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Horndeski gravity is the most general scalar tensor theory, with a single scalar field, leading to second-
order field equations and after the GW170817 it has been severely constrained. Since this theory is very
important in modified gravity, it is then worth studying possible similar theories starting from other
frameworks. In this paper, we study the analog of Horndeski’s theory in the teleparallel gravity framework
where gravity is mediated through torsion instead of curvature. We show that, even though many terms are
the same as in the curvature case, we have much richer phenomenology in the teleparallel setting because of
the nature of the torsion tensor. Moreover, teleparallel Horndeski contains the standard Horndeski gravity
as a subcase and also contains many modified teleparallel theories considered in the past, such as fðTÞ
gravity or teleparallel dark energy. Thus, due to the appearance of a new term in the Lagrangian, this theory
can explain dark energy without a cosmological constant, may describe a crossing of the phantom barrier,
explain inflation and also solve the tension forH0, making it a good candidate for a correct modified theory
of gravity.
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I. INTRODUCTION

In spite of their great success, ΛCDM and general
relativity (GR) are plagued with many shortcomings.
The value of the cosmological constant [1], the nature of
dark matter and dark energy, the nature of singularities and
also its inability to provide a quantum description of gravity
are only some of them. Followed by the will to frame these
shortcomings in a self-consistent cosmological model and,
in general, in a gravity theory that “works” at all scales,
scientists started to pursue modifications to the standard
cosmological model. One of the first and simplest mod-
ifications was suggested by Brans and Dicke in 1961 [2].
They introduced a new scalar field, nonminimally coupled
to the Ricci scalar that effectively played the role of a
varying Newton’s constant. The literature on the theory is

exhausting and the interested reader is referred to reviews
on modified gravity [3–5].
A decade later, in the beginning of the 1970s, Horndeski

wrote down the most general scalar-tensor theory, with
a single scalar field that leads to second-order field
equations [6]. However, it did not receive much attention
until the late 2000s, when it was realized that all the terms
in Horndeski’s theory originate from Galileons [7]. Finally,
its current form, in curved spacetime, was given by
Deffayet, Deser, and Esposito-Farese [8].
Many known modifications of gravity, from Brans-Dicke

theory, k-essence and kinetic braiding to the scalar repre-
sentation of fðR∘ Þ gravity (we will explain the notation later
in this section), can be considered as subcases of Horndeski
gravity. A lot of ink has been spilled in studies of Horndeski
gravity and one can see the reviews [9,10] for more details.
More in detail, black hole solutions have been found in
[11–13] and neutron stars in [14,15], and inflation has been
studied in [16]. In addition, self-accelerating solutions are
presented in [17] and the Vainshtein mechanism, that is a
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screening mechanism to “hide” the scalar field at small
scales, is discussed among others in [18].
It is known today that there exists an alternative

formulation of gravity, the so-called teleparallel equivalent
of general relativity (TEGR) or teleparallel gravity [19],
that is completely equivalent to GR at the level of the field
equations, and instead of curvature, it uses torsion to
describe the gravitational interactions. This theory uses
the tetrad formalism,1 meaning that the dynamical field is
not the metric anymore but rather a tetrad field defined on a
tangent space at each point of the general manifold. In this
framework, gravity is no longer the effect of geometry of
the spacetime but rather a force, just like the Lorentz force
in electrodynamics.
One could reasonably ask, why should one study a

different theory of gravity if at the level of the equations of
motion it is equivalent to GR? As it turns out, teleparallel
gravity has several features which may be more natural
when compared with GR. First of all, it is a gauge theory of
translations, meaning that it can be more easily unified with
the three other fundamental forces of the Standard Model
[20]. As a gauge theory, it could even survive in the absence
of the equivalence principle [21]. Moreover, in the frame-
work of TEGR one can separate gravitational from inertial
effects (in the correct gauge), and because of that, one can
define a gravitational energy-momentum density [22].
As in the curvature case, however, one cannot explain all

the observations with pure TEGR; thus, one should look for
modifications. In Ref. [23], a review on fðTÞ theories is
presented. Scalar fields have also been considered in
numerous ways with some indicative being [24–35].
In the recent series of papers [36–38], a serious attempt
to construct a general scalar-torsion theory has been made.
Finally, during the preparation of this work, this paper
appeared [39] where the authors consider a subcase of the
theory presented here and they study inflation.
After the recent discovery of gravitational waves and

specifically after the electromagnetic counterpart of
GW170817, most of Horndeski’s terms are severely con-
strained by the tensor mode propagation speed [40,41].
That is the reason why we wanted to study the Horndeski
analog in the teleparallel framework, in order to see if the
constrained terms in the curvature case could survive in this
setting. As we will see, this indeed might be the case.
What we do in this paper is to construct the most general

scalar-torsion theory, with a single scalar field, that (i) leads
to second-order field equations for the tetrad (or equiv-
alently to the metric) and the scalar field, (ii) is not parity
violating and (iii) contains at most quadratic terms of the

torsion tensor. As we will see later in the paper, this theory
has a lot more phenomenology than in the curvature case
because there appear many new scalars, and in addition, the
higher-order derivative couplings (L

∘
4 and L

∘
5) could in

principle survive the gravitational wave analysis.
The paper is organized as follows: In Sec. II A, we

introduce teleparallel gravity and present the irreducible
decomposition of the torsion tensor. At the end of this
section, we also show how the covariantization procedure
occurs, i.e., what is the gauge structure of the theory.
Furthermore, in Sec. III, we present the conditions on
which we build our theory, we construct all the possible
scalars and we present the teleparallel Horndeski theory.
Finally, in Sec. IV, we consider a cosmological [flat
Friedmann-Lemaître-Robertson-Walker (FLRW)] back-
ground and, after calculating explicitly all the new scalars
that appear in the theory, we write down the equation of
motion for the scalar field and the scale factor. We notice
that standard Horndeski gravity is a subclass of teleparallel
Horndeski gravity since new extra terms appear in the final
form of the action of the theory.
Throughout the paper the Latin indices i; j; k;…

represent coordinates on the tangent space, while the
Greek indices α; β; μ;… represent coordinates of the
general manifold. Quantities calculated with the Levi-
Civita connection (e.g., connections, covariant derivatives,
d’Alembertians) are given with a circle on top, e.g.,∇∘ μ, and
quantities referring to flat spacetime are denoted with a bar
on top, e.g., □̄. All the other quantities that have no
symbols, e.g., Γα

μν, are calculated with (or referred to) the
Weitzenböck connection. Also unless otherwise stated,
we use the metric signature ημν ¼ diagð−1; 1; 1; 1Þ and
geometric units.

