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There are substantial differences in carbon footprints across households. This study 9 

applied an environmentally extended multiregional input-output (MRIO) approach to 10 

estimate household carbon footprints for 12 different income groups of China’s 30 11 

regions. Subsequently, carbon footprint Gini coefficients were calculated to measure 12 

carbon inequality for households across provinces. We found that the top 5% of income 13 

earners were responsible for 17% of the national household carbon footprints in 2012, 14 

while the bottom half of income earners caused only 25%. Carbon inequality declined 15 

with economic growth in China across space and time in two ways: first, carbon 16 

footprints were more similar in the wealthier coastal regions than in the poorer inland 17 

regions; second, China’s national carbon footprint Gini coefficients declined from 0.44 18 

in 2007 to 0.37 in 2012. We argue that economic growth not only increases income levels 19 

but also contributes to an overall reduction in carbon inequality in China. 20 
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Mitigating climate change and reducing inequality are both critical goals for sustainable 23 

development. The seventeen United Nations sustainable development goals (SDGs) include 24 

both taking urgent action to combat climate change and reducing income inequality1. The 25 

carbon footprint, defined as the total carbon emissions caused directly and indirectly by an 26 

individual, organisation, event, or product, has been increasingly used to measure the impacts 27 

of human activity on global warming2, 3. An informed discussion of “fairness” or “justice” in 28 

processes of emissions reduction requires an understanding of the relation between emissions 29 

and income4, 5. Due to differences in income level, local conditions and lifestyle, there are 30 

great disparities in the average carbon footprint of households within and between countries6. 31 

This study aims to provide information to help policymakers understand some of the 32 

interactions and trade-offs between measures targeting inequality, poverty, and climate change 33 

mitigation. We do so by estimating the carbon footprint of different income groups in China. 34 

Climate change mitigation and poverty alleviation provide mutual benefits. On the one 35 

hand, mitigating climate change, through reducing emissions, can have a positive effect on 36 

poverty alleviation7 but might require pro-poor measures8. For example, the clean 37 

development mechanism (CDM) has created jobs for rural areas with a simultaneous increase 38 

in income, which helps the poor9. On the other hand, strategies and policies focused on the 39 

poor are of great significance for achieving emission-reduction targets10, e.g., providing a 40 

daily living wage might have considerable carbon implications11, 12. There is growing 41 

understanding that the increase in income resulting from economic growth is not sufficient to 42 

reduce poverty and inequality if it is not inclusive and if it does not take careful account of the 43 

three key dimensions of sustainable development – economic, social and environmental13. 44 

China aims to consider social equality in its climate change actions by allocating more 45 

responsibilities for climate change mitigation to its wealthier regions14. The government has 46 

targeted a reduction in energy intensity and carbon intensity by 15% and 18%, respectively, 47 

during the 13th five-year period (2016-2020)15, and wealthiest eastern provinces (such as 48 

Beijing, Shanghai, and Tianjin) are required to reduce their energy intensity by 17%, while 49 

the targets in some poorer western provinces (such as Tibet, Qinghai, and Xinjiang) are 10%. 50 

There are also many examples of making climate mitigation pro poor16, especially with regard 51 

to removal of subsidies for fossil fuels17. In addition to studies of taxes and subsidies in 52 

developed countries, the politics of reform efforts in developing regions has been widely 53 

researched18. However, climate change researchers have rarely considered equality at the 54 

household level in China, and this needs to be explored and analysed19. 55 

Many studies have estimated the inequality of carbon emissions at national20 or 56 

sub-national levels21, while studies comparing household level carbon inequality are still 57 

limited22. Hubacek et al.11, 23 estimated the carbon footprints of four household groups in 30 58 

developed countries and 90 developing countries. The results show that the top 10% of 59 

income earners were responsible for 36% of global carbon emissions in 2010, while the 60 

bottom half of global income earners caused only approximately 13%. There are more studies 61 

at the national level. López et al.24 compared the household carbon footprint for eight social 62 

groups in Spain and found that higher income households imported more carbon emissions 63 

compared to lower income households. However, most of the existing research at the national 64 

level is based on single region input-output tables, and thus ignores regional disparities in 65 

income, as well as significant regional differences in production technologies, fuel mix and 66 



economic structure. For example, Wiedenhofer et al.4 measured national inequality of 67 

household carbon footprints across five rural income groups and eight urban income groups in 68 

