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Abstract 

 

The National Reporting and Learning System (NRLS) is the English and Welsh NHS’ national 

repository of incident reports from healthcare.  It aims to capture details of incident reports, at 

national level, and facilitate clinical review and learning to improve patient safety.  These 

incident reports range from minor ‘near-misses’ to critical incidents that may lead to severe 

harm or death.  NRLS data are currently reported as crude counts and proportions, but their 

major use is clinical review of the free-text descriptions of incidents.  There are few well-

developed quantitative analysis approaches for NRLS, and this thesis investigates these 

methods. 

A literature review revealed a wealth of clinical detail, but also systematic constraints of NRLS’ 

structure, including non-mandatory reporting, missing data and misclassification.  Summary 

statistics for reports from 2010/11 – 2016/17 supported this and suggest NRLS was not 

suitable for statistical modelling in isolation. 

Modelling methods were advanced by creating a hybrid dataset using other sources of hospital 

casemix data from Hospital Episode Statistics (HES).  A theoretical model was established, 

based on ‘exposure’ variables (using casemix proxies), and ‘culture’ as a random-effect. 

The initial modelling approach examined Poisson regression, mixture and multilevel models.  

Overdispersion was significant, generated mainly by clustering and aggregation in the hybrid 

dataset, but models were chosen to reflect these structures.  Further modelling approaches 

were examined, using Generalized Additive Models to smooth predictor variables, regression 

tree-based models including Random Forests, and Artificial Neural Networks.  Models were 

also extended to examine a subset of death and severe harm incidents, exploring how sparse 

counts affect models. 

Text mining techniques were examined for analysis of incident descriptions and showed how 

term frequency might be used.  Terms were used to generate latent topics models used, in-

turn, to predict the harm level of incidents. 

Model outputs were used to create a ‘Standardised Incident Reporting Ratio’ (SIRR) and cast 

this in the mould of current regulatory frameworks, using process control techniques such as 

funnel plots and cusum charts.  A prototype online reporting tool was developed to allow NHS 

organisations to examine their SIRRs, provide supporting analyses, and link data points back to 

individual incident reports. 
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Impact statement 

Medical error and unsafe care have been recognised globally as leading causes of harm (Jha et 

al., 2013).  Estimates from the NHS suggested that between 6,000 and 25,500 NHS patients 

may suffer harm each year, as a direct result of healthcare interventions (Donaldson, 2002, 

Hogan et al., 2012).  Learning from error is a cornerstone of patient safety and commonly aims 

to defend against future errors.  Measurement of error is a major issue, with a reliance on 

clinical review and audit, but incident reporting has been recognised as a key process to help 

organisations learn from error (Donaldson, 2002, Berwick, 2013).  

The National Reporting and Learning System (NRLS), the English and Welsh NHS’ repository for 

incident reports, has been examined in this thesis.  Despite its short-comings (Pham et al., 

2013), the system has provided a wealth of information for the NHS and led to, or supported, 

many changes in practice (Panesar et al., 2009).  Case-note review methods are well 

established, but they are resource intensive and can review only a small fraction of reports, 

leaving the majority unused.  Current reporting methods use comparatively crude counts or 

rates, and this thesis advances methods for casemix-adjustment and more accurate 

prediction/monitoring. 

The results of casemix models have been cast in the framework currently used by NHS 

regulator the Care Quality Commission (CQC), and with the completion of this thesis, will be 

presented to CQC for their use.  Models have been developed with advice from NHS 

Improvement (NHSI) and are due to be presented to them during 2019 to aid their regulatory 

and publishing approaches.  The validity of these models will also be investigated by working 

with NHSI to determine if models identify organisations of specific interest. 

Methodological conclusion from statistical methods in this project have also been shared with 

NHS Digital as feedback on their mortality indicator development. 

Publications have not been pursued during this work, due to time constraints and information 

governance arrangements.  After submission, and with stakeholder approval, papers detailing 

methods for statistical modelling, the identification of outliers and adjustments for 

overdispersion, and text mining techniques are planned for publication in peer-reviewed 

journals and via Arxiv. 

Outputs have been presented in the form of conference posters for the Royal Statistical 

Society and Patient Safety Congress, as well as numerous local events at UCL and University 

Hospitals Birmingham NHS Foundation Trust (UHB).  I have published the funnel plot methods 

as an R package: ‘FunnelPlotR’ available from the CRAN repository, with 3722 downloads 

at time of submission. 
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This work was sponsored by UHB, with the intention of developing reporting tools, and 

spreading learning throughout the Informatics department.  These tools are now ready for 

launch, pending approval from NHSI, and will allow approximately 50 NHS organisations to 

examine their data and aid learning.  Dissemination of skills and knowledge within the 

Informatics department is progressing well, and I have used the skills I’ve developed to deliver 

training, develop statistical literacy in the team, write training material and examples, and lead 

on the adoption of R.  It has also provided a route to access the growing NHS R community and 

contribute to national NHS learning. 
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Glossary of terms abbreviations, and conventions 

All abbreviations are defined on their first use in the text and are occasionally restated in full 

to remind the reader of the terms where it seems appropriate. 

Adverse 

events 

A broader term than ‘incident,’ referring to unintended events.  There are various 
definitions of adverse events depending on setting and context. 

AIC Akaike Information Criterion 

ANN Artificial Neural Network 

CQC Care Quality Commission 

Cusum Cumulative Summary (control charts) 

DPSIMS Development of Patient Safety Incident Management Systems 

GAM Generalized Additive Model 

GLM Generalized Linear Model 

GLMM Generalized Linear Mixed Model 

HES Hospital Episode Statistics 

HSMR Hospital Standardised Mortality Ratio 

Incident Any unintended or unexpected event that could have, or did, lead to harm for one or more 
patients or staff receiving NHS-funded healthcare (Sari et al., 2007).  This includes the 
potential for incidents that might be described as a ‘near-miss.’  The term will commonly 
refer to incidents reported through incident reporting systems in this thesis. 

LDA Latent Dirichlet Allocation (also used in other statistical contexts to mean ‘linear 
discriminant analysis,’ that is not used in this thesis) 

LOS Length of stay in hospital 

MAE Mean Absolute Error 

NHS National Health Service 

NHSE NHS England 

NHSI NHS Improvement 

NPSA National Patient Safety Agency 

NRLS National Reporting and Learning System 

SIRR Standardised Incident Reporting Ratio 

SHMI Summary Hospital-level Mortality Indicator 

 

The statistical programming in this thesis was conducted in the statistical programming language 

R (R Core Team, 2016).  R is commonly extended by third party ‘packages’ written by researcher 

and programmers for specific purposes.  Where R code, functions or package names are 

mentioned, they occur in Courier New font as: package name. 
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Chapter 1  Introduction to thesis 

1.0 Medical error 

The capacity for error is ever-present in healthcare, and a major cause of morbidity and 

mortality globally (Jha et al., 2013).  This risk has been described as being ‘…on an entirely 

different scale from error tolerated elsewhere’ and having ‘different consequences from error in 

other service sectors’ (Elwyn and Corrigan, 2005).  It is reasonable for patients to expect their 

care to be safe and free from errors, but this is an impossible task given the nature of error. 

Patient safety as a research area and discipline has seen significant growth over the last two 

decades, with the broad aim of seeking ’type(s) of process or structure whose application 

reduces the probability of adverse events resulting from exposure to the health care system 

across a range of diseases and procedures.’ (Shojania et al., 2002).  Learning from error is a 

major component of patient safety, and this thesis is concerned with analysis methods for a 

specific learning system, described in this chapter.   

 

Study of errors in fields other than healthcare has suggested complex interactions between 

most failures and elements including social, behavioural, cultural and technological factors 

(Donaldson, 2002). There are various conceptual bases for patient safety terms, ontologies and 

frameworks for understanding causation (Carson-Stevens, 2017, Runciman et al., 2010), with a 

general consensus that errors are not simply the fault of practitioners, but also the systems 

and environments in which they occur. 

 

The UK’s Chief Medical Officer, Prof. Sir Liam Donaldson, used work by Reason (1990) to 

describe the risk of accident and adverse events as if they were holes in a series of slices of 

Swiss cheese (Figure 1.1) (Donaldson, 2002).  In this image, the solid pieces of cheese 

represent system defences and processes, with the holes representing vulnerabilities in these 

systems.  Dangers arise in instances where the holes ‘line up’, allowing an incident to occur 

and slip through successive defensive layers, representing a chain of vulnerabilities in these 

systems.  
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Figure 1.1 ‘Swiss cheese’ model of accident causation 

Figure taken from Donaldson (2002), based on the work of Reason (1990), illustrating the defensive 
systems as the solid parts of each slice, with holes representing vulnerabilities.  Adverse events are often 
the result of an alignment of several system weaknesses, represented by the blue arrow. 

 

Following the publication of the US Institute of Medicine’s report ‘To err is human’ (Kohn et al., 

2000), Prof. Donaldson commissioned a review of the English system, estimating that between 

“6,000 and 25,500 NHS patients each year suffer serious disability or death as a result of 

healthcare interventions” (Hogan et al., 2012, Donaldson, 2000).  These estimates were based 

on retrospective case-note review techniques, developed as part of the Harvard Medical 

Practice study (Brennan et al., 1991), where clinicians reviewed patient records.  Although such 

estimates have been questioned (McDonald et al., 2000), these reports focussed attention on 

medical error, and acknowledged that although impossible to eradicate, errors may be used 

for learning and building defensive safety systems to prevent recurrence.  

 

Case-note review is a well-established method of identifying problems with care, but it is 

resource-intensive, requiring training of reviewers, and consistent reviewing criteria (Hogan et 

al., 2012, Brennan et al., 1991, Williams et al., 2015, Wilson et al., 1995, Vincent et al., 2001).  

These methods can be well-designed and tested for agreement between reviewers, but may 

be hindered by inherent subjectivity or reliability issues, and may be biased by medical training 

and prevailing cultural attitudes (Hogan et al., 2012).  Electronic incident reporting has been 

proposed as an additional approach for learning from error (Sheikh and Hurwitz, 1999) 

(Pronovost et al., 2006), based on the experience of reporting systems in other industries. 
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Incident reporting cultures are commonly found in high risk industries (Barach and Small, 2000, 

Francis, 2013) such as aviation (NASA, 2019, The CHIRP Charitable Trust, 2020), nuclear power 

(2015, IAEA, 2010) and oil production(Christou and Konstantinidou, 2012).  The purpose of 

these systems is to promote learning by allowing the identification of risks that require further 

examination, and to highlight broad areas for targeting improvement activities (Macrae, 2016). 

 

The example of other industries has pointed toward incident reporting providing useful signals 

for further investigation, but often the incident report itself is not considered to contain much 

information (Macrae, 2016).  The message that signals should trigger in-depth investigation 

(Macrae and Vincent, 2014) has been heeded in recent years in the NHS, with the 

establishment of the Health and Safety Investigation Branch (HSIB) (Department of Health & 

Social Care, 2017), but incident reporting in healthcare has been established in several 

countries for many years, including the USA (Nuckols et al., 2007, Santell et al., 2003) and 

Australia (Runciman and Moller, 2001).  Such systems are thought to improve reliability and 

safety by closing the ‘information loop,’ where experience of errors provides information for 

root cause analysis, with expert review building new evidence and driving system 

improvements (Carter et al., 2015).  This NHS took its cue from earlier systems, including those 

in the US, where the collation of established regional reporting systems was recommended, 

with both voluntary and compulsory elements discussed in ‘To err is human’ (Kohn et al., 

2000).   

 

To further examine incident reporting in healthcare, we must define what incidents are 

reported.  Another common term used somewhat interchangeably with “incidents” is “adverse 

events.”  In clinical trials settings, adverse events commonly relate to any form of harm to 

patients, whether it is caused by the treatment under trial or not (Wittes et al., 2015).  This 

definition does not fit well with healthcare delivery settings, as we do not always know the 

outcome.  In this thesis, the term ‘adverse events’ will refer to: “Any unintended event caused 

by the health care that either did or could have led to patient harm” (Sari et al., 2007).  The 

agency tasked with the creation of the UK’s reporting database (National Patient Safety 

Agency, 2004) defined ‘incidents’ as: “any unintended or unexpected incident that could have 

or did lead to harm for one or more patients receiving NHS-funded healthcare,” but this 

definition has grown to include events related to staff and organisational factors as well.  It has 

also grown to include potential events, referred to as ‘near misses.’ 
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The UK has a variety of data collection systems for incidents in healthcare.  This confusing 

landscape demonstrates a degree of overlap and potential duplication or unnecessary 

collection (Mayer et al., 2017): 

• Strategic Executive Information System (StEIS): used by managers to notify regulators 

about serious incidents, especially but not exclusively, the ‘never events’ list (NHS 

England, 2015). 

• Medicines and Healthcare Regulatory Agency (MHRA) yellow card scheme: reporting 

system for regulator of new medications and devices (Medicines and Healthcare 

Regulatory Agency (MHRA), 2016). 

• Care Quality Commission (CQC): organisations must notify CQC of adverse events, 

often through NRLS, but also directly in some cases (Care Quality Commission (CQC), 

2016). 

• NHS Safety Thermometer: a point of care survey that includes items related to harms 

(NHS Digital, 2012). 

• Serious Adverse Blood Reactions & Events (SABRE): MHRA mechanism for reporting 

blood related event (Medicines and Helathcare Regulatory Agency (MHRA), 2010). 

• Serious Hazards of Transfusion Scheme (SHOT): blood related voluntary incident 

reporting scheme that can also be completed via SABRE (Serious Hazards of 

Transfusion, 2016). 

 

1.1 The National Reporting and Learning System (NRLS) 

The National Reporting and Learning System (NRLS) is the English and Welsh NHS’ repository 

of incident reports from healthcare, that can be used for analysis and learning (Carter et al., 

2015).  Data are available to NHS organisations and researchers, at the discretion of NHS 

Improvement (NHSI), and quantitative analyses of these data is the subject of this thesis. 

The size of this database is both a strength and an impediment to analysis.  In evidence to the 

Mid-Staffordshire Hospitals enquiry, Prof. Donaldson who was responsible for implementing 

the UK response to the patient safety agenda, described the situation thus: “The number of 

reports received is … huge, so that raises the question of how can we analyse them all properly. 

Decisions therefore need to be made as to whether we need tighter rules on incident reporting, 

and the distinction between local and national level reporting and follow-through’ (Francis, 

2013). 
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The NRLS was originally implemented and ‘owned’ by the National Patient Safety Agency 

(NPSA), who were merged, first into NHS England (NHSE), and then NHSI.  Much has been 

learnt from it during its existence, including identifying risks in airway management between 

critical care and other settings (McGrath and Thomas, 2011), that drug-related errors are 

commonly related to wrong administration (Cousins et al., 2012) (with vinca-alkaloids a 

prominent example (Franklin et al., 2014)), identifying the risks of shock and death associated 

with the use of bone cement in hemiarthroplasty for fractured neck of femur surgery (Rutter 

et al., 2014) etc.  Many of these messages are discussed in greater depth in the literature 

review in the next chapter, but have also formed the bases for ‘Rapid Reports’ or ‘Patient 

Safety Alerts’ from NPSA/NRLS/NHSI (Panesar et al., 2009).  Despite many patient safety alerts, 

academics studies, and major investments in patient safety systems, there have been few 

evaluations of their effectiveness (Carson-Stevens et al., 2018). 

 

NHSI’s patient safety team spend considerable effort reviewing severe harm and death 

incidents, where free-text descriptions of incidents are read by clinically trained staff.  This is 

both expensive and time-consuming, with nearly 80,000 such reports for fiscal years 2010/11 – 

2016/17 (calculated from NRLS data supplied for this project).  These reports could be 

considered ‘the tip of the iceberg,’ representing just 0.72% of reports during this period.  This 

leaves the majority of incident reports, that may provide valuable information, unused at 

national level.  It also leads to questions about the purpose of collecting such a vast resource 

that cannot practically be analysed.  Statistical and machine learning methods have seen some 

limited implementations, particularly around text mining (Bentham and Hand, 2012, Bentham, 

2010, Bentham and Hand, 2009, Altuncu et al., 2018), and investigating associations with harm 

level (Cuong Pham and Colantuoni, 2010, Howell et al., 2015, Wahr et al., 2014, Hutchinson et 

al., 2009), but regular analytical methods, other than simple reporting rates, are not in 

common use. 

 

1.2 Thesis aims structure 

This applied statistics thesis attempts to address this gap by investigating previous analytical 

approaches, examining the NRLS, borrowing strength from other datasets for casemix-

adjustment, and examining how outputs can fit into current regulatory structures.  It also 

addresses the practical application of these techniques to build a tool to interrogate data, as 

well as accessible text analysis approaches that might be applied by regulators or investigators.  

The aim is to aid regulators, NHS organisations and researchers to identify organisations of 
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interest that might require investigation or may be examples of best practice from whom the 

whole system could learn.  The intended outputs are the statistical methods for application by 

others, preliminary model data that can be investigated with the regulators, and the 

construction of an interactive online tool delivered through the Healthcare Evaluation Data 

(HED) benchmarking tool. 

 

The objective of patient safety research, and this thesis is to prevent future harm by advancing 

methods to learn from error in the NHS.  The current methods of review used by NHS 

Improvement, CQC and others are effective for learning but are limited by the resources 

required for case-note review.  NHS Improvement’s patient safety team cannot feasibly review 

the huge number of reports they receive each year.  This is a barrier to learning and 

improvement, but also calls the purpose of national data collection into question.  Valuable 

information is contained in some of these reports, reviewers may be looking for a ‘needle in a 

haystack.’  Therefore, the main question addressed by this thesis is: ‘can we make better use 

of the NRLS data we are already collecting?’  

To answer this question, the aims of the project are: 

1. To identify what types of learning have been derived from NRLS data so far, their 

strengths and their limitations. 

2. To investigate and identify relevant data structures and necessary preparation steps 

for quantitative analysis of NRLS data. 

3. To examine what statistical modelling processes and techniques are appropriate for 

NRLS data, develop and apply relevant methods. 

4. To examine presentation methods for outputs that allow regulators and NHS 

organisations to interpret and use model output. 

This thesis describes the current situation where the majority of incident reports (that do not 

lead to severe harm or death) cannot be reviewed at national level due to the scale of the task.  

My thesis addresses this unmet need by developing statistical, machine learning and text 

mining methods to identify differences in incident reporting culture between organisations.  It 

provides monitoring methods and tools with better adjustment for differences between 

hospitals, and it explores whether quantitative analysis of free-text may be routinely applied to 

these data.  The next chapter begins this by examining how NRLS data has been analysed in 

published literature at the start of this project. 
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Two analytical strategies were pursued in this thesis: analysis of incident reports as count data, 

and analysis methods for free text.  These two methods are independent, but are reported in 

order, addressing the count methods first, and the free-text methods second.  The thesis is 

structured in four main components, aiming to identify current analysis techniques, their 

limitations and propose new methods for greater insight.  These sections are broadly: 

literature review, development of statistical models for count-based analyses, methods for 

presenting such count-based models in current regulatory frameworks, and methods of free-

text based analysis.  The chapter structure and content are summarised below. 

 

Chapter 2 addresses aim 1, through identifying and examining a literature base around NRLS 

analysis.  The difficulties in identifying this literature through common search practices are 

described, using an iterative screening process to reduce the volume of data returned.  This 

chapter highlights the clinical areas where NRLS data have provided information, the problems 

with the incident reporting data and the NRLS specifically.  It examines reporting practices and 

reliability debates, and describes the limited quantitative statistical analyses performed to 

date. 

 

Chapter 3 addresses aim 2 by describing the NRLS data and the methods required to process it 

at scale.  It details the methods for receiving, cleaning and processing the raw data.  Summary 

data are presented, and data fields are described.  Limited statistical testing is also performed, 

demonstrating some association between NRLS categorical data, but with few helpful 

conclusions using NRLS alone.  A method of aggregating data to form a count data set, with 

predictors from other sources, is proposed. 

 

Chapter 4 addresses aim 3 by examining how count data are commonly modelled. Chapters 2 

and 3 suggest that NRLS data can only be feasibly modelled as count data, and this chapter 

discusses Poisson regression as a basis for the development of further models. Overdispersion 

and various methods for dealing with it are discussed, including mixture models, quasi-

likelihood and multilevel modelling approaches.  Issues around model checking and 

comparison are examined and used to inform the modelling strategy in the following chapters. 

 

Chapter 5 addresses aims 2 and 3 by introducing a conceptual model for analysing incident 

reports focussing on ‘exposure’ and ‘culture’ factors.  Exposure is then examined by 
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constructing the count data set suggested in chapter 3, using casemix factors identified from 

the Hospital Episode Statistics (HES) (NHS Digital, 2017d).  The methods from Chapter 4 are 

used to develop a generalised linear modelling approach, with overdispersion identified as a 

major issue.  Alternative models are examined to deal with overdispersion, with multilevel 

models including random-intercepts for clusters of repeated measure proving the most 

successful. 

 

Chapter 6 continues to develop aim 3 by applying methods better suited to ‘noisy’, non-linear, 

or non-parametric data, relevant to NRLS.  Smoothing approaches can aid modelling when 

working with ‘noisy’ datasets, and Generalised Additive Models are used to this end.  Use of 

appropriate smoothers and estimation of smoothing parameters are discussed, and random-

intercept structures developed in Chapter 5 are also applied.  Regression trees, ‘boosting’, 

‘bagging’ and ‘Random Forests’ are introduced as alternative algorithmic approaches from 

machine learning methods.  Random Forests showed the most promise of these techniques 

and were taken forward to subsequent chapters.  Artificial Neural Networks were also 

investigated to examine if their non-linear methods would better predict data but did not 

outperform the regression-based models already examined. 

 

Chapter 7 takes the model architectures in previous chapters and refits them to the subset of 

severe harm or death incidents, the group that are manually audited by NHSI at present.  

These further pursues aim 3, by targeting the subgroups that represent the most urgent signal 

and are at the highest risk.  These events are rare, and models were affected by this sparsity, 

with simpler models proposed and evaluated. 

 

Chapter 8 addresses aim 4 by introducing the common statistical tools used by NHS regulators, 

including CQC, who have the most detailed methodology for examining organisational 

variation.  Conditional and marginal model predictions are discussed, and marginal predictions 

are used to apply current regulatory methods.  A Standardised Incident Reporting Ratio (SIRR) 

is proposed as a ratio of observed to expected counts from the casemix models developed in 

previous chapters.  An additive overdispersion adjustment, based on meta-analysis techniques 

is described, and applied to calculate adjusted z-scores and funnel plots.  Methods for 

monitoring are investigated through the use of Cusum control charting techniques. 
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Chapter 9 does not follow sequentially from previous analyses, but instead reports a parallel 

analysis approach targeting free text.  This chapter answers aim 3 by examining the other 

major source of information in each report, the incident description, that has been ignored in 

earlier chapters.  The challenges and standard practices for text analyses are explained and 

applied to NRLS data.  Information on term frequency and how to use these metrics are 

discussed.  Text are then used to build topic models based on latent topics identified by Latent 

Dirichlet Allocation (LDA).  LDA models are then used to predict levels of harm and compared 

to the recorded values, showing promise for analytical techniques and with potential to aid 

data quality/completeness in future systems. 

 

Chapter 10 takes the methods developed in chapters 5-8 and shows how they have been 

converted to an interactive online tool, for use by organisations, within the Healthcare 

Evaluation Data (HED) benchmarking tool.  This chapters described the practical processes to 

achieve this using SQL, R and web technologies.  This chapter contributes to aim 4, and the 

wider dissemination and practical use of the methods developed in previous chapters. 

 

Chapter 11 is a final discussion chapter, drawing the conclusions of the various chapters to 

together.  This chapter addresses all four aims of the thesis and considers them in the wider 

context of the NHS, statistical methodology and implications for practise.  The chapter 

included suggested wider applications and recommendations for stakeholders. 

A reference list and various appendices are included, with relevant screenshots, 

supplementary tables and figures, at the end of this thesis. 
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Chapter 2  Literature review 

2.1 Introduction 

To determine how best to examine the NRLS data, a survey of previous analyses, research 

articles and the types of information they could access was required.  Initial investigations of 

the NPSA website revealed only a limited number of resources, related mostly to their regular 

reporting functions, although some special reports and analyses by subject experts was 

published.  NRLS analysis and use in academia was less clear, as there were no specific links to 

these publications.  A review of academic and published literature was required to provide 

context and background information to answer aim 1 of this project, by identifying the what 

has been learned from NRLS to date. 

This chapter describes the methods, difficulties and information gleaned from this review.  It 

was conducted at the beginning of the project and has not been subsequently refreshed, but 

later publications are discussed where relevant in later sections of this thesis. 

 

2.2 Methods for review 

The aims for this review were to identify the areas where NRLS data has been analysed, what 

insights have been gained from these analyses and what methods have been used to gain such 

insights.  Given these aims, it was necessary to perform a wide-ranging appraisal of the 

published literature.  Various review methods may be used for literature reviews, including: 

• Narrative Review – A summary of the state of knowledge in a field, generally collated 

by a topic expert that (Gregory and Denniss, 2018).  Reviews of this type are typically 

not systematic in their approach, relying on researcher’s experience, interpretation 

and knowledge of their field.  They may contain biases and interpretations but can be 

used to take a wide view of a field and are particularly useful when a study question 

cannot be addressed by systematic review methods. 

• Systematic review – Rigorous protocols to identify and collate all available research, 

fitting pre-specified eligibility criteria, to answer a specific research question (Higgins 

et al., 2019).  Such reviews are necessarily narrow in focus, usually targeted at specific 

study types according to a hierarchy of evidence.  They commonly involve careful 

assessment of quality and rigour and may involve meta-analysis of treatment effects 

where relevant. 
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• Scoping review – A type of review that may be used to identify and map a literature 

base, identify evidence in a particular field, or highlight particular research methods 

(Munn et al., 2018).  Their methods are not as strictly defined as systemic reviews, but 

methods may overlap with systematic or narrative reviews standard but may involve 

similar processes.  Scoping review may be precursors to systematic reviews where a 

narrowly focussed question has not yet been developed. 

 

The review methods used for this chapter resemble a scoping review in many ways, with 

methods for systematic searches of published literature adopted from systematic reviews.  

This was necessary due to the diversity of the literature identified, and a desire to include as 

many relevant articles as possible.  This has, in some cases, included letters and opinion 

articles where evidence has been drawn from the NRLS in some fashion.  These articles would 

not have featured in a narrower systematic review, but this diversity presented difficulties in 

assessing the quality of articles.  It also prevented the use of systematic checklists, commonly 

used in critical appraisal of evidence, or formal tools for assessment of quality.  Studies were, 

instead, assessed for their method susceptibility to bias (section 2.2.3). 

Systematic searches of major medical research databases were performed, targeting published 

research articles, conference presentations, theses and reports where NRLS data has been 

used directly.  Patient safety alerts or reports issued by NPSA / NHSE or NHS Improvement 

have not been included in searches.  Editorials or summaries of these alerts appearing in 

professional journals as practice development articles, rather than primary research, were also 

excluded. 

2.2.1 Search strategy 

Electronic database searches were used to identify articles published from 2001 (the year the 

NPSA was established) onwards.  Text-based searches for variants of “NRLS” or “NPSA” in 

conjunction with variants of “incident” and “reporting,” as well as variants of “incident” and 

“report” with “NHS” or “database” from Great Britain were used as main search terms.  

Medical Subject Headings (MESH) were considered and searched, but MESH and other index 

terms were not used in final searches.  Index terms were inconsistent across articles, with few 

conserved terms, in pilot searches.  Articles were also inconsistently indexed under a variety of 

different terms across search engines, as many appeared in more than one source.  See 

Appendix A for full search criteria. 
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Database sources used included:  the Cochrane Library, DARE, CRD, Medline, Health 

Management Information Consortium (HMIC), Embase, CINAL, Proquest Dissertations and 

Theses, The British Library Theses, ProQuest Risk management and Web of Science. 

2.2.2 Screening process 

References were imported into Endnote X7 and limited de-duplication performed using 

Endnotes tools before manual screening.  Screening was conducted in rounds using title, title 

& abstract and full-text (Figure 2.1).  Inclusion and exclusion criteria were interpreted 

conservatively with uncertain articles included for the following round. 

The first screening round was based on article title and used exclusion criteria: 

• Articles related to subjects other than incident reporting (e.g “prostate specific 

antigen” (PSA)) 

• Articles focussed on countries or health systems other than England or Wales 

• Articles with no obvious link to NRLS 

Articles described as ‘audits’ in their titles were not informative enough to be excluded at this 

stage. 

Second round screening focussed on title and abstract, using inclusion criteria: 

• Articles directly mention or use NRLS data 

Where abstracts were not indexed in search engines, full-text article were retrieved and where 

abstracts were not available due to article style, executive summaries/overviews or the first 

page of body text were screened in the same manner. 

Full-text screening was based on inclusion criteria: 

• NRLS data must be analysed in some form, including (but not limited to): 

o Summary statistics (e.g. frequencies) 

o Qualitative analysis (e.g. text entries reviewed, themes identified and data 

extracted) 

o Statistical analysis (e.g. regression modelling) 

Summaries of NPSA safety reports/alerts were excluded from the review, as these formed part 

of the NRLS’ own work programme, rather than primary research.  One protocol article was 

included, as it directly referenced incident counts from its primary data. 

 



32 
 

 

Figure 2.1: Search and screening processes for literature review.   

Search and screening processes for literature review.  Numbers of articles retrieved and 

excluded, are shown with arrows showing the process flow. 

 

2.2.3 Assessment of articles/study quality 

Standardised assessment tools commonly used in systematic reviews of clinical trials (e.g. the 

CONSORT statement (Schulz et al., 2010)) or specific study types (such as the CASP checklists 

(Critical Appraisal Skills Programme, 2016) ) were not applicable to this review due to the 

range of articles included.  The structures of these articles were not consistent, and not 

amenable to assessing with a structure-based checklist. Many articles were not peer-reviewed 

or not constructed in a manner resembling a traditional cross-sectional study or standard trial 

design.  Quality was therefore assessed in terms of the strengths and weaknesses of each 

article, focussing on methodological rigour, NRLS search protocol/method of identifying 

relevant incident reports, and susceptibility to (or acknowledgement of) bias (table 2.3).  

Common biases were coded during data extraction and reviewed.  Where biases undermined 

studies, they are explained in the results section. 
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Factual errors were identified in a number of papers, e.g. mis-matching percentage 

calculations (Cousins et al., 2012), unexplained gaps in before and after studies (Flood et al., 

2014, Flood et al., 2015), biased comparisons (Flood et al., 2015) and lack of denominators of 

total incidents reviewed (Flood et al., 2015, Hutchinson et al., 2009, Fisher et al., 2015).  

Individual errors did not necessarily undermine the arguments of a given study, but in cases 

where authors or studies showed multiple errors, the reliability of those studies is 

questionable. 

2.2.4 Data extraction 

A custom data extraction and recording method was developed for this review due to the 

differing nature of articles.  The full-text articles were read and extracted information (defined 

as: any data, data-based hypotheses or conclusions expressed uniquely in that article) were 

recorded.  A primary subject was selected and list of secondary subjects (“tags”) was created 

that allowed multiple tags to be assigned to articles. 

A relational database was designed, using Microsoft SQL Server 2014, for data capture and 

analysis (structure detailed in appendix B.1).  Data input forms, connected to the database, 

were created in Microsoft Access 2013.  Primary subjects were used to structure results in 

table 2.1. 

The database tool was designed prior to extraction, but retained flexibility to be altered.  

Referential integrity was enforced on all ‘lookup’ fields so that if a tag was altered or removed, 

all records were subsequently updated.  Information recorded as data or learning derived from 

studies were extracted into their own fields.  Strengths and limitations were grouped 

separately and additional notes, such as structural issues, were recorded in their own fields.  

Appendix B.2 is a screenshot of the initial data collection tool. 

A validation process was conducted at the end of screening and analysis ensuring all studies 

had an inclusion status, reconciled with Endnote, and compulsory fields were populated. 

 

2.3 Results 

2.3.1 General results 

Searches identified 74 relevant articles after screening, with two articles subsequently merged, 

as they were revisions of the same manuscript in different publications.  See table 2.4 for full 

evidence summary table. 
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Studies ranged in size from 13 reports (Rocos and Donaldson, 2012) to 5.9 million reports 

(Howell et al., 2015).  The differing scales of studies necessitated different designs, with small 

studies allowing detailed analyses of individual reports and larger studies restricted to 

categorical and numerical analyses. 

The majority of articles used mixed methods or qualitative methods, due to problems with 

NRLS categorisations (Table 2.1) (Barai et al., 2014).  The depth of methodological detail varied 

widely, even amongst literature published in the same journal.  Some articles included detailed 

NRLS search terms (Milligan, 2012) explaining how their sample of reports was identified, 

some included potential biases and reasons for missing data whilst others simply reported 

numbers of incidents (Panesar et al., 2012b) with no further comments. 

Many studies were conducted in a ‘clinical audit’ style, with clinically trained reviewers reading 

the free-text descriptions of incidents and making clinical experience-based judgements.  A 

small number of studies applied specific qualitative techniques such as the ‘recursive model of 

incident analysis’ (Rees et al., 2015b, Williams et al., 2015) or the ‘constant comparative 

method’ (Panesar et al., 2012a, Rees et al., 2015a), with one article developing a framework 

for analysis of incidents, referred to as the “Primary Care Patient Safety (PISA) Classification 

System” (Carson-Stevens et al., 2015).  Well-developed studies explained the training process 

for reviewers (Carson-Stevens et al., 2015), how conflicts in coding were resolved and 

validation checks (Rees et al., 2015b, Carson-Stevens et al., 2015, Williams et al., 2015, Panesar 

et al., 2014). 

Three studies used ‘before and after’ designs (Flood et al., 2014, Flood et al., 2015, Laker, 

2009) to evaluate the effects of ‘patient safety alerts’ that were influenced by NRLS data.  Two 

articles (Flood et al., 2014, Flood et al., 2015) used long ‘before’ periods and short ‘after’ 

periods (27 months vs. 16 months & 72 months vs. 15 months) and could be viewed as under-

powered for detecting the desired change.  The ‘after’ periods were too short to observe the 

relevant incidents at rates similar to the ‘before’ period, and therefor lacked the precision to 

assess their hypotheses.  Both studies contained unexplained gaps between before and after 

periods in which incidents may have been reported. 

Five articles applied at least one statistical analysis/modelling technique to describe NRLS.  No 

consistent method was observed, but techniques included: 

• Bayesian hierarchical model to examine variance in harm rate between and within 

hospitals (Pham et al., 2010). 

• Rao-Scott chi-squared tests to compare proportions of medication errors between and 

within US and UK hospital intensive care units (ICUs) (Wahr et al., 2014). 



35 
 

• Generalised estimating equations (GEE) logistic regression to compare reports related 

to drug classes in between US and UK ICUs, accounting for hospital-level effects (Wahr 

et al., 2014). 

