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A percolation model for the 
emergence of the Bitcoin Lightning 
Network
Silvia Bartolucci1,4, Fabio Caccioli2,4,5 & Pierpaolo Vivo3*

The Lightning Network is a so-called second-layer technology built on top of the Bitcoin blockchain to 
provide “off-chain” fast payment channels between users, which means that not all transactions are 
settled and stored on the main blockchain. In this paper, we model the emergence of the Lightning 
Network as a (bond) percolation process and we explore how the distributional properties of the 
volume and size of transactions per user may impact its feasibility. The agents are all able to reciprocally 
transfer Bitcoins using the main blockchain and also – if economically convenient – to open a channel on 
the Lightning Network and transact “off chain”. We base our approach on fitness-dependent network 
models: as in real life, a Lightning channel is opened with a probability that depends on the “fitness” of 
the concurring nodes, which in turn depends on wealth and volume of transactions. The emergence of a 
connected component is studied numerically and analytically as a function of the parameters, and the 
phase transition separating regions in the phase space where the Lightning Network is sustainable or 
not is elucidated. We characterize the phase diagram determining the minimal volume of transactions 
that would make the Lightning Network sustainable for a given level of fees or, alternatively, the 
maximal cost the Lightning ecosystem may impose for a given average volume of transactions. The 
model includes parameters that could be in principle estimated from publicly available data once the 
evolution of the Lighting Network will have reached a stationary operable state, and is fairly robust 
against different choices of the distributions of parameters and fitness kernels.

Bitcoin, the pioneering cryptocurrency, has brought about an unprecedented revolution in the payment indus-
try1. Despite its traction and success over the last ten years, the original blockchain – the technological infra-
structure underlying Bitcoin – suffers from some limitations that may hinder the future growth and adoption of 
the cryptocurrency. One of the major issues is the scalability of the system: the current number of transactions 
validated via this platform is between 3 and 7 transactions per second, compared for instance to thousands of 
transactions handled by the Visa circuit2. The lack of scalability is mainly caused by constraints on throughput 
of transactions, with the block size fixed at 1MB, and by the high latency – with a new block created on average 
only every ten minutes. Those limitations are imposed to safeguard the security of the platform against malicious 
attacks and are difficult to relax without major changes in the protocol.

The main solutions proposed to address the scalability issue include (i) changes to the main protocol (con-
sensus algorithm, parameters) and (ii) sidechains and second-layer solutions (see3 for a recent technical review). 
Notable examples of type-(i) solutions include new consensus protocols, which would allow a faster issuance of 
new blocks among other new features4. Sidechains are blockchains “connected” to the main Bitcoin blockchain 
such that Bitcoins can be transferred bidirectionally between the main and side blockchain5. At the same time, 
sidechains are completely separate ecosystems whose technical features or issues would not be shared with the 
main blockchain. The Lightning Network (LN), instead, is a so-called second-layer technology built on top of the 
Bitcoin blockchain to provide “off-chain” fast payment channels between users6. By off-chain we mean that not 
all transactions are settled and stored on the main blockchain. In a nutshell, the idea of a Lightning channel is the 
following: two parties lock the same amount of money as collateral and open a channel for a certain period of 
time. During this time, they can then exchange money back and forth through the channel, and only the netted 
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transaction will be eventually validated and stored on the main blockchain. If one party is malicious and does 
not correctly update the balance, the other can keep the collateral posted by the malicious party, as a form of 
insurance. Any two users can open a channel and all other participants can use one or more existing channels to 
route transactions off-chain upon payment of a fee to channel “owners”. The scalability problem could be solved 
if a sufficient number of channels were opened, implying that the Lightning Network spans across the whole pool 
of users of the main blockchain.

The Lightning Network topology is, indeed, relevant to understand the resilience of the system to attacks or 
random failures and its robustness. Measures of the network structure based on empirical data – such as degree 
distribution, assortativity, shortest paths length – provide an indication of the efficiency of payments’ routing and 
features of the system (i.e. average number of channels per user, clusters and communities, etc.)7. Experiments 
on random or targeted nodes removal from the network give information on the system resilience by monitoring 
when the original network is broken into multiple isolated clusters8–10. In the Lightning Network case, it has been 
shown that some types of targeted attacks – aimed at consuming, for instance, the channels’ liquidity of specific 
nodes – may yield severe consequences for the resilience of the network in terms of average payment flow and 
reachability11.

The topology of the network is in turn driven by users’ economic incentives to relay transactions “off-chain”. 
Moreover, as the Lightning fees are set by channels’ owners, an important question is how high such fees should 
be set in order to guarantee profits, while providing at the same time the right incentives for Bitcoin users to par-
ticipate in the Lightning Network. In a recent work on simple network topologies (i.e. bidirectional channels and 
star graphs), the authors have estimated the demand for transactions on the main Bitcoin blockchain compared 
to the LN, the level of LN fees that would cover maintenance costs of the channel and their implication for the 
overall network security12. Indeed, transacting on the Lightning Network might impact the security of the main 
blockchain network by inducing a decrease in the amount of fees collected by the miners for the validation of 
blockchain transactions. Moreover, LN’s transaction fees have been empirically studied using a traffic simulator13.

