄mljkhim

+ ∇̄kR̄njil + ∇̄iR̄nljk.

Proof. See for example [21].

If we trace the previous identity, we obtain the following result that plays an impor-

tant role in the mean curvature theory.

Corollary 1.2. The Laplacian of the second fundamental form A satis�es the identity

∆hij = ∇i∇jH +Hhimhmj − hij |A|2 +HR̄ninj

− R̄nnhij + R̄kikmhmj + R̄kjkmhim

− 2R̄kimjhkm + ∇̄kR̄njik + ∇̄iR̄nkjk.

1.1.1 The Exponential Map

In our work we want to investigate how an immersed surfaceM moves inside a compact

manifold N accordingly to a particular law that we will de�ne later. In order to better

understand the geometry involved in this process, we need to clarify some more ideas

of Riemaniann geometry.

We �rst start with a general manifold (N, ḡ). Let p be a point in N and V ∈ TpN

a tangent vector. We indicate with γV the unique geodesic such that γ(0) = p and

γ̇(0) = V , and let [0, l) be the nonnegative part of the maximal interval containing 0

on which γ is de�ned. For any α > 0, we have the rescaling property γαV (t) = γV (αt),

with t < lα (the maximal existence time for γαV ) and with lα = α−1 l.

We therefore consider Op ⊂ TpN as the set of vectors V such that 1 < l, so that γV is

de�ned on [0, 1].

De�nition 1.1. The restricted exponential map at p is the map Op → N such that

expp(V ) = γV (1), V ∈ Op.

The restricted exponential map can be combined to form a smooth map exp : O → N ,

where O =
⋃
Op and where exp |Op = expp. This map is just called the exponential

map.

We have the following important lemma, where we show that the exponential map

is a local di�eomorphism.
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Lemma 1.3. (Normal Neighbourhood Lemma) For any p ∈ N , there is a neighbourhood

V of the origin in TpN and neighbourhood U of p in N such that expp : V → U is

di�eomorphism.

Proof. See for example [27].

Any open neighbourhood U of p ∈ N that is the di�eomorphic image under expp

of a star-shaped open neighbourhood of 0 ∈ TpN as in the preceding lemma is called a

normal neighbourhood of p.

This lemma also justi�es the following de�nitions.

De�nition 1.2. The injectivity radius of p ∈ N is the largest radius for which the

exponential map at p is a di�eomorphism. If it exists, the injectivity radius of N ,

inj(N, ḡ), is the in�mum of the injectivity radii of all points of N .

De�nition 1.3. Let ε be the injectivity radius of p and consider, ∀r ≤ ε, the following
subset of TpN

Br(0) = {V ∈ TpN : ||V ||ḡ < r},

where the map expp : Br(0)→ N is a di�eomorphism.

The image expp(Br(0)) ⊂ N is called geodesic ball and expp(∂B̄r(0)) ⊂ N is the geodesic

sphere.

De�nition 1.4. The convexity radius at p ∈ N is the supremum of r ∈ R such that

∀ρ < r the geodesic ball expp(Bρ(0)) is strongly geodesically convex, i.e. ∀x, y in the

ball, there exists a unique minimising geodesic connecting the two points inside the ball,

except possibly the endpoints.

If it exists, the convexity radius of N , conv(N, ḡ), is the in�mum of the convexity radii

at all points of N .

In this present thesis we assume that (N, ḡ) is a compact manifold, and therefore

every closed bounded set in N is compact, i.e. N satis�es the Heine-Borel property. By

Hopf-Rinow theorem, N is thus geodesically complete, i.e. all the geodesics are de�ned

for all times (and, in particular, ∀p ∈ N and ∀V ∈ TpN , there exists a geodesic starting

in p in the direction of V de�ned for all times), and it is complete as metric space. As

a consequence, any two points in N can be joined by a segment, a curve such that its

length is exactly equal to the distance between the two points.

In particular, given the compactness ofN , it is possible to prove that both the injectivity

radius and the convexity radius of N exist and they are strictly positive. Moreover, a

nice result from Berger [4] shows that, if N is compact, the following estimate holds

0 < conv(N, ḡ) ≤ 1

2
inj(N, ḡ).

For the reasons above, we indicate with ε = inj(N, ḡ) the injectivity radius of the com-

pact manifold N .
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Let us consider a normal neighbourhood U of p and {ei} an orthonormal ba-

sis for TpN . Note that such a basis gives an isomorphism E : Rn+1 → TpN by

E(x1, · · · , xn+1) = xiei. If U is a normal neighbourhood of p, we can combine this

isomorphism with the exponential map to get a coordinate chart

ϕ := E−1 ◦ exp−1
p : U → Rn.

Any such coordinates are called (Riemannian) normal coordinates centred at p. Given

p ∈ N and a normal neighbourhood U of p, there is a one-to-one correspondence between

normal coordinate charts and orthonormal bases at p.

In any normal coordinate chart centred at p, we can de�ne the radial distance function

r = ψ(x) = d(p, x) as

r = ψ(x) =
(∑

i

(xi)2
) 1

2
,

and the unit radial vector �eld ∂r

∂r = ∇ψ =
1

r
xi∂i =

1

ψ(x)
xi∂i.

In the Euclidean space, r = ψ(x) is the distance to the origin, while ∂r is the unit vector

tangent to the straight lines through the origin. By the next important Proposition,

they also have some special geometric meaning for any metric in normal coordinates.

Proposition 1.4. (Properties of Normal Coordinates). Let (U , (xi)) be any normal

coordinate chart centred at p.

(a) For any V = V i∂i ∈ TpN , the geodesic γV starting at p with initial velocity vector

V is represented in normal coordinates by the radial line segment

γV = (tV 1, . . . , tV n+1)

as long as γV stays within U .

(b) The coordinates of p are (0, . . . , 0).

(c) The components of the metric at p are gij = δij.

(d) At any point q ∈ U − {p}, ∂r is the velocity vector of the unit speed geodesic from

p to q, and therefore has unit length with respect to g.

(e) The �rst partial derivatives of gij and the Christo�el symbols vanish at p.

Proof. See for example [27].

We also have the following useful Lemma.

Lemma. Let p ∈ (N, ḡ), with N compact, and ε its injectivity radius. Then for each

r ≤ ε and x ∈ N such that Br(x) ⊂ expp(Bε(0)),

expx(Br(0)) = Br(x),
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and moreover

expx(B̄r(0)) = B̄r(x).

Proof. See for example [36].

That means that as far as expp is a di�eomorphism, any Riemannian ball is a

geodesic ball, where as Riemannian ball we de�ne as usual the open set in N

Br(p) = {x ∈ N : τ(p, x) < r},

and where τ(p, x) is the in�mum over all the lengths L(γ) of piecewise smooth curves

connecting the two endpoints, i.e.

τ(p, x) = inf{L(γ) | γ : [0, 1]→ N, γ(0) = p, γ(1) = x}.

The exponential map plays an essential role in our work, as it will be clear in Chapter

4. Here below we want to illustrate another important consequence of the exponential

map.

Let Br(x) be a Riemannian ball inside Up ⊂ N and consider ∂Br(x) = S. Then we can

de�ne the normal bundle of S as the following space

TS⊥ = {v ∈ TpN : p ∈ S, v ∈ (TpS)⊥ ⊂ TpN}.

Here (TpS)⊥ is the orthogonal complement of TpS in TpN . So for each p ∈ S, we have
the orthogonal direct sum TpN = TpS ⊕ (TpS)⊥.

De�nition 1.5. The normal exponential map exp⊥ is the restriction of exp to

exp⊥ : O ∩ TS⊥ → N.

By standard theory, the di�erential of exp⊥ is nonsingular at 0p for a point p ∈ S
and it follows that there exists an open neighbourhood V of the zero section in TS⊥ on

which exp⊥ is a di�eomorphism onto its image in N . Such an image exp⊥(V ) is called

a tubular neighbourhood of S in N , because intuitively it looks like a solid tube around

S, containing S.

Note that in the tubular neighbourhood of S = ∂Br we can "build" a surface M

in the following way. We �rst identify through the exponential map the Riemannian

sphere S with the Euclidean sphere Snr of radius r. Then we de�ne a "shape function"

f(q) : Snr → R for any q in Snr (therefore ∀q ∈ S = ∂Br ∼= Snr ). In doing so, we can

model the surface M as

M = exp⊥q (f(q) · ν(q)), (1.1.1)

for ν(q) the outer normal (unit) vector to TqS
n
r
∼= TqS in (TqS

n
r )⊥ ∼= (TqS)⊥.

Recall that for a given function f : W → R, for an open region W ⊂ Rn, the Ck−norm
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in W̄ is de�ned as

||f ||Ck(W̄ ) =
∑
|α|≤k

sup
x∈W
|Dαf(x)|,

where we are using the multiindex notation, such that, given |α| = α1 + · · · + αn, for

nonnegative integers αi and k, we have

Dαf(x) :=
∂|α|f(x)

∂xα1
1 · · · ∂x

αn
n
.

We are now able to de�ne the following important concept.

De�nition 1.6. Given a δ > 0, the surface M , as de�ned in (1.1.1), is said to be

δ−close to S = ∂Br(x) in the C2−norm if the function f̂ = f(q)/r is such that

||f̂ ||C2(Snr ) =
∑
|α|≤2

sup
x∈Snr

|Dαf̂(x)| ≤ δ,

where f : Snr → R is the shape function, r > 0 the radius of the Riemannian sphere S

and Di can be thought as the covariant derivative on the sphere induced by the standard

metric.

We use the "corrected" function f̂ because we want to have a "dimensionless mea-

sure" of the deviation of M from the sphere S compared to its size.

We conclude this paragraph with another important result. We will often work with

normal coordinates in the open set Up = exp(Bε(0)). It is therefore useful to remember

that the metric ḡ of N can be Taylor expanded at a point q ∈ Up (See for example Prop.

2.1 in [30], where the proof can be found in the Appendix). This expansion has the

following form which depends on the curvature of N and on the radial distance:

ḡij(q) = δij +
1

3
R̄kilj |p xkxl +

1

6
∇kR̄limj |p xkxlxm + · · ·

= δij +
1

3
R̄kilj |p xkxl +O(r3), (1.1.2)

where R̄ijkl is the Riemann tensor of N computed in p, r = ψ(x) = d(p, x) is the radial

distance function de�ned above and q has coordinates q = (x1, x2, · · ·xn+1).
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1.2 Evolution equations

We are interested in studying one-parameter families of smooth hypersurface immersions

F : M × [0, T ) → (N, ḡ) into a compact Riemannian manifold, with Mt = F (·, t)(M),

that satis�es an initial value problem

∂

∂t
F (p, t) = f(p, t) · ν, p ∈M, t ∈ [0, T ), (1.2.3)

F (p, 0) = F0, p ∈M,

where ν(p, t) is a choice of unit normal at F (p, t), f(p, t), called speed, is some smooth

symmetric function of the principal curvatures ki of the hypersurface at F (p, t) and M0

is a closed hypersurface.

Short time existence for this particular type of �ows is already known in the literature,

even when the ambient space is a general Riemannian manifold. One could for example

check Section 7.5, in [21], where short time existence has been proved for a very broad

class of immersions of the type

∂

∂t
F =

(
− (∆)pH + ψ(F, ν,A,∇A,∇2A, . . . ,∇2p−1A)

)
ν,

for any nonnegative integer p, and for an arbitrary ψ smooth in all its arguments. In

particular, Theorem 7.17, [21], illustrates how the evolution equation may be reduced to

strictly parabolic, quasilinear scalar equation, and hence that it has short-time solution

under appropriate initial conditions.

Once short time existence is guaranteed for some class of �ows, one is in general inter-

ested to investigate if the solution exists for all times and therefore to understand its

asymptotic behaviour, both for large times and near the singularities. For this speci�c

purpose it is essential to establish for all the relevant geometric quantities their evolu-

tion equations, in particular for the second fundamental form.

For a general speed f , we have the following result [21].

Theorem 1.5. On any solution Mt of (1.2.3) the following evolution equations hold:

(i) ∂
∂tgij = 2fhij ,

(ii) ∂
∂tdµ = fHdµ,

(iii) ∂
∂thij = −∇i∇jf − f(−hikhkj + R̄ninj),

(iv) ∂
∂th

j
i = −∇i∇jf − f(hikh

kj + R̄ j
in n),

(v) ∂H
∂t = −∆f − f

(
|A|2 + R̄ic (n, n)

)
,

(vi) ∂
∂t |A|

2 = −2hij∇i∇jf − 2f(trA3 + hijR̄ninj).

Here dµ is the induced measure on the hypersurface and ∆ is the Laplace-Beltrami

operator with respect to the time-dependent induced metric on the hypersurface.
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In the present work we are interested in studying a particular class of initial value

problems (1.2.3) called volume preserving mean curvature �ows; we also set that the

initial surface is strictly convex.

De�nition 1.7. An hypersurface M ⊂ N is said to be strictly convex if all the

principal curvatures are strictly positive ki > 0, ∀i 1 ≤ i ≤ n.

De�nition 1.8. Let (N, ḡ) be a compact Riemannian manifold of dimension n+ 1 and

F a family of hypersurface immersions F : M × [0, T ) → (N, ḡ), with F0(M) = M0.

Then the volume preserving mean curvature �ow (VPMCF) of F0 is such that the

map F : M × [0, T )→ (N, ḡ) is a solution of the following normal deformation problem

∂

∂t
F (x, t) = [−H(x, t) + φ(t)] · ν(x, t),

where H(x, t) and ν(x, t) are respectively the mean curvature and the unit normal of

the hypersurface Ft(M) = Mt at the point x ∈M , and where

φ(t) =
1

|Mt|

∫
Mt

Hdµ,

is called the average mean curvature.

We also suppose from now on that M0 = F0(M) is closed and strictly convex.

In the particular setting of the VPMCF, thanks to Thm. 1.5, we have the following

results.

Corollary 1.6. Under the volume preserving mean curvature �ow, for the following

geometric quantities we have:

(i)
∂

∂t
hij = ∆hij − 2Hhimhmj + hij |A|2

+ R̄nnhij − R̄kikmhmj − R̄kjkmhim
+ 2R̄kimjhkm − ∇̄kR̄nijk − ∇̄jR̄nkik
+ φ(t)hikhkj − φ(t)R̄ninj .

(ii)
∂

∂t
H = ∆H +

(
H − φ

)(
|A|2 +Ric (n, n)

)
.

(iii)
∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|2(|A|2 +Ric(n, n))

− 4hij
(
R̄kikmhjm − R̄kimjhkm)− 2hij

(
∇̄jR̄nkik − ∇̄kR̄nijk

)
− 2φ

(
trA3 + hijR̄ninj).

where the index n indicates the normal direction.

Proof. (i) Starting from Thm. 1.5 with the speed f(x, t) = −H(x, t) + φ(t),

∂

∂t
hij = −∇i∇j [−H + φ] + [−H + φ](hikh

k
j − R̄ninj) =

= ∇i∇jH + [−H + φ](hikh
k
j − R̄ninj),
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we then make use of Cor. 1.2 to get the desired result.

(ii) It is immediate, by Thm. 1.5.

(iii) From Thm. 1.5, part (v) with speed f(x, t) = −H(x, t) + φ(t), we have

∂

∂t
|A|2 = 2hij∇i∇jH + 2(H − φ)(trA3 + hijR̄ninj).

Using now Cor. 1.2, the symmetries of the Riemann tensor, and the following observa-

tions

(a) 2hij∆hij = ∆(hijh
ij)− 2(∇khij∇khij) = ∆|A|2 − 2|∇A|2,

(b) 2hijhij |A|2 = 2|A|4,

(c) 2hijhijR̄nn = 2|A|2Ric(n, n),

(d) −2hijHhimhmj + 2H trA3 = −2Hhijh
m
i h

j
m + 2Hhjih

m
j h

i
m = 0,

(e) 2hijR̄kjkmhim = 2hijR̄kikmhjm,

we get the result.

We introduce here the ∗−notation, a useful convention to write a product of two or

more tensors. In particular, we will write S ∗ T for any linear combination of tensors

formed by contraction on S and T by the metric g. This means that we start from the

tensor �eld S⊗T and use the metric to switch the type of any number of components of

the tangent bundle to components of the cotangent bundle, or vice versa (i.e. raising or

lowering some indices) and take any number of contractions, and switch any number of

components in the product. A very interesting property of this ∗-product is that allows
us to write

|S ∗ T | ≤ K|S||T |

where the constant K depends only on the algebraic "structure" of S ∗ T .
In the speci�c case of VPMCF, for example, the metric evolves like

∂

∂t
gij = 2fhij = 2(φ−H)hij = φA+A ∗A, (1.2.4)

after plugging the speed f = −H + φ in Thm. 1.5.

We also prove the following Lemma.

Lemma 1.7. We have the following evolution equation for the Christo�el symbols:

∂

∂t
Γkij = φ∇A+A ∗ ∇A. (1.2.5)
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Proof. Using the de�nition of the Christo�el symbols in normal coordinates in a point

p and the evolution equation for the metric (1.2.4), we have

∂

∂t
Γkij =

1

2
gij
{
∇j
( ∂
∂t
gkl

)
+∇k

( ∂
∂t
gjl

)
−∇l

( ∂
∂t
gjk

)}
=

= gij
{
∇j
[
(φ−H)hkl

]
+∇k

[
(φ−H)hjl

]
−∇l

[
(φ−H)hjk

]}
=

= φ∇A+A ∗ ∇A.

Since we want to study the evolution equation of the covariant derivative of any order

of the second fundamental form, it is essential to introduce the following commutating

formulas for a general tensor T .

Lemma 1.8. The following formula for the interchange of time and covariant derivative

of a tensor T under the VPMCF holds:

∂

∂t
∇T = ∇ ∂

∂t
T +

(
φ∇A+A ∗ ∇A

)
∗ T. (1.2.6)

Proof. W.l.o.g. we suppose that T = Ti1...ik is a covariant tensor, since the general case

is analogous, as it will be clear by the following computation. We thus have:

∂

∂t
∇j Ti1...ik =

∂

∂t

(∂ Ti1...ik
∂xj

−
k∑
s=1

ΓljisTi1...is−1lis+1ik

)
=

=
∂

∂xj

∂ Ti1...ik
∂t

−
k∑
s=1

Γljis
∂Ti1...is−1lis+1ik

∂t

−
k∑
s=1

∂

∂t
ΓljisTi1...is−1lis+1ik =

= ∇j
∂ Ti1...ik
∂t

−
k∑
s=1

(
φ∇A+A ∗ ∇A

)l
jis
Ti1...is−1lis+1ik ,

which is exactly what we wanted to prove.

Lemma 1.9. Let T be a general tensor acting on (M, g). Then we have the following

commutation formula:

∆∇T −∇∆T = Rm ∗ ∇T +∇Rm ∗ T, (1.2.7)

where Rm is the Riemann tensor of M .

Proof. Let T be a general tensor. We also use the following convention for the third

covariant derivative:

∇i∇j∇kT = ∇3T (∂i, ∂j , ∂k, . . . ).
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Then we have:

∇k∆T −∆∇kT = gij
(
∇k∇i∇jT −∇i∇j∇kT

)
=

= gij
(
[∇k,∇i]∇jT +∇i∇k∇jT −∇i∇j∇kT

)
=

= gij
(
[∇k,∇i]∇jT +∇i([∇k,∇j ]T )

)
.

Using the ∗−notation we get:

[∆,∇]T = Rm ∗ ∇T +∇
(
Rm ∗ T

)
= Rm ∗ ∇T +∇Rm ∗ T +∇Rm ∗ T =

= Rm ∗ ∇T +∇Rm ∗ T.