China. We extended their research from both time and space perspectives, using multiregional 69 

input-output (MRIO) models. Specifically, we utilized the latest socioeconomic datasets to 70 

compile China’s 2012 MRIO table and estimated household carbon footprints for twelve 71 

income groups (five rural and seven urban) in 30 Chinese provinces in 2007 and 2012. The 72 

inequality in the household carbon footprint was quantified with a carbon footprint Gini 73 

(CF-Gini) coefficient. Important findings are that while average per capita carbon footprints 74 

in most poor provinces increased and those in some wealthy provinces declined, carbon 75 

inequality declines with economic growth in China across space and time. Those interesting 76 

conclusions provide policy implications to understand the interactions and trade-offs between 77 

measures targeting inequality and climate change mitigation, which are both critical for 78 

sustainable development and an important focus of the UN SDGs. 79 

 80 

Results 81 

China’s households contributed 34% of the national carbon footprint in 2012 (see 82 

Supplementary Table 1 and Supplementary Table 2 for consumption-based emissions of 83 

China’s 30 provinces). The remainder was induced by government consumption (7%), fixed 84 

capital formation (57%), and inventory change (3%). We don't attempt to attribute to this 66% 85 

to households. 86 

 87 

Carbon footprint. The proportion of carbon footprint attributed to households is relatively 88 

lower in China than developed countries. For example, the household shares of the carbon 89 

footprint in the USA and the UK were 70% and 69%, respectively, in 2012. There are 90 

significant differences in household carbon contributions across provinces in China. In 91 

Guangdong and Shanghai, for example, households were responsible for 48% and 47%, 92 

respectively, of the total carbon footprint in 2012. By comparison, the household shares of the 93 

carbon footprint were only 24% and 27%, respectively, in the two less-developed provinces 94 

Ningxia and Shanxi in western China. 95 

At the national level, China’s household carbon footprints increased by 27% or 2,113 96 

million tonnes (Mt) of CO2 between 2007 and 2012, with 72% of this increase being due to 97 

consumption in urban areas. The household carbon footprint increased much faster in poorer 98 

western regions than in wealthier eastern regions: specifically, it increased by 37%, 32%, and 99 

21%, respectively, in western, central and eastern China. Although western China is relatively 100 

poor compared to eastern China, its growth rates in consumption and gross domestic product 101 

(GDP) have been much faster since the global financial crisis. At the provincial level, the 102 

household carbon footprint increased in most provinces. For example, the household carbon 103 

footprint of Guangxi and Shaanxi, two provinces in western China, increased by 39% and 104 

37%, respectively, while the household carbon footprint in the three most affluent provinces – 105 

Tianjin, Beijing, and Shanghai – decreased by 22%, 6%, and 5%, respectively, mainly due to 106 

the decline (percentage changed in this ratio) in carbon intensity (i.e., CO2 emissions per unit 107 

of economic output) and the effect of outsourcing pollution25. The carbon intensities of 108 

Beijing, Shanghai, and Tianjin declined by 53%, 32%, and 37%, respectively, between 2007 109 

and 2012, and the share of low-carbon goods and services in household consumption 110 



increased in these provinces. Between 2007 and 2012, for example, the proportions of 111 

wholesale and retailing products, and of leasing and commercial services in Beijing’s 112 

household expenditure increased by 2 and 3 percentage points, respectively. 113 

 114 

Per capita carbon footprint. The per capita household carbon footprint varies greatly across 115 

China’s provinces, but wealthy regions usually have a higher per capita carbon footprint than 116 

poor regions. In 2007, the per capita carbon footprint of three affluent eastern coastal 117 

provinces (Tianjin, Shanghai, and Beijing) was over 4.0 tonnes of CO2 (tCO2), while those in 118 

central and western provinces (Hainan, Guangxi, Henan, and Yunnan) were less than 1.0 tCO2 119 

(Fig. 1). For example, the per capita carbon footprint in Beijing, the capital of China, was 4.2 120 

tCO2, which was over five times that in Guangxi, a poorer western province. In 2012, Inner 121 

Mongolia was the province with the highest per capita household carbon footprint (4.4 tCO2), 122 

which was four times that of the smallest one in Jiangxi (1.1 tCO2). Inner Mongolia is a 123 

western province, and its household consumption increased rapidly between 2007 and 2012. 124 

In addition, Inner Mongolia is one of the main providers of coal-fired electricity, which has a 125 

higher carbon intensity. For example, Inner Mongolia provides large amounts of electricity to 126 

neighbouring regions, with 133 billion kilowatt hours (kWh) in net electricity exports in 2012. 127 