Fees on the main blockchain are used as incentives to miners (i.e. nodes capable of validating transactions and 
generating new blocks) to contribute to the security of the platform. The blockchain security is associated with 
the platform’s decentralization, hence to the miners’ total computing power14,15. Normally, users “compete” to set 
up the minimal fees that would ensure their transaction to be validated within a given timeframe, as miners try 
to maximize the total amount of fees per block. A strand of the literature has been investigating the Bitcoin fee 
set-up mechanisms, the miners’ incentives and their potential correlation with risks of attacks and manipulation 
of the transaction history. In16 the authors use a game-theoretic model to investigate the factors influencing the 
value of Bitcoin fees, while in17 they also examine the interplay between fees and security of the platform, theo-
retically showing that the current fee model may not be sustainable in the long run. Alternative fee mechanisms 
have also been proposed, for instance based on auction models16, and compared with the existing one to highlight 
weaknesses and possible improvements.

The Bitcoin ecosystem has been already extensively investigated using approaches based on complex net-
works. The transactions network has been studied to understand latency issues and propagation mechanisms 
in peer-to-peer systems18 and inefficiencies of the process of permanent inclusion of the transactions on the 
blockchain19. Global and local structural properties of the users’ network in Bitcoin have also provided insights on 
boom-and-bust events20 and Bitcoin price dynamics21. Moreover, data on users’ behaviour and spending patterns 
have been used to understand the global state of the crypto-economy22 and the drivers of the growth of the net-
work23. More generally, our paper taps into the growing literature on quantitative investigations of the cryptocur-
rencies landscape, including models of pricing and adoption of tokens24–27, analysis of the market structure28–34, 
price prediction based on sentiment and social interactions35–43, dynamical analysis of informational efficiency44, 
and centralization of the Bitcoin economy45.

In this paper, we investigate under which conditions in terms of blockchain and Lightning fees, average wealth 
and volume of transactions per user, a Lightning Network that spans a sizeable fraction of Bitcoin users – thus 
solving the scalability problem – emerges. We model the emergence of the Lightning Network as a (bond) per-
colation process on a graph, exploring how different conditions may impact its feasibility46. In particular, we 
consider fitness-dependent network models47–50 where the probability of creating a new edge depends on intrinsic 
node features collectively denoted node fitness. In the LN case, the node fitness will be defined in terms of the 
node wealth and activity (i.e. volume of transactions). The viability of the Lightning Network will be characterized 
in terms of the presence (or not) of a giant connected cluster of nodes: a non-fragmented network would, indeed, 
guarantee a smooth relay of payments and information between users and will incentivize off-chain transactions. 
Our model depends on parameters that can be all obtained – or at least estimated – from publicly available data, 
and is fairly robust against different choices of distributions of parameters and fitness kernels.

The paper is organized as follows. In the following section we provide a quick overview of the main Bitcoin 
blockchain and the main ideas behind LN. In Section “Model setup” we describe our model and provide the 
relevant theory, which is then applied to two specific wealth distributions (uniform and exponential) in the sub-
sections “Uniform wealth distribution” and “Exponential wealth distribution”, respectively. In the “Results” sec-
tion, we discuss the results of numerical simulations, and we provide some conclusions and outlook in Section 
“Discussion”. The Appendices are devoted to technical aspects of percolation theory on networks and are included 
to make the paper self-contained.

The Bitcoin blockchain and Lightning Network.  In this section, we summarize the main features of the 
Bitcoin main blockchain and Lightning Network payment layer. The Bitcoin blockchain is a distributed, shared 
ledger that immutably records transactions among peers in the network1,14. Transactions are bundled in blocks 
and chained together via cryptographic primitives to ensure that any change at any point in the transaction his-
tory would invalidate the full record. Transactions are validated for correctness, temporarily stored in memory 
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pools and then arranged in the blocks data structure by miners: multiple miners compete using computational 
power to validate the next block of the chain – and therefore earn the associated reward for the service and trans-
actions’ fees–according to the Proof-of-Work consensus algorithm. Depending on the usage of the network and 
due to limitations in block size, waiting times can peak around 30 minutes (while the typical range is around 6–8 
minutes), while blockchain fees per transaction exhibit a broad range of variability, from a few cents to 40–50 
USD (data taken from https://www.blockchain.com/charts).

The idea behind the creation of the Lightning Network6 is, therefore, to devise a network for frequent and 
fast micro-transactions that can be performed at low transactions fees. The basic components of the Lightning 
Network are payment channels (schematically shown in Fig. 1, panel A), enabling trustless transfers between 
users. In the typical payment channel implementation, a theoretically unlimited amount of payments can be 
made, with only two transactions broadcast on the blockchain. In addition to a reduction of the number of block-
chain transactions and associated costs, payment channels also offer the advantage of speed and, importantly, the 
ability of users to recover their funds if one of the parties is malicious.