Remark 1. It is convenient to recall the Gauss equation in terms of the ∗−notation,
which relates the Riemann tensor of M with the one of N , and the relation between the

covariant derivative ∇̄ of N with ∇ ofM , for a general tensor T well de�ned. Therefore

we have:

Rm = Rm+A ∗A, (1.2.8)

and

∇̄T = ∇T +A ∗ T. (1.2.9)

Therefore for a general tensor T the (1.2.7) becomes

∆∇T −∇∆T = (Rm+A ∗A) ∗ ∇T +∇(Rm+A ∗A) ∗ T =

= Rm ∗ ∇T +A ∗A ∗ ∇T +∇Rm ∗ T +A ∗ ∇A ∗ T.

Example 1.1. If we consider the second fundamental form A, the formula for inter-

changing the Laplacian and the covariant derivative becomes:

∆∇A−∇∆A = Rm ∗ ∇A+A ∗A ∗ ∇A+∇Rm ∗A

= Rm ∗ ∇A+A ∗A ∗ ∇A+ ∇̄Rm ∗A+A ∗A ∗Rm.

We rewrite the evolution equation of A in the ∗−notation as

∂

∂t
A = ∆A+A ∗A ∗A+A ∗Rm+ ∇̄Rm+ φA ∗A+ φRm, (1.2.10)

in order to prove the following Propositions.

Proposition 1.10. Under the VPMCF, the evolution equation for the covariant deriva-

tive of A in the ∗−notation reads as

∂

∂t
∇A = ∆∇A+A ∗A ∗ ∇A+∇A ∗Rm+A ∗ ∇̄Rm+ ∇̄2Rm+

+φA ∗ ∇A+ φ∇̄Rm+ φA ∗ Rm. (1.2.11)
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Proof. Using the formula (1.2.6),

∂

∂t
∇A = ∇ ∂

∂t
A+ φ∇A ∗A+A ∗A ∗ ∇A,

and substituting with the evolution equation for A, we obtain:

∂

∂t
∇A = ∇∆A+A ∗A ∗ ∇A+∇A ∗Rm+A ∗ ∇Rm+∇∇̄Rm+

+φA ∗ ∇A+ φ∇Rm.

We make now use of Ex. 1.1 for the interchange formula, and we have:

∂

∂t
∇A = ∆∇A+A ∗A ∗ ∇A+Rm ∗ ∇A+ ∇̄Rm ∗A+

= +A ∗A ∗Rm+A ∗ ∇Rm+∇∇̄Rm+ φA ∗ ∇A+ φ∇Rm.

Note that:

A ∗ ∇̄Rm = A ∗A ∗Rm+A ∗ ∇Rm;

∇∇̄Rm = ∇̄2Rm+A ∗ ∇̄Rm;

φ∇Rm = φ∇̄Rm+ φA ∗ Rm.

Therefore:

∂

∂t
∇A = ∆∇A+A ∗A ∗ ∇A+∇A ∗Rm+A ∗ ∇̄Rm+ ∇̄2Rm+

+φA ∗ ∇A+ φ∇̄Rm+ φA ∗ Rm.

Proposition 1.11. The following formula for the evolution equation of the higher

derivatives of A holds:

∂

∂t
∇mA = ∆∇mA+

∑
i+j+k=m

∇iA ∗ ∇jA ∗ ∇kA+
∑

i+j=m

∇iA ∗ ∇̄j Rm+

+P (A,∇A,Rm, ∇̄Rm) + ∇̄m+1Rm+ φ ∇̄mRm+ φ
∑

i+j=m

∇iA ∗ ∇jA

+φ
∑

i+j=m−1

∇iA ∗ ∇̄j Rm+ φQ(A,∇A,Rm, ∇̄Rm), (1.2.12)

where P (A,∇A,Rm, ∇̄Rm) and Q(A,∇A,Rm, ∇̄Rm) are the ∗-product of a term Rm

or its i−covariant derivative ∇̄iRm of order at most i ≤ m− 1 with at most m−terms

among A and ∇iA.

Proof. We proceed by induction on m. Note that we have already proved the zero case.

We then have:

∂

∂t
∇m+1A =

∂

∂t
∇
(
∇mA

)
= ∇ ∂

∂t

(
∇mA

)
+
(
φ∇A+A ∗ ∇A

)
∗ ∇mA,
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by the formula (1.2.6) of interchange of time and covariant derivative. Applying the

inductive hypothesis we now get:

∂

∂t
∇m+1A = ∇∆∇mA+∇

[ ∑
i+j+k=m

∇iA ∗ ∇jA ∗ ∇kA
]

+

+∇
[ ∑
i+j=m

∇iA ∗ ∇̄j Rm
]

+∇∇̄m+1Rm+ φ∇∇̄mRm+

+φ∇
[ ∑
i+j=m

∇iA ∗ ∇jA
]

+ φ∇
[ ∑
i+j=m−1

∇iA ∗ ∇̄j Rm
]

+

+∇
[
P (A,∇A,Rm, ∇̄Rm) + φQ(A,∇A,Rm, ∇̄Rm)

]
+

+φ∇A ∗ ∇mA+A ∗ ∇A ∗ ∇mA.

It is clear that the following terms behave as we would wish to:

∇
∑

i+j+k=m

∇iA ∗ ∇jA ∗ ∇kA =
∑

i+j+k=m+1

∇iA ∗ ∇jA ∗ ∇kA,

and

φ∇
∑

i+j=m

∇iA ∗ ∇jA = φ
∑

i+j=m+1

∇iA ∗ ∇jA,

and the terms φ∇A ∗ ∇mA and A ∗ ∇A ∗ ∇mA are of the same type of the two above.

Moreover, the ∗−products ∇P (·) and φ∇Q(·), are still of the same type: because of

(1.2.8) and (1.2.9), we have for example that

∇P (A,∇A,Rm, ∇̄Rm) = ∇̄P (·) +A ∗ P (·) ' P (A,∇A,Rm, ∇̄Rm).

For similar reasons, applying (1.2.9), the following terms behave as:

∇
∑

i+j=m

∇iA ∗ ∇̄j Rm =
∑

i+j=m+1

∇iA ∗ ∇̄j Rm+
∑

i+j=m

∇iA ∗ ∇∇̄j Rm

=
∑

i+j=m+1

∇iA ∗ ∇̄j Rm+
∑

i+j=m

∇iA ∗ ∇̄j Rm ∗A,

where the last addend above clearly belong to P (·). Analogous reasoning stands for the
term φ∇

∑
i+j=m−1∇iA ∗ ∇̄j Rm.

Observe now that, always by (1.2.9):

∇∇̄m+1Rm = ∇̄m+2Rm+ ∇̄m+1Rm ∗A,

and therefore the second addend clearly belongs to the term we previously treated.

Similar reasoning for φ∇∇̄mRm.
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Finally, just observe that by Remark 1, (1.2.8) and (1.2.9), setting T = ∇mA, we obtain:

∇∆∇mA = ∆∇m+1A+Rm ∗ ∇m+1A+A ∗A ∗ ∇m+1A+∇Rm ∗ ∇mA+

+A ∗ ∇A ∗ ∇mA =

= ∆∇m+1A+Rm ∗ ∇m+1A+A ∗A ∗ ∇m+1A+ ∇̄Rm ∗ ∇mA+

+Rm ∗A ∗ ∇mA+A+∇A ∗ ∇mA.

Just putting all together and we obtain the formula (1.2.12) we wanted to prove.

Proposition 1.12. The following evolution equation holds:

∂

∂t
|∇mA|2 = ∆|∇mA|2 − 2|∇m+1A|2 +

∑
i+j+k=m

∇iA ∗ ∇jA ∗ ∇kA ∗ ∇mA+

+
∑

i+j=m

∇iA ∗ ∇mA ∗ ∇̄j Rm+ P (A,∇A,∇mA,Rm, ∇̄Rm) +

+∇mA ∗ ∇̄m+1Rm+ φ∇mA ∗ ∇̄mRm+ φ
∑

i+j=m

∇iA ∗ ∇jA ∗ ∇mA+

+φ
∑

i+j=m−1

∇mA ∗ ∇iA ∗ ∇̄j Rm+ φQ(A,∇A,∇mA,Rm, ∇̄Rm).

(1.2.13)

Proof. Observe �rst that:

∂

∂t
|∇mA|2 =

∂

∂t

[
g
(
∇mA,∇mA

)]
=
( ∂
∂t
g
)(
∇mA,∇mA

)
+ 2g

( ∂
∂t
∇mA,∇mA

)
.

Using (1.2.4), the �rst term on the RHS can be written as:( ∂
∂t
g
)(
∇mA,∇mA

)
=

(
A ∗A+ φA

)
∗ ∇mA ∗ ∇mA =

= A ∗A ∗ ∇mA ∗ ∇mA+ φA ∗ ∇mA ∗ ∇mA.

For the second term, we plug the formula (1.2.12) and we recall the following formula:

2g
(

∆∇mA,∇mA
)

= ∆|∇mA|2 − 2|∇m+1A|2.

Just also observe that the expressions P (·) and Q(·) are still de�ned as before, but now

the ∗−product must contain the term ∇mA.
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1.3 Maximum principle and consequences of the evolution

equations

In studying the long term behaviour of solutions for parabolic equations, an important

step is trying to obtain some a priori estimates. The main tool in order to get point-

wise estimates is the maximum principle, in particular in the context of the mean

curvature �ow, and therefore speci�cally in the VPMCF one. We state in the Theorem

here below both the weak and strong maximum principles for scalars, whose proofs can

be found in [31].

Theorem 1.13. Assume that gt, for t ∈ [0, T ), is a family of Riemannian metrics on

a manifold M , with a possible boundary ∂M , such that the dependence on t is smooth.

Let u : M × [0, T )→ R be a smooth function satisfying

∂tu ≤ ∆gtu+ gt
(
X(p, u,∇u, t),∇u

)
+ b(u),

where X and b are respectively a continuous vector �eld and a locally Lipschitz function

in their arguments.

Then, suppose that for every t ∈ [0, T ) there exists a value δ > 0 and a compact subset

K ⊂ M\∂M such that at every time t′ ∈ (t − δ, t + δ) ∩ [0, T ) the maximum of u(·, t′)
is attained at least at one point of K (this is clearly true if M is compact without

boundary).

Setting umax(t) = maxp∈M u(p, t), we have that the function umax is locally Lipschitz,

hence di�erentiable at almost every time t ∈ [0, T ) and at every di�erentiability time,

d

dt
umax(t) ≤ b(umax(t)).

As a consequence, if h : [0, T ′)→ R is a solution of the ODE{
h′(t) = b(h(t))

h(0) = umax(0)

for T ′ ≤ T , then u ≤ h in M × [0, T ′).

Moreover, if M is connected and at some time τ ∈ (0, T ′) we have umax(τ) = h(τ), then

u = h in M × [0, τ ], that is, u(·, t) is constant in space.

The relevance of the maximum principle can be seen in the proof of this new useful

Theorem, which has been inspired by the works of [10], [18], [19] and [20].

Theorem 1.14. Let assume that |H(x, t)| < C1 and |A(x, t)|2 ≤ C, ∀t ∈ [0, T ′], by

positive constants C and C1. Let also assume that there exists a small positive constant

C2 such that |Rm| < C2 and |∇̄Rm| < C2, ∀t ∈ [0, T ′]. Then there exists a constant only

depending on the dimension of Mt, C, C1 and C2, such that ∀t ∈ (0, T ′] the covariant

derivative of the second fundamental form stays bounded. In other words we have

sup
x∈Mt

t|∇A|2 ≤ D,
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∀t ∈ (0, T ′].

Proof. By direct computation, using (1.2.11), in the same spirit of (1.2.13), we have:

∂

∂t
|∇A|2 = ∆|∇A|2 − 2|∇2A|2 +A ∗A ∗ ∇A ∗ ∇A+∇A ∗ ∇A ∗Rm+

+A ∗ ∇A ∗ ∇̄Rm+∇A ∗ ∇̄2Rm+ φA ∗ ∇A ∗ ∇A+

+φ∇A ∗ ∇̄Rm+ φA ∗ ∇A ∗ Rm. (1.3.14)

W.l.o.g. we rename C2 with C1. Note also that by Thm. 1.5 and equation (1.2.13),

by using the property of the ∗−product (and naming with C1 the algebraic structural

constant K), and the estimates on φ(t) (from the ones on H), the ones on the Riemann

tensor and its covariant derivative, we have these following estimates:( ∂
∂t
−∆

)
|A|2 ≤ −2|∇A|2 + 2|A|4 + C1(|A|+ |A|2 + |A|3),( ∂

∂t
−∆

)
|∇A|2 ≤ −2 |∇2A|2 + C1|A|2 |∇A|2 + C1|∇A|2 + C1|A| |∇A|

+ C1 |A| |∇A|2 + C1 |∇A|.

Using now the assumption of |A|2 ≤ C, we can manipulate the latter as( ∂
∂t
−∆

)
|∇A|2 ≤ −2 |∇2A|2 + C C1 |∇A|2 + C1|∇A|2 + C C1 |∇A|

+ C C1 |∇A|2 + C1 |∇A|

≤ −2 |∇2A|2 +K1 |∇A|2 +K1 |∇A|,

with K1 = (2CC1 + C1). Since we always have that:

|∇A| ≤ 1

2
|∇A|2 +

1

2
,

we can rewrite the previous evolution equation as

( ∂
∂t
−∆

)
|∇A|2 ≤ −2 |∇2A|2 +K1 |∇A|2 +K1

( |∇A|2
2

+
1

2

)
= −2 |∇2A|2 +K2 |∇A|2 +K3,

with K2 = (K1 + 1
2K1) and K3 = 1

2K1.

Applying the estimates for the second fundamental form, and knowing that |A| ≤
1
2 |A|

2 + 1
2 , we can also rewrite its evolution equation as:

( ∂
∂t
−∆

)
|A|2 ≤ −2|∇A|2 + 2|A|4 + C1(|A|+ |A|2 + |A|3)

≤ −2|∇A|2 + 2|A|4 + C1

(
2C +

C2

2
+

1

2

)
≤ −2|∇A|2 +K4.
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with K4 depending on C and C1.

It is useful to recall that for any two smooth functions B(x, t) and C(x, t), we have

that ( d
dt
−∆

)
(BC) =

[( d
dt
−∆

)
B
]
C +B

[( d
dt
−∆

)
C
]
− 2∇B∇C.

We can then compute:( d
dt
−∆

)
t |∇A|2 =

[( d
dt
−∆

)
t
]
|∇A|2 + t

[( d
dt
−∆

)
|∇A|2

]
,

hence ( d
dt
−∆

)
t |∇A|2 ≤ |∇A|2 − 2 t|∇2A|2 + tK2|∇A|2 + tK3.

We now study the following function, for positive constants Λ, L1 and L2 that we de�ne

later:

f(x, t) = t |∇A|2
(
Λ + L1|A|2

)
+
L2

2
|A|2,

and we compute, line by line, its evolution behaviour( ∂
∂t
−∆

)
f(x, t).

Then we have, without using yet the estimates on |A|2:(( ∂
∂t
−∆

)
t|∇A|2

)
(Λ + L1|A|2) ≤

≤ (|∇A|2 − 2 t|∇2A|2 + tK2|∇A|2 + tK3)(Λ + L1|A|2)

≤ |∇A|2(Λ + L1|A|2)− 2 t|∇2A|2(Λ + L1|A|2)

+ tK2|∇A|2(Λ + L1|A|2) + tK3(Λ + L1|A|2),

And also

(t|∇A|2)
( ∂
∂t
−∆

)
(Λ + L1|A|2) ≤ tL1|∇A|2(−2|∇A|2 +K4).

We study the "gradient terms" as follows:

2∇(t|∇A|2) · ∇(Λ + L1|A|2) = 4t g(∇2A,∇A) · 2L1 g(∇A,A).

Now we have, using the ∗-product notation:

(i) 4t g(∇2A,∇A) = 4t∇2A ∗ ∇A ≤ 4tK|∇2A||∇A|,

(ii) 2L1 g(∇A,A) = 2L1∇A ∗A ≤ 2L1K|∇A||A|,



Preliminary results 33

where K is the positive constant of the ∗-product. Putting all together, the estimate

for the gradient term is:

2∇(t|∇A|2)·∇(Λ + L1|A|2) ≤ 8L1K
2 t |∇2A| |∇A|2 |A|

≤ 2t |∇2A|2(Λ + L1|A|2) + 8L2
1K

4 t|A|2

Λ + L1|A|2
|∇A|4,

where we have made use of the following Young inequality:

|ab| ≤ εa2

2
+
b2

2ε
,

with ε = (Λ + L1C), a = 2
√
t|∇2A| and b = 4L1K

2
√
t|∇A|2|A|.

For the �nal term

L2

2

( ∂
∂t
−∆

)
|A|2 ≤ L2

2
(−2|∇A|2 + 2|A|4 +K4) = −L2 |∇A|2 +

L2

2
C|A|2 +K5,

with K5 = 1
2L2K4 and we estimated for convenience and w.l.o.g. 2|A|4 ≤ C|A|2.

Putting all together, we �nally get:( ∂
∂t
−∆

)
f(x, t) ≤ |∇A|2(Λ + L1|A|2)− 2 t|∇2A|2(Λ + L1|A|2)

+ tK2|∇A|2(Λ + L1|A|2) + tK3(Λ + L1|A|2)

− 2t L1|∇A|4 + t L1K4|∇A|2

+ 2t|∇2A|2(Λ + L1|A|2) + 8L2
1K

4 t|A|2

Λ + L1|A|2
|∇A|4

− L2 |∇A|2 +
L2

2
C|A|2 +K5.

Reordering the terms as follow, we have:( ∂
∂t
−∆

)
f(x, t) ≤ |∇A|2(Λ + L1|A|2)− L2 |∇A|2 − 2 t|∇2A|2(Λ + L1|A|2)

+ 2t|∇2A|2(Λ + L1|A|2)− 2tL1|∇A|4

+ 8L2
1K

4 tC

Λ + L1C
|∇A|4 + tK2|∇A|2(Λ + L1|A|2)

+ t L1K4|∇A|2 +
L2

2
C|A|2 + tK3(Λ + L1|A|2) +K5.

We now simplify the two opposite terms |∇2A|2 and we �nally set the values for our

constants. We choose L1 = 1
4K4 and L2 = Λ + L1C (but we keep using L1 and L2

for the terms |∇A|2 and |A|2 for simplicity); note that Λ + L1C ≥ C + 1 (therefore

Λ ≥ C(1− L1) + 1 ≥ 1). We then obtain:( ∂
∂t
−∆

)
f(x, t) ≤ tK2|∇A|2(Λ + L1|A|2) + t L1K4|∇A|2 + tK3(Λ + L1|A|2)

+
L2

2
C|A|2 +K5.
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Estimating the term tK3(Λ+L1|A|2) ≤ tR, with R = K3(Λ+L1C), and factoring out,

we obtain:( ∂
∂t
−∆

)
f(x, t) ≤ t|∇A|2

(
Λ
(
K2 +

L1K4

Λ

)
+K2L1|A|2

)
+
L2

2
C|A|2 + tR+K5.

Choosing now L = max{K2 + L1K4
Λ , C}, we get:

( ∂
∂t
−∆

)
f(x, t) ≤ t|∇A|2(ΛL+ LL1|A|2) + L

L2

2
|A|2 + tR+K5

≤ L
(
t|∇A|2(Λ + L1|A|2) +

L2

2
|A|2

)
+ tR+K5

≤ Lf(x, t) + tR+K5.