China’s national average per capita carbon footprint increased by 23% from 1.6 tCO2 in 2007 128 

to 2.0 tCO2 in 2012. Average per capita carbon footprints in most poorer provinces increased, 129 

while those in some wealthier provinces declined. Overall, China’s regional carbon inequality 130 

declined between 2007 and 2012. We further explored whether conditional convergence exists 131 

in China. Our estimates show that provinces with the lowest per capita carbon footprint in 132 

2007 were the provinces in which the carbon footprint grew the most from 2007 to 2012. By 133 

estimating convergences but differentiating between rural and urban households, results show 134 

that the convergence occurred more rapidly in urban households (see Supplementary Fig. 1). 135 

Urban residents, accounting for 53% of China’s population, induced 74% of the national 136 

household carbon footprint in 2012. The average per capita footprint of urban residents was 137 

2.8 tCO2 in 2012, which was 2.5 times that of rural residents (1.1 tCO2), while the average per 138 

capita expenditure was 2.9 times that of rural residents. Fig. 2 shows per capita carbon 139 

footprint of 12 income groups in 30 of China’s provinces in 2012. The per capita carbon 140 

footprint is much higher for urban residents than for rural residents across all provinces. The 141 

gap in per capita carbon footprints between urban and rural residents is much larger in poorer 142 

western China. For example, the per capita carbon footprint of urban residents in Guizhou 143 

(Fig. 2, row 6, column 5), whose GDP per capita was the smallest in China in 2012, was 2.7 144 

times that of Guizhou’s rural residents. By comparison, the per capita carbon footprints of 145 

urban residents in Beijing (Fig. 2, row 1, column 2) and Shanghai (Fig. 2, row 6, column 3), 146 

two of the most affluent regions in China, were in both cases ‘only’ 1.3 times of the footprint 147 

of their respective rural residents. 148 

It is surprising that the income groups with the highest per capita household carbon 149 

footprint are mostly located in relatively poor provinces (see Supplementary Table 3). Per 150 

capita carbon footprints of very wealthy urban groups in Inner Mongolia, Heilongjiang, and 151 

Xinjiang were 16.9, 10.9, and 10.1 tCO2 in 2012, respectively, which were similar to the 152 

estimated range for the USA (10.4 to 20 tCO2)
4, 26, 27. The per capita household expenditure of 153 

the top 10% in terms of urban income in Inner Mongolia was 45,246 yuan, and even higher 154 



than that of the top 10% of the urban income earners in Beijing (45,190 yuan) and Tianjin 155 

(41,214 yuan). Although the per capita household expenditure of the top 10% of the urban 156 

groups in Inner Mongolia and Beijing was almost equal, the two groups had a large gap in 157 

their per capita household carbon footprints (Fig. 2). This is mainly caused by the differences 158 

in their carbon intensity. The carbon intensity of Inner Mongolia was 149 g/yuan in 2012, 159 

which was the highest among the 30 Chinese provinces and approximately 10 times that in 160 

Beijing (15 g/yuan). One possible reason for this difference is the higher number of heating 161 

days and availability of natural resources influencing the fuel mix28. Additionally, relatively 162 

low administrative efficiency and loose environmental regulations result in high levels of 163 

carbon emissions. For example, Inner Mongolia struggles to design an appropriate path for 164 

economic development accompanied by a low carbon transition in consumption patterns29. 165 

The carbon intensities of Heilongjiang and Xinjiang were 79 and 129 g/yuan in 2012, 166 

respectively, which were also above China’s national average (50 g/yuan). In addition to the 167 

carbon intensity, the different consumption pattern of households in poor and rich regions also 168 

plays an important role in the discrepancy (see Supplementary Table 4). For example, rural 169 

areas in relatively poor provinces in 2012, including Inner Mongolia (1.22 tCO2), Shanxi 170 

(1.13 tCO2) and Ningxia (1.07 tCO2), show relatively high per capita carbon footprint in 171 

terms of residence expenditure, with this item closely related to high energy-consuming 172 

indirect sectoral emissions and direct household emissions. Simultaneously, the consumption 173 

from different sources (i.e., local production, domestic inflow, or international imports) can 174 

partially explain the discrepancy (see Supplementary Table 5). Households consumption in 175 

poorer provinces has a higher proportion of local production but lower proportions of both 176 

domestic inflow and international import. 177 

The income groups with the lowest per capita household carbon footprint are also 178 

mostly located in relatively poor provinces (see Supplementary Table 6). The per capita carbon 179 

footprints of the poor rural income groups in Guangxi, Jiangxi, Hainan, and Yunnan were 180 

only 0.4 tCO2 in 2012, which was less than half of the average in India in 2011 (0.9 tCO2)
4. 181 