A channel is established between two parties by locking an initial amount of funds, for instance m Bitcoins for 
each user, on the main blockchain, which represents the maximum amount of Bitcoins that can be transferred 
over the channel. Funds are locked on so-called 2-of-2 multisignature addresses14, which can be unlocked upon 
providing the signature of both interested parties. For instance, user A wishes to send r Bitcoins to user B: she 
signs a transaction, sends it to B, who will sign it and send it back to A. Only the first transaction is recorded on 
the main blockchain. At each time step in the lifetime of the channels, the users keep sending back and forth 
signed transactions that can be at any point consensually broadcast on the main blockchain to close the channel 
and redeem the net amount of funds. To prevent fraudulent behavior, for instance user B not acknowledging the 
receipt of a payment from A, a refund option is always included in any exchange. The refund option can be uni-
laterally unlocked and submitted to the blockchain after a certain amount of time t has elapsed from the moment 
the channel was first established. Every new refund option is indeed signed by both parties, signaling therefore 
that they are in agreement with the terms of the refund, which may be exercised unilaterally at a later time. In the 
worst-case scenario, one party would simply submit the original refund transaction created contextually with the 
opening of the channel.

Payments can be relayed via the Lightning Network also if two parties are not directly connected via a 
Lightning channel, if there exists a path indirectly linking them via existing channels owned by third parties. 
Exploiting an existing path to route the payments may often prove more convenient as the two interested parties 
need not open a new channel, therefore saving the associated costs in blockchain fees. Channels’ owners are 
indeed owed “routing fees” to allow payments through their channel, but at the moment those fees are very com-
petitive (~4 orders of magnitude less than the Bitcoin blockchain, data taken from https://1ml.com/statistics and 
https://bitcoinfees.info). In Fig. 1, Panel B we show an example of an indirect routing path between user 1 and 4. 
One of the biggest issues of the Lightning Network is the limitation in liquidity. Payments are made by effectively 
having intermediaries forwarding collateral across multiple channels: this means that if party 1 is transferring ℓ 
Bitcoins to party 4, each relaying channel needs to have at least ℓ Bitcoins available in the direction of the payment.

To prevent dishonest behavior in the transfer from party 1 to 4 via party 2 and 3 (see Fig. 1, Panel B), Party 1 
will lock the Bitcoins with a secret key known only by the receiver: when party 4 receives the Bitcoins from party 
3, the secret is revealed and every player can collect their coins and fees14.

Figure 1.  Panel (A): Scheme of a payment channel between party A and B, including opening and closing 
transactions settled on the main blockchain, and intermediate transfers handled off-chain on the Lightning 
Network. Initially, the two parties lock m bitcoins each, plus the fee φ that would cover broadcasting on the 
main blockchain. At each time step t, users exchange an amount α(t)r and update their balances accordingly, by 
sending each other redeemable receipts without committing them on the main blockchain. Only when the two 
parties agree that the channel is no longer needed, they settle the net balance of funds on their original Bitcoin 
addresses. Panel (B): Scheme of payments routing on a Lightning Network: even if party 1 and 4 are not directly 
connected via an existing LN channel, they can route their payments through other parties (upon payment of a 
fee) by choosing a suitable cryptographic lock for the Bitcoins.
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Model Setup
In this section, we model the emergence of the Lightning Network as a (bond) percolation process. We consider 
N agents, who are all able to reciprocally transfer Bitcoins using the main blockchain and – if economically con-
venient – to open a channel on the Lightning Network and transact “off chain”. We introduce the node capacity (or 
wealth) wi of node i, a random variable extracted from a pdf Π(w), which is proportional to the maximum amount 
of Bitcoins that node i can lock in a Lightning channel it partakes in. We will consider two explicit examples for 
the wealth distribution (uniform and exponential) in the following, with qualitatively similar results.

Two nodes are more likely to open a Lightning channel if they expect to submit a large number of transactions 
over a given period of time. Therefore, we introduce for each node i a quantity ℓi that represents its “activity” in 
terms of the average number of transactions node i sends through each channel in the network. The average num-
ber of transactions is also a random variable extracted from the discrete distribution Π� �( ) over non-negative 
integers. We also include the costs associated with transacting over one of the two networks (main blockchain 
only or blockchain and Lightning). These costs can be fixed per transaction (base fee) or can be calculated as a 
percentage of the value transferred (fee rate). 

•	 c, Lightning channel maintenance/usage base fee: Using the LN channel provided by an operator or other 
users to transfer coins carries an associated LN fee. Opening a channel has also maintenance costs (fee setup, 
market and nodes monitoring, connections) and costs related to locking Bitcoins and providing liquidity in 
the channel.

•	 φ, main blockchain fee rate: We assume that a fraction φ of the value transferred in each transaction needs to 
be paid by the sender to have it included in blocks and validated by miners.

The probability of opening a new LN channel between two nodes pij
LN can be modeled as a function of (i) the 

costs associated with opening the LN channel (if the costs are significantly smaller than using the Bitcoin block-
chain, there is an incentive for the users towards opening the channel), (ii) users’ affinity (the more likely are users 
to transact over a period of time τ, the higher the benefits of opening a channel), (iii) the wealth of the nodes 
(nodes wishing to open a LN channel have to lock a minimal amount of Bitcoins on the main blockchain as 
collateral).

The growth of the Lightning Network can be modeled as a bond percolation process on a set of N nodes repre-
senting Bitcoin users. The edges then represent new Lightning channels being opened. In particular, we construct 
the bond percolation model considering fitness-dependent networks47–50. In fitness models, the network topology 
is determined by (i) an attachment kernel f(x, y), describing the probability that a node with fitness x will connect 
to a node with fitness y, and (ii) the distribution of fitness ρ(x) across nodes.

