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Abstract. The rapid advance of super-resolution microscopy and its experimental applications has provided 
neuroscientists with a pass to the nanoscopic world of synaptic machinery. Here we will briefly overview and discuss 
current progress in our understanding of the three-dimensional synaptic architecture and molecular organisation as 
gleaned from the imaging methods that go beyond the diffraction limit of conventional light microscopy. We will argue 
that such methods are to take our knowledge of synapses to a qualitatively new level, providing the neuroscience research 
community with novel organising principles and concepts pertinent to the workings of the brain. 

Introduction

More than one hundred years ago, Santiago Ramón y 
Cajal used improved silver staining to image, for the first 
time, individual nerve cells, thus prompting the notion of 
synapses that separate them physically while connecting 
them functionally. Nevertheless, only the advance of 
electron microscopy (EM) in the 1950s made it possible 
to study the intricate details of pre- and postsynaptic 
structures that separate the two communicating neurons 
(Harris and Weinberg 2012; Palay and Palade 1955). 
However, EM can only be performed on fixed tissue 
and thus can be used to report dynamic processes only 
correlatively, by comparing different preparations. 

The advance of fluorescence recovery after 
photobleaching (FRAP) and single-particle tracking 
(SPT) techniques paved the way for the study of 
dynamic changes in microscopic cellular compartments 
at super-resolution (SR), i.e. beyond the diffraction 
limit of conventional optical microscopy. In brief, the 
FRAP method can reveal the kinetics of diffusion of the 
(fluorescently-labelled) molecule of interest as well as 
the proportion of mobile and immobile fractions of the 
molecule species in the area (Axelrod et al. 1976). FRAP 
has been used to monitor the molecular kinetics and the 
morphology of both pre- and postsynaptic compartments 
(Henkel et al. 1996; Perestenko and Henley 2006; 
Rusakov et al. 2011). In turn, SPT methods rely on the 
labelling of individual molecules with bright fluorescent 
nanoparticles, such as quantum dots, in live cells (Groc 
et al. 2007; Medintz et al. 2005).  SPT techniques revealed 
much detail about the molecular nature of excitatory as 
well as inhibitory synapses and their neural receptors 
(Choquet and Triller 2013; Hosy et al. 2014; Salvatico 
et al. 2015). By registering rare intermittent “blinking” 
(random switching) of individual nanoparticles the SPT 
method achieves nanoscale localisation and tracking of 
individual molecules for prolonged periods of time. Even 
though most SPT work has been done in neuronal culture 

preparations, it was recently adapted for organotypic 
(Biermann et al. 2014) as well as for acute brain slices and 
in vivo application (Varela et al. 2016). The implementation 
of other recently developed SR microscopy techniques has 
enabled localisation of individual molecules at synapses 
(Dani et al. 2010; Maglione and Sigrist 2013; Maidorn et al. 
2016; Sigal et al. 2015; Tang et al. 2016; Willig and Barrantes 
2014; Zhong 2015), at resolution as high as a few dozen 
nanometres (Minoshima and Kikuchi 2017; Sydor et al. 
2015; Turkowyd et al. 2016; Yamanaka et al. 2014). Here we 
will provide an overview of some notable findings made 
by visualising synaptic structures with SR microscopy. 
We will focus on work in mammalian cells and tissue. 
However, some great work has been done in the model 
organism Drosophila, mainly imaging the molecular 
architecture of the neuromuscular junction (NMJ) (Bohme 
et al. 2016; Ehmann et al. 2014; Liu et al. 2011).