This is mainly due to their lower household expenditure: per capita household expenditure for 182 

the poor rural income groups in these four provinces was approximately 3,000 yuan in 2012, 183 

which was only a quarter of China’s national average (11,990 yuan). 184 

 185 

Carbon inequality. We measure household carbon inequality using carbon footprint Gini 186 

(CF-Gini) coefficients, with zero representing perfect equality and one representing perfect 187 

inequality. Carbon inequality declines with economic growth in China. At the national level, 188 

China’s CF-Gini coefficient declined from 0.44 in 2007 to 0.37 in 2012 (Fig. 3), while the 189 

officially released Gini coefficient for income dropped slightly from 0.48 in 2007 to 0.47 in 190 

201230. In 2012, the top 5% of income earners were responsible for 17% of the national 191 

household carbon footprint, while the bottom half of income earners caused only 25%. At the 192 

provincial level, the CF-Gini coefficients of the wealthier eastern coastal provinces were 193 

much lower than those of the poorer western provinces. In 2012, the four most affluent 194 

provinces (Tianjin, Beijing, Shanghai, and Jiangsu), whose GDP per capita was over 68,000 195 

yuan in 2012, had the lowest CF-Gini coefficients (0.19, 0.16, 0.14, and 0.18, respectively). 196 

By comparison, the CF-Gini coefficients of Xinjiang and Guizhou, two western provinces, 197 

were 0.40 and 0.38, respectively, which were higher than China’s national CF-Gini coefficient 198 



in 2012. Between 2007 and 2012, the CF-Gini coefficients of most provinces declined except 199 

for Jiangxi and Chongqing (see Supplementary Fig. 3), and the inequality in less-developed 200 

western provinces declined faster. For example, the CF-Gini coefficients of Sichuan and 201 

Qinghai declined by 0.21 and 0.20, respectively. Based upon these observations, it can be 202 

concluded that carbon inequality declines with economic growth in China across space and 203 

time (see Supplementary Table 7 for details). 204 

The estimated CF-Gini declined across all expenditure categories of national, urban and 205 

rural households from 2007 to 2012, with a simultaneous decline of income Gini excluding 206 

rural education (Fig. 4), while changes in provincial CF-Gini varied among the expenditure 207 

categories during this period (see Supplementary Tables 8 and 9). This reflects the close 208 

linkage of carbon inequality with consumption volume (Supplementary Table 4) and 209 

expenditure pattern (Supplementary Table 5). To reduce the CF-Gini requires an increase in 210 

income of the poor, indicating the importance of eradicating poverty, and changes of lifestyles 211 

and consumption patterns and thus the reduction of carbon emissions of higher income 212 

households. To avoid larger consumption-based emissions appropriate carbon mitigation 213 

measures are needed; otherwise, a declining CF-Gini leads to larger overall emissions. By 214 

encouraging green lifestyles, especially among wealthy groups, carbon footprints can be 215 

reduced by changes in expenditure structures towards low-carbon goods and products, thereby, 216 

mitigating climate change. In addition, demographic change, e.g. a dynamic composition of 217 

population through rural-urban migration, can also influence. By moving of the rural poor to 218 

urban areas and climbing up the income (and thus consumption) ladder, the CF-Gini tends to 219 

decrease. 220 

 221 

Conclusions 222 

There are large inequalities between household carbon footprints within and across China’s 223 

provinces. First, the per capita carbon footprint of urban residents is 2.5 times of the footprint 224 

of rural residents. China’s economy has been growing rapidly, but there is still a visible 225 

urban-rural divide in the nation. This is one of the greatest challenges for China’s sustainable 226 

development. Urban residents have much higher household incomes and more modern 227 

lifestyles, resulting in higher carbon footprints compared to rural residents. 228 

Second, the per capita carbon footprint varies greatly across China’s provinces. 229 

Generally, the per capita carbon footprint is larger in the wealthier coastal regions than in the 230 

poorer inland regions. From a production perspective, China’s western region is more carbon 231 

intensive due to its reliance on coal-based heavy industry, relatively lower efficiency and 232 

weaker environmental regulations. From a consumption perspective, however, most of the 233 

high emissions-intensive goods produced in western China are consumed by residents in 234 

eastern China and more emissions are ultimately exported to other regions than locally 235 

consumed in the west. China has made great efforts to balance economic development among 236 

the provinces and to narrow the gap between the east and the west, such as with the Western 237 