• Log-linear models for contingency tables and linear mixed models to examine effects 

of location, incident and outcome on reviewer’s severity score using (Templeton et al., 

2011). 

• Development of an error index as a function of error severity and propensity (Panesar 

et al., 2013b). 

• Correlation coefficients and regression models to examine relationships between harm 

levels and other hospital outcomes measures (Howell et al., 2015). 

The majority of articles focussed on secondary care settings, with small numbers in mental 

health, learning disabilities, or primary care.  Low numbers of reports from some secondary 

care organisations, and other settings, combined with high harm rates (Williams et al., 2015) 

suggested either limited awareness of incidents or limited reporting in these contexts.  A lack 

of ‘no harm’ or ‘low harm’ incidents suggests under-reporting, deflates denominators for total 

incidents, and prevents robust comparison of harm levels in these organisations. 

Levels of harm reported across articles suggested most incidents were classified as ‘no ham’, 

‘low harm’ or ‘moderate harm’, with few leading to ‘severe harm’ or death.  E.g. Howell et al. 

(2015) reported 70.3% as no harm and 0.9% as severe harm or death. 

A range of primary subjects, assigned during data extraction, was identified and summarised in 

Table 2.1.  Many assigned subjects aligned with specific NRLS database categories or work-

streams from specific research groups (e.g. anaesthesia, critical care or primary care).  Subjects 

assigned to studies overlaped with other categories.  In these cases, a primary subject was 

chosen from the apparent target of the authors, e.g. anaesthetics and surgery in (Arnot-Smith 

and Smith, 2010) was assigned as an anaesthetics primary subject. 

 



36 
 

 

Table 2.1  Primary subjects assigned to NRLS-related articles, identified by systematic 
review. 

 

Most articles touched on multiple subjects or overlapped with other classifications, e.g. 

‘obesity’ may overlap with ‘secondary care,’ ‘ward settings,’ ‘airway management,’ 

‘medication/dosage’ etc.  Articles were also ‘tagged’ against the apparent primary subject and 

all other apparent subjects using a secondary classification system that allowed multiple tags.  

Table 2.2 summarises the top 25 categories when multiple subject coding was considered.  

Medication was by far the most common subject, with medication themes in 70% of articles.  A 

majority of article were secondary care based (55%) with surgery (36%), Administration (of 

drugs of treatment) (33%) and equipment (32%) the next most common categories. 

Subject

Conference 

Abstract Editorial Mixed Qualitative Quantitative Total

Acupuncture 1 1

Airway 3 3 6

Ambulance 1 1

Anaesthesia 2 4 1 7

Anaphylaxis 1 1

Cardiac arrest 1 1

Chest Drain 1 1

Critical Care 3 3

Dentistry 1 1

Dermatology 1 1

Diagnostics 1 1

Dialysis 1 1

Falls 3 3

Incident Reporting 3 3 6

Medication 1 10 11

Mental Health 1 1

Nutrition/Hydration 1 1 2

Obesity 1 1

Obstetrics 1 1

Ophthalmology 3 3

Orthopaedics 3 4 7

Paediatrics 2 1 1 4

Resuscitation 1 1

Self-Harm 1 1

Staffing 1 1

Suicide 1 1

Surgery 1 1 1 3

Transfers 1 1

Vaccination 1 1

Total 13 1 46 2 11 73
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Table 2.2  Most common subject tags applied to NRLS-related articles identified by 
systematic review. 

 

Table 2.3 summarise the common sources of bias/errors identified in the articles, due to the 

nature of NRLS data collection and the research methods used: 

• Allocation of specialty – The recording of treatment specialty is important in 

classifying the type of incident, but multiple professionals/specialties may be involved 

in a report.  Barai et al.(2014) suggested 69% of surgical incidents had at least one 

possible alternative classification and that current classifications were too rigid.  Baird 

et al.(2009) estimated 40% of anaesthetic incidents were miscoded as surgery, whilst 

Cassidy et al. (2011) suggested the misclassification to be as high as 60% in the sample 

they reviewed. 

Subject Studies tagged

Percentage of 

Studies tagged 

(n=73)

Medication 51 70%

Secondary care 40 55%

Surgery 26 36%

Administration  (of drugs or 

treatment) 24 33%

Equipment 23 32%

Communication 20 27%

Documentation 20 27%

Skills/Training 20 27%

Procedure 19 26%

Staff mistakes 18 25%

Incident Reporting 18 25%

Monitoring 18 25%

Dosage 16 22%

Primary Care 16 22%

Transfers 16 22%

Precribing 15 21%

Airway 15 21%

Anaesthesia 15 21%

Mental Health 14 19%

Infrastructure 14 19%

Delays in treatment 13 18%

Critical Care 13 18%

Falls 12 16%

Staffing 12 16%

Patient accident 10 14%
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Table 2.3  Sources of potential bias identified in NRLS-related articles identified by 
systematic review. 

 

• Anonymisation - Data submitted to the NRLS are anonymised to protect patient 

confidentiality, and direct identification of patients was deemed unnecessary for the 

NRLS to function as a learning tool.  This, however, prevents analysis of repeated 

incidents with the same patient or staff member, the tracking of incidents across care 

settings, and linkage of local data to NRLS to retrieve further details (Panesar et al., 

2012a).  This disproportionately affected certain studies where repeated 

behaviours/incidents were involved e.g. airway/choking incidents (Guthrie et al., 

2015), self-harm (James et al., 2012) or attempted suicide (Bowers and James, 2011).  

A high number of choking incidents across many patients could be considered a 

different signal to repeated choking incidents for few patients. 

• Classification of harm – Only severe harm or death incidents are mandatory to report 

from 2010 onwards.  Low harm incidents may not be perceived as incidents at all, and 

their reporting is still not mandated.  One study commented on this, stating “…either 

there were no clinical complications …, or that our data is not representative of all … 

complications occurring during the time period examined.  The answer is most certainly 

the latter” (Innes and Curtis, 2013).  Although the NPSA guidance suggested using 

established grades of harm for analysis, many incidents appear to be mis-graded with 

some studies re-grading a proportion of their data.  A common criticism by authors 

was that reports classified potential harm rather than actual harm.  It has been 

suggested that a quarter of anaesthetic incidents were mis-graded (Baird and Smith, 

Description
Articles affected 

(n) (Total n=73)

Article 

affected (%)

Allocation of specialty 32 43%

Alternative reporting route 16 22%

Anonymisation 18 24%

Ascertainment of reports 61 82%

Classification of harm 60 81%

Duplication 10 14%

Lack of detail 58 78%

Missing data 54 73%

Poor/lack of search terms 17 23%

Potential vs. actual harm 8 11%

Re-classification by authors 31 42%

Search terms not specified 18 24%

Under reporting 71 96%

Unlikely dates 4 5%
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2009) and severity of incidents differed when a specialist reporting system was 

compared to the NRLS (Guthrie et al., 2015). 

• Classification of incidents – As with specialty, incident type is also inconsistent.  57% 

of wrong-site surgery reports in orthopaedics were suggested to be misclassified, with 

no wrong-site surgery occurring (Panesar et al., 2011).  Some authors even reclassified 

their dataset during or prior to analysis to account for this (Thomas et al., 2009).  NRLS 

classifications were also suggested to be insufficient to capture chronological elements 

in reports (Carson-Stevens et al., 2015). 

• Lack of detail - Word count in the free-text incident descriptions varied considerably.  

A median word count of 20, ranging from a single word to hundreds of words was 

noted in a text-mining study (Bentham and Hand, 2012).  Some entries represented 

error messages, single full stop characters, or series of ‘x’ characters.  Some articles 

used word count as a proxy of reporting ‘quality’ (Sevdalis et al., 2010, Scott-Warren et 

al., 2012).  Although a clear description may contain only a few words, it is unlikely 

that very short descriptions convey incidents adequately.  Conversely it is not 

necessarily true that a long report is of high ‘quality’ and may contain spurious or 

unnecessary information such as software error messages.  A lack of detail has 

prevented many reports being used effectively by researchers (Panesar et al., 2012a). 

• Missing data – Many NRLS fields are non-mandatory and their completeness varies 

(Hignett, 2013).  The age field was  found to be populated in only 62% of eligible cases 

in one study (Martinez et al., 2011), and degree of harm populated 66% in another 

(Thomas et al., 2009), despite this being mandatory.  If data are missing ‘completely at 

random’, imputation methods may be used.  In the case of NRLS, we cannot determine 

if data are unreported, deliberately omitted, missing in error, or represent data 

mapping problems.  Missing data may severely undermine the validity of extracted 

data and analyses, and imputation methods were not suitable for the studies.  

MacLennan and Smith (2011) suggested that missing data also affects case 

ascertainment, potentially excluding/including the wrong cases in studies. 

• Search terms  – free-text entries and clinical judgement appear to be the most 

appropriate way to identify incidents and avoid mis-classification.  There is no standard 

validation of the free-text entered.  It contains acronyms, medical terms, inconsistent 

names, spelling mistakes and corrupted entries (Bentham, 2010).  Stronger articles 

considered multiple terms and anticipated different classifications, e.g. consulting 

SNOWMED terms (Arnot-Smith and Smith, 2010), using word variants (Catchpole et al., 

2008, Milligan, 2012, Rutter et al., 2014, Booth et al., 2011), anticipating mis-spellings 
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(Kelly and Jalil, 2011, Kelly and Barua, 2011) or using specific mappings of terms 

(Cousins et al., 2012). 

• Under-reporting  - all incident reporting systems are prone to bias from under-

reporting (Panesar et al., 2009).  Many articles directly acknowledge this, but almost all 

the studies are affected, making estimations of harm rates or prevalence inconsistent 

and non-generalisable. 

• Volume of data – The volume of incident reports in the system is overwhelming for 

researchers reviewing the text.  This high volume often led authors to choose 

pragmatic samples.  For example, a study of hydration incidents identified 7,856 

incidents, and chose to review all 142 deaths and 257 severe harm incidents and 50 of 

each other harm category (Lecko and Best, 2013). 
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Authors Year  

Records 
examined 

 

Period 

Estimated Harm rates 

Summary   Death Severe 

Severe 
or 

Death 
No 

Harm 
Not 

Estimated 

Acupuncture                       
Wheway J, 
Agbabiaka TB, 
Ernst E(2012) 2012   325 of 468   

Jan-09   -    
Dec-11 0.31%     63.38% FALSE 

Major themes included retained needles and extended treatment time. Dizziness, loss of 
consciousness and referral to ambulance crew or A&E in some cases. 

Airway                       

Thomas AN, 
McGrath 
BA(2009) 2009  1085  

Oct-05   -   
Sept-07   10.10% 39.00% FALSE 

28.8% airway device incidents related to neonates or babies, 71% in adults.  82% were post-
procedural problems.  Partial displacement resulted in more harm than total displacement. 
Although less frequent than medication or equipment incidents, associated with higher 
degrees of harm. 

            

Robertson JA, 
Smith AF(2010) 2010  

1885 of 
195810  

13/01/2006 
- 
03/04/2009     FALSE 

Airway incidents with devices and intubation often related to poor dentition, difficult 
intubation, difficult airway, operator inexperience, and equipment failures.  Deficiencies in 
pre-operative assessment, equipment provision, information and skills implicated. 

            
McGrath BA, 
Thomas 
AN(2010) 2010  453 of 968  

Oct-05   -   
Sept-07  18.00%   FALSE 

Management of tracheostomies on wards can lead to more incidents of harm, primarily due 
to lack of infrastructure, appropriate airway equipment and skills for staff dealing with 
patients. 

            
McGrath BA, 
Thomas 
AN(2011) 2011  494  

Oct-05   -   
Sep-07   18.00%  FALSE 

Risk of harm from post-placement tracheostomy incidents higher in ward settings compared 
with others.  Availability of appropriate equipment and skilled staff in managing patients on 
ward was highlighted. 

            
Templeton R, 
Webster K, 
McGrath 
BA(2011) 2011  494  

Oct-05   -   
Sept-07     FALSE 

Tracheostomy incidents in ward settings have significantly higher rate of harm.  Differences 
in practice between settings confound result as ICU and ward tracheostomies and protocols 
differ. 

            
Guthrie S, Lecko 
C, Roddam 
H(2015) 2015   436   

Jan-10   -   
Dec-10     10.60%   FALSE 

Choking hazards in mental health and learning disabilities do not correlate well between 
local and national systems.  Major choking hazard information such as food type or 
behavioural factors not routinely provided to NRLS.  
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Authors Year  

Records 
examined 

 

Period 

Estimated Harm rates 

Summary   Death Severe 

Severe 
or 

Death 
No 

Harm 
Not 

Estimated 

Ambulance                       

Fisher JD, 
Freeman K, 
Clarke A(2015) 2015   Un-specified   

Apr-10 - 
Sept-10, 
Oct-10 - 
Mar-10, 
Apr-11 - 
Sept -11         TRUE 

Improved reporting by ambulance trusts over time, linked to their size, but highly variable. 
Major incident categories were 'access, admission, transfer and discharge', 'patient 
accident,' 'medical device/equipment.'  Authors suggest low reporting rates may reflect poor 
safety culture rather than few incidents. 

Anaesthesia                       

Catchpole K, Bell 
MDD, Johnson S 
(2008) 2008  12,606  

Jan-04   -  
Feb-06   2.10% 75.30% FALSE 

Reasonably high harm rates in anaesthesia, with largest groups related to inappropriate or 
delayed treatment or 'other' suggesting poor classification fit. 

            
Catchpole K, 
McCulloch 
P(2009) 2009  12,649  

Jan-04   -   
Feb-06   2.00% 75.00% FALSE 

Most incidents low harm but higher harm rate in epidural anaesthesia.  Highest groups 
treatment/procedure and infrastructure /equipment. 

            
Baird M, Smith 
A(2009) 2009  4,900  

Jan-06   -   
Mar-06 0.30% 1.10% 1.30% 77.40% FALSE 

40% of incidents misclassified by specialty and 25% misclassified harm, with 20% over-
estimation and 5% under-estimation 5%. 

            
Arnot-Smith J, 
Smith AF(2010) 2010  231  

2006   -   
2008 0.40% 5.00% 6.00% 31.00% FALSE 

Anaesthetics incident reports well identified, often misclassified under surgery (40%).  Non-
availability of drugs, unintentional awareness and allergic reaction major incident types. 

            
Cassidy CJ, Smith 
A, Arnot-Smith 
J(2011) 2011  1,029  

2006   -   
2008 0.00% 0.50% 0.50% 89.00% FALSE 

Majority of anaesthetic equipment errors due to failure of equipment, but user error and 
unfamiliarity implicated.  Checklists recommended. 

            

MacLennan AI, 
Smith AF(2011) 2011  606  

Jan-06   -   
Dec-08 1.00% 7.90% 8.90%  FALSE 

In-depth report classifying causal issues.  Categorised medication incidents, primarily due to 
administration and dosage, airway incidents, particularly induction of anaesthesia, artificial 
airway, haemorrhage, disconnection of equipment, failure of monitoring equipment and 
duplication of reference data. 

            
Scott-Warren J, 
McPherson D, 
Mahajan R et 
al(2012) 2012   

318 local vs. 
318 national.   

Oct-09   -   
Sept-10         FALSE 

Comparison of specialty-specific reporting portal (SSP) with NRLS data for same 
organisation.  Degree of harm lower in SSP, reviewers judged harm, specialty and incident 
category allocation superior in SSP, but still deficient in many cases. 
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Authors Year  

Records 
examined 

 

Period 

Estimated Harm rates 

Summary   Death Severe 

Severe 
or 

Death 
No 

Harm 
Not 

Estimated 

Anaphylaxis                       

Worth A, 
Panesar S, Healy 
L et al.(2012) 2012   1858   

2005  -   
2010         TRUE 

Most incidents involved exposure in patients who were known to be allergic.  Often involved 
antibiotics, anaesthetics analgesics and contrast media.  Lack of knowledge, route of 
administration, equipment failure, failure to recognise deterioration and documentation 
were main groups. 

Cardiac arrest                       
Panesar SS, 
Ignatowicz AM, 
Donaldson 
LJ(2014) 2014   30   

Jun-10   -   
Oct-12 100%       FALSE 

Cardiac arrest death incidents suggest miscommunication involving crash number, shortfall 
in staff attending arrests, equipment deficit, and poor application of knowledge/skills. 

Chest Drain                       
Akram AR, 
Hartung 
TK(2009) 2009   2152   

Jan-05   -   
Mar-08 0.50% 0.70% 1.30% 63.80% FALSE 

Incorrect placement of chest drains major source of harm, reporting 0.5% incidents resulting 
in death, primarily from puncture of solid organs. 

Critical Care                       

Thomas AN, 
Galvin I(2008) 2008  

1021 of 
12084  

Aug-06   -   
Feb -07   3.00% 69.00% FALSE 

18.1% involved pumps/infusion devices, 16.1% ventilators, 10.5% haemofilters and 7% 
monitoring equipment.  Failure or faulty equipment most common but incorrect setting or 
use also common. 

            
Thomas AN, 
Panchagnula U, 
Taylor RJ(2009) 2009  5615 of 6649  

Jan-08   -   
Mar-08   0.94%  FALSE 

Most common incident groups were medication (25.8%), infrastructure/staffing(23.0%) and 
implementation of care (18.6%).  Communication between professional teams, 
documentation and processes of transfer in and out of ICU implicated. 

            

Wahr JA, Shore 
AD, Harris et 
al(2014) 2014   2837   

2003   -   
2008 

0.07% 
UK 

0.03% 
US 

0.81% 
UK 

0.16% 
US   

80.71% 
UK  

84.43 
US FALSE 

Difference between UK and US: wrong does (44% vs. 29%), omitted doses (8.6% vs, 27%).  
Gentamicin cited more frequently in UK.  Heparin, insulin, potassium, and opioids frequently 
cited in moderate, severe harm or death in both countries.  Incident rate higher in 
prescribing in US and administration in UK, but 'correcting' role of UK pharmacists without 
reporting as incident speculated.  Similar harm rates suggested. 
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Authors Year  

Records 
examined 

 

Period 

Estimated Harm rates 

Summary   Death Severe 

Severe 
or 

Death 
No 

Harm 
Not 

Estimated 

Dentistry                       
Thusu S, 
Panesar S, Bedi 
R(2012) 2012   2012   2009         TRUE 

Low reporting rates in dentistry.  Commonly clerical error, injury to lip (often using bur) 
main incidents.  Small number of medical emergencies noted, often due to underlying 
condition or ingestion of hypochloride, bur, crown or bridge. Surgical checklists suggested. 

Dermatology                       

Gawkrodger 
DJ(2011) 2011   394   

Jan-05   -   
Sept-09         FALSE 

Dermatology incidents included drug prescribing, monitoring and follow-up, particularly 
isotretinoin.  Phototherapy comparatively highly reported with excessive treatment 
duration wrong device and dose error noted. 

Diagnostics                       

Sevdalis N, 
Jacklin R, Arora 
S et al(2010) 2010   1674   

Nov-03   -   
Oct-05       55.00% FALSE 

Harm rate in diagnostic incidents is higher than in non-diagnostic incidents.  Predominantly 
occurring on hospital wards, but significantly fewer in wards than non-diagnostic, with 
diagnostic incidents also more likely in emergency department. 

Dialysis                       

Rylance P, 
Fielding C, 
Hutchison A et 
al(2015) 2015   94   

12-month 
period 
between 
2007 - 2015 70.21% 29.79%     TRUE 

12-month study in nephrology units revealed 94 severe harm or death incidents with 40% 
related to management of patient including delay in medical or nursing care.  Major theme 
was related to haemorrhage and infection related to fistulae and dialysis catherers.  
Dislodgement of venous needles highlighted, and under-reporting suggested. 

Falls                       

Healey F, Scobie 
S, Oliver D et 
al(2008) 2008  

206,323 of 
206,350  

Sept-05  -  
Aug-06  0.60% 0.60% 64.70% FALSE 

Falls are major category of error at 32% reports, 82.6% of which in over 65s, with peak times 
between 10:00am and 11:50am.  Falls rate per 100 beddays varies substantially between 
settings, and estimated to cause 11,265 - 12181 lacerations, 447 -626 fractured neck of 
femurs and 281-512 other fractures. 

            
Hignett S, Sands 
G, Griffiths 
P(2011) 2011  

 6,577 of 
44,202   

Sept-06   -   
Aug-07     FALSE 

70% falls unwitnessed and location information sparse.  Most falls at bed/chair with 
different patterns observed in 'frail' or 'confused' patients. 

            
Hignett S, Sands 
G, Griffiths 
P(2013) 2013   

19,890 of 
20,036   

Sept-05   -   
Aug-08       67.00% FALSE 

78% falls unwitnessed and location available in only 47% of incidents.  Falls in bed space less 
likely to result in harm than other locations.  'Frail' or 'confused' display different patterns of 
harm. 
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Authors Year  

Records 
examined 

 

Period 

Estimated Harm rates 

Summary   Death Severe 

Severe 
or 

Death 
No 

Harm 
Not 

Estimated 

Incident Reporting                     Incident Reporting 

Shaw R, Drever F, 
Hughes H et al(2005) 2005  28,998  

Sept 01   -   
Jun-02   0.45%  FALSE 

NRLS pilot/feasibility study.  Main groups 41% slips trips and falls, 9% medication, 8% 
resource issues, 7% treatment issues.  Different grading of harm used.  Feasibility 
demonstrated, but interoperability of systems poor. 

            

Hutchinson A, Young 
TA, Cooper KL et 
al(2009) 2009  Not stated  

Apr-04   -   
Nov-05     TRUE 

Highest reporters showed lower proportions in slips trips and falls.  Correlations with higher 
reporting rates and positive data on safety from staff survey and better risk-management 
rating from NHS Litigation Authority.  No significant correlations with other incident types, 
severity, staff survey questions (except observing a recent error), MRSA bacteraemia, HSMR, 
death in low-mortality HRGs, pressure ulcers or sepsis or within casemix factors. 

            

Pham JC, Colantuoni 
E, Dominici F et 
al(2010) 2010  104,674  2006     FALSE 

Calculated Harm Susceptibility Ratio (HSR) for 20 trusts and 12 work areas, with 55% of 
harm  attributed to variation between trusts.  Variation in work areas notable within trusts.  
HSR suggested for capturing within trust variation, with A&E, radiology and therapy 
consistently showing highest probability of harm. 

            
Donaldson LJ, 
Panesar SS, Darzi 
A(2014) 2014  2010  

Jun-10   -   
Oct-12     TRUE 

Deaths suggest mismanagement of deterioration, failure to prevent falls, infections etc., 
medication error, delayed test results, dysfunctional patient flow and equipment errors such 
as unavailability or misuse. 

            

Carson-Stevens A, 
Hibbert P, Avery A et 
al(2015) 2015  13,332  

Apr-05   -   
Sep-13   1.90%  FALSE 

Protocol report for analysis of general practice incidents.  Summary incident figures reported 
with 42, 729 reports from general practice.  Article presents a comprehensive and rigorous 
analysis plan and process for developing the qualitative framework 'Primary Care Patient 
Safety (PISA) Classification System,' to analyse these types of reports. 

            

Howell AM, Burns 
EM, Bouras G et 
al(2015) 2015   5,879,954   

Jan-03   -   
May-13     0.90% 70.30% FALSE 

Elderly medical patients most vulnerable to harm, but reporting rate and harm rate vary by 
specialty. No significant correlations with hospital size, mortality, or patient satisfaction.  
Significant correlations with harm rate and clinician staffing, as well as litigation ratios.  
Clinicians more likely to report death, but lower overall reporting rates than other staff. 
Suggests reporting rate should not be used to assess quality. 

Medication                       

Stubbs J, Haw C, 
Dickens G(2008) 2008  17 of 767,716  

Nov-05   -   
Nov-06   0.00% 64.00% FALSE 

Tablet crushing incidents reviewed with none reported from mental health.  Modified 
release opiate and cytotoxic drugs main groups.  Lack of staff knowledge of what should not 
be crushed and poor communication to patients highlighted.  Under-reporting suggested. 
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Authors Year  

Records 
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Period 

Estimated Harm rates 

Summary   Death Severe 

Severe 
or 

Death 
No 

Harm 
Not 

Estimated 

Thomas AN, 
Panchagnula(2008) U 2008  

2,428 of 
12,084  

Aug-06   -   
Feb-07   0.35%  FALSE 

Medication incidents in critical care setting commonly involved morphine, gentamicin & 
noradrenalin. Noradrenalin and Insulin most commonly associated with harm.  61% 
incidents associated with administration.  Incorrect prescriptions identified after patient 
contact in 50% incidents. 

            
Mahajan R, Mathews 
L, Russell J et 
al(2009) 2009  157  

Jan-05   -   
Mar-08     TRUE 

80.3% of incidents 'wrong drug' related to administration, with 7.6% prescribing, 8.9% 
preparation.  Little harm observed, but most preventable with adequate checking 
process. 

            

Laker MF(2009) 2009  147  

Nov -07 - 
Jan-08  
Sept-07 - 
Nov-07 0.00%   88.00% FALSE 

NRLS reporting of anticoagulant incidents used as proxy for increased safety culture.  
Lag time to report did not significantly reduce.  Communication, administration, testing 
and prescription errors were leading causes. 

            

Milligan FJ, Krentz 
AJ, Sinclair AJ(2011) 2011  768  

Jan-05   -   
Dec-09 0.13%    FALSE 

Incidents concerning insulin and oral glucose-lowering agents in care home setting were 
usually low harm and related to incorrect dosing, frequency or omitted doses.  No 
compulsion for care homes to report NRLS, so likely under-estimate. 

            

Cousins D, Rosario C, 
Scarpello J(2011) 2011  16,600  

Nov-03   -   
Nov -09   0.07% 76.00% FALSE 

High proportion of insulin incidents report harm, occurring mainly during 
administration, prescribing and dispensing.  Delayed/missed administration, dosage 
errors or wrong insulin product accounted for 60% of incidents. 

            

Cousins DH, Gerrett 
D, Warner B(2012) 2012  

526,186 of 
5,437,99  

Jan 05   -   
Dec-10 0.05% 0.10% 0.90% 83.00% FALSE 

Medication incidents represent ~10% of incidents.  Low degree of harm in general, but 
large number of incidents suggest many administration, prescribing and dosage 
incidents occur. 

            
Franklin BD, Panesar 
SS, Vincent C et 
al(2014) 2014  

38 of ~9 
million  

Nov-03  -   
May-13    100% FALSE 

Vinca alkaloid incidents did not lead to harm but identified incidents in storage, timing, 
location and potential for confusion between IV and intrathecal medication.  Low harm 
reports can provide information on risks of rare but serious events before they happen. 

            

Innes J, Curtis 
D(2013) 2015  28  

Aug-10  -   
Jul-11    100% TRUE 

Small number of rapid tranquilisation incidents reported, mainly within mental health 
units related to administration, prescribing, drug availability and decision to administer.  
NRLS insufficient to monitor these incidents properly. 

            

Flood C, Matthew L, 
Marsh R et al(2015) 2015  Unclear  

Oct-02 - 
Nov-08  
Jun-09 - 
Aug-10     TRUE 

Reduction in midazolam incidents reported after NPSA RRR, but compared 74 months of 
all incidents to 15 with no further severe harm of death incidents reported (with no 
denominator).  Gap between reporting periods not adequately justified. 
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Severe 
or 

Death 
No 

Harm 
Not 
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O'Grady I, 
Gerrett D(2015) 2015   1,882   

Jan-05 -   
Dec-13 0.32%       TRUE 

Missed doses are common in patients who are nil by mouth or have swallowing problems.  
Major reasons include prolonged fasting due to overrunning theatre lists, lack of awareness 
or availability of alternative administration routes, delays/lack of assessment of swallowing 
and communication of risk. 

Nutrition/Hydration                     

Lecko C(2010) 2010  

1,433  and 
897  

2006 -2007  
and 2008     TRUE 

Nutrition related incidents represented 20% and 23% of incidents respectively in searches. 
Incidents often related to artificial feeding, patients being 'nil by mouth' and oral feeding.  
Themes included poor communication and documentation particularly in transfer/ 
admission/discharge and fasting for theatre, inadequate staff training or awareness, lack of 
nutrition service or assessment, and failure to follow protocol or implement changes of 
feeding/fluid. 

            
Lecko C, Best 
C(2013) 2013   368 of 7,856   2003 - 2012 1.80% 3.30% 5.10%   FALSE 

Hydration incidents often reported. Poorly designed systems, lack of local guidance and 
failures of recognition, implementation, poor awareness, and excessive demands on staff. 

Obesity                       

Booth CM, 
Moore CE, 
Eddleston J et 
al(2011) 2011   

388 of 555 
identified.   

Jan-05   -   
Aug-08 1.00% 1.00% 2.00% 86.00% FALSE 

Anaesthetic incidents had higher rates of harm due to difficulty intubating or maintaining 
airway.  Unavailability or failure of bariatric equipment highlighted.  Haemorrhage, DVT/PE, 
unintended damage, recognising complications and wound breakdown major groups.  
Medication incidents related to dosage common for heparin/warfarin. 

Obstetrics                       
Sandall J, 
Watson K, 
Wiseman 
O(2012) 2012   9,121   2009 3.70%       FALSE 

264 potentially avoidable factors grouped into 10 themes.  Major themes were failure or 
delay in monitoring, diagnoses or assessment, failure to recognise deterioration and 
concerns with resourcing, staffing and equipment. 

Ophthalmology                     

Fetherston 
T(2007) 2007  

144 of 3,127 
incidents  

Mar-01 - 
Mar-06 0.70% 8.30% 9.00% 37.00% FALSE 

Treatment procedure incidents including complications and equipment, documentation 
incidents and patient accidents major causes.  Complications of cataract surgery leading 
type. 

            
Kelly SP, Barua 
A(2011) 2011  166  

2003 - 16 
Jun 2010.  6.00%  81.00% FALSE 

6% incidents severe harm, but majority low.  No near misses reported.  Major themes were 
treatment delay, missing records, prescription and severe inflammation with ranibizumab. 
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Summary   Death Severe 

Severe 
or 
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No 
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Kelly SP, Jalil 
A(2011) 2011   164   

2003   -     
Jan-10         TRUE 

No near-misses reported in intraocular lens transplant suggesting lack of awareness.  
Inaccurate biometry, wrong lens selection were leading causes but not specified in 37.8% 
cases.  Many cases required further surgery. 

Orthopaedics                       

Robinson PM, 
Muir LT(2009) 2009  79  

Mar-05   -   
Jun-07 0.00%    FALSE 

After correct site surgery guidance introduced, 79 wrong-site surgery incidents in 
orthopaedics reported.  Anaesthetic blocks were most common procedure, unclear what 
stage most were noticed. 

            

Panesar SS, 
Noble DJ, Mirza 
SB et al(2011) 2011  116 of 316  2008    91.00% FALSE 

Wrong-site surgery reports read and classified.  42% met inclusion criteria.  58% miss-
classified. 9% harm, 91% near-miss.  Smaller proportion of near-misses being prevented by 
checklist than those that result in harm.  Estimated that checklist could have could have 
been prevented incidents in 21.1% of cases. 

            

Panesar SS, 
Simunovic N, 
Bhandari 
M(2012b) 2012  4,521  

Since 
2003…' 
paper 
published 
in 2011    4.00% FALSE 96% of patients suffered some form of hip-fracture from surgery being delayed. 

            
Panesar SS, 
Carson-Stevens 
A, Mann BS et 
al(2012a) 2012  257  

2005  -  
2009 100%    FALSE 

Many deaths could not be properly assessed due to lack of detail, but of those that could 
32% died in relation to infection, 44% had failure in non-technical skills mainly related to 
situational awareness.  Recommended improved checklists, protocols and trigger tools. 

            
Panesar SS, 
Carson-Stevens 
A, Salvilla SA et 
al(2013a) 2013  

48,095 of 
163,595  

Jan-09   -   
Dec-09 0.15%   69.90% FALSE 

Largest specialty contributing to surgical events (29.4% incidents).  30.1% resulted in harm.  
Major categories included implementation of care, monitoring, self-harming behaviours and 
infection control.  High proportions of harm in several categories including patient accidents. 
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Authors Year  

Records 
examined 

 

Period 

Estimated Harm rates 

Summary   Death Severe 

Severe 
or 

Death 
No 

Harm 
Not 

Estimated 
Panesar SS, 
Netuveli G, 
Carson-Stevens 
A et al(2013b) 2013  48,971  

2009  -  
2010 0.10% 0.40% 0.50% 70.50% FALSE 

Orthopaedic error index developed, with mean value of 7.09/year.  5 of 155 hospitals 
identified as outliers, 3 tertiary centres carrying out complex surgery and two others 
unusually high. 

            Rutter PD, 
Panesar SS, 
Darzi A et 
al(2014) 2014   360   

2005  -  
2012 11.30% 6.00% 17.20%   FALSE 

High proportion of deaths with incidents related to bone cement during hip 
hemiarthroplasty.  Cardiac arrests and periarrest leading cause.  Most reports describe acute 
deterioration during or immediately after cement insertion. 

Paediatrics                       
Rees P, Carson-
Stevens A, 
Williams H et 
al(2014) 2014  2,347  

None 
specified.     FALSE 

Paediatric vaccination incidents quoted in response to another article.  Wrong number of 
doses 38.3%, wrong vaccination 28.5%, and wrong timing 17.2%. 

            
Rees P, Edwards 
A, Panesar S et 
al(2015a) 2015  

1,788 of 
46,902  

Apr-03 - 
Jun-12 0.40% 0.50% 0.90% 57.30% FALSE 

Paediatric family practice reports, 42.7% described harm to children.  Vaccination incidents 
made up high proportion.  Priority areas identified, due to high harm rates included: 
diagnosis/assessment, treatment procedure, referral issues and medication provision. 

Rees P, Edwards 
A, Powell C et 
a(2015c)l 2015  2,191  

2003  -  
2013     TRUE 

Priority areas for improvement include staff mistakes, knowledge, failure to follow protocols 
and organisational factors (e.g. inadequate protocols, service availability).  Provision in 
community pharmacy, diagnosis, assessment and timely referral of acutely unwell patients 
during out-of-hours and communication with and about a child highlighted. 

  
                  

 

Rees P, Edwards 
A, Powell C et 
a(2015b)l 2015  1,745  

2002  -  
2013 0.17%   38.28% FALSE 

Vaccination incidents predominantly nursing related, often leading to harm as child had 
extra vaccinations.  Major themes were incorrect dosage, vaccine or number of vaccinations, 
often due to poor documentation. 

  
        

      
Omar A, Rees P, 
Evans HP et 
al(2015) 2015   1,242   

Not 
specified         TRUE 

Fragmentation of care services major factor in incidents concerning vulnerable children 
including poor transfer or information.  Breakdown in consent communication and care in 
52.3% of cases. 
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Authors Year  

Records 
examined 

 

Period 

Estimated Harm rates 

Summary   Death Severe 

Severe 
or 

Death 
No 

Harm 
Not 

Estimated 

Resuscitation                       

Flood C, Gull N, 
Thomas B et 
al(2014) 2014  39 of 1,166  

Jan-06 - 
Mar-08  
Nov-08 - 
Apr-10 2.00% 1.40% 3.40%  FALSE 

Borderline significant reduction in resuscitation incidents in mental health and learning 
disabilities settings after NPSA Rapid response alert compared to before alert, but biased 
reporting period and underpowered analysis with multiple comparisons.  Gap between 
reporting periods not adequately justified. 