We set fmax(t) = maxx∈M f(x, t) and we apply the maximum principle. For this purpose

we study the associated ODE:

h′(t) = Lh(t) + tR+K5, h(0) = fmax(0).

As it is well known, this equation has solution:

h(t) = eLth(0) +

∫ t

0
eL(t−s)(sR+K5) ds.

We then study:

eLt
∫ t

0
e−Ls(sR+K5) ds = eLt

([
− e−Ls

L
(sR+K5)

]t
0

+

∫ t

0

e−Ls

L
Rds

)
=

= eLt
(
− e−Lt

L
(tR+K5) +

K5

L
− R

L2
e−Lt +

R

L2

)
=

= − 1

L
(tR+K5)− R

L2
+ eLt

LK5 +R

L2
.

And then:

h(t) = eLth(0)− 1

L
(tR+K5)− R

L2
+ eLt

LK5 +R

L2
.

Applying �nally the maximum principle, we can say that

fmax(t) ≤ h(t), ∀t ∈ [0, T ′].

But ∀t ∈ [0, T ′] it is also true that:

f(x, t) ≤ fmax(t) ≤ h(t) ≤ eLT ′
(
h(0) +

LK5 +R

L2

)
= D,

which implies that for f(x, t) = t |∇A|2
(
Λ+L1|A|2

)
+L2

2 |A|
2, with Λ ≥ C(1−L1)+1 ≥ 1:

t |∇A|2 ≤ t |∇A|2
(
Λ + L1|A|2

)
+
L2

2
|A|2 ≤ D,



Preliminary results 35

and �nally we have proved that

sup
x∈Mt

|∇A| ≤ D√
t
,

∀t ∈ [0, T ′].

We can extend the previous result to the higher covariant derivatives of A, assum-

ing though, as it will be clear from the proof, that we also have an initial bound on

|∇A(x, 0)|.

Theorem 1.15. Let the mean curvature and the second fundamental form of Mt be

bounded ∀t ∈ [0, T ]. If for each m ≥ 1 there is a small positive α such that |∇̄mRm|2 ≤
α, then ∀m ≥ 1 there is a positive constant Cm depending on M0 such that

|∇mA|2 ≤ Cm,

uniformly on Mt for 0 ≤ t ≤ T <∞.

Proof. In view of (1.2.13), we have:

∂

∂t
|∇mA|2 = ∆|∇mA|2 − 2|∇m+1A|2 +

∑
i+j+k=m

∇iA ∗ ∇jA ∗ ∇kA ∗ ∇mA+

+
∑

i+j=m

∇iA ∗ ∇mA ∗ ∇̄j Rm+ P (A,∇A,∇mA,Rm, ∇̄Rm) +

+∇mA ∗ ∇̄m+1Rm+ φ∇mA ∗ ∇̄mRm+ φ
∑

i+j=m

∇iA ∗ ∇jA ∗ ∇mA+

+φ
∑

i+j=m−1

∇mA ∗ ∇iA ∗ ∇̄j Rm+ φQ(A,∇A,∇mA,Rm, ∇̄Rm).

(1.3.15)

Recall the following fact (Young's inequality) which we are going to use below:

|ab| ≤ |a|
2

2
+
|b|2

2
.

Note also that we assumed that the second fundamental form is bounded, and therefore

we have already proved the m = 0 case, since |A|2 = |∇0A|2. Moreover the mean

curvature H is bounded as well, and this implies that the average term φ(t) for each t

is bounded too.

Let now consider the following. If we look to the term ∇iA ∗ ∇jA ∗ ∇kA ∗ ∇mA, we
ideally have two di�erent cases:

(1) i = j = 0 and k = m and therefore we estimate the term as |A∗A∗∇kA∗∇mA| ≤
K|A|2|∇mA|2, using the properties of the ∗−product, with K the structural con-

stant.

(2) all the i, j, k < m: we then estimate the same term as |∇iA∗∇jA∗∇kA∗∇mA| ≤
|∇iA ∗ ∇jA ∗ ∇kA|2/2 + |∇mA|2/2 by the Young's inequality above.
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It is clear that we can apply the above process to each term in the sum of (1.2.13). We

thus estimate (1.2.13) as following:

∂

∂t
|∇mA|2 ≤ ∆|∇mA|2 + P1

(
|A|, . . . |∇m−1A|, |∇̄Rm|, . . . |∇̄m+1Rm|, |φ|)

)
|∇mA|2 +

+P2

(
|A|, . . . |∇m−1A|, |∇̄Rm|, . . . |∇̄m+1Rm|, |φ|)

)
,

where P1 and P2 are smooth functions independent of time (and actually they are

polynomials in their arguments).

We now proceed by induction on m. Since the case m = 0 is true by hypothesis, we

assume that all covariant derivatives of A up to order m are uniformly bounded by Cm.

Since even the terms |φ| and |∇̄mRm| are bounded ∀m ∈ N, we also deduce that the

functions P1 and P2 are bounded. Therefore we write for some C2 depending on Cm

and α:
∂

∂t
|∇m+1A|2 ≤ ∆|∇m+1A|2 + C2(|∇m+1A|2 + 1).

Choosing N ≥ C2 and h = |∇m+1A|2 +N |∇mA|2, we have:

∂

∂t
h =

∂

∂t
|∇m+1A|2 +N

∂

∂t
|∇mA|2 ≤

≤ ∆|∇m+1A|2 + C2(|∇m+1A|2 + 1) +N∆|∇mA|2 − 2N |∇m+1A|2 + C3

≤ ∆h−N |∇m+1A|2 + C3,

applying the inductive hypothesis at the case m, with C3 = C3(Cm, C2, N, α). But this

implies that:
∂

∂t
h ≤ ∆h−N h+ C3 +N2Cm.

We have that a solution for the auxiliary problem

∂

∂t
ϕ(t) = −Nϕ(t) + C3 +N2Cm, ϕ(0) = h(0),

is:

ϕ(t) = ϕ(0)e−Nt − C3 +N2Cm
N

e−Nt +
C3 +N2Cm

N
,

which implies, substituting and by maximum principle and simple estimates,

|∇m+1A(x, t)|2 ≤
(
|∇m+1A(x, 0)|2 +N |∇mA(x, 0)|2

)
· 1 +

C3 +N2Cm
N

,

and �nally

|∇m+1A(x, t)|2 ≤ Cm+1,

with Cm+1 depending on Cm, C3, N , α and maxx∈M0 |∇m+1A(x, 0)|2, since by induction
|∇mA(x, 0)|2 ≤ Cm. This concludes the proof.
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1.4 Convergence of surfaces

The aim of this section is to introduce some important results about the convergence of

surfaces. We will also introduce some isoperimetric inequalities both in the Euclidean

and Riemannian setting, and, as a consequence, results about convergence.

1.4.1 Isoperimetric inequalities

Let us initially suppose to be in a (n+ 1)−dimensional Euclidean space endowed with

its standard metric (Rn+1, δij). If Ω ⊂ Rn+1 is an open bounded region with smooth

boundary ∂Ω, as in [37], the classical isoperimetric inequality reads

|∂Ω|n+1

|Ω|n
≥ (A(Sn))n+1

(V (Bn+1))n
,

where, with abuse of notation, we have denoted with |∂Ω| the surface area of the

boundary, with |Ω| the volume of the open region, with A(Sn) the area of the n-

dimensional unit sphere and by V (Bn+1) the volume of the (n + 1)-dimensional unit

ball. Note that the equality holds only if the region is the unit ball.

Observation 1. Note also that this ratio is independent of the radius of the ball. In fact,

considering a ball of radius R with the same notation as before, we have:

(A(Sn(R)))n+1

(V (Bn+1(R)))n
=

( A(Sn(R))

V (Bn+1(R))

)n
·A(Sn(R)) =

(n+ 1

R

)n
·A(Sn)Rn =

= (n+ 1)n ·A(Sn) = Ce,

calling with Ce the above ratio.

Since the area of the unit sphere in Rn+1 can be written using the gamma function Γ,

we have in this case that

Ce =
2π

n+1
2

Γ
(
n+1

2

) · (n+ 1)n.

Observation 2. The isoperimetric inequality above also shows that, amongst all regions

with the same boundary area, the Euclidean balls have maximum volume. The inequal-

ity tells furthermore that, amongst all sets with the same volume, Euclidean balls have

minimum boundary area.

If (N, g) is a smooth (n+1)−dimensional complete Riemannian manifold, we de�ne

the isoperimetric pro�le of N the function IN : (0, |N |)→ R, with

IN (v) = inf{|∂Ω| : Ω ⊂⊂ N has smooth boundary, |Ω| = v},

for a region Ω of N . Note that, with an abuse of notation as before, | · | denotes both the

area of the boundary and the volume of the region, i.e. the n and (n+ 1)−dimensional

Riemannian measures.

The isoperimetric pro�le gives an isoperimetric inequality in N , since any region Ω ⊂⊂
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N with smooth boundary satis�es

|∂Ω| ≥ IN (|Ω|).

The isoperimetric inequality is optimal in the sense that, if some function I exists so

that |∂Ω| ≥ I(|Ω|) for any region Ω ⊂⊂ N with smooth boundary, one trivially has

IN ≥ I.
Given a positive v < |N |, the isoperimetric problem consists in studying, among the

compact hypersurfaces Σ ⊂ N enclosing a region Ω of volume Ω = v, those which

minimize the area |Σ|.
Note that the following fundamental existence and regularity theorem holds. (See for a

general review [32] for example).

Theorem 1.16. If N is a compact n−dimensional manifold, then, for any v, 0 <

v < |N |, there exists a compact region Ω ⊂ N whose boundary Σ = ∂Ω minimizes

the area among regions of volume v. Moreover, except for a closed singular set of

Hausdor� dimension at most n − 8, the boundary Σ of any minimizing region is a

smooth hypersurface with constant mean curvature and, if ∂N ∩Σ 6= ∅, then ∂N and Σ

meet orthogonally.

In particular, if n ≤ 7, Σ is smooth. In general a minimizing sequence {Ω}i∈N of

sets with smooth boundary and volume v so that |∂Ωi| → IN (v) may converge, in a

weak topology, to some set with non-smooth boundary. This motivates therefore the

following de�nition:

De�nition 1.9. An isoperimetric region of volume v in N is a �nite perimeter set Ω0

so that |Ω0| = v and P(Ω0) = IN (v), where the perimeter of a region Ω is de�ned as

P(Ω) = sup
{∫

Ω
divX dN : |X| ≤ 1

}
,

for any smooth vector �eldX ofN with compact support and where |X| is the supremum
norm sup{|X|p : p ∈ N}.

Note that the existence of isoperimetric regions are guaranteed, under some condi-

tions, in compact manifolds, but not in non compact ones.

We are ready to prove the following Theorem.

Theorem 1.17. Let {Ωk}k∈N be a family of open sets of (Rn+1, δij) endowed with gkij
Riemannian metrics de�ned on B4(0), such that ∀k

Ωk ⊂ B4(0),

with smooth boundaries ∂Ωk and such that gkij → δij smoothly to the Euclidean metric.

Given two positive constants C and C ′, let us also suppose that the family of regions is

such that ∀k:
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(1) |Ωk| = 1 and |∂Ωk| ≤ C ′,

(2) |A|∂Ωk ≤ C and |∇A|∂Ωk ≤ C,

(3) |∂Ωk|n+1

|Ωk|n ≤ Ce + ρk,

with ρk → 0, and where A and ∇A denote respectively the second fundamental form of

the boundary and its covariant derivative. Then we have that:

∂Ωk → ∂Br(x) ⊂ B4(0),

in C2-norm and such that |Br(x)| = 1.

Proof. Observe that for any k we have Ωk ⊂ B4(0), and therefore, by the Bolzano-

Weierstrass Theorem, there exists an accumulation point p ∈ B4(0) for the family

{Ωk}k. Note that the curvature estimates (2), combined with the Uniform Graph

Lemma (see for example [35], Lemma 4.1.1), imply that there exist R = R(p) > 0

and disjoint graphs U ik ⊂ Rn+1 of functions uik de�ned over disks on the corresponding

tangent planes Tp∂Ωk, i.e. B(p, 2R) ∩ (p+ < νik >
⊥), where νik are the corresponding

unit normal vectors, B(p, 2R) = B2R(p) and with 1 ≤ i ≤ s = s(p, k), such that:

i) ∂Ωk ∩B(p,R) = (U1
k ∪ · · · ∪ U sk) ∩B(p,R).

ii) |uik|, |∇uik| and |∇2uik| are uniformly bounded in the corresponding disk of radius

2R, for all k ∈ N and i = 1, . . . , s.

Observe �rst that in fact the number s of such graphs (the so called multiplicity of p)

doesn't depend on k, since we have an upper bound for the area of the surfaces ∂Ωk. Also

note that we can take a convergent subsequence for the family of unit normals {νik}k,
since they are "points" of the unit sphere, and therefore νik → νi and the tangent planes

subconverge to a �x plane Πp = p+ < νi >⊥. This also implies, by the Uniform Graph

Lemma again, that there exists a subsequence of graphs {U ikl}kl ⊂ {U
i
k}k over disks

of radius 2R and centred in p in the plane Πp, with the corresponding functions uikl
uniformly bounded up to the second derivative.

The uniform bounds for the graphs functions uikl and its �rst two derivatives imply

that these functions are equicontinuous on their domains and therefore, by the Ascoli-

Arzelà Theorem, there exists a C2-convergent subsequence of graph functions to the

limit function ui∞.

Observe now the hypothesis (3) of this Theorem. By the isoperimetric inequality and

the observations at the beginning of this paragraph, we have that

Ce ≤
|∂Ωk|n+1

|Ωk|n
≤ Ce + ρk.

Since by hypothesis ρk → 0, when k →∞, and by (1), |Ωk| = 1, |∂Ωk| ≤ C ′ for any k,

the combination of these two facts gives a bound on the value of surface area and then

forces the multiplicity i of p to be equal to 1.
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If p ∈ B4(0) is not an accumulation point for the family {∂Ωk}k∈N, then we can

choose a subsequence ∂Ωkl and R > 0 such that ∂Ωkl ∩B(p̄, R) = ∅.

Let us now take a countable dense setA = {p1, p2, . . . } ⊂ B4(0). Applying the above

process around p1, we obtain a subsequence {∂Ω1,kl}kl ⊂ {∂Ωk}k which converges in

B(p1, R(p1)) to a limit graph. Applying again the process to {∂Ω1,kl}kl around p2 we

obtain another subsequence {∂Ω2,kl}kl ⊂ {∂Ω1,kl}kl , which converges in B(p1, R(p1))∪
B(p2, R(p2)) to a surface of multiplicity 1. Iterating the process and taking a diagonal

subsequence, we obtain that {∂Ωkl}kl ⊂ {∂Ωk}k converges to a surface ∂Ω∞ in B4(0)

of volume 1. Finally, combining (1), (3) and the isoperimetric inequality which states

that in the Euclidean space the equality holds only for balls, we therefore have that the

limit surface ∂Ω∞ = ∂Br(x) ⊂ B4(0), for some r > 0 and x ∈ B4(0), and with volume

|Br(x)| = 1.

Recall the following Lemma previously introduced, that we are going to use in the

proof of the Corollary below.

Lemma 1.18. Let p ∈ (N, g), with N compact and ε its injectivity radius. Then for

each r ≤ ε and x ∈ N such that Br(x) ⊂ expp(Bε(0)),

expx(Br(0)) = Br(x),

and moreover

expx(B̄r(0)) = B̄r(x).

In the Riemannian setting, we will make use of the following Corollary.

Corollary 1.19. Let (N, ḡ) be a compact (n+1)−Riemannian manifold with injectivity

radius ε and, for any p ∈ N , Up the geodesic ball in p of radius ε. Let Ω ⊂ BR(p) ⊂ Up,
with R < ε, be an open region of N with smooth boundary ∂Ω. Let C̃, C ′, C ′′ and

C = C(IN (|Ω|)) positive constants. For any given δ > 0, there exist ρ > 0 and r0 > 0

such that if:

(1) r ≤ r0,

(2) |Ω| = |Br(p)|, |∂Ω| ≤ C̃rn−1, |A|∂Ω ≤ C ′r−1 and |∇A|∂Ω ≤ C ′′r−2,

(3) |∂Ω|n+1

|Ω|n ≤ C + ρ,

then ∂Ω is δ-close in the C2-norm to ∂Br(x), for some x ∈ BR(p), with |Br(x)| =

|Br(p)|, and where |Br(p)| is the Euclidean volume of Br(p).

Proof. Note that in the normal neighbourhood Up = expp(Bε(0)), where Bε(0) is the

sphere in the tangent space TpN of radius inj(N, g) = ε > 0, we have seen that we can

expand the metric g in a point q ∈ Up as

gij(q) = δij +
1

3
Rkilj |p xkxl +

1

6
∇kRlimj |p xkxlxm + · · ·

= δij +
1

3
Rkilj |p xkxl +O(r3), (1.4.16)
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where Rijkl is the Riemann tensor of N computed in p, r = ψ(x) = d(p, x) is the radial

distance function and q has coordinates q = (x1, x2, · · ·xn+1).

Therefore we also have the following estimate

|gij − δij | = O(r2) ≤ r2
0, (1.4.17)

by hypothesis (1).

Since the region is such Ω ⊂ BR(p) ⊂ Up, with R < ε, we can make use of normal

coordinates,

exp−1
p : Up → TpN ' Rn+1,

that are unique up to how we choose to identify TpN with Rn+1. This also implies that,

through the above di�eomorphism, we can consider, with an abuse of notation, that

Ω ⊂ BR(0) ⊂ TpN ' Rn+1.

We want to prove the Theorem by contradiction. We therefore assume that the region

(Ω, g) satis�es (2) and (3), but it is not δ−close in the C2−norm to the sphere of

radius r and centred in x, ∂Br(x), for x ∈ BR(0). But this is equivalent to assume

that there thus exists a sequence of regions {Ωk}k∈N endowed with Riemannian metrics

gkij , converging smoothly to the �at metric δij by (1.4.17) and satisfying the following

conditions

(2) |Ωk| = |Br(p)|, |∂Ωk| ≤ C̃rn−1, |A|∂Ωk ≤ C ′r−1 and |∇A|∂Ωk ≤ C ′′r−2,

(3) |∂Ωk|n+1

|Ωk|n ≤ C + ρk, with ρk → 0,

but not converging to the sphere ∂Br(x) ⊂ TpN .

It is clear that we are exactly in the situation of Theorem 1.17. Note in fact that

the hypothesis (3), where the constant C depends on the isoperimetric pro�le of the

constant volume of |Ωk| = |Br(p)| (Euclidean measure), can be rewritten using the

Euclidean constant Ce plus a new parameter ρ̄k, that measures how much the metric

gkij fails to be �at. We can therefore write that:

Ce ≤
|∂Ωk|n+1

|Ωk|n
≤ Ce + ρ̄k, ρ̄k → 0.

Finally note that the estimates (1) and (2) of Thm. 1.17 can be rescaled in order to �t

the present setting.

Therefore we are in the situation of Thm. 1.17, and the family of surfaces {Ωk} must
converge to a sphere ∂Br(x) ⊂ TpN of radius r > 0 and center x ∈ BR(0) of same

volume. Using now the Lemma 1.18 and bringing everything back to the manifold N ,

we observe that the family converges to a Riemannian sphere ∂Br(x) ⊂ Up ⊂ N , of

same �xed volume, arising therefore a contradiction.

This concludes the proof.
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Literature review

2.1 The existing results

Traditionally, di�erential geometry has been the study of curved spaces or shapes in

which, for the most part, time did not play a role. However, in the last decades geome-

ters have made a huge e�ort in understanding how shapes evolve in time. There are

many ways by which a geometric object can evolve over time, but the most natural one

is surely by the mean curvature �ow.