Below are some brief methodological details pertinent 
to these emerging techniques: for further insight into 
the physical principles of the SR techniques we refer the 
reader to the excellent reviews listed above. Stimulated-
emission depletion (STED) microscopy uses doughnut-
shaped focal illumination to partly deplete the excitation 
at its periphery. This narrows the emission spots thus 
enhancing resolution much beyond the diffraction limit 
(Klar et al. 2000). Another group of SR techniques is 
collectively called single molecule localisation microscopy 
(SMLM) and comprises two generic approaches (and 
their specific applications), photo-activated localization 
microscopy (PALM) and stochastic optical reconstruction 
microscopy (STORM). These methods are based on 
localising the point source of fluorescence (which can be 
one molecule) from its detected image (Betzig et al. 2006; 
Folling et al. 2008; Rust et al. 2006). Repeating stochastic 
excitation of a small and sparsely distributed fraction of 
fluorescent molecules per imaging cycle provides non-
overlapping point sources of fluorescence and thus allows 
reconstruction of the exact position of the fluorescent 
molecules. These techniques can not only be used in 
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fixed tissue but also in living cells, to study the real-time 
dynamics of individual molecules (Bethge et al. 2013; Jones 
et al. 2011; Owen et al. 2012). Moreover, one type of SMLM 
(sptPALM) uses the overexpression of a photoactivatable 
fluorescent protein fused to the protein of interest: this 
enables the imaging of hundreds of mini-trajectories for 
several milliseconds (Manley et al. 2008; Rossier et al. 
2012). Another method, universal point accumulation 
for imaging in nanoscale topography (uPAINT), relies on 
the addition of fluorophores during the imaging process, 
which provides the dynamic imaging of continuously 
labelled, arbitrary membrane biomolecules in living cells 
(Giannone et al. 2010). In contrast to the nanoparticle-based 
SPT, which follows a few molecules for prolonged periods 
of time, sptPALM and uPAINT image single-molecule 
trajectories at very high densities for short periods of time 
(Sibarita 2014).

Collectively, SR imaging techniques allow the 
assessment of location, movement and counting 
the number of proteins of interest in living or fixed 
cells or tissue, thus deciphering the composition of 
protein complexes with nanometre spatial resolution 
and millisecond temporal resolution (Hosy et al. 
2014; Minoshima and Kikuchi 2017; Sydor et al. 2015; 
Turkowyd et al. 2016; Yamanaka et al. 2014). This had 
not been possible with conventional imaging techniques. 
Several modifications have been made to the original 
SR protocols, with attention focusing on improving 
sample preparation, buffer mixtures and image analysis 
to adapt the techniques to image dynamic changes in 
living organisms. The present review will discuss several 
particular applications of such techniques focusing on 
the exploration of the presynaptic and the postsynaptic 
molecular organisation pertinent to the function and 
plasticity of central synapses. 

Imaging of the vesicular release machinery using 
SR microscopy

The presynapse is a crowded yet dynamic compartment, 
in which the finely tuned regulation of molecular 
interactions is essential for its function in maintaining 
synaptic integrity. These processes include vesicular 
release and recycling of neurotransmitters; some aspects 
of which are still under debate (Maidorn et al. 2016; 
Rizzoli 2014). Here, single molecule imaging techniques 
should play an essential role in resolving some of these 
essential mechanisms. 

Only a decade ago, detailed proteomic analyses using 
EM and mass spectrometry revealed the complexity of the 
synaptic vesicle proteome, generating a comprehensive 
list of the molecular players involved and a general model 
of their interactions (Sudhof 2006; Takamori et al. 2006). 
More recently, a comprehensive molecular model of 
an 'average' presynaptic axonal bouton was published, 
detailing the complexity of the system as a densely-packed 
gel (Wilhelm et al. 2014). 

Several studies have focused on imaging the synaptic 
vesicles, their molecular composition and recycling 
mechanisms using different SR techniques (Kamin et al. 