Hawkes C, 
Chambers S, 
Satherley P et 
al(2015) 2015  4,538  

Not 
specified 3.10% 13.00%   FALSE 

DNACPR incidents were predominantly in secondary care, but also in ambulance and 
community hospitals. 16% resulted in severe harm or death.  Communication with 
patients/relatives, record keeping, clinical review after change in patient status and 
processes around DNACPR decisions (including requesting, implementing and 
communicating this information between services) were implicated. 

Self-Harm                       

James K, 
Stewart D, 
Wright S et 
al(2012) 2012   448 of 14,271    

Jan-09   -   
Dec-09   2.00%   30.00% FALSE 

3 times as many self-harm incident in women as men but anonymisation confound repeated 
events.  Significantly higher rates in forensic services when weighted on beds.  Men's 
methods were more outwardly aggressive than women's.  Conflict with staff frequently 
mentioned as a trigger. 

Staffing                       

Francis R(2013) 2013   940   
2005  -  
2010         FALSE 

NRLS data used as a proxy to understand Mid-staffs safety culture.  Staff shortages in and 
inadequate skills highlighted.  Significant under-reporting with A&E analysis suggesting lack 
of awareness or learning culture in A&E, with increased reporting in later periods indicating 
trust's attempts to improve. 

Suicide                       

Bowers L, Dack 
C, Gul N et 
al(2011) 2011    602 of 711   

Jan-09   - 
Dec-09         TRUE 

Higher rates in women but confounded by excluding successful suicides, with higher rate in 
men, and anonymous data does not show repeat attempts.  Mainly strangulation attempts, 
higher at night and in acute psychiatric wards, but may reflect under-reporting of other 
settings. 
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Authors Year  

Records 
examined  Period 

Estimated Harm rates 

Summary Death Severe 

Severe 
or 

Death No Harm 
Not 

Estimated 

Surgery                       

Martinez EA, 
Shore A, 
Colantuoni E et 
al(2011) 2011  4828  

Jan-03   -   
Feb-07    72.00% FALSE 

Cardiac surgical incidents outside the operating room have a higher rate of harm compared 
to those reported in the operating room.  Distribution of incident types varied between 
settings, with medical equipment incidents 6 times more likely in operating room and 
treatment procedure incidents 3.7 times more likely. 

            
Rocos B, 
Donaldson 
LJ(2012) 2012  13  

Mar-04   - 
Mar-11  0.80%   FALSE 

Small number of surgical fire incidents with 84% judged to be misused of equipment causing 
ignition.  Most cases due to not allowing skin preparation to dry or drapes/swabs soaked 
with fluid too close to surgical field. 

            
Barai I, Howell 
AM, Burns E et 
al(2014) 2014   703   Not stated         TRUE 

69% of surgical incidents may have been classified in a different manner.  NRLS 
classifications inflexible and blunt learning. 

Transfers                       
Williams H, 
Edwards A, 
Hibbert P et 
al(2015) 2015  598  

Apr-03   -   
Jun-12 0.16% 0.50% 0.67% 15.22% FALSE 

Deficiencies in the discharge processes led to significant harm.  Communication between 
secondary and primary care, particularly around referral processes & medication, with 
poorly designed or poorly executed protocols and missing information. 

Table 2.4  Evidence Summary tables from NRLS literature review 

‘Not Estimated’ refers to studies where proportion of incident resulting in harm was not estimated, with TRUE meaning harm was not estimated.  Where ‘Not Estimated’ is FALSE, 
but a value is missing, proportions of at least one, but not all, harm levels were reported. 
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2.3.2 Selected topic-specific themes: 

A high volume of information was extracted from the literature related to specific clinical or 

organisational settings.  Multiple studies were identified under common themes, with the 

twelve most common themes summarised below.  The remaining review data are summarised 

in section 2.3.3, due to the length of this review. 

2.3.2.1 General Incident reporting 

Five articles used incident reporting figures to assess reporting, deaths, and correlations with 

other measures. 

In the NRLS pilot study (Shaw et al., 2005), staff from 18 NHS trusts including acute, mental 

health and ambulance trusts, as well as primary care, took part in a prospective voluntary 

scheme during 2001-2002.  The main incident group identified was ‘slips, trips and falls’ at 41% 

of reports, with other major groups including ‘medication’, ‘resource issues’ and ‘treatment 

issues.’  The grading of harm differed from the final version of the NRLS and interoperability 

with other systems was deemed to be an issue, but the article demonstrated the feasibility of 

data collection. 

Two studies assessed correlations of incident reports with other measures.  Data between 

April 2004 and November 2005 revealed that the highest reporting organisations showed 

lower proportions of incidents in the ‘slips, trips and falls’ group (Hutchinson et al., 2009).  

Correlations were observed between higher reporting rates and positive responses on safety 

culture questions from the NHS Staff Survey and better risk-management ratings from the NHS 

Litigation Authority.  No significant correlations with other incident types, severities, MRSA 

bacteraemia, the Dr Foster Hospital Standardised Mortality ratio (HSMR), death in low-

mortality HRGs, incidence pressure ulcers or sepsis, were observed. 

Rates of harm and correlations to other measures were examined between January 2003 and 

May 2013 (Howell et al., 2015).  Elderly medical patients were most vulnerable to harm but 

reporting rates and harm rates varied by clinical specialty.  No significant correlations with 

hospital size, the Summary Hospital Mortality Index (SHMI), or patient satisfaction measures 

were observed.  Significant correlations with harm rate and clinical staffing, as well as litigation 

ratios were identified.  Authors suggested that clinicians were more likely to report death 

incidents but showed lower overall reporting rates than other staff groups. 

Variance in harm rates between trusts and across specialties within trusts were examined in 20 

hospitals between 2002 and 2004 by Pham et al.(2010).  Authors suggested 55% of variation in 

harm rate was attributed to variation between trusts, but highlighted work areas where the 
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probability of harm was highest within (rather than between) trusts, including A&E, radiology 

and therapy. 

Incidents leading to death between 2010 and 2012 were specifically examined and suggested 

mismanagement of deterioration, failure to prevent falls, infections, medication error, delayed 

test results, dysfunctional patient flow and equipment errors including unavailability and 

misuse as major causes of incident reports (Donaldson et al., 2014). 

2.3.2.2 Medication 

Twelve articles examined medication, the largest subject area in this review.  Reports were 

predominantly low harm (≈75%), but their high frequency (~10%) represents a significant 

number of incidents (Cousins et al., 2012).  Incidents were often described during drug 

administration, prescribing or in calculating drug dosage.  A study related to ‘wrong drug’ 

errors suggested ≈80% related to administration and others related to missed or wrong doses 

(Mahajan et al., 2009).  In critical care, administration errors accounted for 61% of medication 

incidents, including incorrect recording, incorrect rates of infusion and missed doses (Thomas 

and Panchagnula, 2008). 

Laker (2009) described a pilot study using NRLS reporting rates for selected medication errors 

(specifically mentioning anticoagulants), with missing blood results and communications 

failure common problems.  The study assessed feasibility of using NRLS data to monitor a 

patient safety programme but made no clear assessment of its success.  A similarly vague 

picture was described in relation to rapid tranquilization (RT) incidents that were a priority for 

the NHS Litigation Authority (Innes and Curtis, 2013).  The study identified very few incidents, 

none of which led to harm or adverse effects, suggesting that there are either no 

complications from RT or, more likely, under-reporting meant their data was not 

representative of all RT complications (as previously quoted in section 2.1). 

Medication errors in critical care commonly involved morphine, gentamicin or noradrenalin 

(Thomas and Panchagnula, 2008).  The highest proportion of harm was observed in 

noradrenalin and insulin reports.  Communication between staff when transferring patients in 

or out of critical care was a common cause of errors. 

Vulnerability to error was observed in prescribing, communicating, preparing and 

administering drug treatments.  Missed doses were a major area of concern in patients who 

were nil by mouth, have swallowing problems, are on prolonged fasts due to over-running 

theatre lists, or for those who experience delays/lack of assessment of their swallowing 

(O'Grady and Gerrett, 2015).  Staff were not always aware of alternative administration routes 

for drugs.  Confusion over routes of administration was a common theme noted in 
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administration of vinca alkaloids where inadvertent intrathecal administration is potentially 

fatal (Franklin et al., 2014), in relation to tablet crushing leading to inaccurate dosing in mental 

health settings(Stubbs et al., 2008) , and in relation to insulin (Cousins et al., 2011). 

Insulin was also a theme for two other studies.  With no compulsion for care-homes to report 

to NRLS, reports in these settings were primarily made by visiting NHS practitioners, commonly 

relating to wrong doses, frequency of administration or missed doses (Milligan et al., 2011).  

Cousins et al.(2011) discussed a similar pattern, highlighting the potential for wrong insulin 

products and staff unaware of the differences in hospital.  Major causes included missing 

prescriptions on admission, poor use of abbreviations, decimal errors, incorrect monitoring 

and dose adjustment, duplicate doses, errors in intravenous dose calculations, and poor 

documentation.  'Look-alike' and 'sound-alike' drugs were also highlighted as problems. 

 

2.3.2.3 Anaesthesia 

Seven articles focussed on incidents in anaesthesia. Approximately 2% of anaesthetic reports 

led to severe harm or death, which was consistent across studies (Catchpole et al., 2008, 

Catchpole and McCulloch, 2009).  These articles suggested that the harm rate, of 

approximately one quarter of incidents, was relatively high and reflected comparatively high 

the opportunity for error and potential for harm in anaesthetic practice.  Specialty 

classification was estimated to be inaccurate in 40% of anaesthetic incidents, and likely due to 

the variety of specialties involved in patient care, e.g. surgeons, anaesthetists, nurses or 

support staff (Baird and Smith, 2009).  Incident type was estimated to be mis-classified in 40% 

of reports (Arnot-Smith and Smith, 2010), with major incident types being unavailable drugs, 

unintentional awareness in patients and allergic reactions.  MacLennan & Smith (2011) and 

Robertson & Smith (2010) designed their subsequent studies with these misclassifications in 

mind, identifying both anaesthetic and surgical incidents containing relevant free-text, noting: 

“data were often not adequate to determine whether the anesthetist made the error.”  Level of 

harm was classified incorrectly in approximately 25% of cases, with authors suggesting that 

many staff reported potential harm rather than actual harm.  This poses the wider questions 

about the NRLS, namely: are the categorisations commonly understood and applied, and, can 

such classifications adequately describe incidents in their current form? 

Major causes of anaesthetic incidents, common to most of the articles, were medication error 

(including duplicate administrations), equipment failure (primarily of monitoring equipment), 

non-availability of drugs or equipment, airway maintenance, and communication (including 

duplicated or missing records and non-communication of existing allergies).  Cassidy et 
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al.(2011) suggested the main causes of incidents in anaesthesia were equipment failure, but 

user error and unfamiliarity with equipment were also common, leading them to recommend 

using checklists to standardised processes and guard against errors of omission. 

The well-developed reporting culture, and known submissions to NRLS in anaesthetics, were 

used to validate an improved reporting procedure using a specialty-specific local reporting 

form (Scott-Warren et al., 2012).  Authors suggested that degree of harm, specialty and 

incident category allocation was improved in the local specialty-specific system, but was still 

deficient in many cases. 

 

2.3.2.4 Airway management 

Six articles focused on airway management incidents.  Major themes included a lack of staff 

availability, competency or equipment (Robertson and Smith, 2010).  Lack of available airway 

equipment led McGrath (2010) to recommend the universal stocking of sterile ‘airway kits’ to 

accompany all admitted patients, suggesting that infrequent use would allow them to be 

passed on between patients, keeping the cost burden acceptable, but providing timely access 

to appropriate equipment. 

Tracheostomy incidents indicated that partial displacement was more likely to lead to harm 

than total displacement (Thomas et al., 2009).  Two studies suggested that apparent 

differences between critical care units and wards were insensitive to difference in 

tracheostomy protocol (McGrath, 2010, Templeton et al., 2011).  Whilst higher harm was 

observed in ward settings, replacement of tracheostomy on a ward was more likely to be long-

term maintenance, whereas replacement in critical care was more likely to become a trial 

removal (Templeton et al., 2011). 

Choking reports in the NRLS were compared to an enhanced local reporting system, suggesting 

that a lack of information on choking incidents in the NRLS and significant under-reporting 

(Guthrie et al., 2015).  Authors suggested choking incidents were being missed in patients with 

intellectual disabilities and that key information such as food type or behavioural factors were 

not present in the NRLS and limit the learning from it. 

 

2.3.2.5 Orthopaedics 

Seven articles focussed on orthopaedic reports, but a number of others showed overlapping 

themes.  Orthopaedics was the most common specialty contributing to surgical incidents 

(≈29%) (Panesar et al., 2013a) and was acknowledged to have a high harm rate(≈30%) with 
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implementation of care, patient monitoring and infection control leading incident types.  A 

study of incidents leading to death called for standardisation of practices and use of improved 

surgical checklists, protocols and trigger tools (Panesar et al., 2012a).  Many deaths could not 

be properly assessed due to a lack of details, but data suggested 32% died in relation to 

infection and 44% showed failure in a non-technical skill (mainly situational awareness). 

Reports related to delays in hip fracture surgery estimated harm in 96% of cases, although 

authors acknowledged the ‘self-reporting’ bias where a delay is less likely to be reported if 

patients experience good outcomes (Panesar et al., 2012b). 

‘Wrong site surgery’ was a major theme, with one study branding orthopaedics as the “worst” 

specialty for wrong-site surgery between 1998 (Robinson and Muir, 2009).  This study used 

NRLS reports to examine whether a patient safety alert for wrong-site surgery had been 

effective at reducing its occurrence.  They identified 79 cases of wrong-site surgery with 

anaesthetic block being the most common procedure reported, which is not an orthopaedic 

surgical procedure but an essential part of pain management during surgery.  These may be 

better be described as anaesthetics incidents and are subject to the misclassification issues 

described in 2.3.2.3.  Panesar et al.(2011) further examined wrong-site surgery reports, 

identifying 58% of reports as mis-classified and were not, upon inspection, wrong-site surgery.  

Within the remaining incident reports, 9% led to harm, of which 21% were viewed as 

preventable if standard surgical checklists were used. 

Rutter et al. (2014) used the size of the NRLS to their advantage to review rare events in 

relation to bone cement implantation syndrome.  They reported a high proportion of deaths, 

especially involving cardiac arrests and peri-arrests, immediately or shortly after cement 

insertion during hip hemi-arthroplasty. 

An orthopaedic error index was created to quantify error severity and propensity (Panesar et 

al., 2013b).  The article presented an average of 7.09 incidents per hospital per year and 

identified 5 of 155 hospitals as outliers, including 3 tertiary centres carrying out complex 

surgery and two others with unusually high values. 

 

2.3.2.6 Paediatrics 

Five articles focussed on paediatric incident reports.  Reporting to NRLS from general practice 

is generally lower than secondary care, but Rees (2015c) identified just 2191 reports between 

2003 and 2013 featuring ‘unwell children’ in primary care.  Paediatric vaccination was 

highlighted as a major source of incidents (Rees et al., 2014, Rees et al., 2015a).  Incidents 
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were often high harm, and areas for further work and intervention were identified as staff 

mistakes, staff knowledge, failure to follow protocols, inadequate protocols or service 

provision.  Provision of community pharmacy, diagnosis, assessment, timely referral of acutely 

unwell patients in ‘out-of-hours,’ and communication with (and about) children were also 

suggested as priorities (Rees et al., 2015c).  Incidents in vulnerable children were particularly 

linked to fragmentation of care services and sharing of information (Omar et al., 2015). 

A major mixed methods study on paediatric vaccination events in primary care, using 

structured clinical reviews and standardised coding to identify themes, suggested many errors 

were administration-based and showed significant correlation with vaccination type and 

severity (Rees et al., 2015b).  Delays were predominantly due to incorrect dosage, incorrect 

vaccine or incorrect/missed timing that were implicated in three child deaths from meningitis 

and pneumonia.  Documentation error linked to vaccination status was a major contributor, 

particularly for socially or medically vulnerable patients.  Parental challenge and knowledge of 

vaccination records were sometimes cited as preventing incidents.  Conversely some reporters 

described their expectations of parental knowledge to aid them when they encountered 

missing information. 

2.3.2.7 Surgery 

Three studies focussed on surgical practice not previously described as Orthopaedics in section 

2.3.2.5.  These studies overlapped with other subjects including orthopaedics and 

anaesthetics, paediatrics, or obesity such as surgical damage in obese patients (Booth et al., 

2011).  This uncertainty around classification was mentioned in several articles (Barai et al., 

2014, Baird and Smith, 2009), suggesting 69% of surgical incidents had the potential to be 

classified in a different manner. 

Surgical fires were identified as rare but harmful events, again using the NRLS’ size to identify 

rare events.  Alcohol-based skin preparations were the primary cause, either drenching drapes 

or not drying on patient’s skin before being ignited by surgical instruments (Rocos and 

Donaldson, 2012). 

Cardiac surgery incident rates were analysed by Martinez et al.(2011) suggesting higher harm 

rates when procedures were performed outside the ‘operating room.’  Distribution of incident 

types differed, causing authors to suggest a focus on reducing medical device/equipment 

errors in the operating room and on medication and patient accidents outside of the operating 

room. 
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2.3.2.8 Patient Falls 

Three articles specifically examined incident reports related to falls.  Falls represent one of the 

largest incident groups in the NRLS, representing 32.3% of incidents between September 2005 

and August 2006 (Healey et al., 2008).  Falls happen in a variety of settings and most frequent 

occur in the elderly, often in relation to activities like mobilising, transferring, 

washing/showering or visiting the bathroom.  Most falls happened from beds or chairs (38%).  

70% - 78% of falls were un-witnessed (Hignett et al., 2011, Hignett et al., 2013) and degrees of 

harm varied significantly between care settings with the highest rate of harm in mental health 

settings, although this may be an artefact of reporting culture (Healey et al., 2008).  Falls 

occurred throughout the day but demonstrated a peak between 10:00 and 11:59, leading the 

authors to suggest elements of staff and patient routines as a contributing factor.  Falls were 

estimated to have caused 21,124 lacerations, 528 fractured neck of femurs, and 442 other 

fractures, between September 2005 and August 2006. 

Variation between general patients and those described as ‘frail’ or ‘confused’ was noted by 

Hignett et al.(2011), with contributory factors differing between groups.  Bed rails were 

significantly more likely to be described in incidents where the patient was described as 

‘confused’.  Patients who were described as ‘frail’ were less likely to experience ‘no harm’ 

incidents and more likely to be witnessed, whilst patients with ‘confusion’ were more likely to 

have unwitnessed falls (Hignett et al., 2013). 

2.3.2.9 Ophthalmology 

Three articles examined incidents in Ophthalmology.  Vitreoretinal surgery was examined by 

Fetherston (2007), suggesting equipment, documentation, patient accidents and complications 

were the main incident types, with cataract surgery the most common procedure. 

Kelly and Barua (2011) investigated incidents related to anti-vascular endothelial growth factor 

(VEGF) intraocular injections.  The authors suggest a majority were low harm and often related 

to treatment delay, missing records, unavailability of drugs but also describe instances of 

severe inflammation. 

Kelly and Jalil (2011) examined intraocular lens transplants suggesting that a lack of ‘near-miss’ 

reports in NRLS represented a lack of awareness of incidents and/or a poor safety culture.  

Inaccurate biometry and wrong lens selections were the leading causes, with many cases 

requiring further surgery. 
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2.3.2.10 Nutrition and Hydration 

Two articles examined incidents related to nutrition or hydration.  An article by Lecko (2010) 

was unclear in whether it represented primary research or summarised prior work, but was 

included on the basis it contained NRLS analysis.  Incidents concerned both artificial and oral 

feeding as well as patients who were nil-by mouth.  Communication problems and inadequate 

documentation were major causes contributing to failures to follow or make changes to 

protocols.  Lack of nutritional assessment or nutritional services was highlighted as well as 

poor staff awareness of choking risk including thickening of drinks or appropriate dietary 

support and monitoring. 

Lecko and Best noted many hydration incidents were avoidable and suggested that, as with 

nutrition incidents, a lack of staff awareness, excessive demands on staff, and poorly designed 

or poorly implemented local guidance was a major causes of incidents (Lecko and Best, 2013). 

 

2.3.2.11 Self-harm and attempted suicide 

Two studies that examined self-harm or attempted suicide both focussed on mental health 

settings.  Both studies suggested notably higher rates in women than men, but both were 

confounded to a degree by their design and the NRLS’ anonymisation.  Examining attempted 

suicides, Bowers et al. (2011) excluded completed suicides to examine only failed attempts and 

noted higher rates in women, but also referenced a higher suicide ‘completion’ rate in men 

from another source.  This was further confounded by the anonymisation of NRLS with 

repeated suicide attempts from the same patient recorded as new incidents, losing the 

valuable information of whether the higher rates in women represents repeated, unsuccessful, 

attempts.  Anonymisation also affected the self-harm, study in mental health organisations by 

James et al. (2012), who observed higher rates in women, despite the prevalence of self-harm 

being similar.  Authors suggest that higher rates of repeated self-harm in women may drive 

this, but NRLS was unable to provide evidence to support this.  Self-harm incidents were 

significantly higher in forensic units when weighted on bed days, with men more likely to use 

outwardly aggressive methods of harm, and women more likely to restrict breathing.  Suicide 

attempts were mainly strangulation attempts and were more common at night and in acute 

psychiatric wards.  Conflicts with staff were often cited as antecedents. 
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2.3.2.12 Critical care 

Two articles focussed on critical care settings, but a number of other articles referenced critical 

care but with different primary themes, e.g. medication (Thomas and Panchagnula, 2008), or 

airway incidents (Thomas and McGrath, 2009). 

Medications errors and documentation errors were common, with the processes around 

transfer in and out of critical care implicated.  Authors suggested that communication between 

critical care and other teams had the highest potential for incidents (Thomas et al., 2009). 

Wahr et al.(2014) compared occurrence of medication incidents in critical care settings 

between UK and US hospitals.  This study suggested errors occurring at different stages in each 

health system, with the UK reporting more wrong doses and the US reporting more missed 

doses.  The UK reported higher rates of error with gentamycin and noradrenalin whilst US 

reported higher rates of error with salbutamol and insulin.  Heparin, insulin, potassium, and 

opioids were frequently cited in moderate, severe harm or death incidents in both countries.  

Authors suggested cultural differences around the role of pharmacists were confounding 

results.  US pharmacists are encouraged, and in some cases mandated, to report prescribing 

errors and UK pharmacists more likely to correct prescribing errors, seeing it as part of their 

job, without perceiving them as incidents. 

Equipment incidents in critical care were examined by Thomas and Galvin (2008).  A variety of 

equipment contributed to incidents: 18.1% pumps/infusion devices, 16.1% ventilators, 10.5% 

haemofilters and 7% monitoring equipment.  Failure of the equipment and intermittent faults 

were common but practitioners using incorrect setting or using equipment incorrectly was also 

common. 

 

2.3.3 Other topics 

A variety of other topics were examined in single articles and are summarised below.  Articles 

explored particular medical specialties or other cross-cutting themes. 

Allergic reaction was noted in a number of settings related to medication and anaesthesia. 

Worth et al.(2012) suggest that allergies were often known and documented prior to incidents, 

with many related to antibiotics, analgesics and contrast media. 

Communication was a major factor in several studies.  Deaths from cardiac arrest suggested 

that confusion over ‘crash call’ phone numbers, lack of staff responders, and deficiencies in 

equipment or skills were the main themes (Panesar et al., 2014).  Communication across 

services was a major component of incidents related to ‘Do no attempt cardiopulmonary 
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resuscitation’ (DNACPR) orders.  Incidents in community hospitals, ambulances and secondary 

care showed high harm rates and suggested that staff were unsure of when and how to assess, 

implement and communicate about these orders with patients and each other (Hawkes et al., 

2015).  For communication incidents that related to discharge from secondary care, many cited 

the transfer of information between services (Williams et al., 2015).  Continuity of medication 

and referral to community practitioners were major themes, with poorly designed or poorly 

executed protocols, and missing information identified as major themes. 

Unintended damaged was identified as a risk to all patients during the placement of chest 

drains, causing high levels of harm, primarily from punctured solid organs (Akram and Hartung, 

2009).  Unintended damage was also a factor in the care of obese patients.  Incidents 

overlapped other primary subjects, but often related to processes where the care of obese 

patients deviated from that received by other patients, e.g. dosage adjustment, availability of 

bariatric equipment, difficulties in maintaining airways, DVT/PE, or surgical damage (Booth et 

al., 2011). 

Diagnostics errors were more likely to occur in emergency departments and less likely to occur 

on wards, with incidents of diagnostic error having a comparatively high harm rate (Sevdalis et 

al., 2010). 

Incidents in obstetrics detailed failures or delays in monitoring patients, diagnoses, or 

assessments.  Failure to recognise deterioration, and the availability of staff and equipment 

were primary concerns (Sandall et al., 2012).  Staffing issues were common to many of the 

reports, with this interpretation support by the NRLS’s contribution to the Mid-Staffordshire 

enquiry (Francis, 2013). 

Dialysis incidents suggest that much of the harm is to do with patient management and often 

relates to haemorrhage or infection from fistulae and dislodgment of needles or catheters 

(Rylance et al., 2015). 

Dermatology incidents included drug prescribing, monitoring and follow-up, particularly in 

relation to isotretinoin.  Phototherapy was comparatively highly reported with excessive 

treatment duration, wrong devices and dose errors leading themes (Gawkrodger, 2011). 

Incidents reports in dentistry suggested low reporting rates, likely due to NRLS’ voluntary 

nature and practitioners’ reluctance to disclose incidents (Thusu et al., 2012).  Main incident 

types were clerical error, and injuries to lips, commonly related to use of a bur.  A small 

number of medical emergencies were described, usually related to underlying condition or to 
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the ingestion of ‘hypochloride’ [sic], bur, crown or bridge.  Authors suggests much of the harm 

occurring in dentistry could be controlled using adequate checklists.  

 

2.4 Conclusions 

This chapter has contributed to aim 1 of this thesis, identifying what types of learning have 

been derived from the NRLS data.  Research articles published using the NRLS have a wide 

remit, and a variety of methods, that have mainly focussed on review of the free-text 

descriptions of incidents.  Researchers have derived learning in many settings, but the lack of 

standardised methods reduces the validity and generalisability of results.  There are signs of a 

systematic, standardised method gaining traction, with several qualitative analyses and a 

protocol published for primary care incidents (Carson-Stevens et al., 2015, Rees et al., 2015a, 

Rees et al., 2015b, Omar et al., 2015, Williams et al., 2015).  Clinical audit style reviews were 

most common in analysis of secondary care incidents, with the limited attempts at high-level 

statistical modelling of NRLS hampered by inconsistent and poorly understood categorisation 

and missing data. 

Categorisations within the NRLS remain problematic.  Fowler (2013) described this, noting that 

”…generic, web-based reporting systems (such as NRLS) are limited by inherent taxonomic 

limitations and the multi-factorial aetiology of harms….”  Many reports do not fit squarely 

within a single category used in NRLS, with the ‘real signal’ more adequately conveyed in free-

text descriptions that may reference several categories.  Reports often require manual reading 

by a reviewer to verify or reclassify.  Several studies suggested ‘potential harm’ was being 

reported rather than ‘actual harm,’ with misclassification of incident type and clinical specialty 

surprisingly common.  Despite a logical requirement for standardised severity (harm level), 

specialty, incident type and location, it must be acknowledged that incidents can fall into ‘grey 

areas,’ even for these clearer categories.  For example: incidents in theatre may involve 

anaesthetics, surgery, nursing and issues of equipment failure, medication etc., or problems 

with syringe drivers may be classified as medical device or medication incidents but are, in 

reality, both.  The contrast of primary subject and multiple subject coding used in this review 

served to highlight this problem.  Incidents may genuinely represent several categories 

simultaneously, but the current classification scheme does not allow this, limiting its 

effectiveness for case ascertainment and learning.  Although some elements of the NRLS’ 

mappings have been designed to provide multiple routes to a particular classification, incident 

classifications would be better represented as a ‘one-to-many’ design, relational database 

parlance for allowing multiple categories for a single incident.  This may improve accuracy of 
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review, and aid case ascertainment, but it will inevitably lead to an increase in complexity, and 

may increase the reporting burden on staff and organisations. 

Analyses have mainly focussed on severe harm and death incidents, or ‘harm’ incidents with 

comparatively little use made of ‘no harm’ / near-miss reports.  Most articles analysing ‘no 

harm’ incidents did so within a narrow range of a clinical specialty, or used a sample of no-

harm reports to identify additional themes after the primary analysis of severe harm or death 

incidents.  Some authors have suggested that high non-mandatory reporting rates represent a 

mature safety culture (Kelly and Jalil, 2011, Laker, 2009), but this cannot be substantiated 

using the NRLS alone.  It is unclear if an organisation with a low non-mandatory reporting rate 

genuinely represents low incidence.  Cultural and occupational factors may mean different 

members of staff may not perceive a given event to be an incident, and so may not report it, 

whereas another member of staff would.  The same is true at organisational level.  A low non-

mandatory reporting rate may relate to missing data, as these grades of are not mandatory to 

report.  This dynamic undermines the validity of analyses using non-mandatory reports, with 

the Francis enquiry into Mid-Staffordshire hospital (2013) suggesting it has no justification for 

the system ‘…continuing to be voluntary, particularly as part of the system is now mandatory’.  

Overall, the system remains agnostic as to whether a high reporting rate is a positive or 

negative indicator, and analyses that make either assumption will lead to unjustified 

conclusions. 

As detailed in the introduction of this thesis, a major practical problem of the NRLS is the sheer 

volume of incidents reported, particularly at lower harm levels.  As these reports are 

comparatively under-used, it poses a question about the purpose of collecting them. 

A degree of naivety about the causes of incidents remains, as many reports (and articles in this 

review) were not sensitive to the underlying causes of incidents and future preventative 

measures.  Clinical training and experience appear to be essential to most interpretations of 

incident reports, e.g. high harm from tracheostomy removal on wards compared to critical 

care was a potentially alarming finding, but given a clinical context to explain differences in 

removals and recordings, this difference was to be expected (Templeton et al., 2011). 

Many of the themes raised in articles will be familiar to staff and patients.  Poor 

communication between teams and with other services, poor recording or transmission of 

relevant information (e.g. current medication, allergies or DNACPR status), the availability and 

reliability of equipment, the implementation of care protocols and monitoring of patients, and 

recognition of deterioration all featured prominently.  Suggestions within articles highlighted 

staffing, a lack of, or deficient, equipment and information systems, and staff 
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training/knowledge.  Authors made a variety of suggestions including the use of surgical and 

anaesthetic checklists, greater involvement of other professionals in care processes, e.g. 

dietetics, and the stocking of ‘airway kits’ to avoid equipment shortage.  Cousins et al.(2012) 

suggested the mapping of drug names in medication incidents requires changes to make it 

effective, but few other articles make practical suggestions about changes to NRLS after 

commenting on its deficiencies. 

The NRLS is a vast and valuable resource for learning but cannot be treated as a representative 

central dataset of adverse events.  Its part-mandatory nature, under-reporting, conceptual 

problems with identifying ‘incidents,’ poor classification, varying depth and quality of reports, 

and its large scale render it particularly challenging to analyse effectively at scale.  Any 

techniques used to analyse NRLS should consider these points as a baseline. 

 

2.4.1 Strengths and limitations 

This review used a wide range of sources to target NRLS-based research, identifying 

appropriate methods and summarising learning.  It has not examined output directly from the 

NRLS/NPSA and successor organisations.  The high volume of output from these organisation 

would require a substantial review of its own, but could be considered the main use of NRLS 

(Panesar et al., 2009).  The clinical review and count methods from these contexts were 

considered, but academic publications were favoured as they were, perhaps falsely, assumed 

to be more rigorous investigations.  This assumption was due to my own bias in constructing 

this review, and this protocol is unable to assess the rigour of studies.  Further systematic 

reviews with narrower questions and stronger inclusion/exclusion criteria would allow better 

assessment of quality.  Rigour would come from clear descriptions of methods, clear reporting, 

acknowledgement of bias and limitations. 

A wide variety of article types and styles were encountered, including journal papers, 

conference abstracts and academic reviews published on websites, not all of which were peer-

reviewed.  Although a broad framework for analysis was created, and subject-based tagging 

developed, the nuance of individual articles may not be adequately conveyed in this review 

format.  Restricting this review to a particular style of article would have excluded large 

portions of relevant literature but enabled the use of common systematic review and ‘quality 

assessment’ tools. 
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Identifying relevant articles via search engines was challenging, as NRLS-based studies are 

inconsistently described and indexed.  In some cases, articles did not adequately describe the 

use of NRLS in their title or abstract, but all manual screening stages were performed 

conservatively, retaining articles when uncertain.  Despite a broad approach, it is possible the 

search strategy did not identify some relevant articles. 

 

2.5 Lessons learned for development of models 

The outputs of the literature review will frame the development of statistical models and 

treatment of the data prior to modelling in the coming chapters.  Key lessons for the next 

stage include: 

• Classification of harm:  This is subjective in many regards and although it can be 

examined it cannot be assumed to be universally agreed or applied. 

• Non-mandatory incidents:  Death and severe harm incidents should be well 

represented in the data and may potentially act as population-level data.  Non-

mandatory incidents, whilst contributing to the largest proportions of data, should not 

be considered comprehensive or directly comparable between organisations. 

• Specialty or care setting:  

o Specialty or care setting should be considered as overlapping and may not 

accurately reflect a given incidents.  This may mean that modelling by 

speciality, even if relationships are identified, may not represent the incident 

in the ‘real world.’ 

o Better populated/studied specialties may provide benchmarks for model 

evaluation.  For example, modelling critical care, anaesthetic or medication 

incidents would allow comparison of models and interpretations to be 

compared with published work. 

• Supporting data items: Non-mandatory (and mandatory in some cases) data items 

may be poorly recorded or incorrectly submitted.  Missing data should be considered 

when modelling and appropriate techniques, such as imputation assessed if 

appropriate. 

• Under-reporting: The nature of incident reporting relies on incidents being observed, 

the incident reported, and that report being accurate.  All of these stages are variable, 

and likely to depend on organisational culture and wider NHS policy.  They should be 

considered in modelling as a known source of variance (e.g. as random-effect terms). 
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• Free-text reporting: Text descriptions offer greater depth of information but are 

challenging to analysis with ‘traditional’ quantitative statics and summaries.  Modelling 

should either be restricted to categorical data, or apply text mining principles, such as 

those pioneered by Bentham (Bentham and Hand, 2009, Bentham and Hand, 2012, 

Bentham, 2010). 