II. TELEPARALLEL GRAVITY

A. The teleparallel equivalent of general relativity
and its decomposition

In GR, gravity is expressed through curvature by means
of the Levi-Civita connection Γ

∘ σ
μν, in the context of

Riemann geometry. However, geometric deformations
can be characterized using other geometric quantities, or
connections. In fact, there exists a trinity of character-
izations of gravity such that GR can be reproduced at the
level of the field equations [42]. In this work, we consider
the setting of teleparallel gravity [20,23,43] which carries a
fundamental distinction from curvature-based descriptions
of gravity. Here, the Levi-Civita connection is replaced
by the Weitzenböck connection Γσ

μν, which is curvature-
less while still observing the metricity condition, and is
given by

Γσ
μν ≔ haσ∂μhaν þ haσωa

bμhbν; ð1Þ

where haρ is the tetrad field and ωa
bμ the spin connection.

This is the most general linear affine connection that is both

1It is remarkable to note that Einstein himself wanted to
incorporate general relativity in a unified theory with electrody-
namics and for this reason he used the tetrad formalism. His
attempt was not successful, because he thought that the extra
degrees of freedom of the tetrad could play somehow the role of
the electromagnetic field, but this was not the case.
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curvatureless and satisfies the metricity condition [20]. The
tetrad represents transformations between the general
manifold and the tangent space, and haμ represents the
tetrad inverse. This property of connecting tangent space
and manifold tensors is called soldering and is a very useful
tool for raising inertial relations to the general manifold.
For instance, consider the inertial four-momentum Pa

which can be raised to Pμ ¼ haμPa for the general
manifold.
Given the intrinsic link between inertial and noninertial

indices in teleparallel gravity, it follows that some caution
needs to be taken when constructing a theory that is
invariant under local Lorentz transformations (LLTs).
Any gravitational theory should be invariant under LLTs.
This is the role that the spin connection plays. To account
for this invariance, teleparallel gravity incorporates so-
called spin connections ωa

bμ, which sustains this freedom.
GR also features spin connections but these are mainly
hidden in the inertial structure of the theory [20]. Together
the tetrad and spin connection specify the frame analogous
to the metric tensor scenario in GR. Thus, the spin
connection is not a second degree of freedom of the
gravitational component of the theory but a regular object
used in any theory invariant under LLTs.
Given the full breath of LLTs (Lorentz boosts and

rotations), the tetrad can be transformed by its inertial
index through

h0aμ ¼ Λa
bhbμ; ð2Þ

where Λa
b is a LLT. In this way, the spin connection can

also be represented as the combination of completely
inertial LLTs in the form [44]

ωa
bμ ¼ Λa

c∂μΛb
c; ð3Þ

which preserves the LLT invariance of the theory as
a whole.
On the other hand, the metric tensor gμν characterizes the

general manifold through distance measurements, while the
tetrad haμ relates the tangent space with the manifold. For
consistency, they also observe the relations

haμhbμ ¼ δab; ð4Þ

haμhaν ¼ δνμ; ð5Þ

which form the orthogonality conditions of the setup. More
generally, since the tetrad fields raise inertial indices, they
can be used to relate the Minkowski and general manifold
metric tensors through the equations

gμν ¼ haμhbνηab; ð6Þ

ηab ¼ haμhbνgμν; ð7Þ

where the active role of the tetrad can be viewed as a field
that replaces the metric as the fundamental dynamical
variable of the theory. Here, the position dependence of
these relations has been suppressed for brevity’s sake.
At this point, we need to make a distinction here between

two kinds of tetrads. Firstly, trivial tetrads are those tetrad
fields that represent manifolds that are nongravitational and
so are effected only by LLTs. In terms of Eq. (6), this then
takes the form ημν ¼ eaμebνηab, where eaμ symbolizes the
use of trivial tetrad fields. Alternatively, gravitational
systems make use of nontrivial tetrad fields represented
by haμ.
In this construction, the curvature measured by the

Riemann tensor will always be zero, while the torsion will
depend on the form of the tetrad and spin connection
components. This is not to say that the Riemann tensor
computed with the Levi-Civita connections is zero, but that
the curvature of the theory is zero. Torsion can then be
characterized as an antisymmetric property through [45]

Ta
μν ≔ 2Γa½μν�; ð8Þ

which is a measure of the field strength and where square
brackets represent the antisymmetric operator [A½μν� ¼
1
2
ðAμν − AνμÞ]. Ta

μν is called the torsion tensor and trans-
forms covariantly under both diffeomorphisms and LLTs.
The torsion tensor is the fundamental measure of torsion,

analogous to the Riemann tensor for curvature. However,
we can define other useful tensors, such as the contorsion

tensor which is the difference between the Levi-Civita Γ
∘ σ

μν

and Weitzenböck connections Γσ
μν [23,46]:

Kσ
μν ≔ Γσ

μν − Γ
∘ σ

μν ¼
1

2
ðTμ

σ
ν þ Tν

σ
μ − Tσ

μνÞ; ð9Þ

which plays an important role in relating teleparallel gravity
with Levi-Civita based theories. Another important ingre-
dient in forming a teleparallel theory of gravity is the so-
called superpotential which is defined as

Saμν ≔ Kμν
a − haνTαμ

α þ haμTαν
α: ð10Þ

This plays an important role in representing teleparallel
gravity as a gauge current for a gravitational energy-
momentum tensor [22].
Together, the torsion and superpotential tensors can be

combined to produce the so-called torsion scalar

T ≔ SaμνTa
μν; ð11Þ

which is clearly determined through the Weitzenböck
connection but can be compared with the Ricci scalar
analog that is calculated using the Levi-Civita connection.
Coincidentally, it turns out that these scalars are equal up to
a total divergence term [47,48], namely
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R ¼ R
∘ þ T −

2

h
∂μðhTσ

σ
μÞ ¼ 0 ⇒ R

∘ ¼ −T þ 2

h
∂μðhTσ

σ
μÞ

≔ −T þ B; ð12Þ

where R
∘
is the Ricci scalar as determined using the Levi-

Civita connection, R is the Ricci scalar as calculated with
the Weitzenböck connection which vanishes, and h is the
determinant of the tetrad field, h ¼ detðhaμÞ ¼ ffiffiffiffiffiffi−gp