2010; Lehmann et al. 2015; Westphal et al. 2008; Willig et al. 
2006). After synaptic vesicle fusion, some synaptotagmin 
molecules remained in the presynaptic membrane, 
which was interpreted as evidence for at least some 
synaptic vesicle constituents remaining together during 
recycling (Willig et al. 2006). Moreover, STED revealed 
that the plasma membrane SNAREs form clusters of 
~60 nm diameter containing about 75 densely packed 
molecules in PC12 cells (Maglione and Sigrist 2013; Sieber 
et al. 2007). FRAP experiments detected freely diffusing 
molecules that dynamically move between such clusters 
(Sieber et al. 2007). Direct STORM (dSTORM) imaging 
showed that, indeed, the unclustered syntaxin as well 
as SNAP-25 molecules reside next to these clusters in 
PC12 cells (Bar-On et al. 2012). Furthermore, it has been 
shown that subsequent stimulation leads to endocytosis 
of a ‘readily retrievable’ pool of synaptic vesicles (Hua 
et al. 2011). Assemblies of synaptotagmin molecules in 
the plasmamembrane that might control membrane 
integrity or serve as molecular platforms for the formation 
of SNARE complexes have been identified in recent 
studies with STED (Maidorn et al. 2016; Milovanovic and 
Jahn 2015). STED was also used to visualise, for the first 
time, vesicular trafficking on the nanoscale in real time 
(Westphal et al. 2008). The buffer zone for endocytosis 
was also visualised in a study combining confocal and 
STED imaging, force measurements, pharmacology and 
gene knockout to investigate the dynamic assembly of 
filamentous actin that mediates Ω-profile vesicle merging 
at synapses (Wen et al. 2016). Additionally, actin dynamics 
were found to modulate presynaptic structure and 
function through dynamically controlling active zone 
organisation following local neuronal activity (Glebov 
et al. 2017). A recent study detected individual vesicle 
fusion events with ~27 nm localisation precision at single 
hippocampal synapses under physiological conditions 
(Maschi and Klyachko 2017). The researchers found that 
multiple distinct release sites could exist within individual 
synapses. These sites were distributed throughout the 
active zone and underwent repeated reuse in a dynamic 
manner that is activity dependent.

Besides vesicle dynamics, SR imaging was also 
employed to reveal the clustering of voltage-gated Ca2+ 
channels at synapses of auditory hair cells by bassoon 
(Frank et al. 2010) and to image the sandwich structure 
of piccolo and bassoon at NMJs in adult and aged mice 
(Nishimune et al. 2016) as well as the presence of brain-
derived neurotrophic factor (BDNF) in small granules in 
the presynaptic face of excitatory synapses in cultured 
neurons (Andreska et al. 2014). A recent STED-based 
study investigated the presynaptic clustering of active 
zone proteins and revealed that RIM-BP2 is necessary 
for the clustering of calcium channels and bassoon at 
hippocampal CA3-CA1 synapses (Grauel et al. 2016). 
STORM imaging of hippocampal slices demonstrated 
that Δ9-tetrahydrocannabinol (THC) treatment induces 
internalisation and disappearance of type 1 cannabinoid 
receptor (CB1) receptors from gamma-aminobutyric acid 
(GABA)ergic axon terminals (Dudok et al. 2015). Younts et 
al. employed a combination of whole-cell recordings and 
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STORM to investigate the role of local protein synthesis in 
rodent hippocampal slices. They found that presynaptic 
protein synthesis is required for long-term, but not short-
term, plasticity of GABA release from CB1-expressing 
axons and might play a general role in controlling long-
term plasticity in the mature mammalian brain (Younts 
et al. 2016). Moreover, a recent study found evidence 
for morphological plasticity of synaptic boutons and 
axon shafts to dynamically fine-tune action potential 
conduction velocity (Chereau et al. 2017).  

Imaging the postsynaptic site of excitatory and 
inhibitory synapses using SR microscopy