• Types of organisations:  Many organisations submit data to NRLS, but submissions 

differ between setting and organisations.  Models would be best targeted at specific 

settings with secondary care representing the richest source. 

• Organisational size: An organisation seeing twice as many patients as another should 

be expected to have more incidents and must be scaled appropriately. 

When combined, the lessons from this chapter suggest that directly modelling the NRLS data as 

if it was a representative national dataset, would be unwise.  There may be much to be 

compared across organisations, but the data in its raw form lack a credible denominator for the 

size or risk of the organisation the data represent.  Chapter 3 further examines the data 

empirically to understand the data completeness, distributions, and data quality features. 
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Chapter 3  Data descriptions, handling 

and summary 

3.1 Introduction 

National Reporting and Learning System (NRLS) data are the primary focus for analysis in this 

thesis.  With over a million data rows per year, data handling and management require 

industrial-scale tools and systems, and cannot be contained or analysed in spreadsheets or 

text files.  This chapter follows from the lessons learned in chapter 2 and is focussed on aims 1 

and 2 of the thesis: examining the strengths and weaknesses of the NRLS data, and the data 

structures and preparation steps.  It describes the process for accessing, receiving and 

handling NRLS data, summarises the data received, data completeness, distributions, and tests 

plausible associations between variables.  The chapter concludes by assessing the extent to 

which statistical models can be built, the likely limitations, and a proposal for constructing a 

modelling dataset. 

 

3.2 Description of data processing and data set 

NRLS data can be submitted by two routes: patients or staff directly submitting reports to 

NRLS using webforms, or as extracts from NHS organisations’ risk management software 

systems, but is almost exclusively the later.  Risk management software, such as the 

commercially available Datix system, are designed for local reporting, examination, root cause 

analysis and learning.  They also have many functions beyond the remit of NRLS to facilitate 

local investigation etc. 

3.2.1 Data receipt, processing and characterisation 

A data sharing agreement between NHSE/NHSI and University Hospital Birmingham NHS 

Foundation Trust (UHB), my employer and PhD sponsor, allowed UHB to hold and analyse 

NRLS data.  Data are provided monthly by secure file transfer protocol (SFTP).  All NRLS data 

are anonymised at source, prior to submission, with the NRLS team removing any identifiers 

accidentally included in free-text fields.  Data were extracted, cleaned and loaded into a 

secured database environment at UHB using the process described below, with extracts 

received monthly 
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3.2.2 Requested data extract and format received. 

An extraction, upload and cleaning process was developed to load data into MS SQL Server, for 

both my PhD work and for UHB’s reuse (see Chapter 10).  Data were received as ‘Comma-

delimited’ (CSV) format, a text file format where commas are used to denote the breaks 

between data columns, with rows indicated by line breaks.  In CSV format, text-columns are 

commonly surrounded by limiters, e.g. “my text”, so that commas within the limiters do not 

split the data into additional columns. 

 

The load process took several weeks to build and refine, using a ‘dynamic SQL’ process 

(Pollack, 2018).  This process is controlled by a list of file names for the received CSV files and 

includes a mechanism to capture duplicated incident IDs (as incident data maybe updated and 

resubmitted to NRLS), isolate them in a duplicate table, and use only the most recent record 

for each unique incident identifier. 

Issues identified and resolved during the build and load process were: 

• Not all free-text fields were properly quoted (surrounded by “ “ characters), causing 

fields containing commas to split at inappropriate positions: e.g. a phrase such as “this 

is the first, and second” may split as (Figure 3.1):  

Source Data field Split 1 Split 2 

“this is the first, and second" this is the first, and second"  

this is the first, and second this is the first  and second 

Figure 3.1 Example of CSV file splitting 

Text values that are properly quoted (surrounded by “ characters) will not cause extra splits (row 1) and 
entries without quotes will split at each comma regardless of whether the field is complete (row 2) 

 

• Discussion with the NRLS team identified their use of SAS software for creating 

extracts, that did not always conform to the CSV standard described above.  To resolve 

this, a SAS script was written that uploaded the CSVs with maximum string length 

settings, reformatted them to explicitly include quotes, and created output files as tab-

delimited.  This output format was chosen as ‘tab’ characters, that are illegal in NRLS 

free-text fields, would not cause incorrect delimiting. 

• Additional blank data lines were attached to some extracts and not others.  This can 

lead to null data rows or import errors if not properly inspected and corrected. 

• ‘Holes’ in the data were identified and the NRLS confirmed that some of their extracts 

were based on incident date and some on the date they were received by NRLS.  This 
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was subsequently adjusted so all records used the ‘Received by NRLS date’ and 

replacement extracts sent. 

• Reports can be overwritten in the system, and it is common practice to do so once 

local organisations complete their investigations of incidents.  Where this is observed, 

the most recent records were used.  NRLS agreed in principle to issue an annual 

‘update’ to reflect any changes, but these files have not been received. 

• Four incorrectly split data lines were identified in November/December 2012.  No 

logical reason for this could be identified and no data was missing.  These records were 

manually corrected in UHB’s data extracts. 

• A number of columns contain either ‘NULL’ (empty) or the data field heading.  These 

are likely to be interpreted as Boolean fields (yes or no, 1 or 0), akin to ‘dummy coding’ 

categorical variables for statistical modelling. 

 

Data fields included in the extract are summarised in table 3.1.  Most fields in NRLS are 

categorical and many of them are mapped to values by submitting organisations, with NRLS 

generating several processed fields.  Many data fields are mapped to the NRLS’s 

nomenclature/classifications, indicated in the ‘Mapping Required’ field of 3.1. 

.
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Data Type

Manadatory 

Y/N

Requires 

Mapping 

Y/N

Minimum 

Length

Maximum 

Length

% Null or 

blank Notes

RP01 Unique Incident ID Integer Y 7 8 0.00%

RP05 Local Trust incident ID Character Y 1 43 0.45%

RP02 Care Setting of Occurrence Character Y Y 16 73 0.00%

RP07 NHS Organisation Code Character Y 3 8 0.18% Using National ODS codes

Date record exported to NRLS_Cleansed Date 9 9 0.00%

NRLS added field after their 

'cleaning'

IN01 Date of Incident Date N 9 9 0.00%

IN03 Location (lvl1) Character Y Y 5 43 0.00%

IN03 Location (lvl2) Character Y Y 5 59 2.11%

IN03 Location (lvl3) Character Y Y 4 42 27.82%

IN03 Location - Free Text Character Y Y 1 197 94.96%

IN05 Incident Category - Lvl1 Character Y Y 5 84 0.00%

IN05 Incident Category - Lvl2 Character Y Y 5 81 11.23%

IN05 Incident Category - Free Text Character Y Y 1 483 75.82%

IN06 Number of contributing factors Categorical/Boolean N Y 1 1 92.36% Multiple choice options

•
Communication factors (includes verbal, written and non-

verbal between individuals, teams, and or Organisations) 112 112 99.30%

• Education and training factors (e g  availability of training) 62 62 99.65%

•
Equipment and resources factors (e g  clear machine 

displays, poor working order, size, placement, ease of use) 111 111 99.81%

•
Medication factors (where one or more drugs directly 

contributed to the incident) 81 81 99.65%

•
Organisation and strategic factors (e g   abeling ional 

structure, contractor   agency use, culture) 100 100 99.65%

• Other 5 5 99.47%

•
Patient factors (e g  clinical condition, social   physical   

psychological factors, relationships) 99 99 97.14%

•
Task factors (includes work guidelines   procedures   policies, 

availability of decision making aids) 101 101 99.27%

•
Team and social factors (includes role definitions, 

leadership, support, and cultural factors) 94 94 99.73%

• Unknown 7 7 98.70%

• Work and environment factors 22 151 97.16%

Field Name
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Table 3.1 Data field names and metadata in NRLS extracts 

Each row represents a data field, with columns showing data types, whether items are mandatory, if data are ’mapped’ to NRLS categories, variable lengths and the proportion of 
missing values are displayed, along with relevant notes. 

Data Type

Manadatory 

Y/N

Requires 

Mapping 

Y/N

Minimum 

Length

Maximum 

Length

% Null or 

blank Notes

IN06 Contributing factors - Free text Character N 2 422 99.69% Free text

IN07 Description of what happened Character Y 3 5291 0.00%

Free text description (supposed 

to be minimum 5 characters)

IN10 Actions Preventing Reoccurrence Character N 1 5435 46.61% Free text

IN11 Apparent Causes Character N 1 7854 64.99% Free text

PD01_A Age at time of Incident Int N 1 7 28.43%

Date of birth submitted but 

converted to age at incident

PD01_B Patient Age Range Character N 12 17 28.40%

Date of birth submitted but 

converted to age at incident

PD02 Patient Sex Character N 4 20 9.31%

PD04 Adult Paediatrics' Specialty Character Y Y 18 23 18.43% Acute Only

PD05 Specialty - Lvl 1 Character Y Y 5 45 0.73%

PD05 Specialty - Lvl 2 Character Y Y 3 69 14.85%

PD05 Speciality - Free Text Character Y Y 1 137 86.08%

PD09 Degree of harm (severity) - display Character Y Y 3 13 0.00%

Only Manadatory if patient was 

harmed

MD01 Med Process Character Y Y 5 68 88.04%

Mandatory if INO5 coded 

Medicine

MD02 Med Error Category Character Y Y 5 79 88.07%

Mandatory if INO5 coded 

Medicine

MD05 Approved Name (Drug 1) Character Y Y 1 326 90.98%

Mandatory if INO5 coded 

Medicine

DE01 Type of Device Character Y Y 5 56 96.98%

Mandatory if IN05 mapped to 

devices or IN06 to equipment

Date incident received by NPSA Date 9 9 0.00%

DV01 Patent Age at Time of Incident Character 2 8 28.35% Categorical/Coded

IN02_A_01 Hours 9 21 10.76%

Field Name
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3.3 Summary statistics 

The NRLS extracts provided span the fiscal years 2010/11 – 2016/17, defined by the ‘Received 

by NRLS date’.  A total of 55,502 duplicate records were removed from the data set with the 

most recent record retained for each unique incident ID, for a total of 10,964,514 records.  A 

total of 426 distinct organisations (grouped into 10 organisational types) submitted reports 

(see Appendix C.1), mainly in secondary care settings.  Tables 3.2 and 3.3 summarise incidents 

reported per fiscal year, grouped by the date reports were received by NRLS (3.2), and per year 

of incident occurrence (3.3).  Both tables demonstrate the scale of reports received by NRLS, in 

the order of 1.5 million records per year.  Both tables show a large increase from 2010 to 2011, 

stabilising to a year-on-year increase of 9%. 

 

 

Table 3.2  NRLS incidents reports per year reports received by NRLS 

Incidents were selected from all data extracts provided by NHSI, between 2010/11 and 2016/17.  Green 
arrows indicate an increase in incident numbers compared with the previous year. 

 

Table 3.2 shows an increase in the total number of incident reports received per year for each 

year of the measuring period, with the latest percentage change between 2010/11 and 

2011/12.  Mandatory reporting of severe harm and death was instituted in 2011 and this may 

have been the catalyst for a general increase in incident reports (of all harm levels) being 

submitted to NRLS.  Many organisations report data to NRLS via third-party software, such as 

Datix, that they use for local incident management.  It may also represent organisations that 

had not previously used such a system, starting submission as these systems came online. 

Fiscal Year Incident 

received by NRLS
Incidents % of total

% change vs. 

previous year

2010/11 1,063,162 9.70% n/a

2011/12 1,349,119 12.30% 27%

2012/13 1,452,719 13.25% 8%

2013/14 1,605,556 14.64% 11%

2014/15 1,722,134 15.71% 7%

2015/16 1,841,165 16.79% 7%

2016/17 1,930,656 17.61% 5%

NULL a 3 0.00% n/a

Total 10,964,514 100.00%
a
 Incident reports  with miss ing 'Date incident received by NPSA' data field
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Table 3.3  NRLS incidents reports per year of incident occurrence 

Incidents were selected from all data extracts provided by NHSI, between 2010/11 and 2016/17.  Green 
arrows indicate an increase in incident numbers compared with the previous year, and red arrows 
indicate a decrease. 

 

Table 3.3 shows more stability than table 3.2 as it is does dependent on the information flow 

and timing with NRLS.  It also highlights data quality issues where some reports received in the 

period 2010-11 – 2016/17 had invalid dates of incidents (0.01%).  This questions data 

validation rules used by NRLS, as these reports do not appear to have been rejected or 

corrected.  The drop observed for 2016/17 suggests there may be missing reports, that were 

likely to be reported in 2017/18, with incident dates in 2016/17.  This is a facet of using a cut-

off, and the consequences of the practicalities of receiving incidents in batches from many 

trusts. 

 

Severity of harm is an important classification within NRLS, detailing the consequences for 

patients, but also whether incidents are taken for national review.  Proportions in the different 

harm categories have remained fairly constant from year to year, with death and severe harm 

incidents accounting for 0.25% and 0.47% respectively.  This can be seen in the context of the 

increasing number of reports, in that severe harm and death reports have remained in similar 

proportions but absolute numbers have doubled when comparing 2010/11 to 2016/17 (table 

3.4).  This may suggest that the incidence of severe harm or death incidents is increasing, but 

may also be due to increasing healthcare activity, increased awareness of the incidents, or 

better reporting practices. 

Fiscal Year of Incident 

occurrence
Incidents % of total

% change vs. 

previous year

 <2010/11 b 939 0.01% n/a

2010/11 1,250,249 11.40% n/a

2011/12 1,366,042 12.46% 9%

2012/13 1,469,558 13.40% 8%

2013/14 1,602,708 14.62% 9%

2014/15 1,766,163 16.11% 10%

2015/16 1,844,282 16.82% 4%

2016/17 1,664,554 15.18% -10%

 >2016/17 c 19 0.00% n/a

Total 10,964,514 100.00%
b
 Incident dates  ranging from 1910 - 1989, l ikely to represent data entry error.

c
 Incident dates  ranging from 2020 - 2049, l ikely to represent data entry error.
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Table 3.4  Incident reports, per year and harm classification 

Numbers of report per harm classification level, by fiscal year reports were received by NRLS.  Columns 
represent harm levels, and rows represent incident counts and percentages, grouped in fiscal years 
(grey).  *The free-text phrase ’Patient Group’ was included in this field in a number of reports, 
presumably as a data submission error. 

 

‘Care setting’ detailed the location based on the type of service an organisation provides (table 

3.5).  The majority of incidents were reported in Acute/General Hospital settings at 72.6%.  

Other major care settings were in mental health services at 12.7% and community nursing, 

medical and therapy service (including community hospitals) at 11.4%.  General Practice (GPs) 

represent a particularly small number of reports in relation to their high levels of activity.  This 

may be confounded by the nature of general practice, with short consultations that do not 

necessarily require interventions, and the capacity to observed and report incidents in this 

setting.  The awareness of NRLS in general practice is also an unknown quantity. 

No Harm Low Moderate Severe Death NULL
Patient 

Group*
Grand Total

2010/11

Incidents 734,497     253,778     65,826       6,380          2,648          21                12                  1,063,162   

% (row) 69.09% 23.87% 6.19% 0.60% 0.25% 0.00% 0.00% 100.00%

2011/12

Incidents 926,619     323,792     87,545       8,074          3,073          4                  12                  1,349,119   

% (row) 68.68% 24.00% 6.49% 0.60% 0.23% 0.00% 0.00% 100.00%

2012/13

Incidents 985,118     362,122     94,045       7,724          3,693          2                  15                  1,452,719   

% (row) 67.81% 24.93% 6.47% 0.53% 0.25% 0.00% 0.00% 100.00%

2013/14

Incidents 1,099,052 400,574     94,681       7,170          4,070          9                     1,605,556   

% (row) 68.45% 24.95% 5.90% 0.45% 0.25% 0.00% 0.00% 100.00%

2014/15

Incidents 1,212,129 411,306     87,204       7,550          3,915          2                  28                  1,722,134   

% (row) 70.39% 23.88% 5.06% 0.44% 0.23% 0.00% 0.00% 100.00%

2015/16

Incidents 1,318,977 435,789     74,122       7,401          4,854          - 22                  1,841,165   

% (row) 71.64% 23.67% 4.03% 0.40% 0.26% 0.00% 0.00% 100.00%

2016/17

Incidents 1,401,598 449,588     66,689       7,247          5,500          - 34                  1,930,656   

% (row) 72.60% 23.29% 3.45% 0.38% 0.28% 0.00% 0.00% 100.00%

NULL

Incidents -              -              -              -              -              3                  - 3                    

% (row) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

Total Incidents 7,677,990 2,636,949 570,112     51,546       27,753       32                132                10,964,514 

Total % (row) 70.03% 24.05% 5.20% 0.47% 0.25% 0.00% 0.00% 100.00%

Fiscal Year 

incident 

received by 

NRLS

Severity of Harm
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Table 3.5 Care settings of incident reports 

NRLS reported incidents between 2010/11 – 2016/17, showing the number of incident reports received 
by NRLS and the percentage of total incident reports they represent. 

 

‘Location’ is a mapped field describing which area of an organisation an incident occurred in.  

Location is hierarchical, with three levels of detail nested within each other, such that each 

level 2 category is nested within a more broadly defined level 1 category.  Levels 1 and 2 are 

summarised in table 3.6 and levels 1 – 3 in Appendix C.2.  Inpatient areas of acute hospitals 

represented over half the reported locations at 51.53% and 9.87% in inpatient areas of Mental 

Health units.  Other acute hospital areas representing the largest proportions of incident 

reports included accident/minor injuries assessment units, support areas and outpatient 

departments.  Surprising areas included 4.47% of incidents with a location of ‘Private 

house/flat, 0.19% submitted as ‘Unknown’ rather than null, 1.38% describe as ‘Other’ at Level 

1. 

 

RP02 Care Setting of Occurance Incidents % of Total

Acute / general hospital 7,960,518        72.603%

Ambulance service 60,290              0.550%

Community and general dental service 5,543                0.051%

Community nursing, medical and therapy service (incl. community hospital) 1,246,537        11.369%

Community optometry / optician service 234                    0.002%

Community pharmacy 92,161              0.841%

General practice 46,436              0.424%

Learning disabilities service 164,585           1.501%

Mental health service 1,388,210        12.661%

Total 10,964,514     100.000%
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Location Levels (1/2)

Total number 

incidents 

reported

Incidents as a 

percentage of total

Ambulance (including call / control centre) 27,706                  0.25%

Cal l  / control  centre 8,550                      0.08%

In vehicle / in trans i t 13,061                    0.12%

NHS Direct 13                           0.00%

NULL 15                           0.00%

Other 6,067                      0.06%

Community hospital 572,122               5.22%

Day care services 9,497                      0.09%

Genera l  areas 72,975                    0.67%

Inpatient areas 391,753                  3.57%

NULL 507                         0.00%

Other 43,416                    0.40%

Outpatient department 26,054                    0.24%

Support Services 27,920                    0.25%

General / acute hospital 7,671,154            69.96%

Accident  (A) / minor injury unit / medica l  assessment unit 610,631                  5.57%

Ambulatory care  treatment centre 14,548                    0.13%

Day care pre-assessment cl inc 145                         0.00%

Day care services 122,102                  1.11%

Genera l  areas 286,145                  2.61%

Inpatient areas 5,650,166               51.53%

NULL 496                         0.00%

Other 83,928                    0.77%

Outpatient department 446,565                  4.07%

Outpatient pre-assessment cl inic 121                         0.00%

Support Services 456,307                  4.16%

Mental health unit / facility 1,389,480            12.67%

Community mental  health faci l i ty 136,662                  1.25%

Day care services 17,386                    0.16%

Genera l  areas 105,854                  0.97%

Inpatient areas 1,082,612               9.87%

NULL 1,269                      0.01%

Other 22,871                    0.21%

Outpatient department 10,263                    0.09%

Support Services 12,563                    0.11%

Not applicable 18,330                  0.17%

NULL 4                            0.00%

Other 151,474               1.38%

NULL 151,472                  1.38%

Other 2                             0.00%

                   continued on next page
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Table 3.6  Incident reports by location levels 1 and 2 

NRLS incident reports received between 2010/11 – 2016/17.  Columns represent counts of incidents and 
percentage of total incidents, with rows representing locations at level 2 (white), grouped by at level 1 
(grey). 

 

Specialty is also nested within levels and described in Table 3.7 at level 1, with full list of level 2 

specialties in Appendix C.3.  Medical specialties accounted for the highest number of incident 

reports (30.73%), followed by surgery (14.59%) and mental health (12.59%).  Articles in the 

literature review (Panesar et al., 2013a) suggested Trauma and Orthopaedic services to be the 

highest submitter which is not evident in the data presented, with General Medicine, 

Obstetrics, Care of older people (all in acute settings), adult mental health and community 

nursing representing higher proportions of incidents, although trauma and orthopaedics is the 

highest surgical specialty, which is what their paper is likely referring to. 

Location Levels (1/2)

Total number 

incidents 

reported

Incidents as a 

percentage of total

Primary care setting 339,863               3.10%

Ambulatory care  treatment centre 2,164                      0.02%

Community pharmacy 84,891                    0.77%

Dental  surgery 20,951                    0.19%

GP Surgery 37,136                    0.34%

Health centre / out-of-hours  centre 125,370                  1.14%

NHS Direct 22,736                    0.21%

NULL 29                           0.00%

Optician / optometris t 3,650                      0.03%

Other 34,232                    0.31%

Rehabi l i tation centre 8,704                      0.08%

Public place (specify) 37,035                  0.34%

Residence / home 639,884               5.84%

Hospice 7,962                      0.07%

Intermediate care setting 27,570                    0.25%

NULL 290                         0.00%

Nurs ing home 62,813                    0.57%

Other 15,481                    0.14%

Prison / remand centre 35,914                    0.33%

Private house / flat etc. 489,854                  4.47%

Social care facility 96,141                  0.88%

Day care services 1,907                      0.02%

Local  Authori ty (non-res identia l ) 558                         0.01%

NULL 126                         0.00%

Other 7,152                      0.07%

Res identia l  care home 86,398                    0.79%

Unknown 21,321                  0.19%

Grand Total 10,964,514         100.00%
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Table 3.7  Incident reports by level 1 specialty groups 

Level 1 specialty descriptions for incidents reported to NRLS in 2010/11 – 2016/17.  Rows 

represent specialty categories and columns represent incidents and percentages of total. 

 

Incident reports are also specified with a time of day data field.  This is reported in the NRLS 

extract as an hour of the day (table 3.8 and figure 3.2).  The largest category was NULL, with 

10.76% of incidents.  There is also a major spike around midnight.  This spike is seen in 

isolation, and not continued in hours 23 or 1, and may suggest data quality/default values of 

midnight submitted to/from incident reporting systems.  Higher proportions of incidents are 

recorded during the ‘working day’, between 9 and 5.  This may reflect more staff (such as ward 

clerks) to report incidents, or it may reflect incidents occurring related to daily routines, as 

suggested in Chapter 2 (Healey et al., 2008). 

Specialty (Level 1) Incidents % of total

Accident and Emergency (A) 672,352 6.13%

Anaesthesia Pain Management and Critical Care 149,591 1.36%

Children's Specialties 12,026 0.11%

Dentistry - General and Community 12,695 0.12%

Diagnostic services 400,177 3.65%

Learning disabilities 226,858 2.07%

Medical specialties 3,369,003 30.73%

Mental health 1,380,566 12.59%

Not applicable 106,360 0.97%

NULL 79,621 0.73%

Obstetrics and gynaecology 998,749 9.11%

Other 647,546 5.91%

Other specialties 296,734 2.71%

Primary care / Community 891,989 8.14%

PTS (Patient Transport Service) 38,018 0.35%

Surgical specialties 1,599,356 14.59%

Unknown 82,873 0.76%

Grand Total 10,964,514  100.00%
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Table 3.8 Time of day of NRLS incident reports 
NRLS incidents reported 2010/11 – 2016/17, with zero representing midnight. 
 

 

Figure 3.2  Time of day of NRLS incident reports 
NRLS incidents reported 2010/11 – 2016/17, excluding NULL values (10.76%), bins represent single 
hours with zero representing midnight. 

 

Time of Incident in 

Hours (0 = 12 a.m.)
Incidents % of total

0 594,714 5.42%

1 196,338 1.79%

2 187,056 1.71%

3 171,751 1.57%

4 167,200 1.52%

5 163,825 1.49%

6 184,194 1.68%

7 233,598 2.13%

8 415,336 3.79%

9 617,661 5.63%

10 716,245 6.53%

11 699,472 6.38%

12 608,595 5.55%

13 491,636 4.48%

14 604,812 5.52%

15 581,781 5.31%

16 564,238 5.15%

17 436,626 3.98%

18 447,513 4.08%

19 410,837 3.75%

20 403,609 3.68%

21 309,086 2.82%

22 315,356 2.88%

23 263,465 2.40%

NULL 1,179,570 10.76%

Grand Total 10,964,514 100.00%
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Incident Type is a 2-level category, presented at the highest level in table 3.9, with full table in 

Appendix C.4.  Patient accidents represented the highest group of incidents (29.5%), twice the 

number of the nearest types, representing nearly a quarter of reports.  Implementation of care 

and medication were also major groups, with pressure ulcers representing very few incidents 

(a point contradicted by findings in Chapter 9), likely due to other reporting routes. 

 

Table 3.9  Incident reports by level 1 incident types 

Level 1 incident type descriptions for incidents reported to NRLS in 2010/11 – 20116/17.  Rows 
represent incident type categories and columns represent incidents and percentages of total. 
 

 

Table 3.10  Incident reports by subject age groups 

Age groups for subject of incident reports submitted to NRLS in 2010/11 – 2016/17.  Rows 

represent age categories and columns represent incidents and percentages of total. 

Incident type (Level 1) Incidents % of total

Access, admission, transfer, discharge (including missing patient) 990,024          9.029%

Clinical assessment (including diagnosis, scans, tests, assessments) 543,290          4.955%

Consent, communication, confidentiality 400,101          3.649%

Disruptive, aggressive behaviour (includes patient-to-patient) 348,538          3.179%

Documentation (including electronic & paper records, identification and drug charts) 690,025          6.293%

Implementation of care and ongoing monitoring / review 1,257,205       11.466%

Infection Control Incident 194,714          1.776%

Infrastructure (including staffing, facilities, environment) 621,828          5.671%

Medical device / equipment 307,573          2.805%

Medication 1,230,715       11.225%

NULL 1                       0.000%

Other 426,007          3.885%

Patient abuse (by staff / third party) 57,916             0.528%

Patient accident 2,357,183       21.498%

Pressure Ulcer 24                     0.000%

Self-harming behaviour 406,280          3.705%

Treatment, procedure 1,133,090       10.334%

Grand Total 10,964,514 100.00%

Age range Incidents % of total

Under 28 days 78,287 0.71%

1 month to 1 year 126,678 1.16%

2 to 4 years 97,284 0.89%

5 to 11 years 108,895 0.99%

12 to 17 years 202,392 1.85%

18 to 25 years 450,340 4.11%

26 to 35 years 735,305 6.71%

36 to 45 years 555,031 5.06%

46 to 55 years 589,003 5.37%

56 to 65 years 710,797 6.48%

66 to 75 years 1,121,091 10.22%

76 to 85 years 1,687,194 15.39%

Over 85 years 1,388,455 12.66%

NULL 3,113,762 28.40%

Grand Total 10,964,514 100.00%
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Patient demographics are reported in tables 3.10 and 3.11.  Large numbers of missing values 

are represented by ‘NULL,’ 28.4% for age and 9.31% for sex.  Median age was 68 with an 

interquartile range of 44 (39-83), and the distribution shown in figure 3.3.  Percentages of 

incidents were high in the under-4s and over-60s, suggesting age may be an important risk 

predictor.  This should be considered in the context of higher healthcare use by the elderly 

(41.15% hospital episodes for patients 65 years and older in 2014/15 (The Health Social Care 

Information Centre, 2015)), allowing more opportunity for incidents.  Another peak from mid-

twenties to thirties may represent maternity episodes when considered in the context of 

hospital admissions. 

 

Table 3.11  Incident reports by Patient Sex groups 

Sex of subjects of incident reports submitted to NRLS in 2010/11 – 20116/17.  Rows represent sex 
categories and columns represent incidents and percentages of total.   
*The free-text phrase ’Patient Group’ was included in this field in a number of reports, presumably as a 
data submission error 
 

 

Figure 3.3  Histogram of subject ages in incident reports 
Bins represent age groups of two years, and red line represents the median age (68), (28% missing data) 

Patient Sex Incidents % of total

Female 3,893,798 35.51%

Indeterminate 6,982 0.06%

Male 3,193,764 29.13%

Not stated / unknown 2,849,361 25.99%

NULL 1,020,471 9.31%

Patient Group* 138 0.00%

Grand Total 10,964,514 100.00%
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Sex included the option ‘Not stated/unknown’ which has been entered by reporters (table 

3.11).  This can be considered a ‘known unknown,’ as distinct from NULL that should be 

considered not just as missing, but also as an ‘unknown unknown’.  A higher proportion of 

incidents were reported for female patients, but ‘not stated’ and null values, when combined, 

were larger. 

 

Literature review and descriptive study of NRLS suggested that the majority of reports stem 

from acute hospital settings.  Comparisons within this setting may be more reasonable than 

comparing across all settings, as incidents in ambulance trusts, mental health trusts, general 

practice etc. are likely to differ.  For the purposes of modelling in this thesis, analysis will be 

restricted to incidents where the field [RP02 Care Setting of Occurrence] was ‘Acute / general 

hospital,’ representing 72.6% of incidents in the dataset (table 3.12). 

 

 

Table 3.12 Proportions of Acute hospital incidents per year 

Proportions of incidents reported in the ‘Acute hospital settings’ group, by year of incident occurrence 
and degree of harm, for incident reported to NRLS between in 2011/12 – 2016/17.  Columns at either 
end of the data range, (<2010/11 and >2016/17), are outside the scope of the dataset and may 
represent data submission errors. 
**The free-text phrase ’Patient Group’ was included in this field in a number of reports, presumably as a 
data submission error 

 

<2010/11 2010/11 2011/12 2012/13 2013/14 2014/15 2015/16 2016/17 >2016/17 Grand Total

No Harm

Incidents 674 867,184 932,182 998,835 1,098,815 1,249,228 1,325,930 1,205,136 6 7,677,990

% acute 83.68% 73.42% 74.94% 76.76% 77.17% 78.09% 77.13% 76.38% 100.00% 76.44%

Low

Incidents 184 293,532 333,836 364,566 398,695 419,348 433,588 393,187 13 2,636,949

% acute 67.39% 66.01% 64.94% 65.10% 64.52% 64.81% 64.54% 64.32% 69.23% 64.84%

Moderate

Incidents 56 78,452 88,556 94,729 93,914 85,932 72,617 55,856 570,112

% acute 80.36% 66.12% 64.38% 59.13% 57.74% 54.67% 53.94% 52.67% 58.71%

Severe

Incidents 17 7,782 8,234 7,629 7,233 7,598 7,249 5,804 51,546

% acute 76.47% 72.67% 70.20% 68.79% 69.82% 66.40% 65.65% 66.44% 68.69%

Death

Incidents 8 3,265 3,216 3,778 4,043 4,029 4,869 4,545 27,753

% acute 12.50% 51.24% 46.86% 43.54% 38.24% 40.46% 37.34% 33.49% 40.87%

Patient Group**

Incidents 12 12 19 8 26 29 26 132

% acute 33.33% 16.67% 5.26% 12.50% 7.69% 6.90% 0.00% 9.09%

NULL

Incidents 22 6 2 2 32

% acute 81.82% 0.00% 0.00% 0.00% 56.25%

Total incidents 939 1,250,249 1,366,042 1,469,558 1,602,708 1,766,163 1,844,282 1,664,554 19 10,964,514

Total % acute 79.55% 71.16% 71.71% 72.60% 72.75% 73.66% 73.10% 72.59% 78.95% 72.60%

FiscalYear

Harm Level
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Table 3.12 suggests that proportions of incidents attributable to acute trusts remained stable, 

but the number of reports increased dramatically between 2010/11 and 2015/16, by over 500 

thousand reports per year.  The reduction for 2016/17 is likely to represent incidents occurring 

in 2016/17 that were reported to NRLS 2017/18. 

 

3.4 Selected relationships between data items 

Several data items were investigated in this summary section to confirm relationships.  Many 

of the variable in NRLS are not suitable for comparison with each other and represent nested 

levels within a hierarchies, identifiers or free-text descriptions.  Level of harm is the main 

outcome indicator in the NRLS, with other variables describing the situations of incidents 

Tests were conducted using Chi-squared tests for categorical predictors, with p-values 

calculated using a Monte Carlo test (Adery, 1968).  Significant associations with predicted 

harm level (with p-value < 0.001) were observed for: 

• Incident Category (Levels 1-2) 

• Weekday of Incident 

• Hours of Incident 

• Care Setting 

• Location (Levels 1 – 3) 

• Specialty (Levels 1 – 2) 

• Medical Error Process 

• Medical Error Category 

These results, however, are unsurprising given the huge variety of incident types and how rare 

some of the higher harm levels are.  E.g. it would be surprising for GP incidents to have the 

same proportions of harm as acute hospital settings.  They do not appear to lend additional 

value to the data, beyond the descriptive statistics in section 3.3. 

 

3.5 Conclusions 

Rigorous data handling practices are required for processing NRLS extracts to adequately load, 

process and handle such large datasets.  Manual inspection can only be used where specific 

records require checking, so a system of automated check and de-duplication is an appropriate 

way to manage this.  Attention must be paid to the formatting of data, and any instances 

where formatting is ‘broken,’ should be identified and resolved before analysis. 
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Numbers of incident reports have increased year-on-year, with the proportion of death or 

severe harm incidents remaining stable.  Reporting is mandatory for incidents of this type, and 

this leads to a question of whether death or severe harm incidents are increasing, or if another 

mechanism explains this.  Incident reports commonly feature people aged over 60, neonates 

or young children, and appear to be more common in women of child-bearing age.  Different 

types of organisation, with differing hierarchies of location and clinical specialty, report 

different kinds of incidents and differing levels of harm.  Medical and surgical inpatients make 

up significant proportions of the data, with patient accidents the most common incident type. 

The largest ‘target’ setting for statistical modelling is the acute hospital setting, and models in 

this thesis will focus here.  Missing data and classification issues explained in Chapter 2 suggest 

that NRLS is not a good source of casemix data.  NRLS contains information on reported 

incidents.  Chapter 2 suggested that reporting systems only contain a fraction of the real 

incidence of incidents, but we also know nothing about the ‘exposure’ or the risk of incident. 