The simplest case is that of a closed curve in the plane, where the �ow is usually called

"curve shortening �ow". A remarkable result of Grayson [15] from 1987, using earlier

work of Gage and Hamilton [12], shows that any simple closed curve in the plane re-

mains smooth and eventually becomes convex under the �ow, until it disappears in a

point in a �nite amount of time. As a corollary, one can get an exact formula for the

lifespan of any curve. Therefore, in the case of curve shortening �ow, each �ow has only

one singularity in all of space and time and the singularity looks just like a shrinking

circle.

In higher dimensions, Huisken [18], inspired by Hamilton's paper [16], proved in 1984

that closed convex hypersurfaces remain convex and �ow smoothly up until they be-

come extinct at a point, and therefore no singularity will occur before the surface shrinks

down to a point; in particular, they are almost round just before extinction. To better

describe such "round sphere" behaviour, Huisken carries out a normalization and keeps

�xed the area of the surface solution during the �ow: the normalized equation has then

a solution for any positive times and converges exponentially in any Ck−norm to a

sphere of the same area.

However, unlike the case of curves, there are many new types of singularities when the

initial hypersurface is not convex. Therefore the analogue of Grayson's theorem doesn't

hold for submanifolds of dimension n ≥ 2. Consider for example two spheres joined by

a long thin tube. The spheres and the tube both shrink, but the mean curvature along

the tube is much higher than on the spheres, so the middle of the tube collapses down to

a point, forming a singularity. The surface then separates into two components, which

eventually become convex and collapse to round points. Thus, di�erently from a curve,

a surface can develop singularities before it shrinks away.

43
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In 1986, Huisken [19] extends these results to the more general Riemannian case. He

proves that if the initial hypersurface is "convex enough" in order to overcome the ob-

structions imposed by the geometry of the Riemannian ambient space, it �rst contracts

to a small sphere and then to a single point. By convex enough, he means that the

principal curvatures of the initial surface are bounded from below by a positive constant

depending on the ambient manifold. If the same normalization in normal coordinates

around the 0 point is carried out as in the Euclidean case in order to keep �xed the area,

the solution assumes again a round behaviour and converges to a sphere of the same

area. Note that the use of some pinching condition or other geometric assumptions on

the initial surface is crucial when one is dealing with the mean curvature �ow, to avoid

that singularities may develop even before the volume goes to zero.

Since Huisken's work, many authors have investigated whether the same result holds for

�ows where the speed is given by a general symmetric, positively homogeneous function

of the principal curvatures.

For example, �ows with speed a power of the mean curvature H, the so called standard

Hk−�ow, have been �rst analysed by Schulze ([40], [41]), who later obtained a very

interesting application of this evolution to isoperimetric inequalities in Euclidean and

noneuclidean spaces [42]. Schulze observes that the Hk−�ow of a smooth immersed

mean convex hypersurface (H(M0) > 0) in the Euclidean space has a unique smooth

solution. Moreover, if the initial surface is strictly convex (when 0 < k < 1) or weakly

convex (when k ≥ 1), the solution is strictly convex and contracts to a point in a �nite

amount of time. He also shows that the same result can be obtained if the initial surface

satis�es a pinching condition instead (regarding the ratio of the Gauss curvature and

the n−power of the mean curvature), and that the rescaled embeddings assume as usual

the round sphere behaviour, with a C∞−topology convergence to a sphere.

The asymptotic round behaviour of the renormalised mean curvature �ow inspired

Huisken to investigate a �ow where the volume enclosed by a compact immersed hy-

persurface without boundary is kept �xed instead of its area. In 1987, he proves, as

expected, that the volume preserving mean curvature �ow (VPMCF) of a strictly convex

hypersurface immersed in the Euclidean space has a smooth solution which exists for all

positive times and converges exponentially in the C∞−topology to a round sphere [20].

However, the φ(t) term in the �ow equation, i.e. the average of the mean curvature,

introduces a global term in all relevant evolution equations, making the analysis of this

�ow more complicated.

Cabezas-Rivas and Sinestrari [7] study the volume preserving curvature �ow where the

speed is given by a m-th power of the mean curvature, a particular symmetric homoge-

neous polynomial in the principal curvatures. They show that if a closed hypersurface

immersed in the Euclidean space and satisfying a pinching condition on K, the Gauss

curvature (K > cHn > 0, for a positive constant c), the condition is preserved, the

�ow is immortal and the solution converges exponentially in the C∞−norm to a lim-

iting hypersurface which is umbilical everywhere, and therefore is a sphere. Note also
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that the pinching condition, preserved during the �ow, implies that the surface solution

maintains the principal curvatures strictly positive.

The study of the generalised Hk−�ow in the volume-preserving (and area- preserving)

setting has been �rst dealt by Sinestrari in [46]. Here, without any pinching condi-

tion or restriction on the dimensions, but just exploiting the isoperimetric nature of

the �ow (the area is decreasing if the �ow runs keeping the volume �xed), a strictly

convex hypersurface initially embedded in Rn+1 converges asymptotically when t→∞
to a sphere, and the �ow is then immortal. Note that if the law is area-preserving, the

isoperimetric ratio is still decreasing since the area is �xed but the volume of the region

is increasing. In 2018, the same result has been obtained by Bettini and Sinistrari [5] by

studying the α−power of k−th symmetric polynomial in the principal curvatures (Eαk ,

α > 0) without assuming any pinching condition, but only assuming that the initial

hypersurface embedded in Rn+1 is strictly convex.

The immortality of the VPMCF and the exponential convergence to a round sphere

has been obtained also by H. Li in [28], without assuming a convexity property on the

initial closed hypersruface immersed in the Euclidean space. Li instead assumes an

integral condition on the traceless second fundamental form, a positive lower bound for

the average mean curvature and an initial uniform bound for the second fundamental

form. Observe that, if the initial surface is close enough to a sphere, the lower bound

on the average term is a reasonable one, since it is always positive. In the second part

of the paper, he weakens the constraints on the second fundamental form, and replace

it with one on the mean curvature and use ε−regularity theory, even though he gives a

proof only in dimension n+ 1 = 3. Note also, as we will see later, that both the results

of Huisken and Yau [23] for large coordinate spheres in an asymptotically �at manifold

and of Alikakos and Freire [1] for small geodesic balls in a Riemannian manifold, can be

obtained using the same technique (he gives a proof only in the Euclidean case though).

Using the center manifold analysis from in�nite-dimensional dynamical systems and

semigroup theory, Escher and Simonett [11], Athanassenas [3] and Hartley [17] for the

Euclidean case, and Cabezas-Rivas and Miquel [6] and Alikakos and Freire [1] in more

general cases as we will see later, have studied as well the volume preserving mean

curvature �ow.

Escher and Simonett observe that if an initial surface is h1+β(S)−close to a sphere S in

the Euclidean space, the VPMCF is immortal and the solution converges exponentially

to some sphere. Here the space h1+β(S) denotes the little Hölder space of order 1 + β

(i.e. the limit sup of the Holder β−seminorm of the �rst derivative is going to zero), and

it is in fact the closure of C∞(S) functions in the usual Hölder norm of C1+β(S). The

most interesting fact is that the initial surface does not need to be necessarily convex to

assure the global existence of the �ow, and then there exist non-convex surfaces which

are solutions of the �ow and converge exponentially to a sphere.

In Athanassenas' work [3], a smooth, compact, rotationally symmetric, initial hypersur-

face is immersed between two hyperplanes which intersects orthogonally (thus a surface

with boundary) and encloses a �xed volume. Assuming an extra condition on the vol-

ume enclosed by M0, in order to avoid that during the �ow the surface pinches o�, she
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proves that the �ow exists for all times and the surface converges to a cylinder of the

same volume. In this special case, the uniform convexity is replaced by the rotational

symmetric assumption, since she is dealing with a surface with boundary. A similar re-

sult is obtained by Hartley [17], where the rotationally symmetric condition is replaced

by the fact that the hypersurface is close enough to a cylinder of radius R (the height

function belongs to some little Hölder space) and the condition on the volume is replaced

by a condition on this radius R, which still guarantees that the solution doesn't touch

the axis of rotation along the �ow. Note also that it converges to a limiting cylinder,

which might not be the same initial one.

The methods developed by Huisken in [20] about the evolution of a convex hypersur-

face moving by volume preserving mean curvature �ow cannot be readily generalised to

the Riemannian case. In view of the average mean curvature term, the local evolution of

the initial surfaceM0 depends heavily on the global shape of the hypersurface immersed

in the ambient manifold, and therefore introduces a global aspect in the evolution equa-

tions of all the relevant geometric quantities, making the application of the parabolic

maximum principle, where possible, more subtle. Note also that even the convexity

properties of M0 may not be preserved if M0 is immersed in a general Riemannian

manifold: Huisken illustrates in fact that if M0 is for example a convex hypersurface

in the sphere Sn+1 with a portion of M0 being C2−close to an equator of Sn+1, it has

in this region its average term φ >> H0, such that initially the hypersurface is moving

here onto the other side of the equator, changing the sign of the second fundamental

form.

In a joint work with Yau [23] to de�ne the center of mass in a isolated gravitational sys-

tem, Huisken extends for the �rst time the techniques of the VPMCF to a Riemaniann

manifold which is asymptotically �at, with the crucial assumption of a strictly positive

(ADM) gravitational mass m. More precisely, for a radius large enough, an initial co-

ordinate sphere moving by the VPMCF law evolves and converges to a constant mean

curvature sphere when t → ∞. The hypothesis of m > 0 guarantees that the initial

coordinate sphere is strictly stable and, in particular, is essential to prevent that the

surface drifts o� to in�nity during the evolution. Moreover, they prove the existence a

stable constant mean curvature foliation which can be considered as the center of mass

for an in�nitely far observer.

The study of the VPMCF in a noneuclidean ambient space is also treated by Cabezas-

Rivas and Miquel in [6]. The two authors consider the case of a compact hypersurface

convex by horospheres (h-convex ) immersed in a hyperbolic space of constant negative

sectional curvature and moving by volume preserving mean curvature �ow. As expected,

the �ow exists for all times, the convexity property is preserved and the solution is con-

verging exponentially to a geodesic sphere. Using the method of Escher and Simonett

[11] based on maximal regularity theory to prove the exponential convergence, the two

authors can strength their results to a bigger class of hypersurfaces non necessarily h-

convex, if the initial hypersurface is h1+β−close to a geodesic sphere. They also point
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out the di�erence with the Alikakos' and Freire's work, since Cabezas-Rivas and Miquel

are working in the special case of an ambient manifold of constant scalar curvature.

As observed by H. Li [28], the studies of the VPMCF in the noneuclidean cases, as the

hyperbolic space for Cabezas-Rival and Miquel from one side, and the work of Alikakos

and Freire in a general Riemannian manifold on the other side, as we will see in the

next paragraph, are massively based on the center manifold analysis and, therefore,

leave unclear how the shape of the initial hypersurface a�ects the convergence of the

�ow. It would be interesting to have proofs of convergence with more natural conditions

on the geometry of the initial hypersurface.
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2.2 The approach of Alikakos and Freire

In 2003, Alikakos and Freire [1] investigate for the �rst time the evolution of a hyper-

surface, not necessarily convex but close enough to a geodesic sphere, inside a general

compact Riemaniann manifold, that moves by a volume preserving mean curvature �ow.

The two authors leave the classical approach of studying the mean curvature �ows in

intrinsic fashion through the evolution equations of the main geometric quantities of

the hypersurface, and they embrace methods and results from semigroup theory about

maximal regularity and from in�nite dimensional systems, in the same spirit of Escher

and Simonett [11]. The idea is to "decouple" the e�ect of the ambient manifold from the

e�ect of the geometry of the interface, and to describe how an appropriate "barycentre"

moves inside the bigger manifold, if the hypersurface starts and remains close to a small

geodesic sphere.

More precisely, with the same notation as in [1], let M be a n-dimensional compact

Riemannian manifold and consider the submanifold E of the Banach manifold of the

C2+α "small quasispherical embeddings" X : S → M , which are radial graphs over a

small geodesic sphere in M with centre ξ ∈ M and radius R > 0, and S is the unit

sphere in the Euclidean space. To de�ne such an embedding, Alikakos and Freire need

a di�eomorphism F : S → Sξ (the unit tangent sphere at ξ in TξM) and a "shape func-

tion" ψ : C2+α → R, which it can be taken as a C2+α function on S, with zero average

on S. Finally, after introducing two positive parameters δ ∈ (0, δ0) and ε ∈ (0, ε0), they

consider E = Eδ0,ε0 as the space of embeddings which can be written in the form:

X(R,ξ,F,ψ)(u) = expξ[δR(1 + εψ(u))F (u)],

with 0 < R < 1, ‖ψ‖C2+α < 1 and aveS [ψ] = 0. Note that the positive parameters δ0 and

ε0 have been taken small enough that the open set int(X) bounded by Σ = image(X)

(and containing ξ) is contained in a totally convex neighbourhood of ξ, and is uniformly

convex.

In this approach, there are some di�culties that arise. Firstly, the same embedding

X ∈ E can be written in the form X(R,ξ,F,ψ) in di�erent ways, parametrised by ξ ∈
int(X). Therefore there is the need to �nd a choice of ξ that is as canonical as possible,

given X. This leads to Lemma 1.1 and the de�nition of a barycentre. Note that, as

in [26], the de�nition of a barycentre for a general Riemannian manifold already exists.

However, in the setting of the center manifold analysis, the two authors have to �nd a

more suitable de�nition of it, which they call analytic barycentre. As showed in Lemma

1.1, this analytic barycentre is a solution of a speci�c equation and the unique point

ξ ∈ int(X) for which X may be written as X(R,ξ,F,ψ). In particular, given δ1 ∈ (0, δ0/2)

and ε1 ∈ (0, ε0/2), the existence of the analytic barycentre allows to consider evolution

equations on the submanifold Nstd ⊂ N (δ1, ε1) ⊂ Eδ1,ε1 . By Nstd it is intended always

that the embeddings are the ones where the point ξ is the analytic barycentre for X and,

secondly, that the function F de�ned above is in fact an isometry. Note that the space
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Nstd can be seen also as the image under a smooth injective map Φ of the manifold:

M0 =M0(δ1, ε1) = (0, δ1)× FM ×K2+α
ε1 ,

where FM represents the orthonormal frame bundle of M and the last factor is the

ε1-ball in K
2+α = C2+α(S) ∩ C0(S).

The following step is to �nd an evolution equation for (R, ξ, F, ψ) ∈M0, the solution of

which map under Φ to parametrised solutions of the VPMCF in Nstd. It is important to

observe at this point that the above de�nition of analytic barycentre depends not just

on the image of the hypersurface Σ, but also on the parametrization X. This implies

that if one wants to �nd an equation of the motion for this barycentre, one must �x an

evolution equation for the parametrisation X(t) as well. As a �rst attempt, one might

expect that the equations onM0 would be induced by:

Xt =
(
HΣ −H

)
N̂ , (2.2.1)

where N̂ denotes the unit outward normal and HΣ is the average mean curvature.

However, it is possible to show that Nstd is not invariant under (2.2.1), and therefore

there is no X(t) in Nstd solving the equation (2.2.1). It is possible though to compute

"a tangential correction" to (2.2.1) which does preserve Nstd. In Lemma 1.7, the two

authors �nd a system on M0 whose solutions map to parametrised solutions of the

VPMCF, and, conversely any motion of Σ(t) of small bubbles by VPMCF can be

parametrised by X(R,ξ,F,ψ) ∈ Nstd, so that (R, ξ, F, ψ)(t) is a solution of the system on

M0. In particular, for any choice of δ, ε, the system onM0 is de�ned by:

δRt = aveS [vN − E],

ξt = n aveS [(vN − E)F ],

∇ξtF = 0,

δεRψt = (vN − E)K − (δψ)aveS [vN − E].

Here vN = (HΣ−H)‖N‖ (where N is a particular normal vector to Σ) and E = E(vN )

corresponds to the tangential correction previously mentioned, and both computed at

X(δR,ξ,F,εψ).

The main theorem presented by the authors is substantially divided in four parts: lo-

cal existence, global existence, motion of the barycentre and asymptotic behaviour.

Even though the local existence is a well-known result, an equivalent proof is given in

the framework of semigroup theory, since this leads to the continuation criterion used

for global existence. Before proving global existence, a standard approach of Taylor

expansions for Jacobi �elds in Riemannian normal coordinates is used to develop the

asymptotic expansion of the equations inherent the geometric quantities involved in the

parametrisation above. The global existence is thus proved with an argument involving

the variation of constants representation formula and maximal regularity estimates.

The motion of the barycentre is a way to keep track of how the hypersurface is mov-
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ing inside the ambient manifold. Recall �rst the isoperimetric nature of the �ow: the

volume of the region enclosed by Σ is preserved, while the area is strictly decreasing,

unless H is constant. This leads, in Section 3, Alikakos and Freire to show that the

evolution equation for the centre has as leading term the (negative) gradient of the

scalar curvature of M , i.e.

∂tξ ∼
2n

3(n+ 2)
R2∇Scal(ξ) + · · · .

By the above formula, the velocity of the centre of the bubble ξ is therefore given, by

principal order, by the gradient of the scalar curvature and the immersed surface is

therefore expected to move where the scalar curvature of M is bigger, i.e. ξ(t) climbs

towards peaks of maximal scalar curvature.

In the last section, the number 4, Alikakos and Freire show the asymptotic convergence

to a constant mean curvature sphere: since the critical points of the scalar curvature

function are assumed nondegenerate, a small constant mean curvature sphere near a

critical point must be a leaf of the local foliation at that critical point, and there

is only one of those enclosing a given volume. Recall that a foliation of dimension

k of a n−dimensional manifold M is a collection of disjoint, connected, immersed k-

dimensional submanifold ofM (leaves of the foliation) and such that in a neighbourhood

of each point p ∈ M there is a smooth chart satisfying particular properties. Then, as

proved in section 4, the limit solution of the �ow is a constant mean curvature surface

with a barycentre that corresponds to a critical point for Scal. Moreover, such limit

surface is the unique leaf of the local constant mean curvature foliation at p enclosing

the same volume of the initial surface (see also the work of Ye in [49]).
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Euclidean case

The evolution of an immersed surface under the normalised volume preserving mean

curvature �ow is the result of a complicated interaction between the geometry of the

evolving surface M and the geometry of the ambient space N . In view of the average

mean curvature term in the �ow equation, the local evolution of M depends heavily on

the global shape of the hypersurface and the convexity properties of the initial surface

M0 may not be preserved if M0 is immersed in a general Riemannian manifold.

We thus decide to �rst study the �ow in the simpler case N = Rn+1, since in the Eu-

clidean ambient space the evolution equations of the main geometric quantities of M0

can be treated much more easily. We will proceed in a di�erent fashion from Huisken [20]

or Sinestrati [46], for example, because our intention is to explicitly show the method

we are going to use in the more complex Riemannian case.

Let us therefore consider �rst (Rn+1, δij) as ambient space. Let F : M × I → Rn+1

be a family of immersions, with F0(M) = M0 an n−dimensional closed and strictly

convex manifold immersed in (Rn+1, δij), with I = [0, T ), satisfying the following normal

deformation
∂

∂t
F = [−H(x, t) + φ(t)] · ν(x, t), (3.0.1)

where ν(x, t) is the unit normal vector in x ∈Mt and

φ(t) =
1

|Mt|

∫
M
Hdµt.

Note that, as already mentioned, we have T = Tmax in the interval of time above. In

this context where the immersed surfaceM is moving inside a �at space, the main result

we want to prove is the following.