. This
fact alone guarantees that the resulting field equations of a
torsion scalar Lagrangian will produce identical field
equations as GR while preserving the difference at the
level of the Lagrangian and in the theory itself. Secondly,
this division means that the second-order contributions of
the torsion scalar are not necessarily coupled to the fourth-
order terms that result from the boundary scalar B. This

second point is the source of serious problems in fðR∘ Þ
gravity such as ghosts [49].
Thus, we can define the so-called TEGR as [45]

STEGR ¼ −
1

2κ2

Z
d4xhT þ

Z
d4xhLm; ð13Þ

where κ2 ¼ 8πG and Lm represents the matter Lagrangian.
In the Levi-Civita connection paradigm, the field equations
of GR are represented by the Einstein tensor through

G
∘
μν ≔ R

∘
μν −

1

2
gμνR

∘ ¼ κ2Θμν; ð14Þ

where Θμν is the energy-momentum tensor [50]. TEGR
produces identical field equations; however, these equa-
tions appear different since they are described in terms of
the tetrad field and spin connection. These are [44]

G
∘
μν ≡ Gμν ≔ h−1haμgνρ∂σðhSaρσÞ − SbσνTb

σμ

þ 1

4
Tgμν − haμωb

aσSbνσ

¼ κ2Θμν; ð15Þ

which is guaranteed to produce the same field equations for
any tetrad with the correction-associated spin connection
for an equivalent metric tensor ansatz.
In a similar manner as the fðR∘ Þ generalization of GR

[49,51], we can also generalize the gravitational part of this
Lagrangian to fðT; BÞ which forms a larger class of

theories than those expressed through fðR∘ Þ gravity (at
the level of field equations). This modified Lagrangian has
several distinct features such as the subclass of fðTÞ
models producing generally second-order field equations.
In general, there are a plethora of potential generalized

teleparallel theories of gravity, as there are in gravity
theories based on the Levi-Civita connection. Beyond
fðT; BÞ gravity, some recent progress has been made in

Gauss-Bonnet extensions to teleparallel gravity [52,53]. In
this case, an extension of TEGR can be written as
−T þ fðT; TG; BGÞ, where TG represents the teleparallel
equivalent of the Gauss-Bonnet scalar while BG is the
boundary term between the Levi-Civita and Weitzenböck
Gauss-Bonnet invariants. Other extensions include consid-
ering the trace of the matter Lagrangian [54,55], with other
possibilities available.
The problem then becomes, how do we build the most

general second-order teleparallel theory of gravity with one
scalar field? One way to approach this problem is to
consider the irreducible parts with respect to the local
Lorentz group through the axial, vector and purely tensorial
components, which, respectively, are [45]

aμ ¼
1

6
ϵμνσρTνσρ; ð16Þ

vμ ¼ Tσ
σμ; ð17Þ

tσμν¼
1

2
ðTσμνþTμσνÞþ

1

6
ðgνσvμþgνμvσÞ−

1

3
gσμvν; ð18Þ

where ϵμνσρ is the totally antisymmetric Levi-Civita symbol
and which can then be used to form the scalar invariants

Tax ¼ aμaμ ¼
1

18
ðTσμνTσμν − 2TσμνTμσνÞ; ð19Þ

Tvec ¼ vμvμ ¼ Tσ
σμTρ

ρμ; ð20Þ

T ten ¼ tσμνtσμν ¼
1

2
ðTσμνTσμν þ TσμνTμσνÞ − 1

2
Tσ

σμTρ
ρμ;

ð21Þ

that combined as follows form the torsion scalar

T ¼ 3

2
Tax þ

2

3
T ten −

2

3
Tvec: ð22Þ

These three scalars are the most general scalar torsion
invariants that are quadratic in the torsion tensor and parity
preserving [56], where the parity-violating terms would be

P1 ¼ vμaμ; ð23Þ

P2 ¼ ϵμνσρtλμνtλρσ; ð24Þ

but these are not physical since any Lagrangian scalar
should be parity invariant. This means that at second order
the most general Lagrangian formed by quadratic contrac-
tions of torsion that is not parity violating can be encapsu-
lated in the Lagrangian fðTax; Tvec; T tenÞ.
In order to consider a teleparallel approach to Horndeski

gravity, we need a method of covariantizing scalar
fields from tangent space to general manifolds. The strong
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equivalence principle states that, for any local Lorentz
frame, the spacetime can be described by the Minkowski
metric ημν and acted upon by the partial derivative ∂μ [50].

The Levi-Civita connection Γ
∘ σ

μν describes general mani-
folds that only admit curvature as geometric deformations
of neighboring tangent space. In this way, the Levi-Civita
connection provides a clear procedure in which to form
covariant Lagrangians from their local Lorentz frames,
namely through the procedure outlined by

ημν → gμν;

∂μ → ∇∘ μ; ð25Þ
where the Minkowski metric is raised to the general
manifold metric and the partial derivative is corrected by
terms due to parallel transport, which are the well-known
Christoffel symbols.
Teleparallel gravity is different both physically in that

vectors remain parallel at a distance and in its construction
since it is built up from tetrads rather than the metric tensor.
To account for this, a different covariantization procedure is
needed to raise local Lorentz frame Lagrangians to the
general manifold.
Stemming from the contorsion tensor relation between

the two connections, in Eq. (9), it turns out that the coupling
prescriptions of both teleparallel gravity and GR are
equivalent. This results in a covariantization procedure
that takes the form (more details in Ref. [19])

eaμ → haμ;

∂μ → D
∘
μ ≡∇∘ μ; ð26Þ

whereD
∘
μ is the regular Levi-Civita covariant derivative∇

∘
μ,

calculated using tetrads rather than the metric tensor, but
the result is equal. Teleparallel gravity remains distinct
from GR in that it forms gravitational distortions of the
general manifold that are entirely described by torsion with
vanishing curvature. However, this feature of the theory
means that the formulation of the teleparallel analog of
Horndeski gravity will, in part, be very natural as compared
with its Levi-Civita counterpart.

III. HORNDESKI THEORY IN TELEPARALLEL
GRAVITY

Horndeski’s theory of gravity is the most general theory
of gravity in a four-dimensional spacetime which is based
on contractions of the metric tensor and a single scalar field
which leads to second-order field equations in terms of
derivatives of the metric [57]. However, implicit in the
derivation of the Lagrangian of Horndeski’s theory is its
reliance on the Levi-Civita connection [9]. This is not a
principle requirement of the approach and can be replaced
with other connections or other geometries.