On a patient level, some patients will be at more risk of adverse events than others if, for 

example, they have trouble mobilising or receive complex healthcare interventions.  This will 

also scale to organisational level, where risk will differ with the casemix.  Chapter 5 puts this in 

a conceptual framework and introduces a secondary source of casemix data to counter this 

limitation in the NRLS.  A dataset focussed on hospital activity is required to examine exposure 

in such a way.  The Hospital Episode Statistics (HES) (NHS Digital, 2012) is one such source that 

will be examined in the coming chapters.  HES and NRLS cannot be directly linked (see Chapter 

5), but can be modelled at similar levels of aggregation, creating a count dataset.  Chapter 4 

details common methods and theory associated with modelling count data, and Chapter 5 

applies these methods to NRLS-HES and explains the construction of the dataset.  Chapters 6 – 

8 extend these count modelling approaches and examine how they can fit with current NHS 

regulatory frameworks. 

  



85 
 

Chapter 4  Methodological considerations 

for the analysis of count data 

Chapter 3 examined the NRLS at records level, suggesting that a secondary source of casemix 

data is used and models developed using identically aggregated count data, that will be 

examined in Chapter 5.  This chapter contributes to aim 3 of the thesis by examining some of 

the theoretical considerations when using count data, appropriate modelling techniques and 

methods for examining model output. 

 

Rabe-Hesketh & Skondral (2012) suggest that “Counts can be thought of as aggregated 

versions or summaries of more detailed data on the occurrences of some event.”  Count data 

commonly arise from two possible sources, observation of point processes, or the 

discretization of continuous outcomes (Cameron and Trivedi, 2013e).  Count data have several 

properties that distinguish them from continuous numeric data: 

• They are natural, whole numbers (integers), sometimes referred to as ‘discrete.’  E.g. 

counts of 2 or 3 are possible, but 2.5 is not. 

• They range from zero to infinity, with counts less than zero impossible 

• Counts occur in a fixed time period, with a known average rate (𝜇) - counts that occur 

with a variable time period can be characterised as rates using a time denominator 

• Since they are bounded at zero, and whole numbers, they are not normally 

distributed.  Counts with low average rates are noticeable skewed but may appear 

asymptotically normally distributed when the average rate is high 

 

Regression models, based on the normal distribution, may be a poor fit for count data 

although data are sometimes log-transformed and analysed in such a way.  The use of a linear 

model on transformed data is a poor reflection of the distribution of the error term and may 

produce predictions outside the possible range [0, +∞]. 

 

4.1 The Poisson distribution and Poisson regression 

Count data are often better modelled using Poisson regression, based on the Poisson 

distribution (Poisson, 1837, Cameron and Trivedi, 2013a), regarded as a limited case of the 
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binomial distribution.  If random variable Y is Poisson distributed, the probability of observing 

a count of y is: 

Pr(𝑌 = 𝑦) =  
𝜇𝑦 𝑒−𝜇

𝑦!
 , 

where  is the expected average count or rate, 𝑒 is Euler’s number (the base of the natural 

logarithm: ~2.71828), and 𝑦! is the factorial of 𝑦. 

 

Poisson regression can be considered part of the wider family of Generalized Linear Models 

(GLM) propose by Nelder and Wedderburn (1972), extending linear modelling principles to 

other distributions from the exponential family.  Data are estimated, using a ‘link function’ 

from the exponential family, to facilitate a linear model on the scale of this link function.  This 

differs from the log-transformed linear model mentioned above in terms of estimation 

methods and assumptions about distributions of error terms.  Error structures in GLMs are 

assumed to be distributed according to a distribution from the exponential family.  This 

includes the Poisson distribution with the natural logarithm link function, but can be extended 

to other data types, such as binary data with the binomial distribution and a logistic link 

function, or waiting times data with the gamma distribution and a reciprocal link function 

(although a log link function may also be used). 

 

A GLM has the basic structure: 

𝑔(𝜇𝑖) = 𝐗𝑖𝜷 , 

where 𝜇𝑖  is the expectation of the random variable Y for the 𝑖th row of a model matrix 𝐗, 𝑔 is a 

link function from the exponential family of distributions, and  is a vector of unknown 

parameters (model coefficients), estimated during the modelling process (Wood, 2017b). 

 

In the case of Poisson regression, 𝜇𝑖  represents the expected count (or rate), with a Poisson 

response distribution/error structure, and a linear predictor of the form: 

log(𝜇𝑖) =  𝛽0 + 𝛽1𝑋1𝑖 … + 𝛽𝑝𝑋𝑝𝑖 

Where 𝛽𝑜is an intercept term, 𝛽1the model coefficient of predictor variable 𝑋1 for each line of 

model matrix 𝑖.  This extends to 𝑝 predictor variables.  We then identify the most likely model 

coefficients during estimation. 



87 
 

 

To estimate models, we must define a loss function: a function that penalizes prediction error.  

There are various loss functions, but the most common is ‘squared error loss,’ where we seek 

to minimise the difference between Y and function of X:  𝐿(𝑌, 𝑓(𝑋))  =  (𝑌 −  𝑓(𝑋))2  (Hastie 

et al., 2009a).  In the context of regression, this loss is calculated from the sum of the pairwise 

differences between observed data points and predicted data points.  These differences are 

referred to as the ‘residual’ error.  We implement this in linear regression by calculating the 

sum of the squared residuals and solve our model by finding its minimum.  This process 

commonly referred to ‘ordinary least-squares’ (OLS) and can be solved directly. 

 

OLS is suitable for the estimations of GLMs only when we assume normality.  Under other 

distributional assumptions, such as Poisson, it is usually performed by Maximum Likelihood 

estimation (MLE) (Wilks, 1938, Nelder and Wedderburn, 1972).  MLE and OLS are equivalent 

for normally distributed data, but MLE cannot be solved in the same way as OLS, and must be 

iteratively estimated instead (Wood, 2017b).  A probability density (or mass) function is 

defined as 𝑓𝑙(𝑦) for random variable, of which 𝑦 is an observation, with 𝑙 representing the 

unknown parameters of a model.  Values of 𝑙 that make 𝑓𝑙(𝑦) larger for a given 𝑦 are more 

likely to be ‘correct’ than values that make it smaller.  The natural log-transformed likelihood 

function, log (𝑓𝑙(𝑦)) is used to judge the best fit, and the maximum log-likelihood value yields 

𝑙: the ‘most likely’ parameter estimates. 

 

In Poisson regression, where 𝜇 is a rate but occurs over a fixed interval for all observations, it 

can be regarded as a count.  When intervals vary between vary between observations, e.g. 

over different time intervals, or as proportions within different sized units, 𝜇 must be regarded 

as a rate.  This can be specified in a model by using an ‘offset’ term.  An offset can be regarded 

as a scale factor, achieved by fixing the model coefficient at unity (Cameron and Trivedi, 

2013c), with the model estimated by constrained maximum likelihood.  The model would then 

predict a rate of the outcome per unit of the offset.  Offsets in Poisson models are usually 

transformed to correspond to the link function and avoid mismatches in scale. 

 

4.2 Error structure and overdispersion 

The Poisson distribution has a single parameter, 𝜇, that is both the mean and the variance of 

the distribution.  This is key assumption of a Poisson regression model, so the conditional 
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mean of a model is expected to equal the conditional variance, referred to as ‘equidispersion.’  

Equidispersion is commonly violated with ‘real-world’ count data (Breslow, 1984). 

 

Overdispersion, where the conditional variance is greater than the conditional mean, can occur 

for a variety of reasons (McCullagh and Nelder, 1983, Collet, 1952, Ver Hoef and Boveng, 2007, 

Cameron and Trivedi, 2013b), including: 

• Aggregation / Discretization: Summarising or aggregating data loses some of the 

nuance of the variation within the data.  In general, this reduces resolution and 

efficiency, and can result in overdispersion (Dean and Balshaw, 1997). 

• Mis-specified systematic component of a model:  Model parameters may not 

adequately describe the variation in the model.  A better specification may include 

more, or different, predictors and relevant interactions that may reduce 

overdispersion.  Parameterisation of the model (the way predictor variables are 

represented) may also affect this, as information may be lost if a parametrisation does 

not reflect the underlying relationships in the data e.g. using crude grouping of a 

continuous variable that may be better modelled as a continuous numeric predictor. 

• Presence of outliers:  Extreme values, not representative of the distribution, may 

distort models.  Identification of these observations, and the reasons for extreme 

values, can inform decisions to omit observations or restrict the modelling range. 

• Variation between response probabilities (heterogeneity): This may arise when 

measurements with identical predictors do not always produce the same response.  It 

may relate to under-specification of the model, but may also be due to correlation 

within the data when each point is not truly independent.  E.g. repeated 

measurements from an individual, or clustered structures within the data, such as 

centres within a clinical trial. 

 

In the presence of overdispersion, the Poisson modelling process will underestimate the 

variance in the model, giving standard errors that are too small.  With under-estimated errors, 

the significance of parameters (judged by t-tests, chi-squared tests, or used to construct 

confidence intervals) will be over-stated (Breslow, 1984). 

 

Estimation of the error structure and significance of coefficients is based on the MLE, and can 

take a number of forms (Cameron and Trivedi, 2013d).  The most common approach is to 
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calculate the standard errors of a Poisson model and use then to form ‘Wald’ confidence 

intervals (Wald, 1942).  The Wald test is analogous to a t-test in linear regression, and its 

square is asymptotically chi-squared distributed on one degree of freedom (Hauck and Donner, 

1977).  The major flaws in this technique are the assumptions that the error distribution is 

entirely known, the standard error is correctly calculated, and is asymptotically normally 

distributed which may not be the case in GLMs.  Wald confidence intervals are the default 

output of many statistical packages. 

 

4.2.1 Bootstrapping & likelihood profiles 

Common techniques to increase the accuracy of confidence intervals, particularly around 

random-effects (see section 4.2.4), tend to be more computationally intensive than calculating 

Wald intervals.  These techniques include: 

• Profiled likelihood:  Profiling can be used for confidence intervals by maximising the 

likelihood of the joint distribution of the standard error and the mean expected count, 

for a fixed mean (Cameron and Trivedi, 2013d).  Quantiles of the likelihood function 

can, after transformation, be applied to the quantiles of the normal distribution to 

derive confidence intervals (Bates et al., 2015, McGrath et al., 2013).  This does not 

have to be normally distributed, and is accurate, but can take significant time to 

calculate on complicated models.  They may also be affected by overdispersion. 

• Bootstrapped intervals.  The ‘Bootstrap’ (Efron, 1979) is a statistical inference 

approach based on resampling, with replacement, to build up a sampling distribution 

(Fox and Weisberg, 2012).  Statistics can then be calculated on this sampling 

distribution.  These calculations are repeated many times, once on each sub-sample.  

These estimates are normally distributed (if using a parametric bootstrap) and allow 

the distribution of these estimates to be compared with the original.  The 

bootstrapped estimates of parameters, and sampling variance allow standard 

deviations to be calculated on the standard error estimates and substituted for the 

original terms (Cameron and Trivedi, 2013d).  Bootstrapping also takes a substantial 

amount of time compared to other techniques, as the processed is resampling and 

fitting the model repeatedly.  It may also account for the effects of overdispersion 

(standard errors are too small), as the resampling gives a better estimate of the 

residual variance. 
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4.2.2 Scaled deviance models 

Where overdispersion is suspected, a common next step is to formally test for it.  A chi-

squared test of the sum of the squared Pearson residuals, on the residual degrees of freedom 

(Bolker, 2018), can be used for this.  The null hypothesis for the test is that the model is not 

overdispersed.  A dispersion ratio, φ, can also be presented from this test where a value of 1 

represents equidispersion, and a ratio higher than one signifies overdispersion. 

A simple adjustment for overdispersion commonly uses a multiplicative scale factor to inflate 

the variance.  Scaling in this manner does not alter parameter estimates, only the estimated 

error.  The techniques presented below take this approach but an alternative, additive, 

overdispersion model used with overdispersed healthcare indicators (Spiegelhalter et al., 

2012a, Spiegelhalter, 2005b) is discussed in Chapter 8.  This approach is related to the random-

intercept models described later in this chapter. 

Multiplicative scaling options (summarised in Table 4.1) include:: 

• ‘Robust’ confidence intervals  -  White-Huber (Huber, 1967, White, 1982) estimators 

(‘sandwich’ estimators) can be used to adjust for violations due to heteroscedasticity 

and estimate standard errors without assuming the full distribution is known.  This 

method is often recommended over Wald-style tests and intervals. 

 

• Quasi-likelihood (Wedderburn, 1974) models allow for the estimation of a scale 

factor, rather than fixing it at 1 in Poisson models.  Quasi-likelihood models assume 

the variance is a multiple of the mean, i.e. variance = mean * scale, (Cameron and 

Trivedi, 2013d), allowing the scale parameter to be reported in output.  They also 

relax the usual GLM distributional assumptions from a fully specified exponential 

family distribution to a simpler mean-variance relationship.  This may lack a full 

distributional form and corresponding MLE, making comparisons between models 

challenging using common measure metrics such as the likelihood ratio test or AIC 

(require an MLE).  Poisson quasi-likelihood models will be referred to as ‘quasipoisson’ 

in this thesis. 

 

4.2.3 Mixture/compound distribution models 

In some cases, a compound distribution can be used, combining assumptions about the 

distribution of counts and their generating processes.  The term ‘mixture models’ refers to 

compound distributions such as Poisson-Gamma in this thesis.  The term ‘mixture’ is also used 

to refer to distributions where sub-populations are contained within a larger population, but 
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this is not examined in this thesis.  In the case of sub-populations, such as two normal 

distributions within a larger distribution (i.e. bimodal), data may be better described by finite 

mixture models. 

Although these models could be described as scaled in terms of the error estimation, the 

parameter estimates are conditional on the variance and scale factors, so parameters 

estimates are not the same as those obtained from Poisson models. 

Mixture models commonly used for count data analysis include (see Table 1): 

• Negative Binomial (NB):  Whilst Poisson models assume variance = means, and quasi-

poison assume variance = mean * scale parameter, NB models are mixtures of the 

Poisson distribution for inter-cluster variation and a gamma distribution for intra-

cluster variation.  Therefore, NB models represent Poisson means, following a gamma 

distribution (Sellers and Shmueli, 2010a).  There are two standard parameterisations 

of NB models, often referred to as NB1 (constant dispersion) and NB2 (mean 

dispersion) (Cameron and Trivedi, 1986), with both referring to subject 𝑖 within cluster 

𝑗: 

o NB1 models assume a group-specific expected count 𝜇𝑖𝑗, with the variance: 

𝑉𝑎𝑟(𝑦𝑖𝑗|𝑥𝑖𝑗) =  𝜇𝑖𝑗(1 +  𝑎),  where 1+𝑎 is a multiplicative 

overdispersion/scale factor.  NB1 therefore takes a similar form to the 

quasipoisson model (Rabe-Hesketh and Skrondal, 2012), but with a full 

distributional form and corresponding MLE. 

o NB2 models can be framed as random-intercept models (see below), but 

rather than assuming a normally distributed random-effect, we assume a 

gamma distributed frailty with mean of one and variance 𝛼.  This then has 

scale parameter 𝛼 and shape parameter 1/𝛼 giving the quadratic form: 

𝑉𝑎𝑟(𝑦𝑖𝑗|𝑥𝑖𝑗) =  𝜇𝑖𝑗 + 𝛼𝜇𝑖𝑗
2 (Rabe-Hesketh and Skrondal, 2012) 

NB1 models assume the variance is scaled in the same manner as quasipoisson 

models, but NB2 models estimate the variance as quadratic to the mean.  When 

referring to negative binomial models, most articles and textbooks refer to the NB2 

parameterisation.  NB2 models give higher weights to values with low mean counts, 

levelling off at 1/𝛼, when calculating the scale parameter.  If the variance is assumed 

to be overdispersed in a manner proportional to the mean count, NB1 is preferable, 

with NB2 being useful if the effects of overdispersion are likely to be proportionally 

higher with low mean counts, or stable across larger means counts. 
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NB models are more challenging to estimate than Poisson GLMs, and often iterate 

between a fitting procedure, and a scoring procedure for the scale parameter until 

convergence (Venables and Ripley, 2013).  Sellers and Shmueli (2010a) quote 

(McCullagh and Nelder, 1989) suggesting NB2 models to be “an unpopular option with 

a problematic canonical link.” 

 

• Generalized Poisson (GP) models (Bae et al., 2005, Famoye, 1993) allow for a more 

complex scale factor, , where the variance is modelled as:  𝜇𝑖(1 + 𝛼𝜇𝑖)2.  When  = 

0, the model reduces to a Poisson distribution and when  >0, the model indicates 

overdispersion.  This parametrisation allows both under and overdispersion to be 

modelled, and belongs to the exponential family of distributions in the case of a 

constant dispersion parameter.  The disadvantages of GP are they no longer belong to 

the exponential family of distributions if the dispersion is observation-specific (Sellers 

and Shmueli, 2010a), and they are not in common use when compared to NB or 

quasipoisson models. 

 

• Conway-Maxwell-Poisson (COM-Poisson) (Conway and Maxwell, 1962, Shmueli et al., 

2005) proposes a more general form of the Poisson model.  This extends the principles 

of the GP models, using a different scale factor 𝜐, the rate of decay of successive ratios 

of probability, such that the variance is then modelled as:  
1

𝜐
𝜇𝑖 .  This allows a 

distribution of expected counts to vary with the dispersion parameter, allowing the 

ratio between two consecutive values to be non-linear (Sellers and Shmueli, 2010a).  

COM-Poisson models were tested for the coming chapters but have not been included 

in the results due to implementation issues in R (the statistical coding language used 

for this project).  Issues included not supporting varying dispersion parameters, lack of 

convergence, and estimation issues. 

 

Table 4.1 summarises the model types and variance functions discussed above. 
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Model Variance MLE 

Parameter 
estimates 

conditional 
on 

variance? 

Poisson GLM 𝜇 Y N 

Huber/White Robust Standard Error Sandwich estimator ((White, 1980) Y N 

Quasi-Poisson 𝜇𝜃 N N 

Negative Binomial 1 𝜇𝑖(1 +  𝛼) Y Y 

Negative Binomial 2 𝜇𝑖 + 𝛼𝜇𝑖
2 Y Y 

Generalized Poisson 𝜇𝑖(1 + 𝛼𝜇𝑖)2 Y/N Y 

Conway-Maxwell Poisson 
1

𝜐
𝜇 Y Y 

Table 4.1  Summary of model variance functions for Poisson-based, variance scaled, 
and mixture models. 

 

4.2.4 Multilevel models 

Overdispersion in models may represent latent structures or correlations within data, where 

points are not independent (a key assumption in the GLM model).  Goldstein (2010) described 

these structures as “neither accidental nor ignorable”, and explicitly modelling them is a logical 

step when clustering is suspected. 

A class of models commonly used for these latent structures is the ‘multilevel’ model (also 

referred as ‘mixed model,’ ‘hierarchical models’ or ‘random-effects models’).  These models 

are applicable in a variety of situations where data are not independent, but are related at 

different levels such as repeated measurements over time or at different levels of aggregation 

(Jackson et al., 2008).  In these structures, the variance may be partitioned into distinct levels 

(‘variance components’).  Multilevel models are particularly suited to clustered data, where 

the clustering introduces correlations (Breslow and Clayton, 1993), such as ‘between and 

within’ variation in a multi-centre clinical trial.  We may expect a given measurements to be 

normally distributed across subjects, but the clusters within which measurements are made 

also exert effects (e.g. demographics associated with a centre, poorly calibrated equipment at 

some centres, effects related to clinical practice within centres etc.).  Measurements from 

each centre are likely to be related, and data cannot be viewed as truly independent. 
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A common extension to the GLM framework, and sharing connection with quasi-likelihood 

models, is the use of Generalized Estimating Equations (GEE).  GEEs allow for estimation of 

models with correlations due to longitudinal data.  They can account for the effect of the 

specified correlations or covariance structures when estimating parameters.  GEEs do not 

require a fully specified distribution and estimation proceeds from the first two moments of 

the distribution only (Liang and Zeger, 1986).  GEEs are robust to a degree of misspecification 

of the correlation structure, but may be limited by their predictive scope.  GEEs predict the 

‘population-average’ or ‘marginal’ effects (further discussed in Chapter 8).  This ‘removes’ the 

effects of clusters and does not allow cluster-specific (‘conditional’) predictions.  The lack of a 

fully specified distribution, and therefore an MLE, also limits their value for model comparisons 

using likelihoods. 

 

The Generalized Linear Mixed Model (GLMM) is a more complicated approach in comparison 

to GEE.  It allows the modelling of different variance components (‘random-effects’) as well as 

the explanatory variables (‘fixed effects’) that have, so far, been referred to as ‘predictors’ in 

single-level GLMs.  There are many definitions of fixed and random-effects (Gelman and Hill, 

2006a), and predictors can be modelled as either fixed or random depending on the 

assumptions underlying a particular model.  The choice of which random-effects to include 

should be considered as part of experimental design, considering where they are logically and 

theoretically possible.  They can be related to hierarchies, e.g. patients recruited within 

treatment centres in a clinical trial, repeated measures e.g. from the same patients over time, 

or using data at different levels of aggregation. 

 

A basic GLMM structure follows from a GLM (Wood, 2017b), as: 

𝑔(𝜇𝑖𝑗) =  𝑋𝑖𝛽 + 𝑢𝑗,   𝑢𝑗 ~ 𝑁(0, 𝜃) 

With an additional random variable: 𝑢𝑗, the random-effect, for jth cluster.  Random-effects are 

usually assumed to be normally distributed with mean zero and a standard deviation 𝜃.  In 

matrix form, the model now also depends on a dispersion matrix of unknown variance 

components (Breslow and Clayton, 1993).  Only the variance of the random-effect is 

estimated, as the model coefficients remain fixed at zero.  Fixed effects are now, also, 

conditional on the estimated random-effects. 
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In contrast to GEEs, GLMMs can be used to examine both the ‘conditional’ (cluster-specific) 

model predictions, but also make marginal predictions by integrating out the individual/cluster 

effect or predicting for a subject where the random-effect estimate = 0 (Lee and Nelder, 2004).  

They have fully specified distributions, MLEs and allow for comparison between models using 

likelihood ratio tests and AIC. 

 

4.2.4.1 Relevant multilevel structures 

A variety of multilevel structures can be fitted to data, including intercepts, slopes and random 

categorical coefficients, as well as cross-classified random-effects.  The structures most 

relevant to repeated measures in count data include: 

• Random-intercept models: where cluster-specific intercepts allow for deviation from 

the global intercept within cluster (see Figure 4.1).  Models of this type address 

overdispersion due to clustering.  The effects of x remain constant for each cluster, 

but the difference between the cluster-specific intercept and global intercept is 

captured in the random-effect. 

 

Figure 4.1  Illustration of single-level and random-intercepts on simulated data 

Left panel shows single-level regression of x against y, with a single intercept.  Right panel shows 
random-intercepts for coloured clusters within the data, with the effects of x constant. 

 

• Individual-level random-effects:  A special case of multilevel models is to allow the 

overdispersion itself to be modelled as a random-effect.  This can be considered as a 

Poisson-lognormal model in comparison to the NB2 models, discussed earlier in this 

chapter, that are Poisson-gamma.  An index term can be used for the random-effect 

‘mopping up’ the residual overdispersion (Elston et al., 2001, Rabe-Hesketh and 

Skrondal, 2012).  This is computationally intensive and, in some cases, requires 

Markov chain Monte Carlo (MCMC) methods to estimate.  This method also creates 

problems for likelihood profiling, which involves systematically varying a parameter 

whilst holding others constant.  The individual-level random-effect may alter 
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drastically in this process as it is always attempting to scale to the residual variance, 

causing errors in profiling procedures. 

 

4.2.4.2 Accuracy of estimation 

Models in the following chapters were primarily estimated using the statistical programming 

environment R, using the lme4 package (Bates et al., 2015), and it’s glmer function, 

considered the standard function for this in R.  The package estimates GLMM models by 

Laplace approximation (Laplace, 1986) (originally 1774), a technique applied to the 

maximization of penalized likelihood.  Laplace approximation is considered an improvement on 

pseudo-likelihood methods (SAS Foundation, 2018), and works by sampling the marginal 

likelihood at one point.  This single integration point might be considered inaccurate when 

more than one point can be evaluated. 

Gauss-Hermite Quadrature (GHQ) (Pan and Thompson, 2003) is considered an improvement 

on Laplace approximation, particularly for the estimation of random-effects.  Although GHQ 

samples the marginal likelihood at more points, it is more restricted in the models it can fit, 

restricted to a single random-effect in lme4.  Despite these concerns, the accuracy of Laplace 

approximation has been demonstrated with the number of random-effects less than 𝑛1/3 

(Shun and McCullagh, 1995), where 𝑛 is the sample size, giving the least biased estimation 

with lower prediction error (Handayani et al., 2017) than GHQ, using lme4.  This may, 

however be a result of the implementation in this particular modelling procedure or a quirk of 

a particular data set.  It is advisable for models fitted by Laplace approximation, for speed, also 

be checked by fitting by GHQ, potentially in different statistical packages to verify the accuracy 

of estimation.  When developing models in subsequent chapters, models were fitted using 

both GHQ and Laplace methods in R and SAS, with no significant differences observed 

between methods or software. 

 

For NRLS-based models, we have good reason to suspect cluster effects from repeated 

measurements due to monthly reporting at organisations.  It is reasonable to assume that 

monthly reporting rates from one organisation may be correlated due to the exposure and 

culture variables at that organisation.  Failure to model this structure will affect estimates of 

the error in any model. 
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4.3 Scaling/standardizing of covariates 

Model predictors of differing units may be on differing natural scales, e.g. a proportion from 0 

– 1, a given count variable may range from 1 – 10,000, or the natural logarithm of the same 

variable ranging from ~0.00 – 9.21.  Transformations of data are primarily used to alter the 

distributional form to reflect better the relationship between variables, but they usually 

change the scale of the data as well.   

Large differences in scale can make models harder to interpret and, particularly for GLMMs, 

can lead to convergence problems (Bolker, 2017).  Scaling of variables can be performed, 

without altering the distribution, and may aid model convergence. 

 

It is also common to scale data to assess the relative importance of predictors on similar scales 

and allow easier calculation for GLM and particularly GLMM estimation (Gelman, 2008).  

Scaling can be performed in many ways, such as dividing by a constant, or “min-max” scaling 

where values are scaled between zero and one based on their minimum and maximum values. 

A common recommendation in regression literature (Schielzeth, 2010) and statistics internet 

forums (e.g. ‘Cross-validated’: https://stats.stackexchange.com/ ) is to centre variables on their 

mean and scale by the standard deviation, creating a z-score representation. 

For each numeric 𝑥, the standardisation is: 

 
𝑥 − �̅�

√∑(𝑥 − �̅�)2

𝑛 − 1

 

This representation renders the mean as zero, with a change of one in 𝑥 representing an 

increase of one standard deviation.  This alters the interpretation of the model, allowing each 

model coefficient to be interpreted as the mean value for the parameter, and the intercept as 

the average value when all parameters are at their mean.  Coefficients from models that are 

not centred and scaled should be interpreted as the change for one unit of 𝑥, holding all other 

parameters constant, and the intercept as the value of 𝑦 when 𝑥 is zero.  Once centred and 

scaled in this manner, model coefficients can be directly compared to each other within 

models for their relative effects, without larger parameter values dominating.  If models are 

applied to new data, a decision must be taken over whether to scale according to the mean 

and standard deviations in the data set, or whether to recalculate the model given the mean 

and standard deviations with will change with different inputs. 

 

https://stats.stackexchange.com/
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Gelman takes this argument further, suggesting that mean-centred variables are divided by 

two standard deviations rather than one (Gelman, 2008), to allow scale to be matched with 

untransformed binary variables.  The rationale behind this is to use a consistent set of 

comparisons between low and high values, across different types of predictors, comparing 

units that differ in their input values by two standard deviations.  The interpretation of this 

becomes, the change in 𝑦 for a change of two standard deviations in 𝑥.  This is approximately 

similar to the comparison of zero/one for a binary predictor, and can effectively be viewed as 

the change from ‘low to high’ for a variable. 

 

4.4 Predictive versus explanatory models 

Models are generally created with either an explanatory or a predictive goal.  In an explanatory 

model, parameter estimates are of primary importance, but the goal in a predictive model is 

accurate prediction and generalisation to new data (Shmueli, 2010).  These modelling 

paradigms necessitate different approaches to ‘significance’ of parameters and assessing 

model performance. 

 

When assessing a model, parameter estimates and their standard errors should be inspected.  

Large standard errors may indicate poor parameterisation which, in turn, may suggest a lack of 

support in the data or correlations with other predictors.  Parameter estimates will show 

which factors contribute most to prediction and indicate whether some effects are dominant.  

Although parameter estimates are of interest in all models, they are a major output for an 

explanatory morel.  The primary purpose of NRLS models presented in the following chapter is 

prediction.  Predictive models may require the inclusion of parameters that are not directly 

interpretable to the reader (e.g. projected features or neural network weights), or 

‘significantly’ associated with the outcome.  Models may also be “inferior in terms of 

parameter bias, but superior in terms of predictive accuracy” (Sellers and Shmueli, 2010b).  

Comparisons of predictive accuracy are the primary measure of model fit in this case.  In 

predictive modelling, distinctions should be made between testing and training data (see 

section 4.5.3). 

 

The significance of parameter estimates is sometimes used to decide which covariates to 

include/retain in a model, particularly in explanatory models.  This approach is not ideal and 

can lead to incorrect assessment of significance.  The conditional distribution of a reduced 
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model may differ from the full model, as parameter estimates are conditional on each other, 

and should all be reassessed if a parameter is removed.  Confounding predictors, if removed 

from a full model when they do not appear ‘significant’, may lead to poorer overall 

performance of the model due to this conditional nature.  An argument can be made for 

including all factors with a rational, theoretical mechanism/justification in a model regardless 

of their estimated significance. 

There are also issues around degrees of freedom and multiple comparisons when removing 

predictors from a full model.  A reduced model may be presented as if it is a full model, despite 

being chosen from a larger set of predictors, and its significance may then be overstated by 

assuming reduced degrees of freedom.  Shrinkage methods such as LASSO regression 

(Tibshirani, 1996), where parameters are shrunk towards zero if they are not predictive, may 

provide better solutions.  Harrell discusses problems related to this at length, particularly 

regarding step-wise regression (Harrell, 2001, Harrell et al., 1996). 

Variables used in predictive models should, therefore, be chosen a-priori for theoretical 

reasons rather than being data driven where possible. 

 

4.4.1 Presentation of coefficients 

Poisson GLM parameter estimates are commonly presented as Incidence Rate Ratios (IRRs), 

calculated by exponentiating the model coefficients, due to the use of the log link function.  

The additive/multiplicative relationship between the original and log scale make these 

estimates multiplicative when transformed back.  It is common to interpret them as 

multiplicative effects using IRRs, multiplying Y by the IRR for each increase in 1 in the 

corresponding X covariate, whilst holding all other predictors constant.  Although model 

coefficients are presented in the following chapter, they have not been transformed to IRRs, as 

the focus is not on direct interpretation of model predictors.  Rather, differences in parameter 

estimates across models, significance of groups of factors (e.g. age related), and relative sizes 

of standard error are worth noting when comparing different model classes.  The emphasis is, 

however on predictive ability. 

 

4.5 Assessment of model fit and performance 

A well-fitted model is important, when trying to describe or predict, and model fit can be 

assessed in a variety of different ways.  Examining measures of model fit, and predictive 

accuracy may both be used. 
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4.5.1 Model diagnostics and global fit 

Plots of model outputs, including distribution of residuals and observed values against model 

predicted values, can be used to examine if there are any patterns or deviations from expected 

outputs. Standardised residuals are useful when comparing overdispersed Poisson models, as 

they are scaled by the standard deviation. 

‘Goodness-of-fit’ in Poisson models is commonly assessed using chi-squared tests, comparing 

the Null deviance (one degree of freedom per data point) with the residual deviance of the 

fitted model.  The null hypothesis of such a test is that the model is correctly specified, but in 

cases of overdispersion, the deviance is strongly affected by this, rendering this test unhelpful. 

 

Nested models are commonly tested in terms of the reduction in residual variance, penalised 

by the number of additional parameters or degrees of freedom.  In linear models, this can be 

performed using an f-test, or in Poisson and Logistic models, the likelihood ratio can also be 

tested (the ‘likelihood ratio test’ or LRT) using a chi-squared/Wald test.  Where models are 

nested purely in fixed effects, or purely random-effect terms, these tests are valid.  When 

testing a fixed effect model against a random-effects model, where the fixed effect model is 

considered nested within the random-effects model, this method is problematic for two 

reasons (Bolker et al., 2009, Greven, 2088): 

1. The estimation of degrees of freedom for random-effects is debatable, with complex 

random-effects hard to define.  They are commonly defined as a single degree of 

freedom per variance parameter, but ‘effective degrees of freedom ’ may be more 

suitable when complex random-effect structures are present (Bolker, 2018, Wood, 

2017b) 

2. Wald tests are based on the normal distribution/z-test, but when comparing against a 

fixed effect model, the null hypothesis is that the residual deviance is zero.  The test is 

therefore on the boundary of the parameter space, i.e. the variance is not normally 

distributed around zero, and can only be greater than or equal to zero (Molenberghs 

and Verbeke, 2005). 

These concerns render the likelihood ratio test inaccurate for comparing the random-effects 

and fixed effects models.  The boundary issue renders the LRT conservative with p-values 

approximately twice as large as they should be (Pinheiro and Bates, 2000). 
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A common generalisation of the LRT is the Akaike Information Criterion (AIC) (Akaike, 1998).  

AIC is an estimate of relative Kullback-Liebler divergence, and is based on the log-likelihood, 

but adding a parameter to penalize more complex models (Bolker et al., 2009): 

𝐴𝐼𝐶 = −2 ln(𝐿)  +  2𝑘 

Where 𝐿 is the maximised likelihood and 𝑘 denotes the number of parameters.  It allows 

models to be compared but does not require them to be nested.  Smaller values of AIC suggest 

that models (based on the same dataset) lose less information, and models with smaller AICs 

are generally preferred. 

A small sample size correction is commonly applied to AIC as it can be prone to overfitting.  

Referred to as AICc, it is suggested when the ratio of the number of data points to model 

parameters <40 (Burnham and Anderson, 2004).  This is not the case for the all incident 

models, and traditional AIC is used in the following chapter but AICc used for the simplified 

death and severe harm models. 

The use of AIC with multilevel models is controversial, with evidence that it is appropriate for 

the selection of fixed effects.  The boundary constraint, mentioned above in relation to the 

LRT, renders it biased and it favours smaller models without random-effects (Greven and 

Kneib, 2010, Bolker, 2018).  Greven and Kneib also note that the level of focus of a model 

affects which calculation is appropriate, e.g. population level prediction (using marginal ‘mAIC’, 

the usual AIC definition) or cluster-specific based on conditional modes (using a conditional 

‘cAIC’ that they propose).  In most statistical packages, mAIC is the common implementation, 

although cAIC is available in R.  AIC can be used in comparison of models, but it should not be 

relied upon to distinguish between single-level and multilevel models. 