The network we consider has a fixed number of nodes N – corresponding to all Bitcoin users that may decide 
to switch to the LN – and is sparse, i.e. the number M of edges is M ≪ N2. If we consider node i and j having fitness 
xi and xj respectively, a LN channel, i.e. an edge between them, is added with probability 

~= .p f x x N( , ) (1/ ) (1)ij i j
LN 

The resulting network is undirected if f(x, y) = f(y, x), which is a sensible requirement: indeed, opening a LN 
channel between two nodes will require a “symmetric” commitment from both nodes to lock Bitcoins on the 
main blockchain. In our model, we will consider bond percolation only: number and “state” of the nodes (e.g. 
occupied/unoccupied or infected/susceptible) will not change.

In the context of the LN network, we define the fitness xi of node i as the simplest increasing function of both 
capacity and volume of transactions, i.e.

= +x w ( 1), (2)i i i

where wi represents the wealth of the node, and ℓi + 1 ≥ 1 its “activity” in terms of number of transactions 
expected to be sent through the channel. Note that we assume that all nodes are potentially active, xi > 0 for all i. 
As in48, we consider the fitness to be defined in the interval [0, ∞).

Given this definition of the node fitness, the fitness distribution can be calculated from the wealth and activity 
distributions, Π(w) and � �( )Π  respectively, as 

� � �
�
∑ ∫ρ δ= Π Π − + .

≥

∞
x w w x w( ) ( ) d ( ) ( ( 1))

(3)0
0

If we imagine links are added one at a time at a given rate, from the kernel f(x, y) we can derive the probability that 
a node with fitness x increases its degree by one as47

∫
λ

ρ

κ
=

∞

x N
N

yf x y y
( , ) 1 d ( , ) ( )

, (4)
0

where ~N (1)κ  is the average degree of the network with N nodes, with 

∫ ∫κ ρ ρ= .
∞ ∞

x y x y f x yd d ( ) ( ) ( , ) (5)0 0

We also define λ(x) = Nλ(x, N) and rewrite it as 
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x yf x y y( ) 1 d ( , ) ( ) (6)0∫λ
κ

ρ= .
∞

Note that λ(x) clearly satisfies the following normalization condition 

x x x( ) ( )d 1 (7)0∫ λ ρ = .
∞

The degree distribution P(k) for large N is given by 

∫ ρ
κλ

=
κλ∞ −

P k x x N x
k

( ) d ( ) e [ ( )]
!

, (8)

N x k

0

( )

whose average degree is κ=⟨ ⟩k N , as shown in detail in Appendix A.
In the following, we will assume that the activity distribution is Poisson with average n, � � ��n n( ) exp( ) / !Π = − , 

and that the connectivity kernel models the effects of blockchain and LN fees as follows 

f x y
N

x c y c( , ) ( ) ( ), (9)
μ φ φ= Θ − Θ −

where Θ(z) is the Heaviside step function. The interpretation of this kernel is as follows: agent i expects to interact 
with μ other agents, which we assume for simplicity to be chosen randomly.

The probability of interacting with a given agent j is equal to μ/N for all j. Agent i wishes to transfer an amount 
wi(ℓi + 1) (corresponding to ℓi + 1 transactions of size wi) to each of them, and is willing to open a Lightning 
channel if the cost of maintaining it (c) is lower than the cost of transferring the money through the blockchain 
(wi(ℓi + 1)φ). The same considerations apply to its counterpart j.

We define 

∑ φ= Θ −+
=

N x c( )
(10)i

N

i
1

the number of nodes with “high” fitness, for whom it is economically viable to engage in a LN. Note that N+ is a 
random variable, which depends on the realization of the fitnesses. We define the average fraction ⟨ ⟩f N N/=+ + .

The network constructed via the sequential deposition of links (as described above) may undergo a percolation 
transition46,47,51,52 as a function of f+, such that – beyond a critical value of f+ – a giant connected component of NC 
nodes emerges, whose fractional average size ⟨ ⟩S N N/C=  remains finite as N → ∞. We stress that in any fixed 
instance NC ≤ N+, since some high-fitness nodes may still not engage in LN (see Fig. 2). In our language, this con-
nected component represents the set of nodes that not only do exploit Lightning channels to exchange wealth off-chain 
between nearest neighbors, but may also transfer wealth to any “distant node”, routing the transaction via connected 
paths. It is therefore of paramount importance to understand under which conditions on the average wealth, average 
volume of transactions, and routing fees, this transition may happen, and what finite fraction of nodes will it involve.

With the choice of the kernel in (9), the topology of the resulting Lightning Network of N+ nodes is that of an 
Erdős-Rényi (E-R) graph with average degree equal to f (1)μ + ~ . At odds with the standard model of E-R 
graphs, in our case the size of the graph N+ is itself a random variable, which depends on the parameters of the 
model. In fact, once f+ has been obtained, the model can be mapped onto a site percolation problem on random 
networks, where each node is occupied with probability f+, and the emergence of a viable Lightning Network 
corresponds to the emergence of a giant component of occupied nodes53.

Figure 2.  Schematic representation of the emergence of the connected component among fit nodes, below (left) 
and above (right) the percolation threshold. Light blue triangles represent nodes whose fitness is smaller than 
c/φ, while dark blue circles represent “high-fitness” nodes with x > c/φ. N is the total number of Bitcoin users, 
N+ is the fraction of “high-fitness nodes” (see Eq. (10)) and NC is the fraction of high-fitness nodes belonging to 
the giant connected component.
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The relevant percolation theory is summarized in Appendix B to make the paper self-contained.