By Lovelock’s theorem [58], there is a clear limit to
which Lagrangian terms can be used to form a second-order
theory. This is extended by contractions with the scalar
field in Horndeski’s theory. However, this remains finite in
the full expansion of the Lagrangian. An example of a
Lagrangian that forms a higher-order theory is fðR∘ Þ gravity
or Einstein cubic gravity [59].
In this section, we discuss the conditions of forming a

teleparallel Horndeski analog and the conditions that would
necessitate such a formulation.

A. Conditions on a teleparallel Horndeski theory

In the spirit of Horndeski’s original approach,
our conditions for forming a teleparallel analog of
Horndeski’s theory of gravity will be the following.

(i) The resulting field equations must be at most second
order in terms of derivatives of the tetrad fields. This
is analogous to the condition that the theory is
second order in terms of metric tensor derivatives.
The reason for this requirement is to avoid ghost
instabilities.

(ii) The scalar invariants should not be parity violating.
Using the irreducible parts of the torsion tensor, the
full family of contractions will a single scalar field
can be considered. However, each scalar must be
invariant under parity transformations.

(iii) Contractions of the torsion tensor can at most be
quadratic. The Lovelock theorem guarantees that no
other terms exist in Horndeski’s original Lagrangian,
but this is not the case in teleparallel gravity. Any
number of contractions of the irreducible parts of the
torsion tensor will result in second-order field
equations. This means that an infinite number of
terms can be formed in teleparallel gravity that give
rise to second-order field equations. However, it is
unclear how physical such higher-order contribu-
tions will be. For this reason, we demand that the
contributing scalar invariants of the theory be at
most quadratic contractions of the torsion scalar.

This is not to say that all of teleparallel gravity theories
are second order. Higher-order theories have been formu-
lated and may offer interesting insights such as Ref. [60].

B. The most general second-order Lagrangian with one
scalar field on a Minkowski background

To form the most general Lagrangian that adheres to the
conditions set out in Sec. III A, first the tangent space
Lagrangian must be formulated which can then be raised
through the coupling prescription to the general manifold.
Here, the following conditions on the scalar field are
considered: (i) the Lagrangian contains at most derivatives
second order in the scalar field; (ii) the Lagrangian is
polynomial in second derivatives of the scalar field; (iii) the
corresponding field equations are at most second order in
derivatives of the scalar field [61]. Therefore, for a scalar
field ϕ, consider the Lagrangian contributions [7]
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L1 ¼ ϕ; ð27Þ

L2 ¼ X; ð28Þ

L3 ¼ X□̄ϕ; ð29Þ

L4 ¼ −Xð□̄ϕÞ2 þ ð□̄ϕÞ∂μϕ∂νϕ∂μ∂νϕþ X∂μ∂νϕ∂μ∂νϕ − ∂μϕ∂μ∂νϕ∂ν∂ρϕ∂ρϕ; ð30Þ

L5 ¼ −2Xð□̄ϕÞ3 − 3ð□̄ϕÞ2ð∂μϕ∂νϕ∂μ∂νϕÞ þ 6Xð□̄ϕÞ∂μ∂νϕ∂μ∂νϕ

þ 6ð□̄ϕÞ∂μϕ∂ρϕ∂μ∂νϕ∂ν∂ρϕ − 4X∂ν∂μϕ∂ρ∂νϕ∂μ∂ρϕ

þ 3∂μ∂νϕ∂μ∂νϕ∂ρϕ∂λϕ∂λ∂ρϕ − 6∂μϕ∂ν∂μϕ∂ρ∂νϕ∂λ∂ρϕ∂λϕ; ð31Þ

where X ≔ − 1
2
∂μϕ∂μϕ is the kinetic energy, and the full

Lagrangian will be

L ¼
X5
i¼1

ciLi: ð32Þ

The subscript refers to the number of appearances of the
scalar field in each component of the Lagrangian. In this
setup, higher appearance Lagrangian terms will appear as

total derivatives in four dimensions. Also, the Minkowski
d’Alembertian is given by □̄ ¼ ∂μ∂μ, which changes in any
gravitational theory since it is a derivative operator. For

instance, in GR this takes the form of ∇∘ μ∇
∘ μ

.
These components can be compactified by the elimina-

tion of total derivative terms through integration by parts,
which reduces the Lagrangian to [9]

L ¼ c1ϕþ c2X − c3X□̄ϕþ c4X½ð□̄ϕÞ2 − ∂μ∂νϕ∂μ∂νϕ� − c5X½ð□̄ϕÞ3 − 3ð□̄ϕÞ∂μ∂νϕ∂μ∂νϕþ 2∂μ∂νϕ∂ν∂λϕ∂λ∂μϕ�;
ð33Þ

where some constants were defined to absorb common factors. In fact, the most general form of this Lagrangian on
Minkowski space involves general combinations of the Lagrangian components dependent on the scalar field and the
kinetic term [61]. This is equivalent to raising the linear constant ci to the arbitrary functions ciðϕ; XÞ.
In the Levi-Civita connection approach, the covariantization of the tangent space Lagrangian takes the form [62]

L
∘
2 ¼ G2ðϕ; XÞ; ð34Þ

L
∘
3 ¼ −G3ðϕ; XÞ□

∘
ϕ; ð35Þ

L
∘
4 ¼ G4ðϕ; XÞR

∘ þG4;Xðϕ; XÞ½ð□
∘
ϕÞ2 −∇∘ μ∇

∘
νϕ∇

∘ μ∇∘ ν

ϕ�; ð36Þ

L
∘
5 ¼ G5ðϕ; XÞG

∘
μν∇

∘ μ∇∘ ν

ϕ −
1

6
G5;Xðϕ; XÞ½ð□

∘
ϕÞ3 þ 2∇∘ ν∇

∘
μϕ∇

∘ ν∇∘ λ

ϕ∇∘ λ∇
∘ μ

ϕ − 3□
∘
ϕ∇∘ μ∇

∘
νϕ∇

∘ μ∇∘ ν

ϕ�; ð37Þ

where Gi are arbitrary functions of the scalar field and the
kinetic term, the first and second Lagrangian parts have
been combined to form the function G2ðϕ; XÞ, and kinetic
term derivatives are represented by Gi;X ¼ ∂Gi=∂X. The
kinetic term is calculated using the regular Levi-Civita

connection covariant derivative X ¼ − 1
2
∇∘ μϕ∇

∘ μ

ϕ. The

d’Alembertian operator takes the usual form □
∘
≔ ∇∘ μ∇

∘ μ

,
where the explicit dependence on the Levi-Civita connec-
tion is shown by the overcircle as specified in Eq. (12). This
notation has also been extended to the derivative operators.
Also, the kinetic term is determined through covariant
derivatives with respect to the Levi-Civita connection,
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which is retained throughout the rest of the work (which is

identical to teleparallel kinetic term X ¼ − 1
2
D
∘
μϕD

∘ μ
ϕ). The

reasoning for this retention is the teleparallel coupling
prescription, as is done in other works [63].