Theorem 3.1. Let (Rn+1, δij) be the Euclidean space endowed with its standard metric.

Let F : M × I → Rn+1 a family of immersions such that F0(M) = M0 is a closed

n−surface with all principal curvatures strictly positive and such that it encloses a region
of volume equal to |B1(0)|. Then there exists a constant δ > 0, such that if M0 ⊂ B4(0)

is δ−close in C2−norm to the unit ball centred in the origin, then the volume preserving

mean curvature �ow of M0 has a smooth strictly convex solution with maximal time

51
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interval I = [0,∞). In particular, the family of immersions F : M × I → Rn+1

converges exponentially to a limit immersion F∞ with image equal to the unit sphere.

We also reformulate Theorem 1.17 about the convergence of hypersurfaces in the

following equivalent way.

Proposition 3.2. Let (Ω, g) ⊂ B4(0) be an open region of (Rn+1, δij) and with smooth

boundary ∂Ω. Let C̃, C ′, C ′′ and Ce positive constants. Given δ > 0, there exists a

ρ > 0 such that if:

(1) ||gij − δij ||C4(Ω̄) ≤ ρ,

(2) |Ω| = |B1(0)|, |∂Ω| ≤ C̃, |A|∂Ω ≤ C ′ and |∇A|∂Ω ≤ C ′′,

(3) |∂Ω|n+1

|Ω|n ≤ Ce + ρ,

then ∂Ω is δ-close in the C2-norm to ∂B1(x), for some x ∈ B4(0), with |B1(x)| = |B1(0)|
and

Ce =
2π

n+1
2

Γ
(
n+1

2

) · (n+ 1)n.
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3.1 Initial estimates

Let F : M × I → Rn+1 be a family of immersions moving by volume preserving mean

curvature �ow as in the hypothesis of Thm. 3.1, with Ft(M) = Mt, ∀t ∈ [0, T ). We

will consider Mt = ∂Ωt to be the smooth boundary of an open region Ωt ⊂ Rn+1, at

the time t ∈ [0, T ).

De�nition 3.1. If Ωt ⊂ Rn+1 is an open region with smooth boundary, we de�ne as

isoperimetric ratio the following expression

I(t) =
|∂Ωt|n+1

|Ωt|n
, (3.1.2)

with t ∈ [0, T ).

Remark 2. The classical isoperimetric inequality in the Euclidean space thus states

that Ce ≤ I(t), ∀t ∈ [0, T ), with as usual

Ce =
2π

n+1
2

Γ
(
n+1

2

) · (n+ 1)n,

where the �rst factor is the surface area of the unit n-sphere in Rn+1 and Γ the gamma

function.

At the initial time t = 0, by Thm. 3.1, the closed and strictly convex surface M0 is

δ-close in the C2-norm to the unit ball of principal curvatures k̃i = 1, ∀i = 1, 2, . . . , n,

and it is contained in a ball of radius big enough, i.e. M0 = ∂Ω0 ⊂ B4(0).

We then choose δ > 0 such that the principal curvatures of M0 are between

1

2
≤ ki(x, 0) ≤ 2 ∀i = 1, 2, . . . , n ∀x ∈M0.

Therefore ∀x ∈ M0 we have the following estimates for the mean curvature and the

second fundamental form:

(1) |H(x, 0)| =
∑n

i=1 ki ≤ 2n,

(2) |A(x, 0)| =
√∑

k2
i ≤ 2

√
n.

By the hypothesis of Thm 3.1, we also have that the volume of the region Ω0 enclosed

by M0 is equal to the one of the unit ball, i.e.

(3) |Ω0| = |B1(0)|,

and, since M0 = ∂Ω0 ⊂ B4(0), also that

|∂Ω0| ≤ |∂B4(0)|,

where

|∂B4(0)| = 2π
n+1
2

Γ
(
n+1

2

)4n.
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We set C ′ = 5n and |∂B4(0)| = C̃ and we also assume that |∂Ω0| satis�es the following
hypothesis:

|∂Ω0|n+1

|Ω0|n
= I(0) ≤ Ce + ρ,

for a positive ρ = ρ (C̃, C ′, C ′′, n, δ), where this ρ is the one given by Prop. 3.2 and for

a positive constant C ′′ we determine later.

We summarize below the estimates we have at the initial time t = 0:

(1) |H(x, 0)| ≤ C ′,

(2) |A(x, 0)| ≤ C ′,

(3) |Ω0| = |B1(0)|,

(4) |∂Ω0|n+1 · |Ω0|−n = I(0) ≤ Ce + ρ.

Observe that by (3) and (4), we also have the following estimate:

|∂Ω0| ≤
[
(Ce + ρ)|Ω0|n

] 1
n+1 = C̃.
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3.2 Monotonicity

From the previous section, the isoperimetric ratio satis�es this inequality at the time

t = 0:
|∂Ω0|n+1

|Ω0|n
= I(0) ≤ Ce + ρ. (3.2.3)

We can furthermore prove the following.

Proposition 3.3. The inequality (3.2.3) is preserved during the �ow. In particular,

Ce ≤ I(t) ≤ I(0) ≤ Ce + ρ, ∀t ∈ [0, T ).

We then call this property the monotonicity of the isoperimetric ratio.

Proof. Setting as usual Mt = ∂Ωt, we have, indicating with |Mt| the area of Mt, that

∂

∂t
|Mt| =

∂

∂t
|∂Ωt| =

∫
M

[−H(x, t) + φ(t)]H(x, t) dµt =

= −
∫
M
H2(x, t) dµt +

1

|Mt|

∫
M
H(x, t) dµt

∫
M
H(x, t) dµt ≤ 0,

where we made use of the Jensen's inequality as in [46], i.e.

1

|Mt|

∫
M
Hk+1 dµt =

(
1

|Mt|

∫
M

(
Hk
) k+1

k dµt

) k
k+1
(

1

|Mt|

∫
M
Hk+1 dµt

) 1
k+1

≥

(
1

|Mt|

∫
M
Hk dµt

)(
1

|Mt|

∫
M
H dµt

)
,

∀k ≥ 1.

Moreover we expect that the volume of the open region enclosed by Mt, |Ωt|, is
preserved during the �ow:

∂

∂t
|Ωt| = −

∫
M
H(x, t) dµt +

1

|Mt|

∫
M
H(x, t) dµt

∫
M
dµt =

= −
∫
M
H(x, t) dµt +

∫
M
H(x, t) dµt = 0.

Combining these two computations, we thus obtain the monotonicity of the isoperimet-

ric ratio (3.1.2), and therefore I(t) is non increasing during the �ow.

Since by the isoperimetric inequality we have I(t) ≥ Ce and by above |Ωt| = |Ω0| =

|B1(0)|, we deduce that:

|Mt| = I(t)
1

n+1 |Ω0|
n
n+1 ≥ C

1
n+1
e |Ω0|

n
n+1 =

(
Ce |Ω0|n

) 1
n+1 = M∗.

The monotonicity of I(t) then implies that during the �ow

(1) |∂Ω0| = |M0| ≥ |Mt| ≥M∗,
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(2) if initially Ce ≤ I(0) ≤ Ce + ρ, then:

Ce ≤
|∂Ωt|n+1

|Ωt|n
= I(t) ≤ I(0) ≤ Ce + ρ, ∀t ∈ [0, T ).
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3.3 Long time existence

Let S be the following set of times:

S =
{
τ ∈ [0, T ) :

1

4
≤ ki(x, t) ≤ 4 ∀i = 1, 2, . . . , n ∀x ∈Mt, ∀t ∈ [0, τ ]

}
.

Remember that the principal curvatures of M0 are initially such that 1/2 ≤ ki(0) ≤ 2.

For any t ∈ S, Mt is strictly convex. Furthermore, we have that |H(x, t)| =∑n
i=1 ki ≤ 4n and |A(x, t)| =

√∑
k2
i ≤ 4

√
n, and since we have set C ′ = 5n, we

deduce:

(1) |H(x, t)| < C ′,

(2) |A(x, t)| < C ′,

(3) φ(t) < C ′,

for any t ∈ S.

We also set S′ = supS and we assume that S′ <∞.

The Weingarten map is a selfadjoint operator and we can thus write it in a diagonal

form as hij = diag(k1, . . . , kn). In the Euclidean setting, its evolution equation behaves

as
∂

∂t
hij = ∆hij + |A|2hij − φ

(
hkjh

i
k). (3.3.4)

Let us now de�ne the following two functions:

(1) kmin(t) = minx∈Mt ki(x, t);

(2) kmax(t) = maxx∈Mt ki(x, t).

To study their evolution equations, in order to understand how they behave over time,

we need to �nd a way to overcome the fact that the functions as de�ned above might

not be smooth. For this reason, in the same spirit of [40], we proceed in the following

way. We �rst de�ne, for a positive constant β, a smooth approximation u for the general

function max(x1, . . . , xn):

u2(x1, x2) =
x1 + x2

2
+

√(x1 − x2

2

)2
+ β2,

un+1(x1, . . . , xn+1) =
1

n+ 1

n+1∑
i=1

u2(xi, un(x1, . . . , x̂i. . . . , xn+1)), n ≥ 2.

The approximation u has the properties stated here below:

Lemma 3.4. For β > 0 and n ≥ 2,

(i) un(x1, . . . xn) is smooth, symmetric, monotonically increasing and convex.
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(ii) ∂un
∂xi
≤ 1;

(iii) max(x1, . . . , xn) ≤ un(x1, . . . , xn) ≤ max(x1, . . . , xn) + (n− 1)β;

(iv) un(x1, . . . , xn)− (n− 1)β ≤
∑n

i=1
∂un(x1,...,xn)

∂xi
· xi ≤ un(x1, . . . , xn);

(v)
∑

i=1
∂un
∂xi

= 1.

Proof. Direct computation and induction.

Theorem 3.5. The supremum S′ of the set of times S is bounded below by a positive

dimensional constant.

Proof. Let then be u(hij) the above approximation of max(k1, . . . , kn) = kmax(t) and

note that

∂

∂t
u =

∂u

∂hij

( ∂
∂t
hij

)
,

∆u =
∂2u

∂hpq ∂hlm
∇νhpq ∇νhlm +

∂u

∂hij
∆hij .

Using the evolution equation (3.3.4) above, we can now compute:

∂

∂t
u =

∂u

∂hij

(
∆hij + |A|2hij − φ

(
hkjh

i
k

))
+

∂2u

∂hpq ∂hlm
∇νhpq ∇νhlm +

− ∂2u

∂hpq ∂hlm
∇νhpq ∇νhlm

=
∂u

∂hij
∆hij +

∂2u

∂hpq ∂hlm
∇νhpq ∇νhlm +

∂u

∂hij
|A|2hij +

− ∂u

∂hij
φ
(
hkjh

i
k

)
− ∂2u

∂hpq ∂hlm
∇νhpq ∇νhlm.

By the properties of Lemma 3.4 and the estimate on |A|, we have by (i) that u is

monotonically increasing and convex, and therefore the last line in the equation above

is negative and it can be ignored. By (iv), we also have that

∂u

∂hij
|A|2hij ≤ |A|2u(t),

so we can �nally deduce that

∂

∂t
u(t) ≤ ∆u(t) + |A|2u(t) ≤ ∆u(t) + (C ′)2 u(t),

which is always true when t ≤ S′. Note also that the principal curvatures are initially

1/2 ≤ ki(x, 0) ≤ 2. Solving then the auxiliary equation

∂

∂t
ϕ(t) = (C ′)2ϕ(t), ϕ(0) = u(0),
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we have ∫ ϕ(t)

ϕ(0)
ϕ−1 dϕ =

∫ t

0
(C ′)2 ds⇒ ϕ(t) = ϕ(0) e(C′)2t,

and by maximum principle,

u(t) ≤ u(0) e(C′)2t.

Since u approximates the max(k1, . . . , kn), we make use of Lemma 3.4 once again and

let β → 0, to write

kmax(t) = max
x∈Mt

ki(x, t) ≤ kmax(0) e(C′)2t ≤ 2 e(C′)2t.

We now impose the following inequality:

kmax(t) ≤ 2 e(C′)2t ≤ 4,

and solving by t, with C ′ = 5n, we obtain the �rst time T1 for which the upper bound

for the biggest principal curvature can hit 4:

T1 =
ln 2

25n2
.

For continuity reasons, we thus have that kmax(t) ≤ 4, ∀t ∈ [0,min{T1, S
′}].

Note that max(−x1, . . . ,−xn) = −min(x1, . . . , xn). Let then u(βij) be an approxi-

mation of the function −min(k1, . . . , kn) = −kmin(t), where βij = −hij . Given (3.3.4),

the evolution equation for βij is therefore:

∂

∂t
βij = ∆βij + |A|2βij + φ

(
βkj β

i
k). (3.3.5)

As before, we also have:

∂

∂t
u =

∂u

∂βij

( ∂
∂t
βij

)
,

∆u =
∂2u

∂βpq ∂βlm
∇νβpq ∇νβlm +

∂u

∂βij
∆βij .

Using the equation (3.3.5), we get

∂

∂t
u =

∂u

∂βij

(
∆βij + |A|2βij + φ

(
βkj β

i
k

))
+

∂2u

∂βpq ∂βlm
∇νβpq ∇νβlm +

− ∂2u

∂hpq ∂hlm
∇νhpq ∇νhlm

=
∂u

∂βij
∆βij +

∂2u

∂βpq ∂βlm
∇νβpq ∇νβlm +

∂u

∂βij
|A|2βij +

+
∂u

∂βij
φ
(
βkj β

i
k

)
− ∂2u

∂βpq ∂βlm
∇νβpq ∇νβlm

≤ ∆u(t) + |A|2u(t) + φβiju(t),
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using the properties of Lemma 3.4 once again and the de�nition of ∆u. Recall in fact

that u is monotonically increasing and convex by (i), so the ∂2u-term can be ignored,

and by (iv) we have that

∂u

∂βij
|A|2βij ≤ |A|2u(t),

∂u

∂βij
φ
(
βkj β

i
k

)
≤ φβiju(t).

Observe that in this situation the second term is negative and we also have φ ≤ C ′. By
de�nition, βij = −hij = diag(−k1, . . . ,−kn), and therefore βij ≥ −kmax(t). Recall that

the function u(βij(t)) approximates the function −min(k1, . . . , kn) = −kmin(t); therefore

we have βij(−kmin(t)) ≤ −kmax(t)(−kmin(t)), which implies φβiju(t) ≤ −C ′ kmax u(t).

By also recalling the fact that u is negative, we can then write:

∂

∂t
u(t) ≤ ∆u(t) + |A|2u(t) + φu(t)βij ≤ ∆u(t)− C ′ kmax u(t),

where, since 1/4 ≤ kmax ≤ 4, we call with E = 4C ′, and we write:

∂

∂t
u(t) ≤ ∆u(t)− E u(t).

Solving the auxiliary equation

∂

∂t
ϕ(t) = −Eϕ(t), ϕ(0) = u(0),

we have ∫ ϕ(t)

ϕ(0)

dϕ

ϕ
= −

∫ t

0
E ds⇒ ϕ(t) = ϕ(0)e−Et,

and by maximum principle,

u(t) ≤ u(0) e−Et.

Note that u approximates smoothly the function −min(k1, . . . , kn); we then make use

of Lemma 3.4 once again and let the parameter β → 0, to write

−kmin(t) = − min
x∈Mt

ki(x, t) ≤ −kmin(0) e−Et,

and since we have kmin(0) ≥ 1/2, we deduce:

kmin(t) ≥ kmin(0) e−Et ≥ 1

2
e−Et.

Imposing now the following inequality:

kmin(t) ≥ 1

2
e−Et ≥ 1

4

and solving by t, we obtain the �rst time T2 for which the lower bound for the smallest
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principal curvature can hit 1/4:

T2 = − ln 1/2

E
=

ln 2

E
,

and we then have that kmin(t) ≥ 1/4, ∀t ∈ [0,min{T2, S
′}].

Observing that C ′ = 5n and therefore E = 20n, we �nally have that:

S′ = supS ≥ min{T1, T2} = T1 > 0.

If at the time t = S′ we are able to �nd a good control on the covariant derivative

of the second fundamental form and an estimate on the diameter of MS′ , we would be

able to apply Proposition 3.2 and to produce deeper considerations about the geometry

of MS′ .

Fortunately we have the following Corollary, which is a direct consequence of Theorem

1.14.

Corollary 3.6. There exists a constant only depending on the dimension of Mt and

C ′ such that ∀t ∈ (0, S′] the covariant derivative of the second fundamental form stays

bounded. In other words, as long as the hypersurface remains strictly convex and with

|A(x, t)| ≤ C ′, we have

sup
t∈Mt

|∇A(x, t)|2 ≤ B

min{1, t}
,

∀t ∈ (0, S′].

Proof. Since the surface is moving inside a �at Euclidean space, the Riemannian tensor

and, consequently, its covariant derivative, are zero. We are therefore in the situation of

Theorem 1.14 and the Corollary follows immediately. To be more accurate, note that:

(1) if min{1, S′} = S′, we have S′ < 1 and therefore

sup
x∈Mt

|∇A(x, t)|2 ≤ B

t
, ∀t ∈ (0, S′];

(2) if min{1, S′} = 1, we have instead 1 < S′ and we proceed as in (1), having then

sup
x∈Mt

|∇A(x, t)|2 ≤ B

t
, ∀t ∈ (0, 1].

The above inequality tells us that we have proved an upper bound for the deriva-

tive of A for a time interval of length one. We can therefore decide to start the

�ow from a time t̄ > 0 until a time t̄+ 1, to obtain:

sup
x∈Mt

|∇A(x, t)|2 ≤ B ∀t ∈ [1, 1 + t̄ ].
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If we iterate this process again, as many times as we need, we can obtain an upper

bound for ∇A until t = S′, as we actually desired.

Putting all these considerations together we �nally have:

sup
x∈Mt

|∇A(x, t)|2 ≤ B

min{1, t}
∀t ∈ (0, S′].

Observation 3. Note that we made no assumptions on the behaviour of the covariant

derivative near the initial time. Therefore, if we don't prove that this time S′ is strictly

positive, we cannot proceed any further, since the estimate could blows up very quickly,

losing completely any control on ∇A. Thanks to Theorem 3.5, we have been able to

show however that

S′ ≥ T1 =
ln 2

25n2
> 0.

Remark 3. Note that as previously observed min{1, S′} ≥ T1: this implies that at the

time t = S′ we have the following control

|∇A(x, S′)|2 ≤ B

min{1, S′}
≤ B

T1
.

We can �nally determine the constant C ′′ and we set

C ′′ =

√
B

T1
=⇒ |∇A(x, S′)| ≤ C ′′.

In the following, we make use of the Theorem below. See for example [36].

Theorem 3.7 (Myers-Synge, 1935). Suppose (M, g) is complete with sec ≥ K > 0.

Then M is compact and satis�es diam(M, g) ≤ π/
√
K = diamSn(K). In particular,

M has �nite fundamental group.

Proposition 3.8. The intrinsic diameter of the hypersurface MS′ ⊂ Rn+1 is bounded.

More precisely, there exist points xt ∈ Rn+1 such that

Mt ⊂ B4(xt), ∀t ∈ [0, S′].

Observation 4. Note that the intrinsic diameter of Mt is the one computed using the

Riemannian distance on M induced by the immersion, in contrast with the extrinsic

diameter of Mt, which is de�ned in terms of the standard distance of Rn+1. Note also

that in this case the extrinsic diameter of Mt is always controlled by its intrinsic one.