Both STED and SMLM have been employed to analyse 
the structure of dendritic spines and the post-synapse. 
For example, in cultured neurons, STORM revealed the 
dynamics of thin filopodia and dendritic spines as well as 
of the endoplasmic reticulum and mitochondria (Shim et 
al. 2012). Additionally, STED has also been used to image 
the fine structure of dendritic spines (Berning et al. 2012; 
Bethge et al. 2013; Ding et al. 2009; Nagerl et al. 2008; 
Tonnesen et al. 2014; Tonnesen et al. 2011). In addition to 
revealing macroscopic changes of dendrites and spines, 
STED (D'Este et al. 2015; Sidenstein et al. 2016; Urban 
et al. 2011) and SMLM techniques (such as sptPALM) 
have been used to investigate actin filaments and their 
dynamics in spines and dendrites and their role in spine 
maturation and function (Chazeau et al. 2014; Frost et al. 
2010; Izeddin et al. 2011; MacGillavry et al. 2016; Tatavarty 
et al. 2012; Tatavarty et al. 2009; Wang et al. 2016). It 
was found that dendritic actin polymerisation is more 
complex and heterogeneous than previously thought, 
with different actin flows and random motions (Frost 
et al. 2010; Tatavarty et al. 2009). Moreover, enhanced 
actin polymerisation was revealed in subdomains of 
the dendritic spine including the postsynaptic density 
(PSD) and the spine neck, which might play a role in the 
repositioning of glutamate receptors (Frost et al. 2010). 
Furthermore, the nucleation of actin extension seemed 
to start from a single point within the PSD, raising the 
possibility that changes in the environment are sensed 
by the actin filaments and in turn are translated into the 
PSD to mediate spine maturation (Chazeau et al. 2014; 
Izeddin et al. 2011). One of the organisers of mature spine 
structure is synaptopodin, which exerts an indirect effect, 
via F-actin, on the diffusion of membrane proteins in the 
spine neck (Wang et al. 2016). The lattice-like structures 
of filamentous actin were also imaged in vivo, revealing 
a structure similar to that seen in vitro (Berning et al. 
2012; Willig et al. 2014). Altogether, SR techniques have 
substantially extended our view of the organisation of the 
spine cytoskeleton and revealed a much more crowded 
and organised cell compartment (Chazeau and Giannone 
2016; MacGillavry and Hoogenraad 2015).

In addition to imaging the macroscopic structure 
of spines and the dynamics of the cytoskeleton within, 
SR techniques have helped to reveal the nanoscopic 
arrangement of the PSD. The first study investigating the 
nanoscale structure of excitatory synapses was performed 

in fixed rat brain tissue (Dani et al. 2010). The group studied 
the nanoscopic distribution of pre- and postsynaptic 
scaffolding proteins and established a detailed three-
dimensional map of the synapses. Furthermore, they 
demonstrated variations in the organisation of N-methyl-
D-aspartate receptors (NMDARs) and α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptors 
(AMPARs) across three different regions of the brain 
(Dani et al. 2010).  

AMPARs are important for memory formation and 
synaptic plasticity, and their insertion into and removal 
from synapses is tightly regulated (MacGillavry et al. 
2011; Newpher and Ehlers 2008). Their clustering in 
nanodomains at synapses was deciphered in 2013 by three 
independent groups using a variety of SR methods (Fukata 
et al. 2013; MacGillavry et al. 2013; Nair et al. 2013). All 
the groups have concluded that AMPARs are organized 
at synapses in nanoclusters much smaller than the PSD 
(0-4 AMPAR nanodomains/PSD with a homogenous 
size distribution of ~80 nm). The number of the AMPAR 
nanodomains depended on the size of the underlying 
PSD. The average centre-to-centre distance between the 
nanodomains is 500 nm so that a single glutamate release 
cannot act on more than one domain (Nair et al. 2013). 
The first of these publications used PALM of several 
postsynaptic scaffolding molecules such as PSD95 and 
Homer1 as well as dSTORM of AMPAR and NMDARs in 
live and fixed neuronal cultures (MacGillavry et al. 2013). 
The second paper used a combination of techniques in 
live cultures investigating the dynamics of palmytolated 
PSD95 (Fukata et al. 2013). The researchers used FRAP and 
PALM and found that the PSD was organized through 
subdomains of PSD95, which in turn are regulated through 
the DHHC2-dependent palmitoylation (Fukata et al. 2013). 
Lastly, one group used uPAINT, sptPALM, dSTORM 
and STED to discover that AMPARs are immobile at the 
aforementioned nanodomains but diffuse freely between 
them, which could be due to the nanoorganisation of 
PSD95 scaffolds (Nair et al. 2013). dSTORM data revealed 
that 20-25 AMPARs are located in each nanodomain. 
All groups also investigated the organisation of PSD95 
molecules within the PSD. The results revealed that 
even though PSD95 can be found throughout the PSD, 
this protein, too, clusters in nanodomains of ~150 nm 
in diameter (Fukata et al. 2013; MacGillavry et al. 2013; 
Nair et al. 2013). These nanodomains of PSD95 were 
also revealed in brain slices (Broadhead et al. 2016; Tang 
et al. 2016). Using a single transmembrane domain with 
a PDZ binding motif, another group investigated the 
impact of the tight protein packing within the PSD and 
concluded that both crowding and binding dynamics 
limit diffusion and escape of AMPARs from the synapse 
(Li et al. 2016). Blocking the interaction of AMPARs with 
stargazin, which regulates AMPAR trafficking and gating, 
increased the rate of AMPAR diffusion as measured with 
sptPALM but revealed an interaction of the receptors with 
other proteins outside of the PSD (Hoze et al. 2012). Even 
though the diffusion properties of neural receptors had 
been investigated already in live cells using nanoparticle-
based SPT the novel studies were the first to describe the 