Development Strategy. Since the global financial crisis, the growth in consumption and GDP 238 

has been faster in western China than in eastern China. As a result, the carbon footprint gap 239 

between the east and west declined between 2007 and 2012. 240 

Third, the size of the carbon footprint varies across income groups in China. The per 241 

capita carbon footprint of the wealthiest groups in Mongolia, Heilongjiang, and Xinjiang was 242 



similar with the average level in the USA, while the per capita carbon footprint of the poorest 243 

groups in Guangxi, Jiangxi, Hainan and Yunnan was only 0.4 tCO2, which was less than half 244 

of the average carbon footprint in India. 245 

Carbon inequality has declined with economic growth in China. We argue that economic 246 

growth not only increases income levels but also contributes to higher shares of low-carbon 247 

consumption items in higher income groups and an overall reduction in carbon inequality in 248 

China. But overall, urban and wealthy regions tend to have a greater carbon footprint, as a 249 

high income drives a high carbon footprint lifestyle. Hence, with the income growth and 250 

economic development experienced in China from 2007 to 2012, the overall size of the 251 

carbon footprint increased. However, we emphasize the significance of studying changes in 252 

carbon inequality in addition to the overall levels. Decarbonizing domestic production 253 

contributes to the decline of carbon intensity in China. The decline of carbon footprints in rich 254 

households contributed to decarbonization in rich regions; thus, there is a need to decarbonize 255 

poor areas as well. Although richer households consume more goods and have higher carbon 256 

footprints than lower income groups, they tend to consume a larger share of less carbon 257 

intensive consumption items. Thus, the divergence declines. It is important to truly 258 

decarbonize consumption patterns to reduce overall carbon footprints. 259 

According to our research, carbon inequality has improved during this time period and 260 

across provinces. Carbon footprints show less inequality in wealthier eastern coastal regions 261 

than in poorer western inland regions, and our results show that the income groups with the 262 

highest (and lowest) per capita carbon footprint are mostly located in relatively poor 263 

provinces. At the national level, China’s CF-Gini coefficient declined from 0.44 in 2007 to 264 

0.37 in 2012. At the provincial level, the CF-Gini coefficients of most provinces declined with 265 

only two exceptions (i.e., Jiangxi and Chongqing). China has managed to decrease both 266 

income and carbon inequality during the observed time period. There might be idiosyncratic 267 

and context specific differences among developing countries but the insights we gained 268 

achieving further decarbonization through changing the energy mix, improving carbon 269 

efficiencies in production and changes in consumption patterns should hold for other 270 

countries as well. 271 

Governments need to pay more attention to inequality at the household level when 272 

considering climate change mitigation actions. Although China has considered regional 273 

equality in distributing climate change mitigation responsibilities, equality at the household or 274 

individual level is seldom considered. The carbon footprint and corresponding CF-Gini 275 

coefficient are useful indicators for climate mitigation. Based on the findings, the gap in 276 

carbon footprints can be narrowed by simultaneously increasing the income of the poor to 277 

eradicate poverty and changing the lifestyles of the wealthy to reduce the carbon intensity of 278 

their consumption patterns. Additionally, there is nothing automatic about declining 279 

environmental impacts associated with economic growth. Improvements can be induced with 280 

appropriate legislation, monitoring and enforcement, as well as inducing changes in 281 

consumption patterns with environmental taxation, information and eco-labels, and other 282 

policy tools. Carbon mitigation also does not automatically lead to a reduction in inequality as 283 

especially poorer households are often times more affected by increases in prices of 284 

environmental resources, e.g. through a carbon tax. In other words, carbon mitigation can be 285 

regressive, that is affecting poorer households with higher carbon intensity more than richer 286 



households who can afford to have a higher share of services and other lower carbon 287 

consumption items. Therefore, mitigation actions need to be designed with the poorest 288 

segments of society in mind. 289 

 290 

Methods 291 

This study applied an environmentally extended MRIO approach to estimate household 292 

carbon footprints for 12 different income groups of China’s 30 regions. Carbon footprint Gini 293 

coefficients were calculated to measure carbon inequality for households. 294 

 295 

Construction of MRIO tables. We compiled the 2012 MRIO table for China’s 26 provinces 296 

and 4 cities, except Tibet, Hong Kong, Macao, and Taiwan (in total, 30 regions). The MRIO 297 

table was compiled using a gravity model based on the single regional input-output tables for 298 

China’s provinces31. The MRIO table describes the economic linkages among 30 sectors in 30 299 