Proof. Let's consider a point p ∈ MS′ . Since the Weingarten map Wp is a selfadjoint

operator, there exists an orthonormal frame in TpMS′ of eigenvectors {ei} with i =

1, 2, . . . , n, i.e. the principal directions at p, with the relative eigenvalues ki, i.e. the
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principal curvatures. Then for any two vectors X,Y in TpMS′ , we have that

h(X,Y ) =

n∑
i

kiX
iY i.

Observe now that the Gauss equation for MS′ , an immersed hypersurface in Rn+1, can

be written as

Rm(X,Y, Z,W ) = h(X,W )h(Y,Z)− h(X,Z)h(Y,W );

the sectional curvature sec(X,Y ) for two linearly independent vectors spanning a 2-

plane in p is instead computed, by de�nition and the Gauss equation above, as

sec(X,Y ) =
Rm(X,Y, Y,X)

g(X,X)g(Y, Y )− g(X,Y )2
=
h(X,X)h(Y, Y )− h(X,Y )2

g(X,X)g(Y, Y )− g(X,Y )2
=

=

(∑n
i ki(X

i)2
)(∑n

i ki(Y
i)2
)
−
(∑n

i kiX
iY i
)2

(∑n
i (Xi)2

)(∑n
i (Y i)2

)
−
(∑n

i X
iY i
)2 =

=

∑n
i<j kikj

(
XiY j −XjY i

)2

∑n
i<j

(
XiY j −XjY i

)2 ≥

≥ 1

16

∑n
i<j

(
XiY j −XjY i

)2

∑n
i<j

(
XiY j −XjY i

)2 =
1

16
= K,

since
1

4
≤ ki(p, S′) ≤ 4, ∀i = 1, 2, · · · , n,

and by the following fact that can be proved by induction:

( n∑
i

ki(X
i)2
)( n∑

i

ki(Y
i)2
)
−
( n∑

i

kiX
iY i
)2

=
n∑
i<j

kikj

(
XiY j −XjY i

)2
.

Since this is true for any 2-planes in TpMS′ and ∀p ∈ MS′ , we have obtained a lower

uniform bound for the sectional curvature, i.e.

sec(X,Y ) ≥ K > 0, ∀X,Y ∈ T (MS′).

By Hopf-Rinow theorem,MS′ is a closed immersed hypersurface in the Euclidean ambi-

ent space and therefore is a complete metric space. Applying Theorem 3.7 to the surface

MS′ , with S
n(K) the n−sphere of constant curvature K, we �nally get an estimate of

its diameter:

diam(MS′) ≤
π√
K

= 4π = diamSn4 ,

where diam(Sn4 ) is the (intrinsic) diameter of the n-sphere of radius R = 4.

Since this argument can be repeated for any time t in the set S thanks to the bounds
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on the principal curvatures, we have thus proved that there exist points xt ∈ Rn+1 such

that:

Mt ⊂ B4(xt), ∀t ∈ [0, S′].

Remark 4. We summarize here below the estimates at the time t = S′ <∞:

(1) MS′ ⊂ B4(xS′), for a xS′ ∈ Rn+1;

(2) |ΩS′ | = |Ω0| = |B1(0)|, |MS′ | ≤ |M0| ≤ C̃;

(3) |H(x, S′)| ≤ C ′;

(4) |A(x, S′)| ≤ C ′;

(5) |∇A(x, S′)| ≤ C ′′.

And by the monotonicity of the isoperimetric ratio:

(6) Ce ≤ I(S′) ≤ I(0) ≤ Ce + ρ.

With the next theorem we �nally establish the long time existence for the �ow.

Theorem 3.9. Let M0 a smooth closed strictly convex immersed hypersurface in Rn+1.

Then the �ow (3.0.1) has a smooth strictly convex solution which is de�ned for all times

t ∈ [0,∞).

Proof. The estimates (1) − (6) proved and listed above in Remark 4 give a control on

the main geometric quantities of interest, in particular for the same constants chosen

at the initial time t = 0. In fact, at the time t = 0, we have the following estimates,

which are summarized at the end of Paragraph 3.1:

(1) |H(x, 0)| ≤ C ′,

(2) |A(x, 0)| ≤ C ′,

(3) |Ω0| = |B1(0)|,

(4) |∂Ω0| = |M0| ≤ C̃,

with the same C ′ and C̃ of Remark 4, and with M0 ⊂ B4(x0), for some x0 ∈ Rn+1.

This is a crucial step in the proof of this Theorem: we can in fact apply Proposition

3.2 again at t = S′ with the same exact δ > 0 initially chosen at the time t = 0. This

therefore implies that MS′ is δ-close in the C2-norm to the round sphere ∂B1(x) for

some x ∈ B4(xS′) and, by this remarkable fact, we can conclude again that

1

2
≤ ki(x, S′) ≤ 2 ∀i, ∀x ∈MS′ .

We have then proved that ∀t ∈ S, and in particular at t = S′, the surfaceMt keeps itself

δ-close to the round sphere in the C2-norm, for an arbitrary positive small δ, and its
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principal curvatures are very close to be optimal. Moreover, we have obtained an upper

bound, independent of t, for H, A and ∇A, ∀t ∈ [0, S′], in particular at t = S′ = supS.

Clearly then S′ 6= supS. We knew already that the �ow exists at least for a short time;

then we have begun the �ow of M0 being δ−close to the unit ball centred in the origin

and we have chosen "good" initial estimates; this allowed us to run the �ow at least for

a strictly positive time (S′ ≥ T1 > 0) until the initial estimates hold, and to discover

that even at the time S′ we are still δ−close to a unit ball, for the same δ. Since we

can repeat again the same argument starting the �ow this time at S′, we cannot have

S′ = supS. But this also implies, for the same reasons, that supS = +∞.

Therefore T = +∞ and the �ow exists ∀t ∈ [0,+∞). In other words, as it is called in

the literature, the �ow is immortal.
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3.4 Asymptotic behaviour

In the previous section we have proved that the �ow exists for all positive times. It is

natural now to study its behaviour while t is approaching ∞.

A key ingredient is the monotonicity of the isoperimetric ratio. The area of Mt is in

fact monotone decreasing during the �ow. We �rst reformulate this fact in the Lemma

below.

Lemma 3.10. The evolution equation of the surface area |Mt| assumes the following

expression:

∂

∂t
|Mt| =

∫
M

[−H(x, t) + φ(t)]H(x, t) dµt = −
∫
M

(H(x, t)− φ(t))2 dµt. (3.4.6)

Proof. Noting that H(H − φ) = H2 − φH and (H − φ)2 = H2 − φH − φH + φ2, to

prove (3.4.6) we just need to show that∫
M

(φ2 − φH) dµt = 0.

So: ∫
M
φ2 dµt −

∫
M
φH dµt =

=

∫
M

( 1

|Mt|

∫
M
H dµt

)2
dµt −

1

|Mt|

∫
M
H dµt

∫
M
H dµt =

=
1

|Mt|2
(∫

M
H dµt

)2
∫
M
dµt −

1

|Mt|

(∫
M
H dµt

)2
=

=
1

|Mt|

(∫
M
H dµt

)2
− 1

|Mt|

(∫
M
H dµt

)2
= 0.

And therefore we recover again the monotonicity of the total surface area:∫ +∞

0

∫
M

(H(x, t)− φ(t))2 dµt dt ≤ |M0|.

We claim that Mt converges exponentially to a convex surface of constant mean

curvature in Rn+1, and therefore it must be the round sphere, by Alexandrov's theorem.

We then proceed in the following way: we �rst �nd a uniform bound for the mean

curvature H and we prove that it converges uniformly to its average value; �nally, we

show that the convergence of Mt happens exponentially and the limit surface M∞ is a

round sphere. We thus start proving this result:

Proposition 3.11. The mean curvature H(x, t) converges uniformly to its average

value φ(t). In other words,

lim
t→+∞

max
x∈Mt

|H(x, t)− φ(t)| = 0.
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Proof. Let us de�neM =
⋃
t∈[0,∞)(Mt×{t}) ⊂ Rn+1×R as the subset of the Euclidean

space that contains all the points which belong to the moving surfaceM , for any positive

time. In other words, we keep track of the evolution of the initial surface M0 in Rn+1.

We indicate a point ofM as a couple (p1, t1), meaning that we are considering the point

p1 which belongs to the particular surface Mt1 at the speci�c time t1, and we de�ne a

neighbourhood of (p1, t1) as a space-time neighbourhood.

Let therefore (p1, t1) be this point: we want to �nd a uniform bound for the mean

curvatureH in a space-time neighbourhood of this point . Since∇H(x, t) = ∇(gijhij) =

gij∇A(x, t), the uniform bound for the covariant derivative of the second fundamental

form (see previous paragraph), gives a uniform bound for ∇H(x, t). But this implies

that

|H(x, t)−H(y, t)| ≤ D1|(x, t)− (y, t)|

at any given t ∈ [0,∞), with D1 a positive constant depending only on the bound of

∇A such that |∇H| ≤ D1. In other words, H is spatial Lipschitz.

The only thing left is to obtain a uniform control of the time derivative of H. Recall

that its evolution equation behaves as

∂

∂t
H = ∆H + |A|2H − φ|A|2,

which can be estimated as

| ∂
∂t
H| = |∆H + |A|2H − φ|A|2| ≤ |∆H|+ C1,

with C1 a positive constant depending only on the estimates of H, A and φ. Then the

problem reduces to obtain a uniform bound for the second covariant derivative of A,

since ∆H = gijgkl∇i∇jhkl. If we remind the ∗-product notation, the evolution equation
for |∇mA|2 in the Euclidean setting becomes by Proposition 1.2.13

∂

∂t
|∇mA|2 = ∆|∇mA|2 − 2|∇m+1A|2 +

∑
i+j+k=m

∇iA ∗ ∇jA ∗ ∇kA ∗ ∇Am

+ φ
∑

i+j=m

∇iA ∗ ∇jA ∗ ∇mA.

But by Theorem 1.15 which we proved in the �rst Chapter, we know already that

|∇mA(x, t)|2 ≤ Cm.

Let us summarize here below the two estimates we have just obtained:

(1) |∇H| ≤ D1,

(2) |∇2A| ≤ D2.

Consider D = max{D1, D2} and recall the expression (3.4.6)

− ∂

∂t
|Mt| =

∫
M

(H(x, t)− φ(t))2 dµt > 0,
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which implies that, for any η > 0,∫
M

(H(x, t)− φ(t))2 dµt > η =⇒ ∂

∂t
|Mt| < −η.

The previous estimates (1) and (2) give a uniform bound D for H in a neighbourhood of

any point (p1, t1) of the space-time, since we have a uniform control of both the spatial

and time derivatives of H and therefore a uniform control on the function
∫
M (H(x, t)−

φ(t))2 dµt.

For this reason, as in [46], if at a certain point (p1, t1) in the space-time |H −φ| = c for

some c > 0, then it remains larger than c/2 on a space-time neighbourhood of (p1, t1)

of radius r for a uniform r = r(c). Keeping into account also the bounds for |Mt|, we
deduce that d/dt(|Mt|) < −η for a t ∈ [t1 − r, t1 + r] for some η = η(c). Since |Mt| is
monotone decreasing and bounded from below (|Mt| ≥M∗), this can happen only for a

�nite number of intervals for any given c > 0.

This shows that |H − φ| tends to zero uniformly, i.e.

lim
t→+∞

max
x∈Mt

|H(x, t)− φ(t)| = 0.

By Corollary 1.6 applied in the �at space Rn+1, the following evolution equations

simplify as
∂

∂t
H = ∆H + |A|2H − φ|A|2,

and
∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4 − 2φZ1,

with Z1 = gijgklgmnhikhlmhnj = trA3. We also compute:

∂

∂t

(
|A|2 − 1

n
H2
)

= ∆
(
|A|2 − 1

n
H2
)
− 2
(
|∇A|2 − 1

n
|∇H|2

)
+ 2|A|2

(
|A|2 − 1

n
H2
)

+
2

n
φ
(
H|A|2 − nZ1

)
.

Let us now introduce this useful de�nition below:

De�nition 3.2. Let (M, g) be a Riemannian convex and closed manifold. We say that

M satis�es a pinching condition if there exists a positive constant c > 0 such that

kmax(x)

kmin(x)
≤ c,

∀x ∈ M , i.e. if the ratio between the biggest and the smallest principal curvatures is

bounded by a positive constant for any x ∈M .

We have proved that for any t ∈ [0,∞), Mt is δ-close to a unit sphere in a way that:

1

2
≤ ki(x, t) ≤ 2, ∀i = 1, 2, · · · , n.
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Since this is true for any principal curvatures at any time t, during the volume preserving

mean curvature �ow Mt satis�es a pinching condition, i.e.

kmax(x, t)

kmin(x, t)
≤ 4 = c.

By the fact that Mt is strictly convex ∀t ∈ [0,∞), we have nkmin ≤ H = gijhij =∑
i ki ≤ nkmax. Then, by using the pinching condition above, we have the following

inequalities:

hij ≥ kmin gij ≥
kmax

4
gij ≥

H

4n
gij =

1

c n
H gij ,

which is obviously preserved during the �ow.

Similarly as in [20], let us consider the function:

f0 =
|A|2 − 1

nH
2

H2
.

We want to compute its evolution equation. Note that in view of the evolution equations

of |A|2 and H, we have:

∂

∂t
f0 =

∂

∂t

( |A|2
H2
− 1

n

)
=

H∆|A|2 − 2|A|2∆H

H3
− 2|∇A|2

H2
− 2φZ1

H2
+

2φ |A|4

H3
.

Furthermore

∇if0 =
H∇i|A|2 − 2|A|2∇iH

H3

and

∆f0 =
H∆|A|2 − 2|A|2∆H

H3
+

6|A|2 |∇H|2

H4
− 4

H3
< ∇i|A|2, ∇iH > .

Now, using the identity

|∇ihkl ·H −∇iH · hkl|2 = H2|∇A|2 + |A|2|∇H|2− < ∇i|A|2, ∇iH > H,

and reordering the terms, we get

∂

∂t
f0 = ∆f0 +

2

H
< ∇lH, ∇lf0 > −

2

H4
|∇lhij ·H −∇lH · hij |2

+
2φ

H3

{
|A|4 −HZ1

}
.

Our goal is to show that the solution Mt of the �ow converges exponentially to a

round sphere. To do that, we will make use of the following result (see [37] for example).
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Theorem 3.12 (Alexandrov's Theorem). Let Σ ⊂ Rn+1 be a smooth compact embedded

hypersurface with constant mean curvature. Then Σ must be a round sphere.

We are �nally ready to investigate the asymptotic behaviour of the �ow.

Theorem 3.13. The family of maps F : M × [0,∞) → Rn+1 converges exponentially

to a limit map F∞ with image equal to the unit sphere.

Proof. Thanks to the pinching condition, we have that hij ≥ 1
c nH gij , and we can make

use of the estimate below for the following term, as in [18] (Lemma 2.3):

|∇ihklH −∇iH hkl|2 ≥
1

2c2
H2 |∇H|2.

Setting Z2 = H Z1 − |A|4, we also have:

Z2 = H Z1 − |A|4 =
( n∑
i=1

ki

)( n∑
j=1

k3
j

)
−
( n∑
i=1

k2
i

)2
=

=

n∑
i<j

(
kik

3
j + kjk

3
i

)
−

n∑
i<j

2 k2
i k

2
j =

=

n∑
i<j

kikj
(
ki − kj

)2 ≥ 1

c2
H2

n∑
i<j

(
ki − kj

)2
,

and since by de�nition

|A|2 − 1

n
H2 =

1

n

n∑
i<j

(
ki − kj

)2
,

we conclude that

Z2 ≥
n

c2
H2
(
|A|2 − 1

n
H2
)
.

We want to use this result to estimate the following term, i.e. the last of the zero terms

in the evolution equation of f0.

− 2φ

H3
Z2 ≤ − 2φ

H3

n

c2
H2
(
|A|2 − 1

n
H2
)

= −2nφ

c2
H
( |A|2 − 1

nH
2

H2

)
=

= −2nφ

c2
Hf0.

By these results, the evolution equation of f0 can be estimated from above as:

∂

∂t
f0 ≤ ∆f0 +

2

H
< ∇lH,∇lf0 > −

1

c2H2
|∇H|2 − 2nφ

c2
Hf0.

The pinching condition on the principal curvatures gives also a lower bound for both H

and φ, that we call with the same constant θ > 0. Then the evolution equation of f0 is

controlled by:
∂

∂t
f0 ≤ ∆f0 +

2

H
< ∇lH,∇lf0 > −

2θ2

c2
f0.
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Studying the associated problem for (max) f0, with an abuse of notation,

∂tϕ(t) = −2θ2

c2
ϕ(t), ϕ(0) = f0(0),

gives as solution ∫ t

0

dϕ(s)

ϕ
ds =

∫ t

0
−2θ2

c2
ds⇒ ϕ(t) = ϕ(0)e−

2θ2

c2
t.

By the maximum principle, this implies that, given the uniform bound for H, we have:

|A(x, t)|2 − 1

n
|H(x, t)|2 ≤ Ce−σ1t,

for some positive constants C depending on the bounds for H and on the initial condi-

tions, and σ1 depending on the pinching condition, n, and the uniform bounds for H

and φ.

Recalling that

|A(x, t)|2 − 1

n
|H(x, t)|2 =

1

n

∑
i<j

(ki − kj)2,

then
1

n

∑
i<j

(ki − kj)2 ≤ Ce−σ1t.

If we de�ne wij as in [41],

wij = hij −
H

n
gij ,

we have

|w|2 = wijwij =
(
hij − H

n
gij
)(
hij −

H

n
gij

)
=

= hijhij −
H

n
hii −

H

n
hii +

H2

n2
δii = |A|2 − H2

n
,

and so by above:

|w|2 ≤ Ce−σ1t.

We now make use of Lemma C.2 of [38], where the authors proved, by using inductively

interpolation inequalities of the form

|∇u|2 ≤ C|u| ·
(
|∇2u|+ |∇u|

)
,

that if a smooth function u : Ω× [0,∞)→ R, with Ω ⊂ R an open region, is such that

|∇lu|2 ≤ Cl, for Cl constants independent of t, and if there exist positive constants c

and λ̃ such that

|u|2 ≤ c e−λ̃t,

then for any 0 < λ < λ̃ there are positive constants cl such that

|∇lu|2 ≤ cl e−λt.
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Applying this Lemma to wij , we therefore obtain that

|∇kwij | ≤ Ce−σ2t,

for some positive σ2 ≤ σ1 (See also [13] for a more general overview).

Assume we have gij = δij at a point p, then

∇kH =
∑
i

∇khii =
∑
i

∇ihki =
∇kH
n

+
∑
i

∇iwki,

by the Codazzi equation and the de�nition of wij , which gives

|∇kH| ≤
n

n− 1

∑
i

|∇iwki| ≤ Ce−σ2t.

Similarly one obtains

|∇A| ≤ Ce−σ3t,

and all higher derivatives by interpolation.

We have previously proved that the mean curvature of Mt converges uniformly to

its average value, i.e. |H − φ| tends to zero uniformly. In other words that

lim
t→+∞

max
x∈Mt

|H(x, t)− φ(t)| = 0,

and this also means that the speed of the immersions tends to zero uniformly, since

| ∂
∂t
F (x, t)| = |H(x, t)− φ(t)|.

In the proof of this proposition, we observed that we can obtain a uniform control for H

in a neighbourhood of any point (p1, t1) of the space-time, since we can uniformly control

|∇H| (so H is spatial Lipschitz) and |∇2A| (so we control uniformly the derivation of

H in the time direction). By the previous estimates on the derivatives of H and A and

all their higher derivatives, we obtained an exponential decay for all these quantities.