Opera Med Physiol 2017 Vol. 3 (2): 48-58    51

Janosch P Heller et al. Exploring nanoscale organisation of synapses with super-resolution 
microscopy

nano-organisation of AMPARs and of scaffolding proteins 
at PSDs. 

STED and SMLM have not only been applied to 
image the diffusion dynamics of AMPARs and PSD95 
but also to assess the synaptic localisation and dynamics 
of other receptors, channels and scaffolding proteins. 
For example, it was found that the A-kinase-anchoring 
protein 79/150 clusters different ion channels (M-type 
K+, L-type Ca2+ and TRPV1) together with G protein-
coupled receptors into functional domains as revealed 
by STORM (Zhang et al. 2016). STED revealed the size 
distribution, association into nanoclusters and long-
range interactions of nicotinic acetyl-choline receptor 
nanoclusters and their cholesterol dependence (Kellner 
et al. 2007). The number and nano-organisation of the 
Na+K+-ATPase at excitatory synapses as well as clustering 
and co-localisation with dopamine D1 receptor and 
DARPP-32 was assessed using STED and PALM (Blom 
et al. 2016; Blom et al. 2012; Blom et al. 2011; Blom et al. 
2013). Researchers found that also the P2X7 receptor 
is stabilised in nanoclusters of ~100 nm diameter and 
that its trafficking shows confinement in synaptic areas 
(Shrivastava et al. 2013). Moreover, STED and sptPALM 
were employed to study the surface dynamics of calcium 
channel subunits in cultured cells (Voigt et al. 2016). Using 
a novel monomeric streptavidin dSTORM approach 
Chamma et al. investigated the relative distribution of 
presynaptic Nrx1β and its postsynaptic binding partners 
Nlg1 and LRRTM2 in primary hippocampal neurons 
(Chamma et al. 2016a; Chamma et al. 2016b).

SR imaging has also been applied to visualise the sub-
synaptic distribution of inhibitory synaptic components. 
For example, quantitative 3D-PALM analysis revealed 
that inhibitory synapses in cultured spinal cord neurons 
contain 40-500 gephyrin molecules, packed at a density 
of about 5000 molecules/µm2 (Specht et al. 2013). In 
native tissue, synapses contained about three times as 
many molecules and were packed more densely (Specht 
et al. 2013). A comparison of the nano-organisation of 
the postsynaptic scaffolding proteins gephyrin and 
PSD95 in cultured hippocampal neurons was performed 
using STED (Dzyubenko et al. 2016). An elegant study 
from the Zhuang lab combined STORM with array 
tomography to reconstruct the entire inhibitory synaptic 
input field of individual retinal ganglion and amacrine 
cells in mice and determined the spatial distribution 
and neurotransmitter receptor identity of the synapses 
therein (Sigal et al. 2015). An in-house example of a 
case study illustrating the 3D juxtaposition of two key 
pre- and postsynaptic proteins, both in excitatory and 
in inhibitory synapses, is shown in Figure 1. Whilst 
such approaches cannot achieve spatial resolution of 
EM, they could reveal the 3D distribution of individual 
protein molecules on a larger, contiguous scale, the task 
unattainable by EM techniques.