 

4.5.2 Predictive performance 

Competing models with different representations may need to be compared to identify the 

best approach.  Model selection is traditionally performed to do this, but there are few 

‘perfect’ ways to do this.  Maximisation of predictive ability of a model, or reduction in residual 

variance are standard approaches.  Common ways to select on predictive ability vary between 

different model classes and include measures such as sensitivity/specificity or the ‘area under 

the Receiver Operator Characteristic’ (ROC) curve (also known as the ‘C-statistic’) for binary 

classification models such as logistic regression (Harrell, 2001). 

When applied generally to regression, the error rate of prediction can be calculated, 

commonly: 
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• Root Mean Squared error (RMSE):   𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛

𝑖=1
   

• Mean Absolute Error (MAE):  𝑀𝐴𝐸 =  
1

𝑛
 ∑ (𝑦𝑖 − 𝑦�̂� 

𝑛

𝑖=1
) 

Where 𝑦𝑖  is the observed value and 𝑦�̂� is the predicted value. 

 

Whilst these measures are both commonly used, the square-root transformation on RMSE 

gives proportionally more weight to large error values.  MAE might be considered the better 

choice if outlying values are to be treated equally.  Although both approaches are presented 

for each model, it is uncommon to use them in isolation, as it is difficult to prove that 

minimum prediction error alone is a sufficient summary of both error and bias, so a measure 

of minimum variance is often used as well (Wood, 2015). 

 

If model predictions are tested solely on the dataset used in fitting, overfitting may not be 

considered an issue as the model is not being generalized, but our models will reflect the 

idiosyncrasies of our data sample as well as the underlying relationships.  In most predictive 

contexts, generalization is the aim.  Prediction error should therefore be tested on data that 

were not used in the modelling process.  In machine learning publications, and some predictive 

modelling settings, datasets used to build a model may be referred to as the ‘training set,’ and 

a separate set referred to as the ‘testing set.’  Some modelling paradigms (such as Boosting or 

Artificial Neural Networks, see Chapter 6) consider a further split with a ‘validation set’ that is 

used as an out-of-sample test during model training, but it is not used in the final assessment 

of models (where we would use the testing set). 

 

K-fold cross-validation methods are similar in a sense, because a holdout sample (k) acts as a 

testing set whilst the rest of the data is used for training.  Care should be taken when using k-

fold cross-validation (and bootstrapping), or when splitting data for training and testing of 

multilevel models.  The subsamples should be representative of the random-effects structure 

and models may become unstable if too few points are used.  Decisions must also be made 

about the handling of new random-effects levels in a testing set.  They may be excluded or 

fitted with zero estimates for random-effects, given that they have no precedent in the 

training set.  Fitting them with an estimate of zero corresponds to the global average for 

random-intercept models, and is a rational choice, but becomes more complex if elaborate 

random-effect structures are used. 
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4.6 Summary 

Count data are integer values with a boundary at zero, making them unsuitable for linear 

modelling via OLS techniques.  Generalized Linear Models based on the Poisson distribution 

are the common approach for fitting such data but are often hampered by overdispersion, 

where the variance is underestimated, commonly due to misspecification.  Scaling of model 

variance, mixture models and multilevel modelling techniques can be used to model 

overdispersion, but all have different assumptions and particular techniques will suit some 

datasets, and questions, but not others. 

Explanatory models are often tested by verifying assumptions about the distributions of the 

data and may use likelihood ratio tests or AIC to compare models.  These methods may be 

hampered by overdispersion or invalid for comparisons between GLMs and GLMMs. 

Predictive models are best compared in terms of their ability to predict data, preferably on a 

new ‘testing’ dataset.  Their performance on new data, or measures of cross-validation or 

bootstrapped error, reduce the chance of overfitting the training data.  Mean Absolute Error 

can be considered as a good measure of a model’s predictive accuracy, as it is less sensitive to 

extreme outliers when compared to root mean squared error and is preferable in cases of 

overdispersion. 

 

The techniques described in this chapter will be fitted to NRLS incident reporting data in 

Chapters 5 -7, with some of the concepts relevant to text mining models in Chapter 9.  This 

chapter contributing to aim 3 of the thesis, by developing the statistical framework for dealing 

with count data and overdispersion.  These methods form the basis for subsequent modelling 

stages and how models will be compared and tested.  



104 
 

Chapter 5  Count models of NRLS 

 

This chapter will contribute to aim 3 of the thesis by developing the first sets of statistical 

models.  Published analyses on NRLS, examined in my literature review, and summary data 

(chapters 2 & 3) suggested it is poorly categorised and unsuitable for direct use in statistical 

models.  Chapters 2 and 3 proposed models using an alternative source of casemix data, to be 

treated as a count dataset at the same level of aggregation as the outcome data from NRLS.  

This chapter explains a theoretical approach to NRLS modelling, the construction and 

examination of a modelling dataset using the secondary data source, and presents the results 

of initial count models. 

This chapter is structured as a flow of model development, with each section building on the 

last, rather than forming distinct experiments.  This flow introduces the secondary data 

sources, selects the appropriate data structures for modelling, applies models based on 

Chapter 4, tests for overdispersion and identifies and interprets the best performing model.  

The sections proceed as: 

5.1 Theoretical model of incident reporting 

5.2 Introduction to, and preparation of the Hospital episode Statistics (HES) as an 

alternative source of casemix data 

5.3 Examining and choosing parameterisation of predictors for models 

5.4 Fitting of Poisson models and single-level overdispersion-adjusted models 

5.5 Fitting of multilevel, overdispersion-adjusted models 

5.6 Model selection 

5.7 Extending models to longer time periods 

 

5.1 Theoretical model 

In order to model NRLS data, and interpret it in practice, a conceptual model has been 

developed to explain factors that may affect reporting.  This model is based on the literature 

review in Chapter 2, discussion with clinical and academic supervisors, and NHS Improvement 

(NHSI). 
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As an overarching theoretical model, we can consider incident reporting in NHS hospitals to be 

the combination of two functions: 

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 = 𝑓1(𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒) + 𝑓2(𝐶𝑢𝑙𝑡𝑢𝑟𝑒) + natural fluctuations/error 

Where: 

• Exposure is the opportunity for incidents to occur, e.g. a larger hospital could be 

expected to have more incidents than a smaller one due to more patient contacts, 

members of staff, equipment and facilities in use etc. 

• Culture is, itself, a combination of 4 further functions: 

𝐶𝑢𝑙𝑡𝑢𝑟𝑒 = 𝑓3(𝑆𝑎𝑓𝑒𝑡𝑦 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟) + 𝑓4(𝐴𝑤𝑎𝑟𝑒𝑛𝑒𝑠𝑠) + 𝑓5(𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦) + 𝑓6(𝑃𝑟𝑜𝑐𝑒𝑠𝑠) 

Where: 

o Safety Behaviours are a system’s defensive actions to prevent, and learn from, 

errors. E.g. regular examination of incident reports, implementation of 

findings/changes, feedback to users of reporting systems etc. 

o Awareness is the extent to which staff notice and categorise events as 

‘incidents.’ 

o Priority is the organisational interest in incident reporting, usually promoted 

by senior staff, and made visible throughout an organisation. 

o Process is the systems, barriers and enablers for incident reporting.  E.g. Well-

designed or confusing incident forms, availability of incident forms/computers 

for access to electronic reporting, computer failures that may impact the 

reporting etc. 

Most cultural factors are likely to be local (operating at hospital-level, or even ward/team 

level), but there may also be cultural factors driven by regional or national priorities, such as 

changes in Never Event policy or ‘pathways’ across several local providers. 

 

The functions above can be viewed as ‘latent variables’ that cannot be directly measured.  We 

must, instead, represent them using proxies that convey similar information, or reflect them in 

the structure of models (such as stratification or using correlation structures like random-

effects or GEE, discussed in Chapter 4).  Some of these effects are likely to be confounded, and 

latent variables may be represented by more than one proxy, leading to additional 

correlations. 
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The effects of exposure will be examined by the initial models in this chapter.  Exposure has 

the most accessible proxies from casemix variables available from other secondary datasets.  

Culture will also be considered in later models by using random-effects.  These models make 

allowances for hospital-specific variation, whilst allowing the average effects of exposure to be 

estimated globally for the model.   Models can then be used to make predictions at the model 

average (marginal) values for a given set of casemix variables. 

 

The rest of chapter 5 examines whether hospital-level exposure variables are associated with 

rates of incident reporting and whether they can be used to predict the number of incidents 

reported.  Model output is intended for use in tools for reporting organisations and regulators 

NHSI or the Care Quality Commission (CQC), and these are further developed in Chapter 8. 

 

5.2 Dataset construction  

A hybrid dataset was constructed to examine the effects of casemix/exposure using a 

secondary source of casemix data.  The dataset was constructed from incident reports 

submitted to NRLS by July 2017 (as reports can be retrospective), for incidents in fiscal year 

2015/16, and Hospital Episode Statistics (HES) data for the same period (NHS Digital, 2016).  

Single-year models are the focus of this chapter, but models were also extended to five-year 

periods to test for stability and changes over time (see section 5.8). 

 

5.2.1 Hospital Episode Statistics (HES) data 

The HES is an England-wide data warehouse of hospital activity (NHS Digital, 2017d), 

containing 19.3 million inpatient (IP) episodes, 113.3 million outpatient (OP) appointments, 

and 20.3 million accident and emergency department (A&E) attendances in 2015/16. 

HES records are anonymised, patient-level data entries that include details such as admission 

& discharge dates, types of hospital stay (e.g. maternity/birth episode, emergency admission, 

surgical episode etc.), hospital treatment specialties, treating organisation, referring 

organisations etc.  Patient demographics including age on admission, sex, and deprivation 

group, as well as clinical diagnoses and procedures/interventions performed during the 

patient’s visit.  Although HES are collected for inpatients (IP), outpatients (OP), and accident 

and emergency (A&E) attenders, with specific extra sets for critical care and maternity, only 
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the IP dataset is mandatory.  Despite monthly fluctuations, and errors at submitting 

organisations, HES data completeness is considered good (Herbert et al., 2017), and preferable 

to small clinical databases due to its coverage and completeness in some settings (Royal 

College of Obstetricians and Gynaecologists, 2012). 

 

Hospitals in England are obliged to submit activity data through the ‘Payment by Results’ 

(Department of Health, 2013a) process where provider organisations essentially ‘invoice’ 

commissioners for the work they perform.  The precursor to HES, described below, is akin to a 

payment receipt for the activity of a provider organisation for each patient they see.  The 

system has a number of stages: 

1. At the end of each month, patient medical notes and entries in other data systems are 

manually read and coded (“abstracted”) by professional clinical coding staff. Coders 

use common national and international standard definitions, including ICD-10 (World 

Health Organization, 2017) for diagnoses and OPCS-4 (NHS Digital, 2017a) for 

procedures, that define both the codes and the rules for their use. 

2. The assigned codes and admissions data from hospital systems are extracted, by each 

organisation’s IT or informatics teams, to meet a common data standard known as the 

‘Commissioning Dataset’ (CDS) (NHS Digital, 2017b). 

3. Monthly extracts are uploaded to the Secondary Uses Service (SUS), a data warehouse 

administered by NHS Digital (NHS Digital, 2017e).  Healthcare Resource Groups (HRGs) 

(NHS Digital, 2017c) are assigned to spells.  These codes group activity into casemix-

adjusted, chargeable units of provider resource, primarily for payment purposes.  

HRGs can be considered broad groups of similar activity, such as the HRG4 code =’ 

HB23C’.  This is described as ‘Intermediate Knee Procedure category 1 for trauma, 

without complications.’  The codes often have national tariff values assigned and 

expected lengths of stay (LOS) associated with them (Department of Health, 2013b).  

Incentives, top-ups for long-staying patients and penalties are also included and may 

change from year to year. 

4. Commissioning organisations use SUS to determine payments to providers, or dispute 

and resolve claims in some cases. 

5. Once completed (approximately 3 months), the national data set is cleaned by NHS 

Digital, fully anonymised, and made available for selected users for research and 

monitoring, with the permission of ethical and information governance groups (NHS 

England, 2017). 

 



108 
 

For this project, HES will be used to quantify casemix and compare the burden of hospital 

activity, against NRLS reporting, adjusting for quantity and type of exposure. 

 

Data access for both HES and NRLS was made available via University Hospital Birmingham 

NHS Foundation Trust’s HES data licencing agreements with NHS Digital (details available on 

request), and NHS Improvement.  This project was considered an audit, with a registered UHB 

audit number CARMS-13548.  Outputs will be used to create an interactive data tool, delivered 

through the benchmarking system ‘Healthcare Evaluation Data’ (HED), see Chapter 10 for 

further details. 

 

5.2.2 Aggregate dataset for modelling 

Record-level data linkage is not possible for these two datasets, as both HES and NRLS are 

anonymised (individual level, but with no useful identifier to connect them).  They are also 

collected in different units:  HES at ‘episode’ level (a patient’s time under the care of a given 

consultant/team) and NRLS at incident level (that may not necessarily relate to a patient, and 

may also relate to staff, equipment, environment etc.).  Both datasets can, however, be 

transformed into contingency tables with aggregated counts of variables/incidents in time 

periods, at corresponding levels and analysed using the techniques discussed in Chapter 4. 

Counts of incidents at each level of harm (no harm, low, moderate, severe and death), per 

organisation, were made from NRLS and collated with HES-based counts of IP bed days in age 

groups, sex categories, admission method categories (elective, non-elective, maternity/birth 

and transfer), and comorbidity score categories.  The  Charlson comorbidity index (Charlson et 

al., 1987) is a weighted index of chronic conditions, originally derived for a breast cancer study 

cohort in the USA.  It has been re-weighted for UK data and coding schemes, with changes 

including reduced weight for HIV since the introduction of Highly Active Anti-Retroviral 

Therapy, and the inclusion of dementia.  This is grouped according to the standard used in the 

Summary Hospital Mortality Indicator, in groups of <1, 1-4 and >4, representing health, minor 

comorbidities and major comorbidities (NHS Digital, 2017f).  IP casemix factors were chosen as 

they were considered likely to affect the risk of incident, e.g. elderly patients are at higher risk 

of falls in general (Healey et al., 2008). 

The proportion of bed-days that were admission days was also added to the dataset to 

examine whether admission day carried additional risk.  This is may be particularly pertinent 

for emergency admissions. 
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Bed-days for surgical admissions were specifically identified as surgery involves very different 

pathways of care and opportunities for different types of incident, compared with general 

medical admissions.  Surgical admissions are not specifically defined in HES, and distinguishing 

valid surgical procedures across all specialties is a complex process, beyond the scope of this 

project.  Admission to a surgical specialty was therefore used as a proxy.  Admission to surgical 

treatment specialties was defined using HES field ‘TRETSPEF’ with values >99 and <200, plus 

502.  No check was made for whether patients received a procedure, as some patients may not 

receive procedures if they are too ill or if other emergency cases mean there is no available 

capacity. 

 

Counting HES activity in terms of episodes or discharges leads to an inequity in the exposure.  

If counted as the number of discharges (a common HES analysis definition), an inpatient 

staying in hospital for two days would appear to have the same exposure as a patient staying 

one day.  This is not an adequate proxy for the ‘opportunity for incident.’  If patient occupancy 

can be considered as ‘exposure time,’ it is reasonable to consider a two-day patient stay as 

twice the exposure of a one-day stay. 

 

The most accurate measures of exposure time would be the time between a patient’s 

admission and discharge.  This is not currently possible to calculate from HES, as it does not 

contain admission and discharge times. A common method to account for this varying 

exposure, given the lack of time information, is to convert the time in hospital to counts of 

patient ‘bed-days:’ the number of days inpatients are occupying beds.  The highest resolution 

for bed-day counts in HES is whole days, as the difference between admission and discharge 

dates that are recorded in HES. 

 

Transforming to bed-days is a common concept in HES analysis and several methods exist for 

this: 

1. Discharge date – Admission date (Department of Health, 2013b) 

2. (Discharge date – Admission date) + 0.5: in recent NRLS publications (Clinical 

Indicators Team, 2016a) 

3. (Discharge date – Admission date) + number of day-cases (Medicines & Prescribing 

Team, 2015) 
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4. (Discharge date – Admission date) + number of single day stays (Bardsley et al., 2016) 

5. Quarterly midnight count of occupied beds, and day-only beds (Macfarlane et al., 

2005) 

 

Method 1 renders single-day stays (or the sub-group of ‘day-cases’) as zero.  This is clearly 

inadequate when considering exposure time.  Short-staying patients still had exposure despite 

that exposure being less than a day.  Method 2 adds a constant bias of 0.5, rather than zero, to 

account for the admission day.  This is consistent but may be unrepresentative as there is no 

way to assess whether patient stays are longer or shorter within the frame of a calendar day 

i.e. 0.5 may represent, at its extremes:  00:01 to 23:59 hours, and is unlikely to be exactly half a 

day.  Adding 0.5 is also problematic because our input is no longer an integer, conflicting with 

the Poisson distribution’s definition on integers (see Chapter 4).  This may add bias where 

hospitals with differing admission and discharge practices for short-staying patients may 

appear the same.  Method 3 specifically counts day-cases, but so-called ‘zero-day stays’, where 

a patient is admitted and discharged on the same day but are not considered as ‘day-cases.’  In 

HES terms, a day-case must be admitted with the intention of being treated as such (HES data 

fields: [INTMANIG] = 1 & [CLASSPAT] = 2, (NHS Digital, 2017d) with a LOS <1).  Day-cases are 

usually admission for particular procedures, but zero-day stays may occur for other reasons 

(e.g. emergency admission from A&E for monitoring).  Method 3 gives equal weight to day-

cases and over-night stays but misses a group of patients with LOS <1 such as the short-stay 

emergency admissions described.  Method 4 attempts to deal with unequal weighting by 

acknowledging any attendance as at least one day, but it is inequitable in a sense, valuing an 

over-night stay the same as a single day-stay.  Method 5 is the NHS standard, used in national 

reporting of NRLS figures, however it is known to exclude critical care, ‘well babies’ and several 

other circumstances.  It is collected through a long-standing quarterly, ‘central return,’ known 

as the ‘KH03’ (NHS England, 2017).  KH03 data is not collected with other demographic details 

attached and is therefore less useful for risk-adjustment. 

 

None of the existing methods with access to further demographic data (1-4) adequately cover 

time in hospital from an exposure perspective, so a new calculation is proposed here.  Bed-

days were counted with reference to a calendar look-up table, so all open spells on a given day 

are counted and summed within months, weighting all days in hospital as 1, including zero-day 

stays and day-cases.  This method will be an over-estimate, as patients do not necessarily stay 

for all of this time, as described above, but the over-estimate is consistently applied across all 

organisations.  This may particularly affect organisations with high day-case procedure rates 
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and increase bias.  It will count more ‘exposure’ than was strictly true, but given the absence of 

time data in HES, this seems the most equitable method.  IP activity was therefore considered 

as counts of ‘bed-days’ in casemix groups. 

 

Bed-days are helpful for quantifying in-patient exposure, but OP and A&E attenders also 

represent major patient flows through hospitals.  Since details in OP HES were sparser than IP 

HES, the OP patient flow was included in our models but counting attenders stratified by age 

group.  Age was assumed to be a potential factor in mobility, medication and other incidents, 

but sex was assumed to be less relevant to outpatient attendances and the exposure risk.  

Coding rules for outpatients are less stringent than inpatients, and are not mandatory in many 

cases, therefore Trusts will not waste resources on this data if it is not mandatory.  Outpatient 

comorbidity scores were therefore not considered.  OP HES also contains records of 

appointments that patients did not attend, so an exclusion was applied to model only those 

records where patients attended.   

 

A&E HES data are collected nationally, but data submission and completion of fields has varied 

as they were not mandatory until the recent introduction of the Emergency Care Dataset (NHS 

Digital, 2018a).  The nature of A&E also makes data completeness an issue, as patients may not 

be easily identified in some cases such as being unconscious on admission, confusion in ill 

patients or patients leaving the department without being seen, leaving unresolved records.  

A&E patient flow was considered in the model as numbers of A&E attenders and waiting times, 

with the rationale that longer waiting times suggest more exposure for patients who are in the 

hospital for longer, a proxy for the pressure the department is under. 

 

5.2.3 Organisations included 

Models focussed on all data submitted to NRLS by acute trust, (excluding specialist single-

specialty hospitals such as orthopaedic, or paediatric trusts) with corresponding HES data in 

the fiscal year 2015/16.  Trust type has been identified using the NHS central Organisational 

Data Service, rather than location or hospital type recorded in the NRLS.  In rare cases, trusts 

may have multiple hospital sites that include different organisations, such as mental health 

facilities or community hospitals.  Where such organisations are part of larger acute trusts, 

they have been included in the model and reported as part of that trust. 
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NHS structural changes have occurred regularly, with organisations opening, closing, or 

merging, so a consistent set of processing rules for organisations was required.  Changes in 

organisational grouping affect the number of repeated measures at each organisation and will 

affect estimates of random-effects structures (see Chapter 4).  Mapping rules were applied as 

follows: 

1. Organisations with a stable identity through the period pose no problems, and are 

identified consistently.  This represented the majority of Trusts in the data. 

2. Organisations who fully merged during the modelling period were mapped to the 

merged organisation for the entire modelling period. 

3. Organisations that did not fully merge, but were split between more than one merger 

organisation, were mapped to the original organisation for the duration of its 

existence, and the new organisations after its creation. E.g. Mid-Staffordshire hospital 

closed during 2014/15 and was split between two organisations and could not be fully 

mapped to either of the merging Trusts for the whole period.  Therefore Mid-

Staffordshire exists at the start of that fiscal year, and North Midlands NHS Trust, and 

Cannock Hospital at Wolverhampton have received additional activity and incidents 

after the merger. 

 

5.2.3.1 Exclusions 

A variety of validation checks were performed on the data, including checks for missing values, 

unlikely values such as a single incident report in a month, and monthly shifts of 50% or more 

in reported numbers of incidents, bed-days, OP or A&E attenders.  Initial modelling stages also 

fed back into the validation process and four data points were excluded for 2015/16: 

• 03/2016 – University Hospitals North Staffordshire NHS Foundation Trust.  High 

leverage and residual on model diagnostics. 

• 03/2016 - Central Manchester University Hospitals NHS Foundation Trust:  High 

leverage and residual on model diagnostics, due to missing A&E data. 

• 01/2016 - Chelsea and Westminster Hospitals NHS Foundation Trust:  large drop in the 

number of incidents reported, unlike previous months. 

• 03/2016 – Guy’s and St. Thomas NHS Foundation Trust: Substantial drop in IP bed days 

(particularly emergency admissions) and large rise in A&E attendances.  Suggestive of 

change in admission policy in last month of period. 

A total of 1616 data points entered the models from 135 organisations. 
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5.3 Parameterisations of incident and exposure data 

Explanatory variables in the dataset, described in section 5.2, required a degree of aggregation 

or grouping to be adequately linked to the incident data.  The following sub-chapter describes 

possible parameterisation that were considered, and in some cases tested.  Final 

parameterisations were arrived at by considering the theoretical reason for a fitting in a 

particular form, parameter scaling, changes to distributional form and convergence of models. 

5.3.1 Describing exposure data in the aggregated dataset 

Three potential aggregation methods were examined, based on IP, OP & A&E HES data and 

NRLS incidents per organisation per month.  Each potential parameterisation was assessed 

from a logic/study question perspective, and practical perspective for fitting models.  Models 

and possible study questions were: 

1. Binned, or grouped, counts of predictors in demographic groups.  E.g. count of bed-

days where patients aged 1 – 17, or count of patients admitted as elective.  This 

parameterisation would address the question: do increases in bed-days/ attenders, in 

total, and in given exposure groups, increase the number of incidents reported? 

2. Proportions of predictor variables in demographic groups:  Counts, as described in ‘1,’ 

divided by a relevant denominator, total bed-days for IP predictors, and total 

attendances for OP & A&E predictors respectively.  Therefore, each demographic 

category would sum to 1.  This parameterisation would address the question: do 

changes in the distributions of patient casemix factors affect the number of incidents 

reported? 

3. Quantile values of predictors in demographic groups: Values for a selection of 

percentile values in appropriate demographic groups could be used to describe the 

distribution. E.g. 25th, 50th and 75th percentiles of age based on IP bed-days, without 

assuming a particular distribution.  This is important given most predictor variables are 

counts.  This parameterisation would address the question: do the distributions of 

bed-day/ attender casemix factors affect the rate of incidents, independent of the 

level of exposure? 

 

Each of the proposed parameterisations has strengths and limitations in terms of model 

estimation and interpretation.  Approach 1 asks a different question to approaches 2 and 3, 

namely predicting if numbers of patients in particular demographic groups affect the number 

of incidents reported. 
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Approach 2 & 3 describe the distribution of variables, but do not factor the size of 

organisations in the models.  Knowing the percentile ranges or proportions of bed-days in 

groups does not inform the model as to whether an organisation reports 10 or 10,000 bed-

days in a period.  A measure of the magnitude of the exposure is also required in these models, 

and can be achieved either by adding a parameter/fixed effect for total bed-days, or by using 

an offset variable. 

 

Approach 1 & 3 fit count covariates that can range (in theory) from 0 to +∞.  Approach 2 fits 

proportions as covariates, which are therefore constrained between 0 (no bed-days in a group) 

and 1 (all bed-days within group).  Changes in these covariates will be smaller than in Approach 

1, due to scale, and also suffer from multicollinearity problems.  ‘Multicollinearity’ in models 

describes situations when combinations of model covariates together perfectly predict other 

model covariates.  Models are unable to estimate these coefficients, as parameters could 

functionally be any combination of the affected covariates.  E.g. if a variable has three groups, 

a, b and c, and sums to 1.  When fitting this model, knowing a and b will always fix c, with no 

freedom to vary.  Functionally, a, b & c could take any values summing to one, and therefore 

have no predictive ability.  This can be tackled by dropping one of the multicollinear variables. 

E.g. fitting a and b but omitting c allows a and b to vary freely.  Approach 2 necessitates 

dropping some covariates for estimation. 

 

Approach 3 presented a high computational burden when preparing the dataset.  The 

extracted IP, OP & A&E files were in excess of 1 GB, 1.5 GB and 0.4 GB respectively, with 

52,374,788, IP records, 80,687,829 OP records and 19,136,957 A&E records.  Percentile 

calculations require ordering and logic steps for ties, easily accomplished in statistical software 

on small datasets.  Microsoft SQL Server, the data management solution used for NRLS 

storage, loading and preparation, does not have an in-built concept of a median as data are 

not stored in an inherent order.  Methods exist to code this in an SQL Server environment, 

with its strengths in sorting and storage, but statistical software is more naturally suited to 

these calculations.  The burden of sorting such large datasets, particularly in-memory using R, 

makes this challenging despite efficient median and percentile functions.  Initial test estimates, 

based on test median and percentile calculations, suggested several days of continuous 

processing time would be required (given that many were required to test suitable percentiles 

required).  Percentiles calculated were: minimum, 5, 10, 25, 50, 75, 90, 95th percentiles and 

maximum, in all groups for testing.  This would not be considered a sustainable model for 
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regular NRLS/HES analysis, so an optimisation exercise was performed to reduce this, 

including: 

• Using R on a powerful server rather than desktop machine, with 96GB memory and 24 

cores. 

• Reducing the memory used for data storage, freeing memory for additional 

computations, by loading only data columns required for iteration, month, 

organisation, and parameter of interest. 

• Using indexed and sorted (‘keyed’) tables to reduce sort and seek time for both 

iteration and percentile operations.  Although common in database systems, and in 

other statistical packages such as SAS, this is only implemented in R via the third-party 

packages, and ‘data.table’ (Dowle and Srinivasan, 2017) was used for this. 

• Parallelising the process to allow several iterations to happen simultaneously.  Parallel 

operation does not reduce run time in a simple multiplicative fashion.  Additional steps 

are required to route operations to different nodes as well as return and assemble 

outputs.  Nodes may compete for resources, and may sometimes wait for each other 

to complete before proceeding.  Despite this, suitable operations can be returned 

significantly faster when parallelised.  R code for parallelised loops was constructed 

using the ‘doParallel’ (Revolution Analytics and Weston, 2015) package, and run 

on 20 cores simultaneously. 

• Use of parallelised Basic Linear Algebra Subprograms (BLAS) improves speed.  R (and 

many other systems) rely on a BLAS to perform many calculations, particularly 

involving matrices.  Since R represents many data structures as matrices regardless of 

how they are presented to the user, many operations can be improved using an 

optimized, parallel BLAS instead of R’s default single-threaded BLAS.  Several 

implementation of this are available, but Microsoft’s R Open (MRO) using the Intel 

Math Kernel (MKL) BLAS is the most accessible for Windows users and regarded as one 

of the best performing (Microsoft, 2018).  Parallel BLAS and explicit parallelisation, as 

per the last point, may conflict and care must be taken to assess the suitability of 

either approach.  MRO was set to single threaded execution, but explicitly parallelised 

as described above, benefiting from faster MKL execution, but distributing calculations 

across nodes without conflict. 

The combined reduction in memory use, efficient storage and sorting, and parallel operation 

reduce run time to six hours.  This time will be further reduced once final percentiles were 

selected. 
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A final parameterisation was chosen after investigating the approaches described above and 

with input from academic, clinical and regulatory colleagues.  Approach 2 was felt to be the 

most ‘intuitive’ version, but resulted in a more challenging model to estimate.  Approach 2 

shows less variation in the proportion variables, compared to counts or percentiles, and 

models took longer to converge.  This is to be expected, as the possible range of proportions is 

narrower.  This approach was applied to the majority of predictors using proportions of 

inpatient bed-days, outpatient or A&E attendances as appropriate.  No offset was used, as 

there were three non-equivalent types of exposure in the data, but count predictors were also 

fitted as weights including total bed-days, OP & A&E attendances.  A&E waiting times were 

fitted as percentiles, with longer waiting times representing increased exposure time for 

patients when compared to shorter waiting times.  The 25th, 50th and 75th percentiles were 

used, as they represent the central 50% of the distribution, without being overly influenced by 

high outliers.  Other percentiles did not appear to improve fit. 

 

A single interaction effect between the proportion of emergency admissions and proportion of 

bed-days relating to admission was entered into the model to account for any additional risk 

from potential rushed emergency admissions. 

 

5.3.2 Time period/seasonality 

The modelling data set spans a single financial year. The NHS is assumed to be stressed over 

winter periods (NHS England, 2018), and seasonal patterns such as national holidays etc. are to 

be expected.  It is likely that, during times of increased pressure, resilience against incidents 

(and available time for staff to report incidents) may be affected.  To represent this, time 

period or ‘seasonality’, was considered for inclusion in the model. 

 

Various methods exist to parameterise time period and each was fitted to the models to test 

for a preferred method: 

• Categorical variables for time periods, such as fiscal quarters or months, using ‘dummy 

variables.’  The model then assumes one level to be a reference level (e.g. the first 

quarter or month in the period) with coefficients for the change from reference level 

for each additional quarter or month. 
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• Treating month as a numeric value, numbering 1-12.  Although easiest to fit, the model 

would assume a linear trend (on the scale of the link function), that may not be 

suitable to represent seasonal effects, particularly if they are non-linear. 

• Smoothed representation using splines.  If we assume that time effects may be ‘noisy’ 

but have general non-linear trends fitting a smoothed version of time covariates is 

logical.  Splines are functions that are expressed as piece-wise polynomials, continuous 

at their 0th, 1st and 2nd derivatives, joined at ‘knot points’ (Wood, 2017b).  Knot points 

may be directly specified but are commonly placed at percentiles a distribution.  Spline 

functions, having gradients, capture change in a function as well as effect sizes.  

Splines produce more stable results than fitting traditional polynomials for non-linear 

trends, and they do not oscillate at the extremes (‘Runge’s phenomenon’) (Wood, 

2017d).  ‘Natural’ cubic splines are a sub-class of splines, of degree 3, with a linear 

constraint (second derivative set to zero) at the extreme knots, and are recommended 

in this context (Harrell, 2001).  See Chapter 6 for more details of splines, expanded for 

use in Generalized Additive Models. 

 

A natural cubic spline was used to model monthly fluctuation, using 3 knots, placed at the 

10th, 50th and 90th percentiles as recommended by Harrell (Harrell, 2001).  Various spline 

functions exist in R for fitting these models.  Although estimating the same function, the 

numerical methods differ in terms of stability and singularity when used in model fitting.  

The ns function using a B-spline basis, rather than truncated power basis used in Harrell’s 

own R functions, was chosen for its numerical stability, their similar performance to 

Harrell’s functions in other studies (Govindarajulu et al., 2009), and better performance on 

model fitting, based on AIC in NRLS models. 

 

5.3.3 Excluded predictors 

Evidence from the literature review suggested some predictors were not significantly 

associated with NRLS incident reporting rates.  These included mortality, patient satisfaction 

and numbers of staff (Howell et al., 2015).  The same study suggested hospital size was not 

correlated with reporting rate.  This may be true in their study with a particular 

parametrisation, but when NRLS data are modelled as counts rather than rates, for the 

purposes of this chapter, this conclusion seems unlikely.  Hospital size was therefore included 

in terms of total bed-days, outpatient and A&E attendances. 
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5.3.4 Summary of constructed dataset 

The constructed dataset was examined using univariate descriptive statistics (Table 5.1) prior 

to modelling to identify potential issues, errors or distributional considerations.  Distributions 

in the constructed dataset were examined through plotting, before any transformations were 

applied (Figure 5.1 & 5.2). 

 

Variables were tested for pair-wise correlations using Pearson correlation coefficients.  

Correlation matrices are not presented here as correlations between covariates were generally 

high but, given that they are predominantly binned counts of the same indicators, this was 

unsurprising.  This did not prevent their use in modelling, but increased the suspicion of 

multicollinearity affecting models.  Major expected correlations were confirmed including age 

and higher comorbidity scores, and maternity admissions and proportions of females.  No 

decisions about the inclusion of covariates in models was taken on the strength of these 

summaries, as marginal associations may hide interactions, confounding, and relationships in 

full conditional models (Harrell, 2001, Sun et al., 1996). 

Important relationships between incidents and the total counts in each dataset (IP, OP & AE) 

are shown in Figure 5.1.  All three show a positive correlation, where the number of incident 

reports increases as the count of IP bed-days, OP or A&E attendances increases.  This is 

consistent with the idea of increasing exposure increasing the risk of incident. 

 

Figure 5.1  Relationship between total incidents and main IP, OP & A&E counts, 
reported per month, per trust. 