Therefore, combining these results, we deduce that the speed of the immersions decays

exponentially as well.

Alternatively, setting again

k1(t) = min
x∈Mt

ki(x, t)

and

kn(t) = max
x∈Mt

ki(x, t),

we have

| ∂
∂t
F (x, t)| = |H(x, t)− φ(t)| ≤ |n

(
kn(t)− k1(t)

)
| ≤ C1e

−σ4t,
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for some positive constants C1 depending on C and n, and σ4 on σ1, and because

|n
(
kn(t)− k1(t)

)
|2 ≤ n2

∑
i<j

(ki − kj)2 ≤ Ce−σ1t.

Note that the exponential decay of the speed implies that the immersed surface cannot

"run away" in Rn+1. In fact, for any given point p ∈M , we have that, �xing an initial

time t0 and ∀t ∈ [0,∞):

|F (p, t)− F (p, t0)| =
∣∣∣ ∫ t

t0

∂

∂t
F (p, s)ds

∣∣∣ ≤ ∫ t

t0

∣∣ ∂
∂t
F (p, s)

∣∣ds
=

∫ t

t0

|H(p, s)− φ(s)|ds ≤
∫ t

t0

C1e
−σ3s ds,

and then for t→ +∞ we have that there exists a point q∞ ∈ Rn+1 such that

lim
t→+∞

F (p, t) = q∞,

for any p ∈ M . Therefore Mt converges exponentially to a limiting closed convex

hypersurface M∞ of constant mean curvature with principal curvatures all equal to k̄

and enclosing the same volume ofM0 equal to |B1(0)|. By Alexandrov's Theorem (Thm.

3.12), M∞ must be the unit sphere ∂B1(x), with centre some point x ∈ Rn+1.
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Riemannian case

Theorem 4.1. (Main Theorem) Let (N, ḡ) be a compact Riemannian manifold of

dimension n + 1 and F : M × I → N a family of immersions such that F0(M) = M0

is a closed n−surface with all principal curvatures strictly positive. Then there exists a

δ = δ(N, ḡ) > 0 and a r0 = r0(N, ḡ) > 0 such that if M0 is δ−close in C2−norm to

a geodesic sphere of radius r ≤ r0, the volume preserving mean curvature �ow of M0

has a smooth convex solution with maximal time interval I = [0,∞). In particular, the

solution converges subsequentially to a small bubble of constant mean curvature.

This is the main result we prove in the present work, applying the techniques and

ideas previously illustrated in the Euclidean chapter to the Riemannian case. In the

general Riemannian setting, however, the �ow is a result of a complicated interaction

between the geometry of the moving hypersurface and the geometry of the ambient

space, and, in view of the average mean curvature term φ(t) in the VPMCF equation,

the local evolution of M depends heavily on the global shape of the hypersurface inside

N . For these reasons, not only the time-equations of the principal geometric quantities

are more insidious, but we will also be required to introduce some other "tricks" that

will help to bring us back to the Euclidean space, although with some weaker results,

as in the asymptotic behaviour of the �ow solution.

Let then (N, ḡ) be a compact Riemannian manifold of dimension n+ 1 and consider

a family of immersions F : M × I → N , where M is as before a closed and strictly

convex hypersurface, such that F0(M) = M0 and Ft(M) = Mt, ∀t ∈ I = [0, T ). We

again require that such family of immersions Ft is a solution of the volume preserving

mean curvature �ow, i.e. it satis�es the following normal deformation equation:

∂

∂t
F (x, t) = [−H(x, t) + φ(t)] · ν(x, t), (4.0.1)

where

φ(t) =
1

|Mt|

∫
M
Hdµt,

ν(x, t) is the unit normal vector toMt in x ∈Mt and |Mt| is the surface area ofMt at the

time t ∈ [0, T ), with T = Tmax, the maximum existence time of the �ow. Recall in fact

75
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that, as we have already explained in Chapter 1, short time existence for this particular

type of �ows is already known in the literature, even when the ambient space is a general

Riemannian manifold (see for example Section 7.5, and in particular Theorem 7.17, in

[21]).

In the next section we are going to introduce some more de�nitions in order to enlighten

and exploit another key characteristic of the volume preserving mean curvature �ow,

i.e. its parabolic invariance, which we will allow us to implement the ideas developed in

the Euclidean setting to the Riemannian environment.
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4.1 Equivalent �ows

De�nition 4.1. Two �ows F : M × I → N and G : M × I → N are said equivalent if

F (M, t) = G(M, t),∀t ∈ I, or, alternatively, if there exists a di�eomorphism ϕt : M →
M for each t such that G(x, t) = F (ϕ(x, t), t).

In general, if there exists a di�eomorphism Ψ : M →M such that if F : M ×I → N

is a �ow and F (p, t) = F (Ψ(p), t) is still the same �ow, we say that the �ow is invariant

under reparametrization.

The volume preserving mean curvature �ow in (4.0.1) is clearly invariant under

reparametrization. It also satis�es another important property, i.e. it is parabolic in-

variant under rescaling.

De�nition 4.2. Let F : M × I → (N, ḡ) be a family of immersions, with I = [0, T ).

Then the parabolic rescaling of F is the smooth family of immersions F̃ : M × Ĩ →
(N,λ2ḡ), where Ĩ = [0, λ2T ) and λ > 0 and with F̃ (x, t) = F (x, λ−2t).

Proposition 4.2. The volume preserving mean curvature �ow as de�ned in (4.0.1) is

invariant under parabolic rescaling.

Proof. Let F : M × I → (N, ḡ) be de�ned as in (4.0.1) and consider its parabolic

rescaling by a parameter λ > 0 as de�ned in (4.2), i.e. F̃ : M × Ĩ → (N, g̃), with

g̃ = λ2ḡ.

Let {∂i = ∂/∂xi} be a coordinate frame at a point p ∈ M . For any given time t, the

induced metric g on M from the rescaled (N, g̃) is:

gij = F̃ ∗t g̃ij = λ2ḡ(F̃t∗ ∂i, F̃t∗ ∂j) = λ2ḡ(Fλ−2t∗ ∂i, Fλ−2t∗ ∂j) =

= λ2 F ∗λ−2t ḡij .

For the same coordinate frame {∂i}, it is immediate to see that:

(1) the inverse metric rescales as g̃ij = λ−2 ḡij ;

(2) the Christo�el symbols remain unchanged, i.e. Γ̃kij = Γ̄kij , and so does the connec-

tion ∇̄.

However, if {ēi} is an o.n. basis for the tangent space of (N, ḡ) at a point q ∈ N , we

have:

δij = ḡ(ēi, ēj) = λ−2g̃(ēi, ēj) = g̃(λ−1ēi, λ
−1ēj) = g̃(ẽi, ẽj),

and then {ẽi = λ−1ēi} is the corresponding o.n. basis for (N, g̃).

Observe now the following. Let hij and H be respectively the second fundamental

form and the mean curvature of Mt = Ft(M) in (N, ḡ), for a given t; let also consider

p ∈ Mt and {ēi, ν̄} an o.n. basis for TpN , with ν̄ the unit outer vector in p for Mt.
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Then, after the parabolic rescaling F̃t, we have that h̃ij at p ∈ F̃t(M) ⊂ (N, g̃) in the

new o.n. basis {ẽi, ν̃} changes as:

h̃ij = −g̃(∇̄iẽj , ν̃) = − 1

λ3
g̃(∇̄i ēj , ν̄) = −λ

2

λ3
ḡ(∇̄i ēj , ν̄) = λ−1 hij ,

and the mean curvature H̃

H̃ = g̃ij h̃ij = ḡij λ−1 hij =
1

λ
H,

since g̃−1(ε̃i, ε̃j) = ḡ−1(ε̄i, ε̄j) for the corresponding dual basis.

Finally, noting that

φ̃(t) =

∫
M H̃d̃µt∫
M d̃µt

=
1

λ

∫
M Hdµt∫
M dµt

=
1

λ
φ(t),

we thus have:

∂

∂t
F̃ (x, t) =

∂

∂t

(
F (x, λ−2 t)

)
=

1

λ2

∂

∂t
Fλ−2 t =

1

λ2
[−H + φ] · ν̄ =

= [− 1

λ
H(x, λ−2t) +

1

λ
φ(λ−2t)] · 1

λ
ν̄(x, λ−2t) =

= [−H̃(x, t) + φ̃(t)] · ν̃(x, t).

This proves that F̃ (x, t) is a VPMCF.

Let be p ∈ N and consider the open neighbourhood Up = exp(Bε(0)), with ε =

inj(N, ḡ) the injectivity radius of the manifold N as usual. As we have seen in Chapter

1 with the equation (1.1.2), the metric can be written as

ḡij(q) = δij +
1

3
R̄kilj |p xkxl +

1

6
∇kR̄limj |p xkxlxm + · · ·

= δij +
1

3
R̄kilj |p xkxl +O(r3),

at a point q ∈ Up. If we now consider a (parabolic) rescaled �ow F̃t by a parameter

λ2 as before, the curvature tensor of the rescaled �ow R̃lijk in terms of the Christo�el

symbols w.r.t the o.n. basis {ẽ} is de�ned as

R̃lijk = ∂jΓ̃
l
ik − ∂kΓ̃lij + Γ̃ljsΓ̃

s
ik + Γ̃lksΓ̃

s
ij ,

and since w.r.t the same o.n. basis we know that Γ̃ijk = Γ̄ijk, we have that

R̃lijk = R̄lijk,

w.r.t {ẽ}. Since the metric changes as g̃ij = λ2ḡij , the Riemann tensor changes as:

R̃ijkl = g̃isR̃
s
jkl = λ2ḡisR̄

s
jkl = λ2R̄ijkl,
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w.r.t {ẽ}. We also have ∇̃mR̃ijkl = λ2∇̄mR̄ijkl, if the basis remains the same.

Let now {ēi} be an o.n. basis w.r.t. the metric ḡ of N and recall that we have ẽi = λ−1ēi.

By changing the basis, indicating with the same Latin letters the two basis, we therefore

obtain:

R̃ijkl = λ2R̄ijkl =
λ2

λ4
R̄ijkl =

1

λ2
R̄ijkl

∇̃mR̃ijkl = λ2∇̄mR̄ijkl =
λ2

λ5
∇̄mR̄ijkl =

1

λ3
∇̄mR̄ijkl.

Let now V be a vector �eld on N . Note that we must have V = Ṽ iẽi = V̄ iēi, from

which we deduce that the coordinates change as Ṽi = λV̄i. However, computed w.r.t.

the di�erent basis but w.r.t. the same metric, we have:

‖V ‖2 = g̃(Ṽ iẽi, Ṽ
iẽi) = g̃(V̄ iēi, V̄

iēi).

Keeping in mind these considerations, the Taylor expansion of g̃(q) can be estimated

as:

g̃ij(q) = δij +
1

3
R̃kilj |p x̃kx̃l +

1

6
∇̃kR̃limj |p x̃kx̃lx̃m + · · ·

= δij +
1

3λ2
R̄kilj |px̃kx̃l +

1

6λ3
∇̄kR̄limj |p x̃kx̃lx̃m + · · ·

and therefore:

|g̃ij(q)− δij | ≤
1

3λ2
|R̄kilj |p| ||x||2 +

|O(r3)|
λ3

, (4.1.2)

where the Riemann tensor is expressed in terms of the original metric, w.r.t. {ēi} and
computed in p.

Look carefully at the equation (4.1.2): it estimates a control on the di�erence between

the Euclidean �at metric δij and the rescaled metric g̃ij of N computed in some q ∈ Up
by the Riemann tensor computed in the original metric ḡ of N , divided by the scaling

factor with the same power of ||x||2 = r2 and all other terms behaving as r3. Therefore,

since the term |R̄ijkl|p is independent on the choice of the scaling factor λ, we can choose
the parameter λ̄ in such a way that

1

3λ̄2
|R̄kilj |p| ||x||2 ≤ δ0, (4.1.3)

for some positive very small δ0. Since the injectivity radius is changing as well as ε̃ = λε̄,

we can assume that ε̃ ≥ 4 for example, therefore big enough in order to deal with the

curvature terms as we would be in the �at Euclidean case.

This justi�es the following de�nition, where Up = exp(Bε(0)) is de�ned as usual.

De�nition 4.3. Let (N, ḡ) be a compact Riemannian manifold. The metric ḡ is said

to be nearly �at in the neighbourhood Up if there exists a parameter λ > 0 such that

the rescaled metric g̃ = λ2ḡ satis�es (4.1.2) and (4.1.3).

Note that since N is compact, this is true for any point p ∈ N and normal neigh-
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bourhood Up.

Since by Proposition 4.2 the �ow F : M × I → N de�ned in (4.0.1) is invariant

under parabolic rescaling, we can translate the idea of �nding a "big" scaling factor λ

into considering instead a family {F̃n}n∈N of rescaled immersions by the relative positive

parameters {λn}n∈N. More precisely, if we start with the initial original �ow F , then

we have for ∀n, i, j ∈ N and for i < j:

(1) F̃n(x, t) = F (x, λ−2
n t), with λn > 0 and λi < λj ;

(2) g̃n(x) = λ2
n ḡ(x), ∀x ∈ Up.

Therefore the manifold (N, ḡ) is nearly �at when we reach the �rst N̄ ∈ N such that

∀n > N̄ the equation (4.1.3) holds.
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4.2 Immortal �ow

Let F : M × I → N be the family of immersions as de�ned in (4.0.1) and consider the

following parabolic rescaling F̃ : M × Ĩ → (N, g̃) by a parameter λN big enough such

that De�nition 4.3 is satis�ed. We are therefore considering the following �ow:

∂

∂t
F̃ = [−H̃(x, t) + φ̃(t)] · ν̃(x, t), (4.2.4)

where as usual

φ̃(t) =
1

|Mt|

∫
M
H̃dµ̃t,

which is still a volume preserving mean curvature �ow by Prop. 4.2. Observe thatM is

obviously unchanged, so it is still closed and strictly convex (and so it is M0 = F̃0(M)).

Note also that if ε is the injectivity radius of (N, ḡ), then ε̃ = λN ε is the injectivity

radius of (N, g̃). Let then now be q ∈ UNp = exp(Bε̃(0)) and observe that by (1.1.2) the

rescaled metric in q is written as

g̃ij(q) = δij +
1

3
R̃kilj |p xkxl +O(r3),

and by the fact that the metric is nearly �at in UNp , the equation (4.1.2) holds, i.e.

|g̃ij(q)− δij | ≤
1

3λ2
N

|R̄kilj |p| ||x||2 +
|O(r3)|
λ3
N

,

with the property of equation (4.1.3) also satis�ed.

Observation 5. From now on we can reformulate the de�nition of a nearly �at metric

(Def. 4.3) by simply writing that the (rescaled) Riemann tensor of g̃ and its covariant

derivative are such that |R̃kilj |+ |∇̄R̃ijkl| ≤ α, by a very small positive α. If there is no

risk of confusion, we also just use the simpler notation |R̃m| ≤ α.

We make use of the following notation:

(1) g = gNij = λ2
N F ∗

λ−2
N t
ḡij , the metric on Mt;

(2) g̃ = λ2
N ḡij the rescaled metric on N ;

(3) ε̃ = λN ε the injectivity radius of (N, g̃);

(4) if I = [0, T ) for the immersion F , then Ĩ = [0, λ2
N T ) for F̃ .

To simplify the notation we identify λ = λN .

Suppose for a moment that F̃0(M) = M0 = ∂Ω0 is immersed inside a normal

neighbourhood UNp of a point p ∈ N and we initially have the following estimates:

(1) |H̃(x, 0)| ≤ C ′r−1,
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(2) |Ã(x, 0)| ≤ C ′r−1,

(3) |∇Ã(x, 0)| ≤ C ′′r−2,

(4) |Ω0| = |Br(p)| (Euclidean measure),

(5) |M0| = |∂Ω0| ≤ C̃rn−1,

for r ≤ r0 < ε̃, that we determine later. If we recall the Gauss equation

Rijkl = R̃ijkl + hikhjl − hilhjk 1 ≤ i, j, k, l ≤ n,

and we de�ne as k1 > 0 the smallest principal curvature ofM0 (which is strictly convex),

by the de�nition of the sectional curvature we obtain, for any two X,Y orthonormal

vectors spanning a 2-plan in TqM0, q ∈M0, with |R̃m| ≤ α (the metric is nearly �at):

sec(X,Y ) = Rm(X,Y, Y,X) ≥

≥ −α+ h(X,X)h(Y, Y )− h(X,Y )2 ≥

≥ −α+ k2
1 ≥

k2
1

2
= K > 0,

where |R̃m| ≤ α is such a very small number compared to k1, which allows us to proceed

with similar computations as in Prop. 3.8. Therefore:

sec(X,Y ) ≥ K > 0.

By Myers-Synge Theorem (Thm. 3.7), we have that the intrinsic diameter of M0 is

controlled by the (intrinsic) diameter of Sn(K), the sphere of radius 1/
√
K endowed by

a rotationally symmetric metric of constant sectional curvature K. Since the extrinsic

diameter of M0 is always controlled by the intrinsic one, we thus have that

M0 ⊂ BR(y),

where BR(y) is the (Riemannian) ball of radius R = 1/
√
K =

√
2/k1 centred in y ∈ UNp .

Observe that we can still de�ne at t = 0 the isoperimetric ratio as in the Euclidean case

as

I(0) =
|∂Ω0|n+1

|Ω0|n
,

and we can impose that for a δ > 0

I(0) =
|∂Ω0|n+1

|Ω0|n
≤ C + ρ, (4.2.5)

for a C = C(IN (|Ω0|)), r0 > 0 and ρ > 0 given by Cor. 1.19 and such that our initial r

is r ≤ r0 < ε.

Observation 6. The following ratio between the (powers) of the surface area and the



Riemannian case 83

volume of a Riemannian ball can always be set in a way such that

|∂BR(y)|n+1

|BR(y)|n
≤ Ce + ρ̄,

where Ce is the same constant we have found in the Euclidean case,

Ce =
2π

n+1
2

Γ
(
n+1

2

) · (n+ 1)n.

In other words, with ρ̄ we can measure the failure of the metric g̃ to be �at and it is

only depending on the intrinsic geometric properties of BR(y). Therefore even I(0) in

(4.2.5) could be rewritten by using the constant Ce instead of C, as we did already in

the proof of Cor. 1.19.

It is now clear that, given the initial conditions (1) − (5) above and the equation

(4.2.5), we apply Cor. 1.19 and we deduce that M0 is δ−close in the C2−norm to

∂Br(z) for some r ≤ R and some z ∈ BR(y). This fact mostly implies that we have an

estimate on the principal curvatures ki of M0, i.e.

ki ≈
1

r
+O(1), (4.2.6)

with an error that we can control, and we can even obtain better estimates on the

geometric quantities we are interested in, i.e. A, ∇A and H of M0.

Remark 5. It follows from the previous argument that we can equivalently start with the

assumptions (1)− (5) and equation (4.2.5), and then deduce the δ−closeness property of
M0 to a sphere of radius r small enough, or assuming, as in Thm. 4.1, that the initial

surface is δ−close to a small sphere and therefore jumps immediately to (4.2.6).

Observation 7. Note that the injectivity radius of (N, g̃) is ε̃ = λNε for a very big

λ = λN . Therefore, without loss of generality, we can suppose that 1 << ε̃ and if we

initially set |Ω0| = |B1(p)|, (r = 1), we can suppose, by the previous Remark, that M0

is δ−close to ∂B1(z) for some z ∈ BR(y), and therefore its principal curvatures are such

that

ki ≈ 1 +O(r), ∀i ∈ {1, 2, · · ·n},

where O(r) is controlled by the injectivity radius ε̃ of N .