Combining synaptic plasticity and SR imaging

Recent reviews discussed the necessity of correlating 
electrophysiological recording at the single synapse level 

with SMLM to unveil the plastic pre- and postsynaptic 
organisation (Compans et al. 2016; Hosy et al. 2014). 
Several recent studies have assessed the dynamic 
changes of receptor clustering after synaptic stimulation. 
For example, during long-term potentiation of inhibitory 
transmission (iLTP), gephyrin is accumulated at 
inhibitory synapses and in turn leads to increased 
numbers of synaptic GABAA receptors (Petrini et al. 
2014). This was further investigated by the same group 
using SR techniques (Pennacchietti et al. 2017). The 
researchers found that the nanoscale organisation of 
inhibitory synaptic proteins as an important determinant 
for inhibitory synaptic plasticity, thus adding a further 
level of complexity to the regulation of the neuronal 
network activity by plastic inhibitory synaptic signals 
(Pennacchietti et al. 2017). Moreover, Lu et al. used 
PALM and STORM to investigate the trafficking of 
CamKII in spines and revealed that the protein exists 
in three kinetic states: slow (interaction with immobile 
substrates), intermediate (binding to actin) and fast 
(CamKII alone). Stimulation of NMDARs slowed down 
these diffusion rates (Lu et al. 2014). Moreover, the 
phosphorylation of AMPARs by CamKII is crucial for 
P2X2-mediated AMPAR internalisation and ATP-driven 
synaptic depression (Pougnet et al. 2016; Pougnet et 
al. 2014). Moreover, Smith el al. found that ankyrin-G 
accumulates in spines after induction of chemical LTP 
and its knockdown prevented spine head enlargement 
(Smith et al. 2014). Chemical LTP also induces MMP-
dependent enlargement of a subset of small spines and 
immobilisation, synaptic accumulation and clustering 
of AMPARs at spines (Szepesi et al. 2014). Furthermore, 
the cell adhesion molecule SynCAM 1 displayed 
increase in nanodomain size in long-term depression 
(Perez de Arce et al. 2015) and ephrin B3 was found to 
regulate the localisation of PSD95 to stable synapses 
and in stable nanodomains (Hruska et al. 2015). A 
recent publication revealed trans-synaptic nanocolumns 
that regulate the positioning of pre- and postsynaptic 
scaffolding proteins (Tang et al. 2016). The researchers 
found that the presynaptic protein RIM1/2 clusters in 
a very similar way to the postsynaptic nanoclusters 
that have been identified for PSD95 earlier (Broadhead 
et al. 2016; Fukata et al. 2013; MacGillavry et al. 2013; 
Nair et al. 2013) and that both nanodomains co-align 
across the synaptic cleft. Moreover, after LTP induction 
these nanocolumns remain with an increase in PSD95 
clusters. This was the first study that provided proof for 
a trans-synaptic organisation of scaffolding molecules. 
However, the parameters and events that mediate this 
clustering remain still to be discovered. A recent elegant 
study combined PALM and optogenetics (Sinnen et al. 
2017). Through optogenetically controlling the insertion 
of PSD95 molecules and hence AMPARs into established 
PSDs the researchers found that simple insertion of 
the receptors was not enough to drive potentiation 
of the synapses (Sinnen et al. 2017). Therefore, more 
complex changes in the nanodomain composition and 
characteristics are required for spine maturation and the 
gating of synaptic strength.
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Concluding remarks

Several elegant studies have shed light on the nanoscopic 
events pertinent to synaptic plasticity, which were not 
possible to visualise without the advent of SR technology. 
However, most studies detailed here were conducted in 
cultured cells or fixed brain sections. Even though these 
results are undoubtedly very important the ultimate 
goal should be to achieve imaging in thick organised and 
living tissue. Some groups have already achieved this 
(Berning et al. 2012; Chen et al. 2014; Gao et al. 2012; Urban 
et al. 2011). Unfortunately, achieving SR in native tissue 
poses many difficulties such as restricted optical access, 
sample movement, or optical aberrations induced by the 
specimen. One way around these difficulties is adaptive 