Uniform wealth distribution.  We now take Π(w) – the pdf of wealth across nodes – as uniform in the 
interval [0, w0]. Hence, we have 









∑ ∫ρ δ= − +
≥

−
x n w

w
x w( ) e

!
d ( ( 1)) ,

(11)
u

n w( )

0
0 0

0

where the superscript (u) refers to uniform wealth distribution. Simplifying we obtain 
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where a x t t( , ) e d
x

a t1∫Γ =
∞ − − , and ⌈ ⌉z  denotes the smallest integer larger than z. In this case, it follows from (6) 

and (9) that 

x
f
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u
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+

where 
+f

u( ) is the average fraction of high-fitness nodes and is given by 
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 (which may also be 
negative). Therefore 
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The evaluation of P(u)(k) from (8) requires some care, as λ(u)(x) is zero if x < c/φ. Splitting the integration region, 
we get 

( )

( )
P k x x

f

k
x x

f f
f

k

( ) d ( )
e

!
d ( )

(1 )
e

! (17)

u
k

c u
f u k

c

u

u
k

u
f u k

( )
,0

0

/ ( )
( )

/

( )

( )
,0

( )
( )

u

u

( )

( )

∫ ∫δ ρ
μ

ρ

δ
μ

= +

= − +

.

φ
μ

φ

μ

−
+ ∞

+ +

−
+

+

+

The interpretation of (17) is quite neat: on average, the network contains a fraction 1 − f+ of isolated (low-fitness) 
nodes, and a fraction f+ of high-fitness nodes that may (or may not) partake in the LN, establishing sparse ran-
dom connections with an average of μf+ other high-fitness nodes. Computing now the generating function (35)

μ= − + −+ + +G s f f f s( ) 1 exp( ( 1)), (18)
u u u u

0
( ) ( ) ( ) ( )

it follows from Eq. (36) that 

G s G s

G
f s( ) ( )

(1)
exp( ( 1))

(19)

u
u

u
u

1
( ) 0

( )

0
( )

( )μ= = − .+

′

′

The general theory (see Appendix B, in particular Eq. (54)) then implies that the equation determining 0 <ξ   ≤ 1 
is 

 fexp[ ( 1)] (20)
u( )ξ μ ξ= − .+

The average size of the giant component thus reads from Eq. (53)
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ξ= − +S f(1 ) , (21)
u u( ) ( )

and the condition in Eq. (51) for the giant component to appear is 

μ > .+f 1 (22)
u( )

The interpretation of this condition is fairly obvious: the giant connected component can only arise if “fit” nodes 
open on average more than one channel with other fit nodes (see Figs. 3 and 4).

Exponential wealth distribution.  We now take Π(w) to be the exponential pdf with mean w0. The fitness 
distribution now becomes 





 









∑ ∑∫ρ δ= − + =
+

.
≥

− ∞ −

≥

− −
+x n w

w
x w

w
n( ) e

!
d e ( ( 1)) 1 e

!( 1)
ee

n w
w

n x
w( )

0
0 0 0 0

( 1)0 0

As in the uniform wealth case 

λ φ= Θ −
+

x
f

x c( ) 1 ( ),
(23)

e
e

( )
( )

where this time f e( )
+

 reads 









∑∫ ∫ρ φ= = Θ + −
φ+

∞

≥

− ∞ −f x x
w

n w w cd ( ) 1 e
!

d e ( ( 1) / ) ,
(24)

e

c

e
n

w w( )

/

( )

0 0
0

/ 0

which requires 1c
w

≥ 


− 
φ



. Therefore, 

∫= −
Γ 





Γ 





φ

φ

+

∞ − ( )
( )

f
w

w
n

1 1 d e
,

,

(25)

e w w

c
w

c
w

( )

0 0

/ 0

where z⌈ ⌉ denotes the largest integer smaller than z. As in the uniform-wealth case 

( )
P k f f

f

k
( ) (1 )

e

! (26)
e e

k
e

f e k

( ) ( )
,0

( )
( )e( )

δ
μ

= − + .
μ

+ +

−
+

+

Now, consider the solution 0 <  η  ≤ 1 of 

 η μ η= − .+fexp[ ( 1)] (27)
e( )

Then, the average size of the giant component reads 

S f(1 ) , (28)
e e( ) ( )η= − +

and the condition for the giant component to appear reads μ >+f 1e( )  (see Fig. 5).

Results
We present numerical simulations on networks of N = 5 ⋅ 104 nodes, generated by sequential deposition of links 
with probability as in Eq. (1), using the kernel in Eq. (9). In Fig. 3, where we use a uniform distribution of wealth 
with average w0 = 1, 2, we plot the average size S(u) of the connected component as a function of n, the average 
volume of transactions to be deployed on the LN, for varying values of the fees ratio c/φ. Fixing a certain average 
fraction S(u) of nodes – which can reach each other via a connected LN path – and increasing the ratio c/φ between 
the LN and main-blockchain fees, we observe that a larger average volume of LN transactions is required to make 
the off-chain network financially sustainable. Increasing the average wealth w0 would push the curves upwards: as 
more liquidity becomes available across nodes, more and more players may get involved in the LN for the same 
level of routing fees. In Fig. 4, the average size S(u) of the connected component is plotted instead as a function of 

+f
u( ), the fraction of high-fitness nodes, for different values of μ, showing that the transition value between S = 0 

and S > 0 happens at 1/μ as predicted by the condition in Eq. (22). In Fig. 5, we observe qualitatively the same 
phenomenon, this time for an exponential distribution of wealth.