We can then suppose that the principal curvatures of M0 are initially in the following

range:
1

2
≤ ki(x, 0) ≤ 2, ∀i ∈ {1, 2, · · ·n}, ∀x ∈M0.

Let us consider again the isoperimetric ratio

I(t) =
|∂Ωt|n+1

|Ωt|n
,
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with as usual ∂Ωt = Mt and Ωt the open region enclosed by Mt, ∀t ∈ [0, T̃ ), T̃ = λ2T .

We have the following property as in the Euclidean case.

Proposition 4.3. The inequality I(0) ≤ C + ρ is preserved during the �ow. In partic-

ular,

I(t) ≤ I(0) ≤ C + ρ, ∀t ∈ [0, T ).

We therefore call this property as monotonicity of the isoperimetric ratio.

Proof. It is immediate, just use Lemma 3.10 that can be generalised easily to the Rie-

mannian setting and recall that the volume of the region is �xed.

In particular we have:

|∂Ω0| = |M0| ≥ |Mt| ≥M∗.

As we did in Chapter 3, let us consider the following set of times:

S =
{
τ ∈ [0, T̃ ) :

1

4
≤ ki(x, t) ≤ 4 ∀i = 1, 2, . . . , n ∀x ∈Mt,∀t ∈ [0, τ ]

}
,

with T̃ = λ2 T the rescaled time. We de�ne S′ = supS and we want to prove the

following crucial theorem.

Theorem 4.4. Let M0 be a smooth closed strictly convex hypersurface immersed in

the normal neighbourhood UNp ⊂ N , and initial conditions for the �ow de�ned as in

the equation (4.2.4). If M0 is δ−close to the unit sphere ∂B1(z) ⊂ UNp , then the �ow

(4.2.4) has a smooth strictly convex solution which is de�ned for all times t ∈ [0,∞).

In particular S′ =∞.

Proof. As it will be clear in this proof, the idea used to prove the Theorem is exactly

the same seen in the Euclidean case. The only complications arise from the fact that

M0 is moving inside the curved space N and therefore the evolution equations of the

main geometric quantities, and in particular the one of the second fundamental form,

are more complicated.

Note that by Observation 7, since M0 is δ−close to the unit (Riemannian) sphere, we

can suppose that its principal curvatures are initially

1

2
≤ ki(x, 0) ≤ 2, ∀i ∈ {1, 2, · · ·n}, ∀x ∈M0.

Setting C ′ = 5n, with R < ε̃, we therefore have at the time t = 0 the following estimates:

(1) M0 ⊂ BR(y), |Ω0| = |B1(p)|, |M0| ≤ C̃,

(2) |H̃(x, 0)| < C ′,

(3) |Ã(x, 0)| < C ′,

(4) |∇Ã(x, 0)| ≤ C ′′,
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and the monotonicity of the isoperimetric ratio

(5) I(t) ≤ I(0) ≤ C + ρ.

As usual, the Weingarten map {hij} is a selfadjoint operator and it can be written in

diagonal form. However, its evolution equation is much more complicated this time,

since the curvature of N a�ects the shape of Mt. We have in fact:

∂

∂t
h̃ij = ∆h̃ij + h̃ij |Ã|2 + R̃nnh̃

i
j

− R̃kjkmh̃
i
m − R̃ i

k kmh̃jm − 2R̃ i
m jkh̃km

− ∇kR̃ i
n jk −∇jR̃

i
nk k − φ̃

(
h̃kj h̃

i
k + R̃ i

jn n

)
.

Observation 8. Recall that M0 ⊂ UNp and the metric is nearly �at, therefore by the

previous considerations we have |R̃m| ≤ α, and, since α is a positive very small constant,

also C ′ >> α.

We de�ne again the following two functions:

(1) kmin(t) = minx∈Mt ki(x, t),

(2) kmax(t) = maxx∈Mt ki(x, t),

and we want to study their evolution. In order to derive their time-equation, we use

the same trick that we adopted in the Euclidean case.

Let therefore u(h̃ij) be again an approximation of max(k1, . . . , kn), with the properties

as in Lemma 3.4. Remember also that:

∂

∂t
u =

∂u

∂h̃ij

( ∂
∂t
h̃ij

)
,

∆u =
∂2u

∂h̃pq ∂h̃lm
∇ν h̃pq ∇ν h̃lm +

∂u

∂h̃ij
∆h̃ij ,

Using the evolution equation for h̃ij , the fact that in the o.n. basis h̃ij has diagonal form

with positive entries (the principal curvatures) since we are in the set of times S and

the estimate |R̃kilj | + |∇̄R̃ijkl| ≤ α for a positive constant α small enough, w.l.o.g. we

have:

∂

∂t
u ≤ ∂u

∂h̃ij

(
∆h̃ij + |Ã|2h̃ij + αh̃ij + αδij − φ̃

(
h̃kj h̃

i
k + R̃ i

jn n

))
+

∂2u

∂h̃pq ∂h̃lm
∇ν h̃pq ∇ν h̃lm −

∂2u

∂h̃pq ∂h̃lm
∇ν h̃pq ∇ν h̃lm

=
∂u

∂h̃ij
∆h̃ij +

∂2u

∂h̃pq ∂h̃lm
∇ν h̃pq ∇ν h̃lm +

∂u

∂h̃ij
|Ã|2h̃ij +

∂u

∂h̃ij
αh̃ij +

∂u

∂h̃ij
αδij

− ∂u

∂h̃ij
φ̃
(
h̃kj h̃

i
k

)
− ∂u

∂h̃ij
φ̃
(
R̃ i
jn n

)
− ∂2u

∂h̃pq ∂h̃lm
∇ν h̃pq ∇ν h̃lm.

Recall now Lemma 3.4 and the estimates on |Ã| and |R̃m|: since by (i) the function

is monotonically increasing and convex, the last line in the equation above has only
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negative terms and it can be ignored. Moreover, by (ii) and (iv) of Lemma 3.4 and

with C ′ = 5n, we have that:

∂u

∂h̃ij
|Ã|2h̃ij +

∂u

∂h̃ij
αh̃ij +

∂u

∂h̃ij
αδij ≤ |Ã|2u(t) + αu(t) + C ′α.

By the de�nition of ∆u and the estimate on |Ã|, we �nally obtain:

∂

∂t
u ≤ ∆u(t) + |Ã|2u(t) + αu(t) + C ′α ≤ ∆u(t) + (C ′)2 u(t) + αu(t) + C ′α,

and since C ′ >> α, we then estimate the above equation as

∂

∂t
u ≤ ∆u(t) + 2(C ′)2 u(t) + (C ′)2.

Solving the auxiliary equation

∂

∂t
ϕ(t) = 2(C ′)2 ϕ(t) + (C ′)2 = (C ′)2(2ϕ(t) + 1), ϕ(0) = u(0),

we have ∫ ϕ(t)

ϕ(0)
(2ϕ+ 1)−1dϕ =

∫ t

0
(C ′)2ds⇒ ϕ(t) =

2ϕ(0) + 1

2
e2(C′)2t − 1

2
,

and by maximum principle

u(t) ≤ 2u(0) + 1

2
e2(C′)2t.

As in the previous chapter, u approximates the max(k1, · · · kn) and therefore we make

use of Lemma 3.4, with β → 0, to get:

kmax(t) = max
x∈Mt

ki(x, t) ≤
2kmax(0) + 1

2
e2(C′)2t ≤ 5

2
e2(C′)2t,

since we know that initially 1/2 ≤ ki(x, 0) ≤ 2.

If we now solve by t the following inequality

kmax(t) ≤ 5

2
e2(C′)2t ≤ 4,

we obtain the �rst time T1 for which the upper bound for the biggest principal curvature

can hit 4, i.e.

T1 =
ln 8

5

50n2
,

since C ′ = 5n. For continuity reasons, we thus have that kn(t) ≤ 4, ∀t ∈ [0,min{T1, S
′}].

As before, note that max(−k1, . . . ,−kn) = −min(k1, . . . , kn) and let u(βij) be an ap-

proximation of the function −min(k1, . . . , kn), where βji = −h̃ij . The evolution equation
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for βij is therefore:

∂

∂t
βij = ∆βij + βij |Ã|2 + R̃nnβ

i
j

− R̃kjkmβ
i
m − R̃ i

k kmβjm − 2R̃ i
m jkβkm

+ ∇kR̃ i
n jk +∇jR̃ i

nk k + φ̃
(
βkj β

i
k + R̃ i

jn n

)
,

and we also have:

∂

∂t
u =

∂u

∂βij

( ∂
∂t
βij

)
,

∆u =
∂2u

∂βpq ∂βlm
∇νβpq ∇νβlm +

∂u

∂βij
∆βij .

Given the de�nition of βij and |R̃kilj |+ |∇̄R̃ijkl| ≤ α, we estimate as:

∂

∂t
u ≤ ∂u

∂βij

(
∆βij − R̃kjkmβim − R̃ i

k kmβjm − 2R̃ i
m jkβkm + αδij + φ̃

(
βkj β

i
k + R̃ i

jn n

))
+

∂2u

∂βpq ∂βlm
∇νβpq ∇νβlm −

∂2u

∂βpq ∂βlm
∇νβpq ∇νβlm + C ′α.

Using now the properties of Lemma 3.4 and |R̃kilj | + |∇̄R̃ijkl| ≤ α once again, w.l.o.g.

we can write:

∂

∂t
u ≤ ∂u

∂βij
∆βij +

∂2u

∂βpq ∂βlm
∇νβpq ∇νβlm −

∂u

∂βij
αβij + C ′α

+
∂u

∂βij
φ̃
(
βkj β

i
k

)
+

∂u

∂βij
φ̃
(
R̃ i
jn n

)
− ∂2u

∂βpq ∂βlm
∇νβpq ∇νβlm

≤ ∆u(t)− αu(t) + 2φ
∂u

∂βij

(
βkj β

i
k

)
+ C ′α,

where we approximated in the last line the Riemann tensor by the term βkj β
i
k, and we

used once again the de�nition of ∆u and the properties (i) and (iv) of u of Lemma 3.4;

using again (iv) of Lemma 3.4, we have:

∂

∂t
u ≤ ∆u(t)− αu(t) + 2φu(t)βij + C ′α,

Recall that, as in the Euclidean case, we can approximate the term φu(t)βij with

−C ′kmaxu(t), in order to �nally study the following equation:

∂

∂t
u ≤ ∆u(t)− αu(t)− 2Ckmaxu(t) + C ′α.

Calling by E = α+2C ′kmax and noting that α is very small compared to kmax, we have:

∂

∂t
u ≤ ∆u(t)− Eu(t) + E ≤ ∆u(t)− E

(
u(t)− 1

)
.
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Solving the auxiliary equation

∂

∂t
ϕ(t) = −E

(
ϕ(t)− 1

)
ϕ(0) = u(0),

we obtain ∫ ϕ(t)

ϕ(0)

dϕ

ϕ− 1
= −

∫ t

0
Eds⇒ ϕ(t) = (ϕ(0)− 1)e−Et + 1,

and by maximum principle,

u(t) ≤
(
u(0)− 1

)
e−Et + 1.

Recall that u approximates smoothly the function −min(k1, . . . , kn); by Lemma 3.4,

and letting the parameter β → 0, we write

−kmin(t) = − min
x∈Mt

ki(x, t) ≤
(
− kmin(0)− 1

)
e−Et + 1,

and since we initially have kmin(0) ≥ 1/2, we deduce:

kmin(t) ≥
(
kmin(0) + 1

)
e−Et − 1 ≥

(1

2
+ 1
)
e−Et − 1 ≥ 3

2
e−Et − 1.

Imposing now the following inequality

kmin(t) ≥ 3

2
e−Et − 1 ≥ 1

4
,

and solving by t, we obtain the �rst time T2 for which the lower bound for the smallest

principal curvature can hit 1/4:

T2 = −
ln 5

6

E
,

and we then have that kmin(t) ≥ 1/4,∀t ∈ [0,min{T2, S
′}].

Since E = α+ 2C ′kmax, with C
′ = 5n and 1/4 ≤ kmax ≤ 4, we clearly have:

S′ = supS ≥ min{T1, T2} = T1 > 0,

and therefore the supremum of the set of times S is strictly positive, i.e. there exists

an interval of time of length S′ ≥ T1 where the principal curvatures of Mt run between

1/4 and 4.

To conclude the proof we need to show that S′ = supS =∞.

By Theorem 1.14 and exactly as in Corollary 3.6, we have the following bound for

the covariant derivative of Ã:

sup
x∈Mt

|∇Ã(x, t)|2 ≤ B

min{1, t}
,
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∀t ∈ (0, S′]. Moreover, since min{1, S′} ≥ T1, we have that at the time t = S′

|∇Ã(x, S′)|2 ≤ B

min{1, S′}
≤ B

T1
,

and therefore we set

C ′′ =

√
B

T1
=⇒ |∇Ã(x, S′)| ≤ C ′′.

Once again, the fact that the principal curvatures are between 1/4 and 4 also implies

that we have a control on the sectional curvature ∀t ∈ S, in particular at the �nal time

t = S′. In fact, since the metric is nearly �at (i.e. |R̃m| ≤ α, which is a very small

number compared to k1), we have, as before, for any two orthonormal vectors X and Y

spanning a 2−plane in Tp′MS′ , with p
′ ∈MS′ , that

sec(X,Y ) = Rm(X,Y, Y,X) ≥

≥ −α+ h(X,X)h(Y, Y )− h(X,Y )2 ≥

≥ −α+ k2
1 ≥

k2
1

2
= K > 0.

Therefore:

sec(X,Y ) ≥ K > 0 ∀X,Y ∈ T (MS′),

and by Myers-Synge Theorem (Thm. 3.7) once again, we have that the intrinsic di-

ameter of MS′ is controlled by the (intrinsic) diameter of Sn(K), the sphere of radius

1/
√
K = R′ endowed by a rotationally symmetric metric of constant sectional curvature

K. Therefore there exists a point y′ ∈ N such that

MS′ ⊂ BR′(y′).

At the �nal time t = S′, we therefore have:

(1) |H̃(x, S′)| ≤ C ′, |Ã(x, S′)| ≤ C ′, |∇Ã(x, S′)| ≤ C ′′.

Moreover, by the monotonicity of the isoperimetric ratio as in Prop. 4.3:

(2) |ΩS′ | = |Ω0| = |B1(0)|, |MS′ | ≤ |M0| ≤ C̃, MS′ ⊂ B4(y),

(3) I(S′) ≤ I(0) ≤ C + ρ.

Note that those are the same constants chosen at the initial time t = 0. Again by Cor.

1.19,MS′ is δ−close in the C2-norm to the round (Riemannian) sphere ∂B1(z) for some

z ∈ BR′(y′), for the same δ > 0 initially chosen. This also implies that

1

2
≤ ki(x, S′) ≤ 2 ∀i ∈ {1, . . . , n}, ∀x ∈MS′ .

Using now the same argument as in Thm. 3.9, we conclude that S′ = ∞ and thus the

�ow is immortal. This concludes the proof of the Theorem and it also proves the �rst

part of Thm. 4.1.
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4.2.1 Asymptotic behaviour

We have just proved that the �ow F : M × R≥0 → N satisfying the following equation

∂

∂t
F (p, t) = [−H(p, t) + φ(t)] · ν(p, t), (4.2.7)

with the average mean curvature term

φ(t) =
1

|Mt|

∫
M
Hdµt,

is immortal. With the next Proposition, which we have already seen in the Euclidean

case, we are able to say something more about the speed (4.2.7) and the asymptotic

behaviour of the �ow.

Proposition 4.5. The mean curvature H(x, t) converges uniformly to its average value

φ(t). In other words,

lim
t→+∞

max
x∈Mt

|H(x, t)− φ(t)| = 0.

Proof. It easy to see how the proof of Prop. 3.11 can be generalised to the Riemannian

case. After de�ning the space-timeM =
⋃
t∈[0,∞)(Mt × {t}) ⊂ N ×R, we want to �nd

a uniform bound for the mean curvature H in a space-time neighbourhood of a point

(p1, t1). As in the Euclidean case, since ∇H(x, t) = ∇gijhij = gij∇A(x, t), the uniform

bound for the covariant derivative gives a uniform control on ∇H(x, t), which makes H

spatial Lipschitz.

Recall now the evolution equation for H from Thm. 1.5:

∂H

∂t
= ∆H + (H − φ)

(
|A|2 + R̄ic (n, n)

)
,

which can be estimated as:∣∣∣∂H
∂t

∣∣∣ ≤ ∣∣∣∆H + (H − φ)
(
|A|2 + R̄ic (n, n)

)∣∣∣
≤

∣∣∆H∣∣+
∣∣H |A|2∣∣+

∣∣φ |A|2∣∣+
∣∣H − φ∣∣∣∣R̄ic (n, n)

∣∣,
and, given the estimates on H, A, φ and Rm, we can write as:∣∣∣∂H

∂t

∣∣∣ ≤ ∣∣∆H∣∣+ C1, (4.2.8)

with C1 = C1(C ′, α) a positive constant.

Since ∆H = gijgkl∇i∇jhkl, the uniform bound for the time-derivative of H comes

from the ones on |∇2A|, which are given by Prop. 1.2.13. The result now follows by

continuing as in Prop. 3.11.

Proposition 4.5 produces a uniform bound for the mean curvature H in a space-

time neighbourhood of a point in M and therefore the speed (4.2.7) is (uniformly)

bounded. The main consequence of this Proposition is although the fact that the
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volume preserving mean curvature �ow of M0, which is initially δ−close to a small

geodesic sphere of radius r, has a solution which subsequentially converges to a small

bubble of constant mean curvature (CMC), where a bubble is exactly a surface which

is close to a small geodesic ball. In fact, thanks to the previous Proposition, combined

with the isoperimetric nature of the �ow, there exists a subsequence of times {tk} for
which the family of surfaces {Mtk} converges to a limit bubble with constant mean

curvature H̄, its average value. This result also concludes the proof of the second part

of Thm 4.1.

However, this is a weaker result compared to the Euclidean case, where we have proved

the full convergence to a limiting sphere. In fact, when the ambient manifold is �at,

the evolution equations of the main geometric quantities are more easily to treat, which

allowed us to show the exponential decay of these relevant geometric quantities and

therefore the exponential decay of the speed of the �ow. This fact, combined with

the isoperimetric nature of the �ow and the use of the Alexandrov's Theorem, which

states that the only compact embedded hypersurfaces with constant mean curvature

are the round spheres, prevents the moving initial hypersurface M0 from running away

in the non compact Euclidean space and forces the solution of the VPMCF to converge

exponentially to a limit surface of constant mean curvature, which must be a sphere.

In a general Riemannian manifold, the Alexandrov's Theorem does not hold and, as

we have seen, the average term of the mean curvature introduces a non-local e�ect

to all the evolution equations, which become much more complicated to be treated.

The subsequential convergence, which is however an important �rst result, opens to

problematic situations, like the fact that the solution of the the �ow could converge to

two (or more) di�erent surfaces of same constant mean curvature H̄. Furthermore, it

would be interesting to prove that the limit constant mean curvature surface is a leaf

of the local foliation around a critical point of the scalar curvature, which is assumed

to be nondegenerate, as in Alikakos and Freire [1], proof that however relies on center

manifold analysis from in�nite-dimensional dynamical systems and semigroup theory.

To get therefore the same full convergence of the �ow as in the �at space and to prove

that the limit solution is a leaf of a CMC foliation, there is the need for some more

powerful hypothesis, which although we do not explore in here.
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