It should also be noted that the L
∘
4 and L

∘
5 Lagrangian

parts contain not only the Levi-Civita covariantization
terms but also correction terms. The Levi-Civita connection
covariantization procedure leads to higher-order derivative
terms which must be corrected for through curvature
correction terms, which is how these additional
Lagrangian terms arise [9,62]. In this form, Horndeski
gravity is strongly limited by recent gravitational wave
observations through the speed of propagation constraints

[64] which has set stringent limits to the form of the L
∘
4 and

L
∘
5 components [65,66]. However, several new avenues are

being advanced to circumvent this problem within the Levi-
Civita connection paradigm [9,67] which have had inter-
esting results.
In this work, we aim to keep to the original spirit of

Horndeski’s approach while changing the mode in which
gravity is characterized through the Weitzenböck connec-
tion. To achieve this goal, we must consider the covarian-
tization procedure through the coupling procedure
described in Sec. II A, while adhering to the teleparallel
analog of the conditions of the theory in Sec. III A.

C. The teleparallel Horndeski theory

To form the teleparallel gravity analog of the Levi-Civita
form of Horndeski’s theory, we must use the coupling
procedure on each of the Lagrangian terms in the
Minkowski background space Lagrangian. Given that
Minkowski space has no gravitational effects, this starting
point remains invariant in both formulations of gravity. In
the Levi-Civita setup, Horndeski gravity leads to the
Lagrangian components in Eqs. (34)–(37). Similarly, in
teleparallel gravity, the same number of contributions
emerge; however, these will differ to varying degrees due
to the change in connectionwhichwill retain all the standard
Horndeski terms due to the coupling prescription nature and
actually add further terms due to the nature of Lovelock’s
theorem in teleparallel gravity. We consider each contribu-
tion in turn and describe how they change in this setting.
Firstly, as in the standard setup, the first two Minkowski

space Lagrangian components are combined to form an
arbitrary function of both the scalar field ϕ and kinetic term
X. This gives rise to the usual Lagrangian component

L2 ¼ G2ðϕ; XÞ; ð38Þ

where X continues to be dependent on the Levi-Civita

connection but is calculated through the tetrads using theD
∘

operator, i.e., X ¼ − 1
2
D
∘ μ
ϕD

∘
μϕ ¼ − 1

2
∂μϕ∂μϕ. Similarly,

the coupling prescription for teleparallel gravity gives the
same form of the Lagrangian component for L3, which
turns out to be

L3 ¼ G3ðϕ; XÞ□ϕ; ð39Þ

where the d’Alembertian operator retains its Levi-Civita
connection form due to the coupling prescription but is

determined using the tetrad fields, i.e., □ ≔ D
∘
μD
∘ μ

¼
∇∘ μ∇

∘ μ

. The L2 and L3 cannot produce field equations
higher than second order in terms of derivatives of the
tetrad or scalar field because the first term has no
derivatives at the Lagrangian level and the second forms
a Dvali-Gabadadze-Porrati term [68].
On the same line of reasoning, the L

∘
4 standard compo-

nent in Eq. (36) features a correction term from which the
Ricci scalar enters the theory. Stemming from the coupling
prescription, the teleparallel scenario will also require a
correction term to preserve the second-order nature of the
resulting field equations. In Ref. [62], the higher-order
contributions to the field equations are negated by consid-
ering several Lagrangian terms with containing contrac-
tions of the Riemann tensor with scalar field derivatives.
Using integration by parts, this results in the single term
correction of the Ricci scalar. Following the equivalent
procedure, it follows that the same standard Horndeski
component will turn out to be

L4 ¼ G4ðϕ; XÞð−T þ BÞ þ G4;Xðϕ; XÞ½ð□ϕÞ2 − ϕ;μνϕ
;μν�;
ð40Þ

where a semicolon denotes the Levi-Civita covariant

derivative calculated with the tetrad field, i.e., D
∘
μ. In

teleparallel gravity the torsion and Ricci scalars are equal
up to a total derivative term, as shown in Eq. (12), which is
the physical reasoning behind the apparent symmetry
between the standard Horndeski terms and their teleparallel
gravity analog. In what follows, we will introduce a new
Lagrangian component that is only apparent in the tele-
parallel gravity paradigm since more scalar invariants can
be constructed in this theory that produce second-order
field equations. For this reason, the nonminimally coupled
torsion scalar will also appear as an unconstrained con-
tribution coupled with at most first-order derivatives of the
scalar field.
The final term to contribute in four dimensions is L5,

which in the standard Horndeski theory gives a covarian-
tized contribution shown in Eq. (37). In the Levi-Civita
connection framework, the Minkowski contribution gives
rise to higher-order derivatives in the metric which are
mended by adding the Einstein tensor term to eliminate
such contributions. For the teleparallel case, as for the L4

correction, the combination of the coupling prescription
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and the equivalence of the torsion and Ricci scalars results
trivially in the same correction term after an integration by
parts procedure. However, the Einstein tensor must be
replaced with its teleparallel equivalent through the tensor
Gμν in Eq. (15). This results in the Lagrangian component