Chinese regions. Final demand is divided into five categories, including rural household 300 

consumption, urban household consumption, government consumption, fixed capital 301 

formation, and changes in inventories. 302 

To calculate carbon emissions embodied in imports, we connected China’s MRIO tables 303 

to global MRIO models, which are based on version 9 of the GTAP database32. The GTAP 304 

database describes international trade connections for 57 economic sectors among 129 regions 305 

in 2007 and 140 regions in 2011. China’s 2007 MRIO table was connected to the 2007 GTAP 306 

database, while China’s 2012 MRIO table was connected to the 2011 GTAP database. All 307 

input-output tables are deflated to 2012 prices using the double-deflation method33. China is 308 

one of the regions in the GTAP database, so we disaggregated the China-related sections in 309 

the GTAP model into 30-region and 30-sector tables according to our Chinese MRIO models. 310 

The new global MRIO then includes 30 Chinese provinces and 128 (or 139) countries with 30 311 

sectors for Chinese provinces and 57 sectors for foreign countries. For the final demand, there 312 

are five sectors for Chinese provinces and three sectors for foreign countries (investment, 313 

household consumption, and government consumption). 314 

We choose the GTAP database because of the suitable region and sector classification. 315 

First, this study focuses on carbon footprint in China. The emissions embodied in bilateral 316 

trade between China and developing countries are critical to the results of this study. However, 317 

many developing regions have been aggregated to “Rest of the World” in WIOD and some 318 

other database such as OECD-ICIO, which introduces uncertainty. For example, the latest 319 

WIOD database covers forty-three countries, including 7 developing regions, while latest 320 

EXIOBASE database covers 8 developing regions. By contrast, the GTAP database covers 77 321 

developing regions34. Eora database has a heterogeneous classification, which impedes the 322 

comparing of results between countries. The harmonized version has 26-sectors, which is 323 

much less than the GTAP database. Sector aggregation has great impact on MRIO uncertainty. 324 

The use of double deflation is to make the MRIO table in 2007 and 2012 in constant price and 325 

thus comparable without inflation bias. 326 

 327 

Environmentally extended input-output analysis. The MRIO model describes the 328 

economic linkages among different sectors in different regions using linear equation systems. 329 

The basic linear equation is 330 
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where ( )s
iX x=  is the vector of total output and s

ix  is the total output of sector i in region 333 

s. I is the identity matrix, and ( ) 1
I A

−−  is the Leontief inverse matrix. The technical 334 

coefficient submatrix ( )rs rs
ijA a=  is given by rs rs s

ij ij ja z x= , in which rs
ijz  represents the 335 

intersectoral monetary flows from sector i in region r to sector j in region s, and s
jx  is the 336 

total output of sector j in region s. ( )r s
iF f=  is the final demand matrix, and rs

if  is the 337 

final demand of region s for the goods of sector i from region r. 338 

Carbon footprints are calculated using environmental extended input-output analysis. 339 

Based on the carbon intensity (i.e., CO2 emissions per unit of economic output), the total 340 

carbon footprint is calculated by 341 

 ( ) 1
C K I A F

−= − ,  (3) 342 

where C  is the total carbon footprint, and K is a vector of the carbon intensity for all 343 

economic sectors in all regions. Final demand (i.e., F ) can be divided into rural household 344 

consumption, urban household consumption, government consumption, fixed capital 345 

formation, and changes in inventories. Therefore, the household carbon footprint can be 346 

calculated as follows: 347 

 ( ) 1

hC K I A H
−= −   (4) 348 

where hC  is the household carbon footprint, and H  is the household consumption, 349 

including rural and urban household consumption. The H  matrix in equation (4) is a 350 

diagonalized matrix by sections, differentiating between domestic and imported goods35. 351 

Because we use MRIO tables at the provincial level, the domestic and imported goods are 352 

further divided into the self-production, domestic inflow and international import. 353 

The household carbon footprint estimated by the MRIO model is aggregated into eight 354 

major categories of consumption: food, clothing, residence, household facilities, transport, 355 

education, health care, and others36. Carbon emissions emitted from direct rural and urban 356 

household energy use are not included in equation (4) because the input-output model only 357 

estimates the carbon emissions indirectly emitted in economically productive sectors. In this 358 

study, directed energy-related emissions from direct household energy use of coal, natural gas 359 



and electricity are allocated to the category “residence” and oil emissions are allocated to 360 

“transport” to be incorporated into the household carbon footprint4. 361 

 362 

Construction of carbon emission inventories. We use the approach provided by the 363 