To find the size of the largest connected component, we use a breadth-first search algorithm54: starting from 
a source node s, we label it as belonging to cluster #1. We then explore its neighborhood and assign all nodes 
reachable from s to cluster #1 as well. The algorithm proceeds recursively until either the whole network has been 
labelled, or no unlabelled nodes can be further reached. In the latter case, we select another random source among 
the unlabelled nodes, assign it the label #2, and restart the procedure to find another cluster. At the end, all disjoint 
clusters have been identified, and their size recorded. In our plots, we monitor the size of the largest cluster.
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In Fig. 6, we plot the phase diagram in the (φ, c) plane for the uniform wealth distribution model (very similar 
results are obtained for the exponential wealth distribution, not shown). The colors from blue to yellow represent 
(from low to high) the values of n , the minimal average volume of transactions that need to be deployed to make 
a LN financially viable for a given value of LN and main-blockchain fees, c and φ, respectively. We observe a tran-
sition between two regimes, signalled by the red line: one (region 1) where the LN fees are sufficiently low (com-
pared to main-blockchain fees) that any volume of transactions (however low, n 0=  strictly) can be transferred 
off-chain and still be financially viable, the other (region 2) where the LN fees are sufficiently high that agents may 
be discouraged from opening channels and transferring wealth off-chain unless there is a minimal volume of 
transactions to be deployed ( >n 0 strictly). The higher the ratio c/φ, the less convenient it is to open LN chan-
nels for a fixed value of transactional activity.

Figure 3.  Size of the giant component as a function of n for different combinations of the parameters φ, c, w0, μ. 
Simulations with kernel f(x, y) in Eq. (9) and uniform wealth distribution in the interval [0, w0]. Numerical 
results (showed with symbols) have been obtained for a network of N = 5 ⋅ 104 nodes averaging over 5 
independent instances, whereas the theoretical solid line corresponds to Eq. (21). Fixing a certain fraction S of 
nodes – connected via LN – and increasing the ratio c∕φ between the Lightning Network and main blockchain 
fees, we observe that a larger average volume of LN transactions is required to make the system financially 
sustainable. The transition between S = 0 and S > 0 happens at a value of n that we denote n.

Figure 4.  Size of the giant component as a function of 
+f

u( ) (the fraction of high-fitness nodes) varying 
μ = 2, 4, 6 and fixing w0 = 1, φ = 0.5, c = 6. Simulations with kernel f(x, y) in Eq. (9) and uniform wealth 
distribution with parameter w0. Numerical results (showed with symbols) have been obtained for a network of 
N = 5 ⋅ 104 nodes averaging over 5 independent instances, whereas the theoretical solid line corresponds to Eq. 
(21). The transition between S = 0 and S > 0 happens at 1/μ as correctly predicted by the condition in Eq. (22).
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Discussion
In summary, we have presented a simple fitness-based network model for the emergence of a connected set of 
nodes exchanging wealth off-chain, whose average fractional size S remains finite as N → ∞. The percolation 
transition resulting from sequential deployment of edges is studied numerically and analytically as a function of 
a limited set of parameters that we predict will be in principle possible to infer from empirical or synthetic13 data: 
w0 (related to the average wealth jointly owned by the agents), n (the average volume of transactions that can be 
handled off-chain), c, φ (the fees associated with off-chain and on-chain transactions) and μ (the average number 
of channels per node). As a matter of fact, different platforms are currently being offered – but only at a test stage 
– where users can experience the Lighting Network services in a simulated environment. Already at this early 

Figure 5.  Size of the giant component as a function of n for different combinations of the parameters w0, φ, c. 
Simulations with kernel f(x, y) in Eq. (9) and exponential wealth distribution with average w0. Numerical results 
(showed with symbols) have been obtained for a network of N = 5 ⋅ 104 nodes averaging over 5 independent 
instances, whereas the theoretical solid line corresponds to Eq. (28). Increasing w0 for similar values of the ratio 
c/φ makes the nodes wealthier on average, and therefore more likely to engage in a LN: as a consequence, the 
average size of the LN-connected component increases for a given value of average volume of transactions. The 
transition between S = 0 and S > 0 happens at a value of n that we denote n.