L5 ¼ G5ðϕ; XÞGμνϕ
;μν −

1

6
G5;Xðϕ; XÞ½ð□ϕÞ3

þ 2ϕ;μ
νϕ;ν

αϕ;α
μ − 3ϕ;μνϕ

μνð□ϕÞ�; ð41Þ

which completes the correspondence of each of the
standard Horndeski Lagrangian terms. However, telepar-
allel gravity offers more scalar invariants than GR since
Lovelock’s theorem is weakened under the Weitzenböck
connection. This leads to a further Lagrangian contribution,
Ltele, which will contain the full family of further con-
tributions that preserve the second-order field equations.
As discussed in Sec. II A, taking quadratic contractions

of the torsion tensor, the most general Lagrangian of
teleparallel gravity turns out to be fðTax; Tvec; T tenÞ
neglecting the unphysical parity-violating contributions
in Eqs. (23) and (24). This means that conforming to the
third condition in Sec. III A means that these scalar
invariants must also be included in the L2 of teleparallel
gravity.
Teleparallel gravity is distinctly different to GR in that it

remains second order in derivative operators on the tetrad
field for arbitrary functions of the scalar contributions to the
TEGR Lagrangian through fðTax; Tvec; T tenÞ. This creates a
second set of scalars that must be included in the Ltele
component, namely the irreducible parts of the torsion
tensor contracted with covariant derivatives of the scalar
field. Again, given the form of the coupling procedure, this
will mean Levi-Civita derivatives of the scalar field,

D
∘
μϕ ¼ ∇∘ μϕ ¼ ∂μϕ. Given the definition of the torsion

scalar in Eq. (22), we can equivalently describe this family
of functions as fðTax; Tvec; TÞ where the correspondence
with the literature is more apparent.
Thus, the full set of linear contractions of the torsion

tensor irreducibles can be encapsulated in the scalars

I1 ¼ tμνσϕ;μϕ;νϕ;σ; ð42Þ

I2 ¼ vμϕ;μ; ð43Þ

I3 ¼ aμϕ;μ: ð44Þ

Given the symmetry of the purely torsional part in the first
two indices, tμνσ ¼ tνμσ , and the fact that any pair of
contractions of this part vanishes, tσμσ ¼ 0 ¼ tσσμ ¼ tμσσ,
renders these the full set scalars formed by linear contrac-
tions of the torsion tensor. However, due to the antisym-
metry of the torsion tensor in its last two indices, it can
easily be shown that I1 vanishes. Also, since we require

parity-preserving scalars, I3 cannot be considered because
it does not feature this property. More generally, scalars
made of odd appearances of the axial irreducible part of the
torsion tensor form parity-violating scalars, which will be
important for the full set of quadratic contractions of the
torsion tensor irreducibles with derivatives of the scalar
field. While second order at Lagrangian level, the set of
permutations of contractions of the purely tensorial part
with second-order derivatives of the scalar field result in
higher-order derivatives in the resulting field equations.
In line with the third condition of Sec. III A, we now

consider the complete set of quadratic contractions of the
torsion tensor that involve first derivatives of the scalar
field. Keeping only those scalars that are invariant under
parity transformations, the resulting contributions are

J1 ¼ aμaνϕ;μϕ;ν; ð45Þ

J2 ¼ vμvνϕ;μϕ;ν; ð46Þ

J3 ¼ vσtσμνϕ;μϕ;ν; ð47Þ

J4 ¼ vμtσμνϕ;σϕ;ν; ð48Þ

J5 ¼ tσμνtσ μ̄νϕ;μϕ;μ̄; ð49Þ

J6 ¼ tσμνtσμ̄ ν̄ϕ;μϕ;νϕ;μ̄ϕ;ν̄; ð50Þ

J7 ¼ tσμνtσ̄ μ̄σϕ;μϕ;νϕ;σ̄ϕ;μ̄; ð51Þ

J8 ¼ tσμνtσμν̄ϕ;νϕ;ν̄; ð52Þ

J9 ¼ tσμνtσ̄ μ̄ ν̄ϕ;σϕ;μϕ;νϕ;σ̄ϕ;μ̄ϕ;ν̄; ð53Þ

J10 ¼ ϵμνρσaνtαρσϕ;μϕ;α: ð54Þ

The set of contractions involving the full set of permuta-
tions with second derivatives of the scalar field produce
higher-order scalar invariants and are thus not included.
Also, as with I1, the antisymmetry of the last two indices of
the torsion tensor means that J9 vanishes. One can also
notice that J2 ¼ I22, J3 ¼ J4 and J7 ¼ −2J6 due to the
symmetric property tλμν þ tμνλ þ tνλμ ¼ 0. Then, there are
only seven extra independent scalars containing scalar field
derivatives and torsion up to quadratic contractions of
torsion. Therefore, teleparallel gravity produces the further
Lagrangian contribution

Ltele ¼ Gteleðϕ; X; T; Tax; Tvec; I2; J1; J3; J5; J6; J8; J10Þ;
ð55Þ

which forms the full set of scalar invariants that produce
second-order field equations beyond the standard
Horndeski components. Notice that the boundary term B
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does not contribute. While B is second order in the
Lagrangian, it produces the fourth-order elements of the
theory. This is the source of all the fourth-order terms in

fðR∘ Þ gravity. For this reason, it is not included in this
Lagrangian component.
The extra Lagrangian term presented in Eq. (55) is very

interesting because it naturally contains fðTÞ gravity as a
subclass of the teleparallel gravity analog of Horndeski
theory which is different from the standard scenario where

fðR∘ Þ gravity produces fourth-order contributions for non-
trivial modifications of the Lagrangian. fðTÞ gravity is
completely second order and satisfies the conditions to
produce a Horndeski analog within the teleparallel context,
which means that this new larger class of theories contains
within it several positive features such as the identical
polarization modes of GR [69] and the resolution of the
cosmological H0 tension [70]. Last but not least, the new
theory should also be viable in the weak field limit. The
(post-)Newtonian limit of the standard Horndeski is known
[71] and is determined by 15 constant parameters that can
be constrained depending on whether the scalar field is
massive or not. The contribution of the new Eq. (55) in the
teleparallel analog will be studied in Ref. [72].
Hence, the teleparallel analog of Horndeski’s theory of

gravity is given by the Lagrangian

L ¼
X5
i¼2

Li þ Ltele; ð56Þ

which is the most general theory with one scalar field
leading to second-order field equations in terms of deriv-
atives with respect to the tetrad or scalar field and
containing scalar invariants that are at most quadratic in
torsion tensor contractions. Here, the Lagrangians Li, for
i ¼ 2;…; 5, are given by Eqs. (38)–(41), respectively. The
Lagrangian in Eq. (56) is the teleparallel gravity analog of
the standard Horndeski theory given in Eqs. (34)–(37), but
to recover the exact form the new component Ltele would
need to vanish. Despite this fact, one should also notice that
an overlap exists where the identical potential coupling
between the torsion scalar can be produced in L4 and Ltele.
This can be eliminated by redefining the new Horndeski
Lagrangian term as G̃tele ¼ Gtele þ TG4ðϕ; XÞ, so that
scalar field couplings with the boundary term alone would
then be possible in Eq. (40). In fact, studies of the coupling
of the boundary term with the scalar field already exist in
the literature [31,34,35].