Intergovernmental Panel on Climate Change (IPCC) to calculate the CO2 emissions from 364 

energy combustion based on China’s provincial energy statistics29: 365 

 C E V F O= × × × ,  (5) 366 

where C refers to fossil fuel-related CO2 emissions, E refers to the amount of energy 367 

consumption from different fuel types (in physical units), V refers to the net calorific value of 368 

different fuel types, F refers to the carbon content that represents CO2 emissions when unit 369 

heat is released, and O refers to the oxygenation efficiency of different fuel types. To avoid 370 

missing emissions or double counting, we calculate the fossil fuel consumption as follows: 371 

 
final consumption Input for thermal power Input for heating

       Used as chemical m

T

aterial L

t

s

o a

os

l E = + +
− −

.  (6) 372 

 373 

Calculations of Gini coefficients. The Gini coefficient was proposed by the Italian 374 

economist Gini to determine quantitatively the level of difference in the income distribution37. 375 

The range of Gini coefficient is from zero to one, indicating the income distribution changing 376 

from completely equal to absolutely unequal. The basic income Gini coefficient is calculated 377 

by 378 

 
1 1

2 (1 ) 1
n n

i i i i
i i

G DY D T
= =

= + − −  ,  (7) 379 

where G represents the Gini coefficient. Di and Yi are the proportions of the population and 380 

income of each group, respectively. Ti refers to the cumulative proportion of the income of 381 

each group, and i refers to (i = 1, 2, 3, ..., n) the number of groups. Similarly, the CF-Gini can 382 

be calculated by replacing the income with the carbon footprint in the equation (7). 383 

China has a high level of income inequality. The Gini coefficient is a statistical measure 384 

of the income distribution of residents on a scale from complete equality (zero) to complete 385 

inequality (one)38, 39. China’s Gini coefficient is 0.55, compared with 0.5 for the United States 386 

and a global average of 0.4440. China’s income inequality is in large measure due to the 387 

rural-urban gap and to significant regional disparities. For example, per capita income in 388 

Beijing is twice that in Xinjiang and income of urban households is three times that of rural 389 

households39. In addition, in 2015, per capita income of the top 20% of households was over 390 

ten times that of the bottom 20% of households in China41. 391 

By 2012, China’s poverty alleviation policies included allocating financial payments of 392 

300 billion yuan by the central government, launching 11 pilot projects of contiguous 393 

poverty-stricken areas, and achieving poverty-alleviating coverage of key national counties, 394 

thereby reducing the size of China’s rural poverty to 99 million42. Effective polices resulted in 395 

the simultaneous declines in both CF-Gini and income Gini in China from 2007 to 2012. 396 

According to our estimates (see Supplementary Table 10), if changes in consumption are the 397 

same (3.63%) for rural upper-middle group and urban very poor group, changes in carbon 398 

footprint of the former (2.18%) is significantly higher than the latter (1.28%); based on our 399 



simulations, we find that the urban very rich group would have to cut consumption, which is 400 

nearly twice that of the rural poor, to compensate for the increase in consumption associated 401 

with the increase in income of the poor. For example, the very rich urban consumers can 402 

reduce their very high carbon footprint, e.g. associated with air travel and transport by private 403 

cars, by changing modes of transport or reducing their demand for travel. In addition to the 404 

aforementioned static comparison, carbon inequality reduction, poverty alleviation and 405 

climate change mitigation require a dynamic perspective, given significant rural-urban 406 

migration, adoption of urban lifestyles, and changes in the age composition, family size and 407 

important demographic variables (see Supplementary Table 11)43. Partially affected by 408 

demographic trends, carbon inequality declined during the period of urbanization with for 409 

example the poorest segments of the rural population moving to urban areas adopting urban 410 

lifestyles. 411 

 412 

Data sources. The 2012 China MRIO table is compiled by Mi et al.31, and the 2007 China 413 

MRIO table is compiled by the Institute of Geographic Sciences and Natural Resources 414 

Research, Chinese Academy of Sciences44, 45. The global MRIO tables are based on version 9 415 

of the GTAP database46. The pricing data for China’s IOTs were acquired from the China 416 

Statistics Yearbook41, while the pricing data for China’s imports and global MRIO tables were 417 

obtained from the National Accounts Main Aggregates Database47. 418 

We need energy consumption and emission factors (see Supplementary Table 12) to 419 

calculate CO2 emission inventories for the 30 regions under study. The energy consumption 420 

data are obtained from the China Energy Statistical Yearbooks48. Emission factors are very 421 

important for calculating CO2 emissions following the IPCC approach. The most widely used 422 

emission factors are the IPCC default values. However, recent studies have indicated that 423 

these default emission factors overestimate China’s carbon emissions49. The low quality of 424 