Figure 6.  Phase diagram in the (φ, c) plane for uniform wealth distribution in the interval [0, w0 = 1], μ = 20 
and kernel f(x, y) (Eq. (9)). The granularity of the axes is as follows: for the φ-axis, 100 evenly spaced values, 
while for the c-axis, 1200 evenly spaced values. The colors from blue to yellow represent (from low to high) the 
values of the minimal average volume of transactions n  that need to be deployed to make a LN financially 
viable. In region (1) (low ratio between LN and main-blockchain fees),  =n 0 strictly, i.e. for any average 
volume of transactions, a LN connected component is sustainable. In region (2) (larger ratio between Lightning 
and main blockchain fees), >n 0  strictly, implying that a LN is not financially viable unless the volume of 
transactions is sufficiently high. The sharp transition between the two regimes (i.e. the line across which n 
jumps from zero to nonzero values) is highlighted in red in the figure. Since only the ratio c/φ matters in our 
setting, the coloring of sub-regions in (2) is uniform along straight lines. Note also that the different scale 
between the axes is due to the different nature of the blockchain fees: c is a base fee (“absolute” value), while φ is 
a fee rate (“relative” value), as explained in section Model Setup.
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stage in the development of a fully operational payment system, some useful data can be gathered: for instance, 
the platform ‘1ML’ (https://1ml.com/statistics) currently aggregates information about ~10000 nodes sharing 
~30000 channels, with an average capacity per node of ~1000 USD, and a base fee per transaction of around 
0.000072 USD. Similarly, for the Bitcoin blockchain we can gather an estimate of ~0.52 USD as base fee per trans-
action, as well as more accurate figures about number of transactions per day and average transaction values (data 
available at https://www.blockchain.com/en/charts).

The function f(x, y) in Eq. (9) has been selected as the simplest but nontrivial attachment kernel that favors a 
link (i.e. the opening of a Lightning channel) whenever the fitness of both concurring nodes (in terms of 
exchangeable wealth and volume of predicted activity) exceeds a financially viable threshold. We have checked 
that “smoothing” the 0/1- kernel in Eq. (9), e.g. by multiplying the thetas by xy/(1 + xy) or x y1 exp( ( ))− − + , 
has negligible effects on the results, while making the analytical treatment unnecessarily more complicated. 
Similarly, the model is fairly insensitive to the details of the full probability distribution of wealth that is used (see 
however23 for a data-driven analysis of Bitcoin wealth distribution), while being flexible enough to generate a 
desired degree distribution P(k) via a different choice of the attachment kernel f(x, y)55. A percolation transition 
separates a phase where no sustainable LN can be formed, from a phase where the fees being charged, the total 
available wealth and the average activity conspire to make off-chain payments a viable option for a finite fraction 
of the network in the limit N → ∞. The transition is elucidated analytically and numerically, with excellent 
agreement.

In the future, this investigation can be extended in the following ways:

•	 A mechanism for the dynamical update of wealth as more channels are opened and funds are locked may 
be introduced to investigate the liquidity constraints of the network in more detail. Dynamically generated 
wealth inequalities and concentration may be detected by means of centrality measures.

•	 The resilience of the network can be studied under different types of attacks and compared with available 
empirical results7,11.

•	 Different choices of the kernel f(x, y) (e.g. non-factorized) may be also explored. This could lead to net-
works with heterogeneous (heavy-tailed) degree distribution, which seems to be in line with recent empirical 
studies7.

Once the development of the Lightning Network technology and implementation will have reached maturity, 
it will be possible to gather data to calibrate our model, which can serve as a driver for policy changes and as 
guidance for incentive mechanisms design.

Appendix A: Degree distribution P(k)
Following47, the probability pM,N(k|x) that a node in a large undirected graph with N nodes and M ≪ N2 edges has 
degree k given that its fitness is x follows the recursion 

λ λ+ = + − + .+p k x p k x x N p k x x N( 1 ) ( 1 )[1 2 ( , )] 2 ( ) ( , ) (29)M N M N M N1, , ,

The interpretation is easy: the probability of having a node with degree k + 1 after an edge addition (M + 1) is 
equal to the probability that the node already had degree k + 1 times the probability that the new edge does not 
have any of its two terminal points attached to it ([1 − 2λ(x, N)]), plus the probability that the node had degree k 
times the probability that the new edge has one of its two terminal points connected to it (2λ(x, N)).

Multiplying both sides of Eq. (29) by sk and summing over k ≥ 0, we obtain the following equation for 
F s x s p k x( ) ( )M N k

k
M N, 0 ,= ∑ ≥

λ
λ

− = − +
− − .

+ +F s x F s x F s x s x N F x
F x x N

( ) ( ) 2 ( )( 1) ( , ) (0 )
(0 )(1 2 ( , )) (30)

M N M N M N M N

M N

1, , , 1,

,

For large M, Eq. (30) can be rewritten as an ordinary differential equation of the form λ= − +∂
∂

s x N F2( 1) ( , )F
M

λ+∂
∂ =

x N F2 ( , )F
M s 0

, with solution

λ| =






−






F s x M
N

x s( ) exp 2 ( )( 1) ,
(31)M N,

where we recall that we defined Nλ(x) = λ(x, N) and we used the initial condition F0,N(s|x) = 1 that follows from 
the fact that in a network with zero edges, p0,N(k|x) = δk,0.

Taylor-expanding around s = 0 and noting that 2M∕N = Nκ, we obtain the degree distribution conditional on 
the fitness of the node x

p k x N x
k

( ) e ( ( ))
! (32)M N

N x k

,

( ) κλ
= .

κλ−

Marginalizing with respect to x, we eventually obtain the probability that a node has degree k (irrespective of its 
fitness) as 

P k x p k x x x N x
k

x( ) d ( ) ( ) d e ( ( ))
!