IV. COSMOLOGY IN TELEPARALLEL
HORNDESKI THEORY

In this section, we will study flat FLRW cosmology for
teleparallel Horndeski theory. In this case, the metric in
Cartesian coordinates is

ds2 ¼ −NðtÞ2dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ; ð57Þ

where N is the lapse function and aðtÞ is the scale factor.
Without losing generality, one can take a zero spin
connection gauge, ωa

bμ ¼ 0, and write down the following
diagonal tetrad [43]:

haμ ¼ diagðNðtÞ; aðtÞ; aðtÞ; aðtÞÞ: ð58Þ

For this spacetime, only the vectorial part of the torsion
tensor is nonzero, which is explicitly given by

vμ ¼ ð−3H; 0; 0; 0Þ; ð59Þ

whereH ¼ _a=a is the Hubble parameter. Thus, when one is
considering contractions of the torsion tensor without
considering the scalar field, only Tvec is nonzero and reads

Tvec ¼
−9H2

N2
: ð60Þ

Clearly, the torsion scalar only depends on this quantity
[see Eq. (22)] giving T ¼ ð−2=3ÞTvec ¼ 6H2=N2. There
are no other possible nonzero contractions of the torsion
tensor than the above scalar in flat FLRW cosmology. Thus,
it is equivalent to take T in a function in a Lagrangian
instead of having Tvec since they are only related by a
constant. Since mainly all the literature in teleparallel have
worked on theories constructed by the torsion scalar T, it is
convenient to choose this quantity in the Lagrangian.
When one is considering couplings between the torsion

tensor and ϕ, then in flat FLRW, only the couplings related
to the vectorial part of the torsion tensor vμ and derivatives
of ϕ will be nonzero. If one only considers up to quadratic
contractions of torsion [see condition (iii) in Sec. III A], the
only scalar that is nonzero is then I2 ¼ vμϕ;μ. If ones
relaxes the condition of only considering terms constructed
up to quadratic contractions of torsion, one can also
incorporate the following terms:

I2;n ¼ vμvνvα…vϵ
ðn timesÞ

ðD∘ μϕÞðD
∘
νϕÞðD

∘
αÞ…ðD∘ ϵϕÞ

ðn timesÞ
; ð61Þ

where n ∈ N . It turns out that, for flat FLRW cosmology,
for any contraction n it is possible to get that those scalars
behave as

I2;n ¼
�
3H _ϕ

N2

�
n
¼ In2: ð62Þ

Since these scalars only depend on I2 with different
exponents n, it is sufficient to add I2 as an argument of
a function in a Lagrangian to get all the possible terms that
one can construct from them. Therefore, in flat FLRW
cosmology, it is possible to write down an action with finite
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scalars even considering higher-order contractions of the
torsion tensor. Again, this happens only because the axial
and tensorial parts of torsion are zero for this case.
Therefore, for flat FLRW, the most general Lagrangian

Ltele that can be constructed by the torsion tensor and one
scalar field which leads second-order field equations can be
written as

Ltele ¼ G̃2ðϕ; X; T; I2Þ: ð63Þ

Since the modified FLRW equations are long, we will split
each contribution for each Lagrangian piece Li. Clearly,
only Ltele differs from the standard Horndeski Lagrangian
constructed using general relativity and curvature. By
doing variations with respect to the lapse function NðtÞ
one gets the first Friedmann equation which can be split as

Etele þ
X5
i¼2

Ei ¼ 0; ð64Þ

where

Etele ¼ 6H _ϕG̃2;I2 þ 12H2G̃2;T þ 2XG̃2;X − G̃2; ð65Þ

E2 ¼ 2XG2;X −G2; ð66Þ

E3 ¼ 6X _ϕHG3;X − 2XG3;ϕ; ð67Þ

E4 ¼ −6H2G4 þ 24H2XðG4;X þ XG4;XXÞ
− 12HX _ϕG4;ϕX − 6H _ϕG4;ϕ; ð68Þ

E5 ¼ 2H3X _ϕð5G5;X þ 2XG5;XXÞ
− 6H2Xð3G5;ϕ þ 2XG5;ϕXÞ; ð69Þ

where G2;X ¼ ∂G2=∂X, G5;XX ¼ ∂2G5=∂X2 and so on;
therefore, commas denote differentiation. Each subscript
represents the contribution of each Lagrangian (56) to the
first FLRW equation. Equations (66)–(69) are identical to
Eqs. (3.2)–(3.5) reported in [16]; however, now there is
another contribution from Etele due to teleparallel
Horndeski cosmology.
Now, if one varies the action with respect to the scale

factor aðtÞ, one gets the following set of equations:

Ptele þ
X5
i¼2

Pi ¼ 0; ð70Þ

where

Ptele ¼ −3H _ϕG̃2;I2 − 12H2G̃2;T

−
d
dt

ð4HG̃2;T þ _ϕG̃2;I2Þ þ G̃2; ð71Þ

P2 ¼ G2; ð72Þ

P3 ¼ −2XðG3;ϕ þ ϕ̈G3;XÞ; ð73Þ

P4 ¼ 2ð3H2 þ 2 _HÞG4 − 12H2XG4;X − 4H _XG4;X − 8 _HXG4;X − 8HX _XG4;XX

þ 2ðϕ̈þ 2H _ϕÞG4;ϕ þ 4XG4;ϕϕ þ 4Xðϕ̈ − 2H _ϕÞG4;ϕX; ð74Þ

P5 ¼ −2Xð2H3 _ϕþ 2H _H _ϕþ3H2ϕ̈ÞG5;X − 4H2X2ϕ̈G5;XX

þ 4HXð _X −HXÞG5;ϕX þ 2

�
2
d
dt

ðHXÞ þ 3H2X

�
G5;ϕ þ 4HX _ϕG5;ϕϕ: ð75Þ

Finally, by taking variations with respect to the scalar field one gets the following modified Klein Gordon equation:

1

a3
d
dt

½a3ðJ þ JteleÞ� ¼ Pϕ þ Ptele; ð76Þ

where J and Pϕ are the standard terms in the modified Klein Gordon equation in standard Horndeski theory that comes from
the Lagrangians Li, where i ¼ 2;…; 5, namely [16]