China’s coal is caused by the total moisture and high ash content but low carbon content. With 425 

the lower net heating values of China’s coal, the carbon content for coal mines provided by 426 

IPCC is higher than samples from China. In this study, we use emission factors from our 427 

previous studies49, which are measured based on 602 coal samples from the 100 largest 428 

coal-mining areas in China. The MRIO tables are online available50, and carbon emission 429 

inventories can be sourced from the China Emission Accounts and Datasets51. 430 

All households are divided into 5 rural income groups, including poor (20%), 431 

lower-middle (20%), middle (20%), upper-middle (20%), and rich (20%), and 7 urban income 432 

groups, including very poor (10%), poor (10%), lower-middle (20%), middle (20%), 433 

upper-middle (20%), rich (10%), and very rich (10%). Notably, the proportions for each 434 

income group are calculated based on household numbers rather than population. Household 435 

consumption is divided into eight major categories: food, clothing, residence, household 436 

facilities, transport, education, health care, and others. The data on household consumption 437 

for each income group are obtained from the provincial statistical yearbooks, proportioned on 438 

the respective structures for the concordance of data at different levels. They provide data on 439 

per capita annual expenditure and average household size for each income group, so that we 440 

can calculate carbon footprint at both household and individual levels. 441 

Household carbon footprints track how household consumption in a region causes 442 

carbon emissions elsewhere due to supply chains in the global economic network, taking into 443 



account interregional trade. It is important to better understand the uncertainty in order to 444 

deliver robust policy applications52, 53. The uncertainty in this study mainly lies in the 445 

economic data which includes the national accounts and interregional trade and emission 446 

inventories. Previous estimates reported the uncertainty of country consumption-based carbon 447 

accounts in the range 5-15%54 and 2-16%55. There is a consensus that the major source of 448 

uncertainty in the calculation of carbon footprint is mainly associated with the emission 449 

inventories rather than the economic data, supported by the comparable uncertainty rage of 450 

production-based accounts and consumption-based accounts56. The sources of uncertainty of 451 

the emission inventories used in this study have been clearly explained by our previous 452 

study49, which improved the Chinese emission accounting by using the emission factors based 453 

on the 602 coal samples from the 100 largest coal-mining areas in China. Moreover, the 454 

MRIO table used in China has also been validated by our previous study50. The understanding 455 

of uncertainties in the results is a key limiting factor, more efforts are needed to develop a 456 

standardized procedure for uncertainty estimation. 457 

 458 

Data availability. The 2012 China MRIO table is compiled by Mi et al.31 459 

(https://doi.org/10.6084/m9.figshare.c.4064285), and global MRIO tables are from the GTAP 460 

database (https://www.gtap.agecon.purdue.edu/)46. Carbon emission inventories can be 461 

sourced from the China Emission Accounts and Datasets (http://www.ceads.net/)51. The data 462 

that support the findings of this study are available from the corresponding authors upon 463 

request. 464 

 465 

Code availability. Requests for code developed in Matlab to process and analyse the primary 466 

data collected in this study will be reviewed and made available upon reasonable request. 467 
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 618 

 619 

Figure legends 620 

 621 

Fig. 1 Per capita carbon footprint of 30 of China’s provinces in 2007 and 2012. The colour of the 622 

bars corresponds to the provincial GDP per capita, from the wealthiest provinces in red to the 623 

poorest provinces in blue (see scale). 624 



 625 

Fig. 2 The per capita carbon footprint of 12 income groups for 30 of China’s provinces in 2012. 626 

The colour of the bars corresponds to the household expenditure per capita, from the wealthiest 627 

groups in red to the poorest groups in blue (see scale). All provinces are arranged based on GDP 628 

per capita, from the wealthiest province (Tianjin) located in the first row and first column to the 629 

poorest province (Guizhou) located in the sixth row and the fifth column. See Supplementary Fig. 630 

2 for per capita carbon footprints of the 12 income groups for 30 of China’s provinces in 2007. 631 

 632 

Fig. 3 Carbon footprint Gini coefficients and per capita carbon footprints of different income 633 

groups for 30 provinces in 2012 and 2007. All provinces are arranged based on GDP per capita 634 

(¥ per person), from the poorest provinces with the lowest GDP per capita starting from the left 635 

(Guizhou) to the wealthiest provinces with the highest GDP per capita at the right (Tianjin in 2012 636 

and Beijing in 2007). 637 

 638 

Fig. 4 The carbon footprint Gini and income Gini coefficients for 8 household expenditure 639 

categories in 2012 and 2007. 640 

 641 
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