optics (Booth et al. 2015), which improves the signal-
to-noise ratio, axial resolution, the depth penetration 
as shown using in vivo two-photon excitation imaging 
(Ji et al. 2012; Rueckel et al. 2006; Wang et al. 2014) or 
STED (Gould et al. 2012; Patton et al. 2016). Further 
improvement to perform reliable multi-colour imaging 
will be important. Also, recreation of SPT work using 
SR in thicker tissue will be more relatable to physiology. 
3D super-resolution microscopy can now effectively 
be employed in many laboratories using custom build 
or commercial microscopes; revealing structures way 
below the diffraction limit of light (Heller et al. 2017; 
Huang et al. 2008; Juette et al. 2008). The development 
and adaption of novel SR techniques such as qPAINT 
(Jungmann et al. 2016), integrating exchangeable single-

Figure 1. Nanoscopy of synaptic organisation in the hippocampus: a case study. (A) dSTORM images of 40 µm hippocampal sections in 
area CA1 (500 g male rat) imaged in a photoswitching buffer containing 100 mM cysteamine and oxygen scavengers (glucose oxidase 
and catalase) (Metcalf et al. 2013). Recorded with a Vutara 350 microscope (Bruker Corp., Billerica, US-MA) based on the single molecule 
localization (SML) biplane technology (Juette et al. 2008; Mlodzianoski et al. 2009). The microenvironment of individual synapses shown 
labelled with PSD95 (CF568-tagged, Novus NB300-556, red) and vesicular glutamate transporter vGluT1 (Alexa647-tagged, Merck 
Millipore AB5905, magenta) at a low magnification field of view. (B) One synaptic environment selected from the field of view (yellow 
dotted square in A) shown at higher magnification, at z-axis and x-axis projections, as indicated by arrows; separate and combined images 
of the two channels are shown. (C) dSTORM image depicting the microenvironment of inhibitory synapses labelled for gephyrin (CF568-
tagged, SynapticSystems 147 021, red) and vGAT (Alexa647-tagged, SynapticSystems 131 004, magenta). Other conditions, settings and 
notations as in A. (D) One synaptic environment selected from the field of view (yellow dotted square in C) shown at higher magnification. 
Other notations as in B. 
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molecule localization (IRIS) (Kiuchi et al. 2015), 4Pi 
single-molecule switching nanoscopy (Huang et al. 2016) 
and improvements such as the use of photoactivatable 
genetically encoded calcium indicators (Berlin et al. 2015), 
nanobodies (Pleiner et al. 2015), aptamers (de Castro et 
al. 2016), monomeric streptavidin for labelling (Chamma 
et al. 2017), or using the pore-forming bacterial toxin 
streptolysin O to label intracellular proteins in living 
mammalian cells for SR microscopy (Teng et al. 2016; Teng 
et al. 2017) will increase the resolution of these approaches 
even further to reveal even more intricate events. Also the 
recent invention of expansion microscopy (Chen et al. 
2015; Chozinski et al. 2016; Tillberg et al. 2016) will make 
SR more affordable for many laboratories.
In future work, it will be important to elucidate the 
positions, clustering and general distribution patterns 
for the molecule of interest. The exciting new imaging 
techniques will help to reveal the nanoscale relationship 
in the tri-partite or tetra-partite synapse (Dityatev and 
Rusakov 2011). Recently, STED has been applied to 
image the tripartite synapse, focusing on plasticity of fine 
astrocytic processes (Panatier et al. 2014). Knowing the 
exact localisation and organisation of synapse-related 
molecules on neurons and glia cells will provide further 
information on the molecular mechanisms that govern 
plasticity of brain circuits, and may also offer novel insights 
into the development of new therapeutic strategies. 
SR imaging has already been applied to study disease 
models, such as Alzheimer’s (Schedin-Weiss et al. 2016; 
Siskova et al. 2014), intellectual disabilities (Barnes et al. 
2015; Wijetunge et al. 2014), amyotrophic lateral sclerosis 
and frontotemporal dementia (Schoen et al. 2015). The 
new discoveries should help to translate these findings 
into the search of therapeutic intervention pertinent to 
human physiology.
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