( ), (33)M N

N x k

0 , 0

( )

∫ ∫ρ
κλ

ρ= =
κλ∞ ∞ −
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which correctly implies 

⟨ ⟩k kP k N( ) ,
(34)k 0

∑ κ= =
≥

using (7).

Appendix B: Giant component
The generating function of the probability that a node has degree k is denoted by 

∑= .
≥

G s P k s( ) ( )
(35)k

k
0

0

We introduce the generating function G1(s) of the (normalized) probability that by following a randomly chosen 
edge we reach a node with degree k

G s
kP k s

kP k
G s
G

G s
N

( )
( )

( )
( )
(1)

( )

(36)
k

k

k
1

1
1

0

0

0

0∑
∑ κ

= =
′
′

=
′

.≥
−

≥

This is because the node we reach by following a randomly chosen edge has degree distribution kP(k)/Nκ rather 
than just P(k) – since a randomly chosen edge is more likely to lead to a node of higher degree.

We also define the generating function of the number of nodes that can be reached following a randomly cho-
sen edge and that belong to a connected component of size t with size distribution ψ(t)

H x t x( ) ( )
(37)t

t
1

1
∑ψ= .

≥

Moreover, we indicate with H0(x) the generating function of the probability that a randomly chosen node belongs 
to a connected component of size t

∑= .
≥

H x Q t x( ) ( )
(38)t

t
0

1

More precisely Eq. (37) must be interpreted as 

H x t N x( ) lim ( , ) ,
(39)

N
t

N
t

1
1

∑ψ= →∞
=

where ψ(t, N) is the probability that – in a network with N nodes – by following a randomly chosen link, we reach 
a component of size t ≤ N, and similarly for H0(x) in Eq. (38). Assuming that the typical component sizes are 
finite and that the chances of a component containing a closed loop of edges are negligible for sufficiently large 
N, the distribution of components generated by H1(x) can be obtained as follows47,51,52. Let us denote by ζ(t|k) the 
probability that a node with degree k belongs to a component of size t

∑ ∑ ∑ ∏ζ δ ψ=





−




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(40)t t m

k

m
m

k

m
1 1 1 1k1

where δ(a, b) is the Kronecker delta. Indeed, the sum of the sizes of the components that can be reached by 
following the k edges departing from the node must be equal to t − 1, and each of these sizes is drawn from the 
distribution ψ(t).

Marginalizing over the degree distribution, we obtain the probability Q(t) that a randomly chosen node 
belongs to a component of size t as 

∑ ζ= | .
≥
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Computing H0(x) from (38)
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where we have used (35) and (37). The calculation for H1(x) is analogous, with the replacement P k( ) kP k
k P k

( )
( )k

→
∑ ′ ′′

. 
Summarizing, the two equations to be solved together are 
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H x xG H x( ) ( ( )), (43)0 0 1=

= .H x xG H x( ) ( ( )) (44)1 1 1

The average size ⟨t⟩ of the connected components is given from (38) as 

∑= = ′ .
≥

t tQ t H( ) (1)
(45)t 1

0

H (1)0′  can be obtained from (43) as 

H G H G H H(1) ( (1)) ( (1)) (1) (46)0 0 1 0 1 1′ = + ′ ′ .

Note that from (37) it follows that H1(1) = 1 (by normalization of ψ(t)). Similarly, from (35), we have that 
G0(1) = 1 (by normalization of P(k)). Eq. (46) can be therefore simplified as follows 

H G H(1) 1 (1) (1) (47)0 0 1′ = + ′ ′ .

We can then compute ′H (1)1  using (44)

′ = + ′ ′ .H G H G H H(1) ( (1)) ( (1)) (1) (48)1 1 1 1 1 1

As before, we can simplify it using the fact that H1(1) = 1 and that ∣G (1) 1kP k s
kP k s1
( )

( ) 1
k

k

k

1

= =∑

∑ =

−

 (see (36)), 
obtaining: 

H G H H
G

(1) 1 (1) (1) (1) 1
1 (1) (49)1 1 1 1

1
′ = + ′ ⇒ ′ =

− ′
.′

Substituting (49) in (47) yields 

⟨ ⟩t H G
G

(1) 1 (1)
1 (1)

,
(50)0

0

1
= ′ = +

′
− ′

which diverges when 

− ′ =G1 (1) 0 (51)1

or equivalently (using (36)) when G N(1)0 κ=″ , signalling the emergence of the giant component.
When the giant component has formed, H0(x) and H1(x) (see Eq. (37), (38), (39)) become the sum of two 

contributions: one where the sum is restricted to components of size t ~ o(N), and the other restricted to (giant) 
components of size t N( )~  . Assuming that there is only one such giant component, Eq. (38) for x = 1 can then 
be written as 

H S1 (1) , (52)f
0
( )= +

where H (1)f
0
( )  (and similarly H (1)f

1
( ) ) satisfy the equations (43) and (44), as they include ~o(N) contributions for 

N → ∞ coming from components other than the giant one, whereas S = NC/N is the fraction of nodes that 
belong to the giant component.

T﻿herefore (from (43) and (44)) 
ξ= −S G1 ( ), (53)0

where ξ  satisfies 

G ( ) (54)1ξ ξ= . 

Data availability
The code used for the simulations and to generate the synthetic data is publicly available and can be found at 
https://bitbucket.org/sixbit26/lightningnetwork/src/master/.
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