Y-axis represents incident reports and x-axis the value of each predictor, in panels from left to right: 
Inpatient bed-says, outpatient attendances and A&E attendances).  Red lines are smoothers fitted using 
generalized additive models (GAMs), to emphasise overall trends.  Black lines are linear model 
‘smoothers.’ 
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Table 5.1  Summary statistics for combined NRLS-HES modelling dataset 
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The majority of predictors, being counts in their raw form, are characteristically skewed, where 

a small number of high value outliers stretched the distributions out.  The percentile waiting 

times showed different distributions to other variables, and this is to be expected, as they are 

essentially a sample of a distribution of percentiles, and are normally distributed.  The 75th 

percentile waits breaks this pattern with a noticeable peak at ~240 minutes, or 4 hours i.e. the 

national waiting times target for A&E.  Few values were observed above this line, although not 

entirely absent. This suggests an artefact of recording.  It is not possible to know whether 

organisations censor data at this point, or whether the drop genuinely represents few patients 

waiting longer than 4 hours, but the abrupt change is suspicious (Figure 5.2).  Possible reasons 

for this include: ending monitoring once a patient has ‘breached,’ deliberately reformatting the 

waiting times to 240 minutes that exceed this, or default values extracted from A&E 

administration software.  This truncated distribution supports the use of percentiles, as they 

will be internally consistent within organisations, conditional on their reporting behaviour. 
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Figure 5.2  Distributions of predictor variables from NRLS-HES combined dataset 
Black lines represent the median value for each variable. 
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5.4 Single-level model fitting and output 

The constructed dataset was used to iteratively build models and test their effectiveness for 

predicting incident reporting. 

 

5.4.1 Methods 

To examine if initial count models were suitable, a Poisson GLM was first fitted to the dataset 

to assess the overdispersion before further model were examined.  Parameter estimate 

confidence intervals were affected by overdispersion, so bootstrap estimation was also 

performed with 1000 samples to better estimated the error distribution for comparison. 

 

Poisson GLMs were then refitted using quasi-likelihood, described in Chapter 4.  These models 

do not specify a full distribution from the exponential family, as GLMs normally do, but merely 

specify a mean-variance relationship.  The models are them estimated using estimating 

equations rather than traditional MLE methods.  The estimation method and lack of MLE 

makes them ill-suited to comparisons with other MLE methods. Although we cannot calculate 

likelihood ratio tests or AIC, these models allow an assessment of a multiplicative 

overdispersion factor.  This factor both verifies the overdispersion tests of GLMs and allows for 

variance scaling.  Parameter estimates of models are the same as those in the naïve Poisson 

GLM, however the scaled standard errors can be used to better approximation of parameter 

significance. 

 

Models were further developed mixture models, based on MLE methods, that included 

adjustments for scale.  Mixture models, including the NB1, NB2 and GP models were fitted.  

Parameter estimates in these models are conditional on the scaled deviance, in contrast with 

the quasipoisson, allowing assessment of whether parameters are affected by OD, or simply 

reflected in the error structure. 

 

The various models discussed in Chapter 4 were fitted using the statistical computing 

environment R (R Core Team, 2016), primarily using the base R function: glm.  It is common 

practice for R users to cite the authors of specialist packages, as many of them are supported 

through research grants with their progress measured by citations.  This thesis will explicitly 

acknowledge such packages when referring to them for the first time, with work in this section 
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using functions from the tidyverse suite of packages including dplyr (Wickham et al., 

2017) and tidyr (Wickham and Henry, 2017) for data handling, plot functions from the 

ggplot2 (Wickham, 2009) and gridExtra (Auguie, 2016) packages, Anova & Boot 

functions from car (Fox and Weisberg, 2011), mse and mae functions from 

ModelMeterics (Hunt, 2016) and model output tidying and format functions from broom 

(Robinson, 2017). 

 

The standard R glm function may be used to fit quasi-likelihood models by specifying a 

family argument of `quasipoisson` rather than `poisson`.  glm is unable to fit the 

mixture models, and the glm.nb function from the in the MASS packages (Venables and 

Ripley, 2002) was used instead.  This function initially fits a Poisson GLM then iterates between 

ML estimation of the scale parameter , and refitting the model using NB2 with the estimated 

.  This models the NB2 parameterisation, where variance is quadratic to the mean, but it does 

not allow the fitting of NB1.  The recently developed modelling package glmmTMB 

(Magnusson et al., 2017) was used, allowing NB1 and GP families, but it’s performance was 

‘sense-checked’ by fitting both the Poisson and NB2 models using glmmTMB and the standard 

glm/glm.nb functions.  No differences in parameter estimates over 1 x 10-5 were observed, 

with most estimates identical between functions, and glmmTMB were considered robust for 

use. 

 

Model diagnostics were examined by checking that models attained their default convergence 

values, commonly no change in the objective functions of greater than 1 x 10– 8 over several 

iterations.  Model parameter estimates and AIC are presented in this section and prediction 

error examined in section 5.6. 

 

5.4.2 Results 

Poisson GLM result are presented in table 5.2 and figures 5.3 and 5.4.  The naïve Poisson 

model reported almost all parameters as significant at 95%.  Boostrapped estimates inflated 

the standard error and confidence intervals accordingly (Figure 5.3) as expected.  This reduced 

the significance of some parameters, notably for inpatient bed-days aged >84, all comorbidity 

score groups, non-elective admissions, sex, admission data total OP attenders and A&E waiting 

times.  When tested for overdispersion, as described in section 4.2.2, the Poisson model was 

highly overdispersed with an estimated dispersion ratio of ~38. 
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Table 5.2  Model coefficients for NRLS-HES Poisson GLM with Wald and bootstrapped 
confidence intervals 

Green cells represent statistically significant values (α = 0.05).  ‘L95CI’ is the lower bound of the 95% 
confidence interval, and ‘U95CI’ the upper. 
 

estimate L95CI U95CI L95CI U95CI

Intercept 5.036 4.797 5.274 3.434 6.554

Teaching Hospital status -0.017 -0.023 -0.010 -0.062 0.026

Total IP Beddays 0.508 0.498 0.518 0.449 0.566

Proportion IP bed-days by age group

 <1 year -2.459 -2.821 -2.097 -4.774 -0.291

1-17 years 4.818 4.561 5.076 3.234 6.421

18-29 years 3.497 3.128 3.866 1.418 5.596

50-69 years 2.786 2.529 3.042 1.230 4.347

70-84 years 1.515 1.326 1.704 0.375 2.617

>84 years 0.541 0.341 0.741 -0.617 1.685

Proportion IP bed-days by comorbidity groups

Charlson score <1 -0.920 -1.071 -0.768 -1.822 0.029

Charlson score >4 -0.075 -0.234 0.083 -1.028 0.957

Proportion IP bed-days by sex

IP bed-days males 0.149 0.016 0.282 -0.765 1.104

Proportion IP bed-days by admission type

Non-Elective 0.224 0.055 0.393 -0.910 1.383

Maternity/birth 1.679 1.468 1.889 0.391 3.037

Transfer -0.072 -0.179 0.034 -0.739 0.637

Proportion of IP bed-days by specialty

Surgical Admission 0.122 0.085 0.159 -0.199 0.459

Proportion of IP bed-day that are admission day

Admission Day 0.680 0.404 0.957 -1.113 2.471

Total OP Attenders 0.028 0.020 0.037 -0.028 0.087

Proportion of OP Attendances by age group

 <1 year 2.973 2.506 3.440 -0.138 5.987

1-17 years 0.050 -0.078 0.178 -0.670 0.798

18-29 years 1.517 1.317 1.717 0.384 2.673

50-69 years 0.504 0.327 0.681 -0.554 1.568

70-84 years 1.717 1.529 1.904 0.615 2.850

>84 years -2.053 -2.458 -1.648 -4.491 0.341

Seasonality Spline basis

1 0.000 -0.010 0.010 -0.066 0.070

2 -0.012 -0.022 -0.003 -0.072 0.047

3 0.104 0.089 0.119 0.004 0.203

4 0.173 0.164 0.183 0.110 0.240

Total AE attendances 0.126 0.119 0.133 0.077 0.172

Percentiles of A&E Waiting Time

25th percentile -0.024 -0.037 -0.012 -0.101 0.059

50th percentile 0.087 0.069 0.105 -0.033 0.201

75th percentile -0.036 -0.044 -0.027 -0.095 0.026

Proportion of A&E Arrival Type

Ambulance 0.417 0.391 0.443 0.259 0.558

Interaction of Admission Day and non-elective

Admission Day * Non-Elective -3.769 -4.198 -3.339 -6.539 -1.006

term

Poisson Model

Wald Bootstrap (1000)
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Figure 5.3  Comparison of estimated model coefficients and 95CIs for NRLS-HES 
Poisson regression models 

 

Figure 5.4  Model diagnostic plots for NRLS-HES Poisson regression models  
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Diagnostic plots showed some patterns, suggesting most points were of low observed and 

predicted values.  Larger negative residuals were seen at higher fitted values suggesting that 

the model over-predicts at higher observed values.  The overall line of best is approximately 

zero, but the this may be misleading with the pattern described above.  

 

Goodness of fit was tested using chi-squared tests on the residual deviance versus null 

deviance, suggested models were significantly under-specified.  When combined with the 

overdispersion test, this suggest overdispersion is dominating the model.  The model is likely 

under-specified, or parameterisation is not specific enough to represent the variance in the 

data, particularly given the aggregation. 

 

Parameter estimates in the quasipoisson model remained unchanged compared to the Poisson 

model but errors were adjusted using the scale factor.  Comparisons of tables 5.2 & 5.3 show 

quasipoisson and bootstrapped estimates of standard error to be broadly comparable.  As 

coefficients remained the same as the Poisson model, model diagnostic charts for 

quasipoisson in Figure 5.5 are similar to the Poisson model in figure 5.4, showing similar under-

estimation at higher values, but the residuals are better scaled. 

 

Outputs for mixture models are presented in table 5.3 and figure 5.5.  Mixture models, NB1, 

NB2 and GP all improved upon the Poisson and GP models.  Significance of parameter 

estimates was broadly stable across QP, NB1 and GP models, with NB2 showing more 

variation.  Comparisons of QP and mixture models between their bootstrapped and Wald 

intervals showed small differences, but similar significance levels, indicating that 

overdispersion was not adversely shrinking standard errors in these models and the scaling 

had been successful.  Therefore, Wald intervals were used rather than bootstrapped intervals 

for easy of calculation.  Each scaled model showed similar parameter significance to the 

bootstrapped Poisson model, and suggested that the scale factors are taking reasonable 

account of the overdispersion in the underlying distribution.  Residual plots and predictive 

value plots still demonstrated the pattern observed in the Poisson model, under-predicting the 

highest predicted values (figure 5.5).  The NB2 model showed some differences to other for 

parameter significance, and a notably lower intercept, but also showed the strongest trend in 

residuals suggesting a bias.  This stands in contrast to the NB2 model showing the lowest AIC 

value. 



127 
 

 

Table 5.3  Model coefficients for NRLS-HES Quasipoisson, Negative Binomial and 
Generalized Poisson GLMs 
Green cells represent statistically significant values (α = 0.05).  ‘L95CI’ is the lower bound of the 95% 
confidence interval, and ‘U95CI’ the upper. 

estimate L95CI U95CI estimate L95CI U95CI estimate L95CI U95CI estimate L95CI U95CI

Intercept 5.036 3.548 6.523 5.177 3.727 6.627 4.580 3.105 6.055 5.260 3.818 6.703

Teaching Hospital status -0.017 -0.059 0.026 -0.009 -0.050 0.033 -0.049 -0.094 -0.005 -0.003 -0.044 0.038

Total IP Beddays 0.508 0.448 0.568 0.520 0.461 0.578 0.584 0.520 0.648 0.527 0.469 0.586

Proportion IP bed-days by age group

 <1 year -2.459 -4.714 -0.203 -2.354 -4.553 -0.156 -0.899 -3.131 1.334 -2.261 -4.448 -0.074

1-17 years 4.818 3.211 6.426 4.680 3.113 6.247 5.261 3.643 6.879 4.607 3.045 6.168

18-29 years 3.497 1.195 5.799 3.374 1.148 5.600 4.633 2.414 6.853 3.270 1.070 5.471

50-69 years 2.786 1.187 4.384 2.639 1.105 4.172 3.354 1.822 4.887 2.534 1.027 4.041

70-84 years 1.515 0.335 2.694 1.384 0.237 2.531 2.193 1.049 3.337 1.320 0.181 2.459

>84 years 0.541 -0.703 1.785 0.516 -0.681 1.714 1.348 0.164 2.532 0.507 -0.674 1.689

Proportion IP bed-days by comorbidity groups

Charlson score <1 -0.920 -1.863 0.024 -0.801 -1.722 0.121 -0.214 -1.133 0.705 -0.701 -1.619 0.217

Charlson score >4 -0.075 -1.064 0.913 0.091 -0.879 1.061 0.677 -0.287 1.640 0.211 -0.756 1.179

Proportion IP bed-days by sex

IP bed-days males 0.149 -0.680 0.978 0.082 -0.727 0.891 0.176 -0.621 0.972 0.017 -0.788 0.823

Proportion IP bed-days by admission type

Non-Elective 0.224 -0.830 1.278 -0.049 -1.069 0.971 -0.584 -1.627 0.459 -0.258 -1.271 0.755

Maternity/birth 1.679 0.364 2.993 1.660 0.385 2.935 1.236 -0.018 2.489 1.638 0.376 2.901

Transfer -0.072 -0.737 0.593 -0.086 -0.726 0.555 -0.229 -0.867 0.408 -0.100 -0.733 0.532

Proportion of IP bed-days by specialty

Surgical Admission 0.122 -0.109 0.354 0.095 -0.143 0.333 0.321 0.091 0.552 0.079 -0.166 0.324

Proportion of IP bed-days that are admission day

Admission Day 0.680 -1.043 2.404 0.261 -1.413 1.935 -0.551 -2.318 1.215 -0.052 -1.721 1.618

Total OP Attenders 0.028 -0.024 0.081 0.017 -0.034 0.069 0.002 -0.053 0.057 0.010 -0.042 0.062

Proportion of OP Attendances by age group

 <1 year 2.973 0.062 5.885 2.342 -0.504 5.188 1.776 -0.968 4.519 1.986 -0.858 4.829

1-17 years 0.050 -0.747 0.847 0.130 -0.633 0.893 -0.302 -1.056 0.451 0.180 -0.569 0.929

18-29 years 1.517 0.271 2.762 1.507 0.326 2.688 1.492 0.305 2.679 1.549 0.399 2.700

50-69 years 0.504 -0.599 1.607 0.491 -0.565 1.548 -0.099 -1.110 0.912 0.507 -0.528 1.543

70-84 years 1.717 0.548 2.886 1.760 0.634 2.886 1.645 0.520 2.769 1.796 0.685 2.907

>84 years -2.053 -4.576 0.471 -2.169 -4.604 0.266 -2.884 -5.282 -0.485 -2.231 -4.638 0.175

Seasonality Spline basis

1 0.000 -0.064 0.064 -0.004 -0.066 0.058 0.005 -0.059 0.070 -0.007 -0.069 0.054

2 -0.012 -0.070 0.045 -0.006 -0.062 0.050 -0.023 -0.081 0.035 -0.001 -0.057 0.055

3 0.104 0.009 0.198 0.107 0.015 0.199 0.130 0.035 0.225 0.111 0.020 0.203

4 0.173 0.113 0.233 0.168 0.110 0.226 0.194 0.134 0.254 0.163 0.105 0.221

Total AE attendances 0.126 0.084 0.169 0.115 0.075 0.156 0.135 0.087 0.182 0.108 0.068 0.149

Percentiles of A&E Waiting Time

25th percentile -0.024 -0.103 0.055 -0.015 -0.092 0.062 -0.040 -0.119 0.038 -0.009 -0.086 0.068

50th percentile 0.087 -0.025 0.200 0.082 -0.027 0.191 0.077 -0.036 0.190 0.079 -0.029 0.188

75th percentile -0.036 -0.091 0.019 -0.037 -0.091 0.017 -0.018 -0.075 0.039 -0.038 -0.093 0.016

Proportion of A&E Arrival Type

Ambulance 0.417 0.254 0.581 0.370 0.217 0.523 0.459 0.302 0.616 0.341 0.192 0.490

Interaction of Admission Day and non-elective

Admission Day * Non-Elective -3.769 -6.448 -1.089 -2.856 -5.458 -0.254 -2.184 -4.887 0.520 -2.196 -4.790 0.398

Scale Parameters

AIC

term

38.86

Negative Binomial 1

-

36.60

21,172

21.14

Generalized Poisson

38.70

Negative Binomial 2Quasi-Poisson

Quasi-Poisson and Mixture Models

21,146 21,162



128 
 

 

Figure 5.5  Model diagnostic plots for NRLS-HES scaled Poisson models: Quasipoisson, Negative Binomial and Gen. Poisson 
Columns represent each model, with the top row showing plots of predicted vs. observed, and the bottom row the fitted vs. standardized residuals 
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5.4.3 Discussion 

The results suggest that Poisson models, although a useful start, are not appropriate choice for 

this dataset as they grossly underestimate the error due to overdispersion.  Each scaling 

method showed great improvements on the Poisson model alone, regardless of the method.  

Mixture models appeared more appropriate for the dataset than quasipoisson models and 

suggested there was a latent structure in the dataset.  All models notably over-predicted for 

larger input values, suggesting the relationship to size is non-linear and/or there is missing 

information related to the submitting organisation that might better describe this size 

element. 

 

NB1 and quasipoisson models show similar significance for covariates, despite parameter 

estimates in NB1 being adjusted.  This is to be expected, as they use similar variance-scaling 

methods (see Chapter 4).  In this application, the NB1 could be considered preferable, both for 

updating parameter estimates given the overdispersion, and for having a fully specified 

distributional form, allowing the use of LRT and AIC. 

 

The GP model showed good performance for the scaling, and judged by the AIC alone, 

improved upon the NB1 model by losing the less information.  The GP scale factor is similar to 

the NB1 and quasipoisson models, with parameter significance similar to NB1. 

 

NB2 shows different parameter estimates to NB1, with a notably different scale factor, due to 

its quadratic scale term.  NB2 has a noticeable smaller intercept estimate and was the only 

model to estimate the proportion of bed-days for patients admitted to surgical specialities as 

significant.  AIC comparisons of NB1 and NB2 support NB2 as a better fit, losing less 

information than NB1, but NB2 showed a stronger trend than any other model on residual 

plots.  This suggested the proportional overdispersion assumption may be wrong, with the 

simple multiplicative scaling of NB1 placing too much emphasis on high counts when scaling 

the variance.  The NB2 parameterization gives more weight to low expected counts when 

scaling for overdispersion and supports an assumption that organisational size/organisational 

specific factors are important in driving the overdispersion and model fit.  It could also be 

suggested that the NB2 model showed reduced variance at the expense of increased bias. 
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All mixture models showed sufficient improvements to be considered better than the naïve 

Poisson model, but the undescribed differences between large and small organisation are the 

most important missing feature of the models examined so far. 

 

5.5 Mixed/random-effects models 

The models presented above have not explicitly reflected the known repeated-measures 

structure in the data and applied simpler multiplicative scaling terms.  This known clustered 

structure in the datasets violates the independence and homoscedasticity of variance 

assumptions of typical regression models.  A more explicit modelling approach is discussed in 

the following sections to account for this structure.  The models fitted in the previous section 

were therefore re-fitted with an additional random-intercept for each hospital submitting data 

to NRLS. 

 

5.5.1 Methods 

Initial multilevel structures were fitted as Poisson GEEs to test for differences in residuals 

compared to the naïve Poisson model.  GEE models more adequately scaled the variance of 

data but were abandoned due to their lack of full distributional assumption and an MLE.  

Results for GEEs are not presented here, as they could not be as easily compared to MLE 

methods. 

 

The standard R package for fitting multilevel models, in a frequentist framework, is lme4 

(Bates et al., 2015) and the function glmer was used for this.  Despite being the standard 

function in R for these models, lme4 does not allow the fitting of NB1, GP models, and quasi-

likelihood models (which are incompatible with the mixed modelling paradigm).  As in section 

5.4, glmmTMB was used to fit these models NB1 and GP models.  Poisson and NB2 models 

fitted with lme4 were compared with glmmTMB fits.  Again, these fits showed minimal 

differences in parameter estimates, with identical AICs observed, so glmmTMB was considered 

to be robust. 

 

Multilevel model estimation is computationally challenging, with parameterisation and scales 

of predictors having major implications convergence.  The models presented below have, in 

some cases given scale warnings, or have displayed convergence warnings during their 
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development.  Various testing procedures were performed to determine if convergence 

warnings were problematic, or if they simply reflected the maximum number of iterations for 

the non-linear optimisers used during fitting.  These test have been conducted by consulting 

the literature surrounding the lme4 package, following published diagnostic processes 

(Bolker, 2017), and in direct correspondence with the package’s primary authors, via the Cross-

Validated statistics web forum. 

 

Changes and tuning options used for convergence issues, compared to default glmer settings 

include: 

• Trying a variety of optimizers, including a custom optimizer recommended for speed 

and convergence (Bolker, 2017).  Diagnostic procedures suggest that, if most 

optimizers converge with similar results, but the default does not, the fit may be 

sound, but limited by a given optimizer. 

• Increasing the number of iterations of the optimiser beyond the default 

• Centring and scaling variables where possible, as discussed in section 4.3 

• Double checking gradient and Hessian calculations using more exact (but 

computationally costly) derivative functions. 

 

Solutions were achieved mainly through the centring and scaling of predictors (avoiding large 

gradients for the optimizer to estimate), increasing the number of iterations to 2 x 108, and for 

the NB2 model in particular, using the ‘bobyqa’ optimizer (Powell, 2009) from lme4.  Little to 

no difference in gradients was observed when double-checked.  glmmTMB did not raise any 

convergence errors, require additional iterations, or need specific optimizer settings beyond 

default. 

 

The significance of the random-intercept term was not directly tested for the models 

presented below as the lme4 package does not provide standard errors for the random-effect 

variances.  The packages authors (Bates & Bolker) suggest that the sampling distribution of the 

variance of random-effects is usually asymmetric, and asymptotic normal standard errors are 

biased (Bolker, 2018).  The preferred option in lme4 is to use the likelihood profiles to 

construct a confidence interval (Bates et al., 2015), and this has been presented below for the 

random-effect variances.  Wald intervals and profiled intervals were similar for the fixed 

effects in the models, so Wald intervals were reported. 
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5.5.2 Results 

Model coefficients are displayed in table 5.4, with diagnostic plots in figure 5.6.  The Poisson 

random -intercept model retained more significant factors than the scaled random-intercept 

models, mirroring the single-level models.  Parameters estimates varied from model-to-model, 

but larger differences were observed between the Poisson model and others, notably in the 

global intercept term. 

 

Estimates of the random-intercept variances were similar across models, with estimated 

variance highest in the Poisson random-intercept model, although the confidence intervals 

were narrower, presumably due to overdispersion.  Overdispersion was reduced in the Poisson 

random-intercept model when compared to the single-level Poisson model, but not entirely 

eliminated.  When tested with the chi-squared test described in section 4.5, overdispersion 

was still present, with a dispersion ratio of ~7.3.  This is a notable reduction from the 

dispersion of ~38, but still substantially overdispersed.  The same tests on the NB1, NB2 and 

GP random-intercept models, were not significant, indicating that scaling removed the residual 

overdispersion, with dispersion ratios~1. 

 

Residual plots (figure 5.6) for all random-intercept models show points symmetrically 

distributed above and below the mean, although the size-based clusters were more obvious.  

The majority of data points were part of the large cluster of lower predicted values, and a 

second smaller cluster at higher predicted values.  The NB2 model appears to show a tighter 

group of residuals around zero for the higher group when compared with the other models.  

The spread of the residuals in these plots was wider (between -6 and 6) for NB1, NB2 and GP 

models compared the single level models (between -3 and 3). 

 

The random-intercept models showed improved fit in all model families compared with single-

level models.  The NB1, NB2 & GP random-intercept models further reduced the AIC when 

compared to the Poisson random-intercept model, but residual plots suggested more 

spurious/outlying residuals in all fits (figure 5.6).  In AIC comparisons, the random-intercept 

NB1 model performed best, with GP and NB2 better than the Poisson model. 
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Table 5.4  Model coefficients for NRLS-HES random-intercept Poisson and mixture 
GLMMs 

Green cells represent statistically significant values (α = 0.05).  ‘L95CI’ is the lower bound of the 95% 
confidence interval, and ‘U95CI’ the upper. 
 

 

estimate L95CI U95CI estimate L95CI U95CI estimate L95CI U95CI estimate L95CI U95CI

Intercept 5.343 4.742 5.943 4.927 3.434 6.421 4.971 3.470 6.471 4.948 3.453 6.444

Teaching Hospital status 0.236 0.132 0.339 0.162 0.043 0.280 0.127 0.008 0.246 0.162 0.043 0.281

Total IP Beddays 0.198 0.161 0.236 0.262 0.177 0.348 0.288 0.194 0.382 0.262 0.176 0.348

Proportion IP bed-days by age group

 <1 year 0.820 0.146 1.493 0.602 -1.233 2.438 0.833 -1.033 2.700 0.566 -1.271 2.402

1-17 years 1.286 0.624 1.948 2.016 0.344 3.689 2.339 0.624 4.054 2.038 0.364 3.711

18-29 years 1.660 1.014 2.306 2.078 0.293 3.863 1.798 -0.014 3.610 2.041 0.254 3.828

50-69 years 1.979 1.571 2.386 1.953 0.843 3.064 2.031 0.915 3.147 1.920 0.809 3.032

70-84 years 1.409 1.024 1.794 1.276 0.254 2.297 1.455 0.434 2.477 1.248 0.225 2.270

>84 years 1.508 1.118 1.899 1.326 0.301 2.350 1.392 0.379 2.405 1.295 0.270 2.319

Proportion IP bed-days by comorbidity groups

Charlson score <1 -0.501 -0.790 -0.211 -0.485 -1.283 0.313 -0.319 -1.108 0.470 -0.504 -1.302 0.295

Charlson score >4 -0.424 -0.730 -0.118 -0.243 -1.088 0.602 -0.139 -0.968 0.691 -0.238 -1.084 0.608

Proportion IP bed-days by sex

IP bed-days males -0.067 -0.282 0.148 -0.070 -0.669 0.529 0.039 -0.554 0.633 -0.086 -0.686 0.513

Proportion IP bed-days by admission type

Non-Elective -0.186 -0.565 0.194 -0.343 -1.372 0.686 -0.371 -1.410 0.669 -0.327 -1.358 0.704

Maternity/birth 0.482 0.040 0.923 0.249 -0.935 1.434 0.156 -1.024 1.336 0.263 -0.923 1.450

Transfer 0.363 0.037 0.689 0.259 -0.582 1.099 0.092 -0.753 0.937 0.269 -0.573 1.111

Proportion of IP bed-days by specialty

Surgical Admission -0.298 -0.426 -0.170 -0.223 -0.555 0.108 -0.290 -0.639 0.059 -0.219 -0.551 0.113

Proportion of IP bed-days that are admission day

Admission Day -1.095 -1.712 -0.477 -0.889 -2.579 0.801 -0.908 -2.645 0.828 -0.864 -2.558 0.830

Total OP Attenders 0.131 0.101 0.160 0.131 0.056 0.207 0.151 0.067 0.235 0.131 0.056 0.207

Proportion of OP Attendances by age group

 <1 year -0.443 -1.571 0.685 0.727 -2.258 3.711 1.058 -1.827 3.942 0.762 -2.221 3.744

1-17 years 1.017 0.468 1.565 1.523 0.335 2.711 1.565 0.390 2.740 1.497 0.309 2.685

18-29 years -0.877 -1.665 -0.089 0.712 -1.111 2.535 0.483 -1.329 2.295 0.708 -1.116 2.533

50-69 years 1.864 1.288 2.441 2.291 0.921 3.660 1.726 0.373 3.080 2.306 0.936 3.676

70-84 years -1.537 -2.104 -0.969 -0.648 -1.995 0.699 -0.011 -1.361 1.340 -0.646 -1.994 0.702

>84 years 1.230 0.135 2.325 1.156 -1.637 3.949 -0.783 -3.553 1.987 1.155 -1.640 3.951

Seasonality Spline basis

1 0.022 0.008 0.035 0.013 -0.024 0.050 0.015 -0.024 0.054 0.013 -0.024 0.050

2 -0.062 -0.075 -0.048 -0.056 -0.093 -0.020 -0.055 -0.093 -0.017 -0.056 -0.093 -0.019

3 0.052 0.034 0.071 0.053 0.002 0.104 0.076 0.022 0.130 0.054 0.003 0.105

4 0.039 0.023 0.055 0.048 0.004 0.092 0.067 0.022 0.113 0.046 0.002 0.090

Total AE attendances 0.360 0.330 0.390 0.335 0.266 0.405 0.319 0.243 0.395 0.335 0.265 0.405

Percentiles of A&E Waiting Time

25th percentile -0.033 -0.061 -0.005 -0.045 -0.120 0.030 -0.021 -0.101 0.058 -0.047 -0.122 0.028

50th percentile 0.094 0.061 0.128 0.097 0.006 0.189 0.084 -0.012 0.181 0.100 0.008 0.191

75th percentile 0.029 0.018 0.041 0.028 -0.005 0.061 0.020 -0.015 0.056 0.028 -0.005 0.061

Proportion of A&E Arrival Type

Ambulance 0.394 0.253 0.535 0.464 0.144 0.784 0.464 0.152 0.776 0.462 0.141 0.782

Interaction of Admission Day and non-elective

Admission Day * Non-Elective 2.127 1.187 3.066 1.453 -1.122 4.028 0.936 -1.697 3.570 1.435 -1.146 4.016

Variances

Organisation code 0.243 0.217 0.276 0.223 0.197 0.255 0.220 0.195 0.249 0.224 0.198 0.256

Scale Parameters

AIC

Negative Binomial 2 Generalized Poisson

19,259

104.59 8.10

19,281

term
Poisson

26,375 19,249

7.06

Random-Intercept Models

Negative Binomial 1

1.00
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Figure 5.6  Model diagnostic plots for NRLS-HES random-intercept models 
Lines represent linear fits, with equations expressing the fit as simple linear model. 
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5.5.3 Discussion 

The significance of parameters was broadly consistent between models despite different 

scaling and variance structures.  This consistency for age, total in-patient bed-days, seasonality 

and proportion arriving by ambulance suggests they are important predictors across all units.  

The random-intercept Poisson model was still affected by overdispersion and, as such, the 

significance of parameters was overstated. 

 

The clusters in residuals and predictions highlight that, once clustering is reflected in the 

models, there are two distinct reporting behaviours: low and high.  This is most likely to due to 

differences between organisations, as seasonality and size were reflected in the fixed-effects.  

Introducing the random-intercept term appears to have reduced the bias seen in all single-

level models, and is consistent with the known data structure.  The tighter residual pattern in 

NB2 may suggest that the NB2 model better predicts reporting at larger organisations.  The 

wider spread of residuals in the random-intercept models should be viewed in light of the 

tighter cluster and scale of the plots.  This suggests that random-intercepts better model the 

data as a whole, but generate more extreme residuals, and suggest the data are more volatile 

than single-level models may convey. 

 

Based purely on AIC, the NB1 random-intercept model gives the best overall performance, but 

NB2’s adjustment for larger organisations is a useful property.  As these models have only 

been compared using the training dataset, it is not possible to easily examine the extent of 

overfitting.  Bootstrapping or cross-validation are possible on these types of models, but given 

there are only 12 data points for most organisations, creating a hold-out sample that reflects 

the clusters/stratification is challenging and simple bootstrapped approaches were dismissed 

due to this concern. 

 

5.6 Model selection 

Having prepared models with differing sets of assumption, the performance of each model 

required testing to establish generalisability.  Models were tested on new data, outside the 

training dataset, to identify the models that best fitted the relationships between outcome 

and predictors without overfitting. 
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5.6.1 Methods 

A testing dataset was prepared using the same data processing rules as those used for the 

training set, described earlier in this chapter, but applied to data from the 2016/17 fiscal year 

for both NRLS and HES.  Data were centred and scaled according to the means and variances in 

the training set rather than testing sets.  This was chosen to correspond to the same scaling 

used when the model was trained and prevent additional bias from mismatched scaling.  No 

new organisation codes were created for 2016/17 in the underlying HES data, allowing easy 

comparison without coding new organisations as zero random-effects estimates (the global 

average). 

 

Model comparisons were made across all single-level and random-intercept models using 

MAE, RMSE and AIC (described section 4.5).  Both MAE and RMSE were expressed as both as 

raw values and as percentages of the average reporting rate, using the median number of 

incident reports as a denominator.  Although model comparisons on training data can be clear 

with raw error values, percentages allow additional intuitive comparisons of the scale of error.  

For a baseline error comparison, we can also calculate the national average number of incident 

reports per bed-day (≈0.0261) as it is a model.  This can then be used to predict an expected 

number per trust without any further casemix-adjustment. 

 

A comparison of significance of the statistical significance of model predictors was also made 

by tabulating and examining 95% confidence intervals based on each models’ variance 

calculations.  Although examined in sections 5.4 and 5.5, this collation aids further 

interpretation. 

 

5.6.2 Results 

Training and testing MAEs of all models are presented in table 5.5.  The training MAE of this 

baseline ‘model’ (national average value per bed-day) was 154.94, and testing MAE 201.538.  

All models, even without random-intercepts, improved upon these figures. 

 

Introducing random-intercepts, for all model classes, reduced both prediction error and AIC.  

When using testing prediction error, the NB2 random-intercept model showed the best 

performance of the mixed models, but Poisson random-intercept showed the lowest error  
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Table 5.5  Prediction error and AIC summary NRLS-HES models 

Rows represent models fitted, ordered by training MAE in descending order.  Columns are grouped in relation to training and testing datasets. 

 

 

MAE
% of median 

(725) RMSE
% of median 

(725) MAE
% of median 

(745) RMSE
% of median 

(745)

NB2 Random Intercept 55.34 7.6% 78.61 9.6% 101.68 14.0% 149.77 17.9% 19268 36

NB1 Random Intercept 55.29 7.6% 77.87 9.5% 102.73 14.2% 150.66 18.1% 19237 36

GP Random Intercept 55.38 7.6% 78.03 9.6% 103.07 14.2% 151.11 18.1% 19247 36

Poisson Random Intercept 55.02 7.6% 77.26 9.5% 104.85 14.5% 152.25 18.2% 26366 35

Poisson 138.79 19.1% 196.94 24.1% 143.46 19.8% 196.94 23.6% 74394 34

Quasi 138.79 19.1% 196.94 24.1% 143.46 19.8% 196.94 23.6% - 34

NB1 138.79 19.1% 181.79 22.3% 143.78 19.8% 197.11 23.6% 21158 35

GP 138.96 19.2% 182.14 22.3% 144.16 19.9% 197.61 23.7% 21148 35

NB2 141.72 19.5% 194.78 23.8% 144.96 20.0% 209.10 25.1% 21132 35

AIC

Degrees of 

Freedom

Model

Testing (2016/17) Prediction errorTraining (2015/16) Prediction error
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Table 5.6  Comparison of predictors significance for NRLS-HES models 

Significance based on profiled 95% confidence intervals.  ‘Pois+’ refers to single-level Poisson model 
with bootstrapped confidence intervals.  Green ‘+’ represents significance and positive model 
coefficient, Red ‘-‘ represents significance and negative model coefficient. 