J ¼ _ϕG2;X þ 6HXG3;X − 2 _ϕG3;ϕ þ 6H2 _ϕðG4;X þ 2XG4;XXÞ − 12HXG4;ϕX

þ 2H3Xð3G5;X þ 2XG5;XXÞ − 6H2 _ϕðG5;ϕ þ XG5;ϕXÞ; ð77Þ

Pϕ ¼ G2;ϕ − 2XðG3;ϕϕ þ ϕ̈G3;ϕXÞ þ 6ð2H2 þ _HÞG4;ϕ þ 6Hð _X þ 2HXÞG4;ϕX

− 6H2XG5;ϕϕ þ 2H3X _ϕG5;ϕX; ð78Þ
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FIG. 1. Relationship between teleparallel Horndeski and various theories.
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and Jtele and Ptele are new terms related to the teleparallel
Horndeski, given by

Jtele ¼ _ϕG̃2;X; ð79Þ

Ptele ¼ −9H2G̃2;I2 þ G̃2;ϕ − 3
d
dt

ðHG̃2;I2Þ: ð80Þ

It is important to emphasize again that teleparallel
Horndeski cosmology also contains the standard Horndeski
cosmology since if one takes G̃2 ¼ 0, one recovers the
latter theory. Thus, one can conclude that a telepara-
llel Horndeski version is richer than the standard
Horndeski one.
Moreover, since fðTÞ is a subclass of teleparallel

Horndeski, one can also conclude that teleparallel
Horndeski can explain both dark energy and inflation
[23,39,73–75], can have bounces cosmological solutions
[76,77] and also can alleviate the H0 tension [70]. Since
this theory also contains the teleparallel scalar-tensor
theories studied in [30,31], it can describe a crossing of
the phantom barrier, quintessencelike or phantomlike
behavior, and also a late time accelerating attractor solution
without requiring any fine-tuning of the parameters. Then,
teleparallel Horndeski has an enlarged number of theories
as compared with standard Horndeski that can explain the
cosmological observations without introducing a cosmo-
logical constant. It is then important to analyze how these
theories can pass the constraints coming from gravitational
waves to become more reliable theories. Thus, since
teleparallel Horndeski contains many important subclasses
theories such as the ones related to the teleparallel part and
also the ones coming from its standard Horndeski part, it is
a potential cosmological viable model that is important to
study in full detail. Since this is not the real aim of this
work, this study will be carried out in the future.

V. CONCLUSIONS

In this work, we have introduced the analog of
Horndeski gravity in the teleparallel framework. It is well
known that a large part of Horndeski’s theory in the
curvature case has been eliminated from the GW170817
event. That is why we formulated its analog considering
torsion as the mediator for gravity. After setting a specific
set of conditions, based on which we built our theory, we
showed that the teleparallel Horndeski theory presents a
much richer phenomenology than the standard Horndeski.
Specifically, because of the form of the torsion tensor and
its irreducible decomposition, one can construct a full set of
14 scalar invariants that appear in this framework. Based on
that, we see that terms of the L4, i.e., Eq. (40), that in the
standard Horndeski theory are severely constrained, could
in this case survive through the Lagrangian contribution in
Eq. (55). It should be emphasize here that the standard
Horndeski gravity, constructed from curvature with the

Levi-Civita connection, is a subcase of the teleparallel
Horndeski gravity. One recovers the standard case by
setting Ltele ¼ 0, so that teleparallel Horndeski has a richer
structure than the standard Horndeski gravity theory.
Moreover, fðTÞ gravity, which has been widely studied

in the literature, is also a subcase of teleparallel Horndeski

gravity. In standard Horndeski, fðR∘ Þ does not appear in the
Lagrangian since this theory give rise to fourth-order
derivatives in the field equations. This is remarkable since
it seems that teleparallel Horndeski exhibits a more natural
scalar field extension to consider than its standard form
based from curvature.
To fully depict the impact of a teleparallel gravity analog

of the standard Horndeski theory of gravity, we show its
relation to other modified teleparallel theories in Fig. 1.
Here, we show how each subclass of theories produces
different avenues for extended teleparallel gravity, while
also showing the relation to the standard Horndeski gravity
theory and some of its subclasses. On each case, we have
also included some important references related to those
theories. The top part of the figure (Ltele ¼ 0), labeled with
clouds, represents theories that are related to the standard
Horndeski theory and, hence, they can be written down
only with quantities related to the curvature computed with
the Levi-Civita connection. Even though this quantity does
not appear explicitly in the teleparallel Lagrangian, due to
Eqs. (12) and (15), one notices that they can be rewritten
only with quantities computed with the Levi-Civita con-
nection. In those cases, the spin connectionωa

bμ disappears
in the field equations as it needs to be for theories
constructed by modifying general relativity. Moreover, in
those theories, one only needs the metric (and not the
tetrads) to fully determine the important geometrical
quantities. This is of course fully consistent with the
standard curvature-based theories of gravity constructed
from GR. At the bottom part of the figure (Ltele ≠ 0),
represented with blocks, we have depicted some teleparallel
theories that have been studied in the past and how one can
recover them by taking the specific limits for the
Lagrangian. It should be noted that we have not depicted
all the possible theories that one could construct from
teleparallel Horndeski. Our aim was to show how the most
important theories studied in the literature are related and
how to obtain them by assuming some ansatz for the
Lagrangian. Further, it is possible to construct a large
number of new teleparallel theories due to the inclusion of
the Lagrangian Ltele. It would be interesting to analyze
those new theories in full detail both from the cosmological
and astrophysical point of view. To emphasize the fact the
TEGR and GR have the same field equations, we have also
included a small box labeling this. It is important to remark
that, for theories with LTele ≠ 0, one cannot fully determine
all the Lagrangian quantities with only the metric since the
terms appearing in that Lagrangian are constructed from
teleparallel gravity, so that tetrads and spin connection must
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be taken into account. Another important point to remark is
that teleparallel Horndeski is covariant under local Lorentz
transformations. To understand this clearly, see the review
[43], where it is explained how to model modified tele-
parallel theories of gravity without losing the Lorentz
invariance.
All in all, we think that this paper will significantly

contribute in the modified gravity community because it
introduces a new general theory, that is, the teleparallel
Horndeski gravity. In an upcoming work we plan to study
the effect of the gravitational wave event (and its electro-
magnetic counterpart) in this theory, in order to specifically
see if indeed some of the excluded terms of the standard
Horndeski will survive in this framework.
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