Pois + Quasi NB1 NB2 GEN Pois NB1 NB2 GEN

Intercept + + + + + + + + +

Teaching Hospital Status

Teaching Hospital - + + + +

IP Bed Days

Total IP bed-days + + + + + + + + +

Inpatient Age (bed-days)

Age <1 - - - - +

Age 1-17 + + + + + + + + +

Age 18-29 + + + + + + + +

Age 50-69 + + + + + + + + +

Age 70-74 + + + + + + + + +

Age >84 + + + + +

Co-morbidity (bed-days)

Charlson score <1 - -

Charlson score >4 -

Sex (bed-days)

Males

Admission Method (bed-days)

Non-elective

Maternity/birth + + + + +

Transfer +

Admission Type

Surgical -

Proportion of IP bed-days that are admission day

Admission Day -

Outpatients

OP Attenders + + + +

Outpatient Age (Attenders)

Age <1 +

Age 1-17 + + + +

Age 18-29 + + + + + -

Age 50-69 + + + +

Age 70-74 + + + + + -

Age >69 +

Time-period Spline

Spline portion 1 +

Spline portion 2 - - - -

Spline portion 3 + + + + + + + + +

Spline portion 4 + + + + + + + + +

A&E

A&E Attenders + + + + + + + + +

A&E Waiting Times

25th percentile AE wait time -

50th percentile AE wait time + + +

75th percentile AE wait time +

A&E Attendance type

Ambulance + + + + + + + + +

Interaction of Admission Day and non-elective

Admission Day * Non-Elective - - - - - +

Random InterceptSingle-level
term

Significance of model covariates under all models
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rates in training.  This stands in contrast to the AIC figures that suggest the NB1 to be the 

‘better’ model in terms of information loss, compared to the NB2 or Poisson random-intercept 

models.  The Poisson, NB1, NB2 and GP random-intercept were all very close in terms of their 

prediction error, varying by only half a percent of the average error reporting rate. 

 

Parameter estimates across all models were also compared in Table 5.6.  Global intercepts 

were significant in all models, as was total IP bed days, inpatient age, seasonality, outpatient 

age and proportion arriving by ambulance.  In both single and random-intercept models, NB2 

models showed some differences in significance of parameters compared to other models. 

 

5.6.3 Discussion 

As all models improved upon the baseline error rate, for average incident reports per bed-day, 

we can be certain that exposure/casemix predicts incident reporting.  The consistency of 

predictors, including IP bed days, inpatient age, seasonality, outpatient age and proportion 

arriving by ambulance, indicate they are major predictors of the exposure risk at hospitals.  

This makes them useful casemix variables for predicting incident reporting at a hospital. 

 

The best testing performance was given by NB2 models.  Given the residual plots of section 

5.5.2 showed tighter clusters at larger organisations, this effect may be responsible for the 

better performance in 2016/17.  The NB2 is the only model where ‘Inpatient Age 18-29,’ and 

the 50th percentile A&E waiting time are not significant.  It is not possible to determine 

whether this is a function of a bias/variance trade-off or if these predictors may be more 

susceptible to noise induced by aggregation. 

 

AIC can be used to judge between fixed effects-only models or between the random-effects 

models but, with the NB1 random-intercept model performing best on this criterion, AIC is 

misleading in this case.  The comparison of the suitability of NB2 with and without random-

intercept is interesting, as NB2 without random-intercept performed worst on training and 

testing error, but with a random-intercept, it gave the best testing error and one of the best 

training error rates.  This suggest that the NB2 variance structure is the most suitable for these 

data once the correlations of the repeated measures are explicitly modelled by the random-

intercept terms.   
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When comparing random-effect models with fixed-effects models, considering the fixed-effect 

model nested within the random-effect model, we are implicitly comparing a likelihood on the 

boundary of the parameter space (i.e. random-effect distribution is constrained to be >= 0, and 

it cannot be normally distributed about zero to satisfy the asymptotic chi-squared distribution 

with one degree of freedom).  AIC is biased in this application (Greven and Kneib, 2010), so 

random-effect models were considered justified, from a data structure perspective with the 

known clustered structure of the data.  This was further supported by the profiled confidence 

intervals of the random-effects models, the drastic improvement in prediction error, and the 

different weighting for high predicted values in the single-level NB2 model compared with 

other single-level models. 

 

Information theoretic approaches such as AIC, are broadly useful, but suffer two flaws in this 

application.  Firstly, that AIC is based on the log-likelihood of the model and therefore related 

to the likelihood ratio test (LRT).  Model comparisons based on LRT assume that models are 

nested, and this is not the case if comparing across classes like Poisson and NB2.  There are, 

however, differing opinions with some authors claiming nesting is required due to the way 

they derived the AIC (Ripley, 2004), and others suggesting (as a measure of approximate 

Kullback-Leibler information) this is not the case provided they are on the same dataset 

(Anderson and Burnham, 2006, Burnham and Anderson, 2004). 

 

The similar prediction error rates verses differing AIC values suggest that there is residual 

overdispersion affecting the AIC.  The scaling in the mixture models appears to introduce more 

error into the process, although the differences are small.  The Poisson random-intercept 

model could be described as the most accurate, but a degree of overdispersion remains.  The 

residual overdispersion is best scaled with the NB2 random-intercept, but the un-biased 

nature of the Poisson distribution, even with overdispersion, may be sufficient to model 

incident reporting in this case. 

 

5.7 Extending models to longer time periods 

The models described above were extended across longer periods of time, to see if predictors 

of reporting remained consistent with more events.  A 5-year period was used for fiscal years 

2010/11 – 2015/16. 
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Data preparation was more challenging, as the earlier years contained more spurious entries 

than 2015/16, with missing data, and a number of unlikely values (such as a single incident 

report).  Merging of organisations (and their influence on random-effects) became more of an 

issue that hindered estimation.  119 data points were excluded (1.5%) from 137 organisations, 

a notably higher rate than the 0.2% for the single year model, detailed in section 5.2.3.1. 

 

The models were adapted to include more time dimensions, extending the techniques in 

sections 5.3 – 5.5, to cover multiple years.  Step changes in reporting were considered likely, 

both within and between organisations each year.  ‘Between’ variation, or national-level 

change, was modelled with both categorical factors for fiscal years and fiscal quarters as well 

as with spline functions.  Fiscal year categories were used with the assumption that 

organisations have annual plans and quality improvement programmes that alter each fiscal 

year, and changes are not necessarily linear.  Non-linear fluctuations over the entire time 

period was also modelled as a natural cubic spline with varying numbers of knots, with 

reduction in AIC of the full model used to distinguish improvement.  This fitted the data well, 

but model selection always favoured higher numbers of knots and risked overfitting. Fiscal 

year terms were rendered non-significant when spline functions were used, but this is again a 

symptom of potential overfitting, multicollinearity or correlation. 

 

Within organisation variance over time was modelled by including a random-slope with the 

random-intercept term.  Random-slopes allow random-intercepts variances to change in 

response to another parameter (Gelman and Hill, 2006b).  The random-intercept term 

remained as ‘Organisation’ with a slope allowed for fiscal year.  Random-slopes are commonly 

applied over continuous variables, but can also be applied to categorical variables such as fiscal 

year, modelling the change in the intercept in relation to the reference, in this case period 1 

(2010/11), see figure 5.7 for an example with a small number of organisations.  Fiscal year was 

also included in the model as a fixed effect as recommended in the lme4 support 

documentation (Bates et al., 2015).  This forces the model to fit fixed effects for the global 

changes per fiscal year, allowing the random slope to estimate cluster-specific changes in 

variances only.  
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Figure 5.7  :  Example of variation in slopes of random-intercepts for six outlier 
organisations 

‘Period’ represents years 2, 3, 4 and 5 of a 5-year model, vs. random-intercept variance in period 1. 

 

It is unclear how much benefit a random-intercept and slope model brought to the dataset, 

other than confirming the heterogeneity of random-intercepts over time.  The effects on 

overdispersion, and the differing variance parameters over the modelling period make global 

assumptions challenging.  Reducing models to simpler random-intercept only models did not 

represent this heterogeneity well, and models struggled to converge.  Figure 5.7 illustrates the 

change in random slopes compered to initial estimates of the random-intercept in the first 

time period.  Basildon & Thurrock NHS Foundation trust (pink trend) demonstrates how 

random-effects variance can both increase and decrease over the modelling period. 

Outputs of these models are not presented, or further examined, as model fit and convergence 

were questionable. 
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5.8 Discussion and conclusions 

This chapter has addressed aim 3 of the thesis: to examine what statistical modelling processes 

are appropriate for these data.  The chapter established a theoretical model of incident 

reporting, separating ‘exposure’ risk from ‘culture’ of reporting.  It has discussed the creation 

of a count dataset using NRLS incident reporting data and hospital-based exposure variables 

from HES.  It has tested appropriate methods for analysing count data in a regression 

framework and applied these modelling approaches to the dataset, assessing the predictive 

ability based on exposure variables.  It established that using case-mix adjustment on exposure 

variables gives better predictions of incident reporting rates then using simple averages, and 

identified how best to adjust for overdispersion due to clustering and aggregation. 

 

Model outputs suggest that, whilst exposure can be used to predict incident reporting, poor 

parameterisation increases overdispersion.  The choice of predictors, based on proportions of 

IP bed-days, OP & A&E attendances, better reflects the exposure risk compared to other 

methods of quantifying hospital activity such as discharges.  Models have demonstrated that 

increasing exposure increases the number of incident reports.  This message may be intuitive 

without modelling, but modelling provides empirical estimates that will be taken forward in 

chapter 8 and be applied to tools for monitoring and regulation.  The mean-centring of the 

models allows us to predict with all predictors set to zero to derive the average number of 

reports.  This fitting method suggested average expected incident reports per month of ~760 

for single level models, and ~740 when using random-intercept models. 

 

The substantial overdispersion encountered in these models is evidence of both the poor 

specification of the fixed effects and random error.  Some of this overdispersion was due to a 

lack of independence in the repeated measurements at organisations, creating a correlated 

structure.  Organisation-specific random-intercepts, factored a degree of this overdispersion, 

adjusting for local factors that cause an organisation to the average reporting behaviour.  

Dispersion ratios for Poisson models decreased when random-intercepts were introduced.  

Similar effects occur in the scaled models, but the additional scaling renders the dispersion 

ratio useless as an assessment of this.  This is in line with other adverse event analyses that 

have also required random-effects structures to account for clustering (Baines et al., 2013, 

Landrigan et al., 2010). 
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NB2 models are commonly used solutions for overdispersion and in this case, when combined 

with a random-intercept term to account for the clustering, the weighting assumptions used 

for scale factor are a good fit.  NB2 gives more weight to small means when scaling the 

variance (Ver Hoef and Boveng, 2007), in a sense, assuming proportionally more ‘noise’ at the 

smaller site.  This fits with the idea that the aggregation of the constructed dataset leads to 

overdispersion, where a single incident report is a larger proportion of the total incidents for 

smaller sites.  The scaling of NB1 and GP random-intercept models was also an improvement 

on prediction error in Poisson model.  All perform similarly, to scale the residual variance, and 

are all improvements on unscaled models.  This may, however, be a quirk of the test set used 

and a logical next step is testing on multiple sets to verify if this holds, as cross-validation is 

complicated by the need for cluster stratification with only 12 measurements at each site. 

 

Whilst variance scaling improved single level models in the case of NB1, NB2 & GP, they had 

little effect on prediction error when compared the Poisson model, increasing it only slightly.  

Variance scaling models, when applied to the single-level regressions, increased the apparent 

performance in AIC terms.  Given that models were aimed at prediction, the scaling of residual 

overdispersion is less important than the adjustment for the known clustering.  Scaling could 

be seen as a further refinement, once the clustering was modelled.  This suggest that the 

models are performing their task of adjusting the effects of ‘exposure’, and the effects of 

‘culture’ are being absorbed by the random-effects. 

A useful next step would have been to treat organisations as fixed effects and examine their 

model coefficients as an explanatory model.  The large number of clusters, combined with 

current predictors, would have increased the chance of overfitting, as the number of 

predictors would have been too large for the degrees of freedom of the model (Harrell et al., 

1996).  A random-effects approach, whilst it does not directly quantify the culture effects with 

a parameter estimate (as fixed-effects do), allows adjustment and marginal prediction (see 

Chapter 8). 

 

Residual overdispersion may also be due to further multilevel structures within the data, e.g. 

departments within hospitals (Pham et al., 2010).  This was not investigated in these models, 

as the NRLS descriptions of departments/locations (see chapter 2) is not directly comparable 

with the HES data dictionary concept of treatment specialties (NHS Digital, 2017d), and 

exposure could not be reasonably attributed. 
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Models were aimed at prediction, but examination of parameter estimates, given the 

overdispersion, was an important step to allow models to be understood by future users.  

Parameters that were significant across all random-intercept models such as age, total bed-

days, OP and A&E attendances can be considered major predictors and aid understanding by 

NHS staff. 

 

The proposed models chosen from this chapter are therefore the NB2 random-intercept model 

and the Poisson-random-intercept model despite, residual overdispersion, is also a useful 

comparison.  These models can be used to predict in two ways: ‘conditionally’ where the 

random-effects are included in the prediction, or ‘marginally’ where the random-effects are 

used to construct the model and improve fixed-effect estimates, but not used in prediction.  

The conditional method would allow organisations to monitor their incident reporting rates 

based on their casemix, with a compensation for the culture of their organisation.  The 

marginal model can be used to predict expected average rates for organisations and assess 

which organisations deviate from this (see Chapter 8 for more details). 

 

Application of the modelling method to an extended 5-year period showed questionable 

model fit.  It did, however, provide evidence for a key recommendation of this chapter: models 

should be constructed within fiscal years, and if required, presented as stratified single-year 

models whose predictions can be combined to cover several years, e.g. three models for a 

three-fiscal year period.  This allows the non-linear effects of national and organisational 

priorities to be well adjusted within years, rather than poorly averaged over many.  This will 

reduce the heterogeneity in both fixed effects and random-effects.  Year-on-year change in 

incident reporting rates will be challenging to define using such a metric, due to changes in 

organisational and nation priorities. 

 

Potential limitations of this approach include poor predictive ability from aggregated 

predictors, lack of measures of organisational culture.  Aggregated predictors were 

unavoidable in this modelling approach, as NRLS does not have information on exposure (only 

on events) and the different focus of the dataset (NRLS may not necessarily relate to patients).  

Critical Care units are high intensity areas of hospital activity and high-risk patients, suggesting 

that a day in critical care unit would represent additional risk compared with a day in a normal 
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hospital bed.  Critical care data were not available as part of UHB’s HES subscription at the 

time these models were constructed but would be an area for future model development. 

 

The next chapter will continue to address aim 3 by examining if more intricate modelling 

methods, such as models of smoothed covariates, non-linear tree-based models, and latent-

variable models, better predict NRLS incident reporting.  The models in this chapter will be 

used in chapter 8 to develop methods for regulators and hospitals to analyse incident 

reporting, addressing aim 4 of the project.  
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Chapter 6  Non-parametric modelling 

techniques: GAMs, Trees & Neural 

Networks 

6.1 Introductions 

The models presented in Chapter 5 applied generalized linear and generalized linear mixed 

models to predict incident reporting at NHS hospitals, using an aggregated dataset.  Random-

intercepts allowed the models to reflect repeated measurements at organisations, but residual 

overdispersion remained in the final Poisson models.  This was further adjusted using a 

negative binomial mixed model.  Overdispersion was a major issue in Chapter 5, and one 

potential source is poorly characterised predictors.  This chapter continues to address aim 3, 

by testing models that may better reflect non-linear relationships between predictors and the 

response, or better address correlations between predictors.  Generalized Additive Models 

(GAMs) use smooth function of predictors rather than the predictors themselves, tree-based 

regressions (with ‘bagging’/’boosting’) allow decorrelation and estimation of unknown 

functions that can be averaged across models, and neural networks can be used to learn 

complex patterns from data.  These techniques have strengths over those presented in 

Chapter 5, and this chapter examines their use on NRLS, but their increased complexity may 

present barriers for NHS or regulatory staff without specialist skills. 

 

6.2 Generalized additive models (GAMs) 

In the modelling techniques presented in Chapter 5, the relationships between predictors and 

response have been assumed to be linear on the scale of the link function.  This approximation 

is reasonable in some cases, but it may be inappropriate when relationships are non-linear, 

such as bimodal data.  A common first step is to discretise/categorise data, referred to as 

‘factors’ in R, e.g. groups for bed-days of 1, 2-5 or greater than 5.  This loses information 

and is not continuous but allows local means to be used for each group rather than averaging 

across the full range (Figure 6.1).  One method to map non-linear relationships is to use 

polynomial expansions of model terms, such as expanding 𝑥 to a polynomial of degree 3 in a 

linear model: 

𝑌 = 𝛼 +  𝛽1𝑥 +  𝛽2𝑥2 + 𝛽3𝑥3 
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Polynomials may be sufficient to represent relationships in some cases, but they tend to 

oscillate wildly in some circumstances (Figure 6.1), so piecewise-structures such as spline 

functions (as introduced in Chapter 5) may be used to construct better approximations over 

the range of a predictor. 

 

Figure 6.1  Approximation examples for non-linear relationships 

Simulated data with a sigmoidal relationship, fitted with a linear model, categorical (<50, >49 & <125, 
>124) binned variables, and orthogonal polynomial smoothers of degree 3. 

 

6.2.1 Structure of GAMs 

A Generalized Additive Model (Hastie and Tibshirani, 1986) follows from the structure of a 

Generalized Linear Model (GLM) presented in Chapter 4, by adding additional ‘smoothing’ 

structures to the GLM.  In the case of incident reporting models, ‘noisy’ predictors, non-linear 

relationships or clusters of data points, may be better represented by smooth terms that 

reflect these relationships.  They may, in turn, reduce the overdispersion encountered in 

GLM/GLMM models. 

To achieve this, we can replace the linear predictor of the GLM: ∑ 𝛽𝑗𝑋𝑗, with the sum of 

smooth functions ∑ 𝑠𝑗(𝑋𝑗).  The 𝑠𝑗(. )’s are unspecified functions that are estimated from the 

data in various ways depending the type of smoother used (Hastie and Tibshirani, 1986, Wood, 

2017c). 
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GAMs are strictly additive models of smooth functions, but also allow the inclusion of 

parametric (non-smoothed) predictors.  Smooth functions may represent individual predictors 

or combinations of predictors.   

An example GAM could have the following structure (Wood, 2017c): 

𝑔(𝜇𝑖) =  𝐴𝑖𝜃 + 𝑓1(𝑥1𝑖) + 𝑓2(𝑥2𝑖) +  𝑓3(𝑥3𝑖 , 𝑥4𝑖) + ⋯ 

Where: 

• 𝜇𝑖  ≡  𝔼(𝑌𝑖), the expectation of 𝑌 

• 𝑌𝑖 ~ 𝐸𝐹(𝜇𝑖 , 𝜙𝑖),  𝑌𝑖  a response variable, distributed according to an exponential family 

distribution with mean 𝜇𝑖and shape parameter 𝜙 

• Α𝑖 is a row of the model matrix for any strictly parametric model components with 𝜃 

the corresponding parameter vector 

• 𝑓𝑖 are smooth functions of the covariates 𝑥𝑘   

In a similar fashion to GLMs, GAMs may be estimated using maximum likelihood techniques, 

but they add two further complications: representing smoothed terms in a manner that can 

estimated, and choosing how smooth these terms should be in relation to our data (Wood, 

2010).  Ideally, smooth terms should be estimated from the data. 

Hastie and Tibshirani’s work on GAMs focused on the use of scatterplot smoothers, initially 

using just local scoring techniques.  Since early publications, their technique (and own R code) 

has offered both smoothing splines and locally estimated regression smoothers.  An 

alternative framework developed by Wood (2017b), using various reduced rank smooth 

functions based on regression splines or similar basis functions, has gained wide acceptance.  It 

has been come to be a considered an essential tool in R and is now included in the default R 

installation for all users.  The two paradigms contrast in their approach to smoothing and 

penalization, and both have been used to fit GAM models to incident data in this chapter. 

To describe GAMs further, a summary of the common smoothers, methods for penalization, 

estimation, and effective degrees of freedom follows below. 

 

6.2.2 Smoothers 

Any smooth function could be used to fit GAMs in principle, but in application, there are three 

popular types: locally estimated smoothing splines, smoothing splines and regression splines. 
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6.2.2.1 Locally Estimated Smoothing Splines 

Locally Estimated Smoothing Splines (‘loess’ or ‘lowess’ in some statistical packages) compare 

local fit in a region of a plot to the mean.  Loess is widely used in statistical software such as 

Stata and R, and is usually implemented based on methods by Cleveland et al. (1992).  Loess 

smoothers are related to nearest-neighbour techniques and can be understood as an 

improvement on a ‘moving average’.  A moving average smooths the data based on a window 

of its neighbours, and the smoothness can be altered by changing the width of the window 

(how many points to average over).  This approach is simple but problematic at the boundaries 

of the data, whether the window is truncated.  Loess smoothers retain the moving window 

(‘span’) concept but use weighted polynomial fits, scoring local points related to the average 

with data outside the window weighted as zero.  The weighting gives a smooth fit, and reduces 

the influence of extreme points/outliers, but can be computationally intensive as it involves a 

regression for every data point in a smooth (Cleveland, 1979, Larsen, 2018). 

6.2.2.2 Smoothing splines 

Splines are classes of smooth functions named after draftsman’s splines, thin bendable 

measures held in place by weights, that are used to draw curves.  Smoothing splines (Reinsch, 

1967) are piece-wise polynomials that join at knot points, and have a knot point at every 

datum.  They do not work in local regions as loess does, but rather minimise a penalized sum 

of squares across the whole range of the data, that can be described as: 

∑(𝑦𝑖 − 𝑓(𝑥𝑖))2

𝑛

𝑖=1

+ 𝜆 ∫(𝑠′′(𝑥))2𝑑𝑥, 

Where red represents the residual sum of the squares, and blue represents a penalty term that 

penalizes ‘wiggliness’ (the term used in the literature).  If a curve is ‘wiggly,’ it’s second 

derivatives (the ‘slopes of the slopes,’ or the change in the rate of change in the function) will 

be large.  If data form a straight line, the second derivative will be zero.  A penalty term, 𝜆, acts 

as a multiplier to the integrated square of the second derivative, and allows the smoothness to 

be altered.  Smoothness is therefore controlled by changing the penalty, not by adjusting the 

number of knots or in relation to a span (Figure 6.2). 

Natural cubic splines can be considered the ideal functions for minimising the penalized sum of 

the squares (Wood, 2017d) described above, but this comes at a high computational cost due 

to the knots at every data point. 
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6.2.2.3 Regression Splines (and associated techniques) 

An alternative to the costly approaches for loess and smoothing splines is to estimate reduced 

rank versions of smoothers, such as the natural cubic splines, provided these splines 

adequately describe the relationships in the data.  This reduction in rank comes by using only 

sufficient knots to estimate the function, rather than at every datum.  This approach is 

attractive from smoothness and computational perspectives.  If a good reduced rank function 

exists, loess or smoothing splines could be considered ‘wasteful’ by comparison. 

Regression splines can be expressed as a set of basis functions that do not depend on 𝑌.  Basis 

functions span the regions between knot points but are continuous up to and including second 

derivatives at knots.  A regression spline can be written as: 

𝑓(𝑥) =  ∑ 𝑏𝑖(𝑥)𝛽𝑖

𝑘

𝑖=1

 

Where 𝑏𝑖 is the ith basis function for k-1 knots, and 𝛽𝑖its corresponding coefficient (Wood, 

2017d). 

For use in GAMs, our aim is to select sufficient knots that the smooth relationship reflects the 

trend in the data, but is not overfitting or ‘wiggly’.  Selection of the number of knots is 

challenging using likelihood ratio tests or AIC, as a spline of k-1 knots is not necessarily nested 

within a spline of k knots across the same region.  However, the ‘right’ number of knots is 

considered less critical for smoothing when we are combining this with a penalty term (Figure 

6.2).   

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 6.2  Examples of controlling spline smoothers 

Approximation to simulate sigmoidal data using natural cubic splines, with smoothness control by number of 
knots (left panel) and gamma penalty (right panel). 
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Though higher numbers of knots will allow a larger number of sub-spaces within the model, 

the penalty will adapt to smooth appropriately.  Numbers of knots should therefore be chosen 

to be slightly higher than required to describe the function, with an appropriate penalty term 

(Wood, 2017c). 

GAMS using smoothers of this type are not restricted to splines and may easily include other 

smoothers that can be expressed as basis functions.  Notable examples include: 

• Thin plate regression splines (TPRS):  TPRS are not splines per se, but can be used as 

similar low-rank isotropic smoothers, that can be expressed as basis functions.  The 

term isotropic, here, refers to the fact that a smoother produces the same predictions 

under any rotation or scaling (Wood, 2017d).  The term ‘thin plate’ describes an 

analogy where a three-dimensional surface could be fitted in the smoothest possible 

sense by bending a flexible plate with just enough tension to minimise the flex in the 

plate.  They are adapted from thin plate splines (Duchon, 1977), and penalise the 

“wiggly components of the thin plate spline” (Wood, 2017d).  They can be applied to 

any number of variables (where an isotropic smoother makes logical sense, e.g. 

related variables on the same scale).  They don’t require the specification of knots, but 

use an analogous Eigen-decomposition, and have been referred to as an “optimal 

smoother” (see (Wood, 2003, Wood, 2017d) for further detail). 

• P-Splines: Combinations of B-Spline bases, with penalties on the basis coefficients are 

referred to as P-Splines (Eilers and Marx, 1996).  P-splines can be advantageous in 

situations where different orders of bases and penalties are required, but in general, 

do not perform as well as TPRS or cubic regression spines (Wood, 2017b). 

 

6.2.3 Estimation of GAMs 

When estimating GAMs, we must simultaneously estimate all smooth functions, parametric 

predictors and covariance’s between smoothers (Larsen, 2018).  This can be achieved in two 

ways: 

• Local scoring algorithm:  used for loess and smoothing splines, and applicable to other 

functions.  This uses a backfitting algorithm (Hastie, 1992), that iteratively smooths 

partial residuals. 

• Penalized iteratively re-weighted least squares (PIRLS): used for regression splines.  

Models are reparametrized as parametric, penalized GLMs with smoothness selection 
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by Generalized Cross-validation (GCV), Restricted Maximum Likelihood (REML) or 

similar techniques.  Numbers of knots are not estimated, but the penalty term is. 

 

6.2.4 Model selection and degrees of freedom 

Model/parameter selection is more complex with GAMs than GLMs, but λ estimation is 

commonly performed using cross-validation (Hastie et al., 2009a).  Wood (2017a) suggest that 

much of what is considered parameter selection in GLM/GLMMs is performed by the 

smoothing penalties.  Backwards selection functions are included in Hastie & Tibshirani’s R 

code, whereas Wood has not implemented this approach as it is at odds with other theory.  A 

method of applying the LASSO penalty to GAMs has been proposed (Chouldechova and Hastie, 

2015), but this has only been implemented for Gaussian and binomial model to date and is not 

applied here. 

Shrinkage methods can also be applied to regression spline GAMS, either by adding a penalty 

to the identity matrix of each smooth, where strong penalization will shrink coefficients to 

zero, or by adding an additional penalty to the null space of each smooth so that functions of 

zero ‘wiggliness’ are penalized out of the model (Marra and Wood, 2011). 

Degrees of freedom of fixed effect models are quite easily defined as the number of 

parameters to be estimated, which can also be calculated as the trace of the hat matrix.  

Penalized smoothers add an extra complication, as counting all basis functions would equate 

to an unpenalized model.  Hastie and Tibshirani suggested that, as a trace of the hat matrix in a 

GAM is on the data projected to basis functions rather than the underlying data, it could 

therefore be used as the effective degrees of freedom (EDF) (Hastie et al., 2009b).  The EDF will 

change as the smoothing penalty changes or with the number of knots (in the case of 

regression splines).  In the mgcv framework, it is possible to specify a value to multiply the 

effective degrees of freedom by, for GCV/REML estimation.  This fixed penalty increases ‘cost’ 

of wiggly data when estimating smooths, leading to smoother functions (Wood, 2017a).  The 

combination of numbers of knots and penalty selection can mean that it is possible to have the 

same EDF, despite changing the knots, as the penalty adapts. 

Use of AIC is reasonable with the regression spline and smoothing spline approaches, but the 

effective degrees of freedom must be considered.  Uncertainty in the estimates of smoothers 

should also be considered, and conditional AIC (Greven and Kneib, 2010, Wood, 2017a) used in 

place of marginal AIC to counter for this.  The mgcv package uses conditional AIC as a default, 

due to smoothing uncertainty, that could also be viewed in the same way as a normally 
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distributed random-effect around a parameter, sharing the same issue alluded to in section 

4.5.1. 

 

6.2.5 Random-effects models in GAMs 

Random-effects models can be fitted in both the major GAM implementations in R.  In Hastie’s 

gam package, a ‘random’ class of smoother is implemented that allows a shrunken mean-fit 

within clusters for categorical variables.  This is formally equivalent to fitting a mixed model by 

generalized least squares.  In mgcv, random-effects can be fitted in two ways, the first 

approach is as a class of smoother than creates parametric interactions of predictors, 

penalized by a multiple of the identity matrix (corresponding to the assumption that they are 

independent and identically distributed).  A second approach uses an interface with other 

mixed model packages (including lme4 or nlme) and reparametrizes the entire model with all 

smooth terms converted to fixed and random components (Wood, 2017d).  Both mgcv 

approaches have been used when fitting the respective models below, but only the former 

reached convergence. 

 

6.2.6 Fitting GAM models to incident data 

6.2.6.1 Model Structure 

When fitting a GAM model using the framework described above, the mgcv package was used 

to fit individual smoothers using both natural cubic splines and thin-plate splines.  Thin plate 

splines were also applied as multi-dimensional smoothers where predictors described the 

same units, e.g. a three-dimensional smoother of AE waiting times, constructed from the 25th, 

50th and 75th percentile waiting times.  Loess and smoothing spline models (Hastie & 

Tibshirani’s approach, using Hastie’s ‘gam’ package) are not presented in the following section 

due to poorer performance in terms of MAE, and an inability to fit to a new dataset for 

comparison.  Initial models were based on the Poisson and NB2 GLMMs from Chapter 5.  

Performance of models was assessed using Mean Absolute Error (MAE). 

 

6.2.6.2 Estimation of smooths 

Smooths were initially fitted with the mgcv default of 10 knots per smooth.  Smoothness 

estimation was examined using ML, REML, penalized REML and GCV, with REML appearing the 

more robust to overfitting and giving the best MAE performance.  Performance for smoothers 

was tested using the gam.check function, which creates residual plots, marginal smooth 
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plots and tests effective degrees of freedom against the reduction in deviance.  Visual 

inspection of the marginal smooths was used primarily, as the overdispersion affected 

deviance tests.  The principle of these models is to models underlying (potentially non-linear) 

trends without overfitting the noise/overdispersion/wiggliness in a variable.  Smoother fits 

were therefore preferred.  Numbers of knots were increased where required, for total bed-

days, proportions with comorbidity score = 0, 25th and 50th percentiles of A&E wait-times.  

Figures 6.3 and 6.4 show the plots of the marginal smooths against the predicted values, 

showing overdispersion gives different smooths in the Poisson and NB2 models.  Smooths 

were noticeably less wiggly with the NB2 model compared to the Poisson and suggested much 

of the wiggliness related to the overdispersion. 

The categorical variable for teaching hospital was entered as a categorical term, as it does not 

make sense apply smoothing to this sort of term.  Organisation was included as a random-

effect as described in section 6.2.5. 

 

6.2.6.3 Penalization and Selection 

MAE performance was best for REML selection of smoothing penalty, although the standard 

penalty was subject to the overdispersion in the data.  An additional fixed penalty, based on 

BIC (Schwarz, 1978), was added to all terms (Wood, 2010).  The value of the penalty was ≈3.69, 

and corresponded to the following formula, where 𝑘 = the number of parameters: 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =
log(𝑘)

2
 

This reduced function wiggliness, increased the training MAE slightly, but greatly reduced the 

MAE when fitted to the testing dataset.  Shrinkage penalties as described in 6.2.4, were 

examined but no improvement in MAE was observed over the BIC-type penalty models.  BIC-

type penalization notably altered the shape of smoothers, but shrinkage penalties showed 

little change. 

 

6.2.6.4 Model Output 

The conditional AIC, and prediction error for training and testing sets are presented for 

candidate models in table 6.1.  Testing and training sets were not scaled as described in earlier 

chapters, as the transformation to spline bases achieves this and pre-scaling can be 

problematic for the construction of multivariable TPRS, as variables should be on the same 

scale. 
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Figure 6.3  Marginal smooth plots for NRLS-HES Poisson GAMs 
GAMS fitted without additional penalties using single-dimensional cubic splines, plotted against predicted incidents. 
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Figure 6.4  Marginal smooth plots for NRLS-HES Negative Binomial (NB2) GAMs 
GAMS fitted without additional penalties using single-dimensional cubic splines, plotted against predicted incidents.  
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Table 6.1  GAM model outputs for NRLS-HES models 

Rows represent model smoother types, with ‘shrinkage,’ and ‘fixed BIC penalty’ referring to model settings.  Poisson and Negative Binomial (NB2) models are column groups, with 
training and testing mean absolute error (MAE) displayed as raw values and as a percentage of the median incident report value.  ‘Training’ refers to the 2015/16 data used to 
build the models and ‘Testing’ refers to the predictions from the model for new data for 2016/17. 
 

 

Raw

% of 

median 

(725) Raw

% of 

median 

(745) Raw

% of 

median 

(725) Raw

% of 

median 

(745)

Single cubic splines N N 23035.2 48.61 6.7% 112.55 15.1% 18834.1 54.23 7.5% 104.19 14.0%

Single cubic splines Y N 23065.8 48.78 6.7% 112.37 15.1% 18808 57.94 8.0% 97.43 13.1%

Single cubic splines N Y 24073.3 51.22 7.1% 103.36 13.9% 19070.3 54.26 7.5% 104.59 14.0%

Single cubic splines Y Y 24079.3 51.24 7.1% 103.92 13.9% 19055.4 58.35 8.0% 97.22 13.0%

Single TP splines N N 22859.6 50.40 7.0% 120.68 16.2% 18814.2 53.56 7.4% 109.15 14.7%

Single TP splines Y N 22928 47.88 6.6% 118.78 15.9% 18791.5 57.95 8.0% 97.48 13.1%

Single TP splines N Y 24073.3 51.22 7.1% 103.36 13.9% 19078.3 53.62 7.4% 109.06 14.6%

Single TP splines Y Y 24032.2 51.16 7.1% 108.95 14.6% 19058.9 58.33 8.0% 96.87 13.0%

Multiple TP splines N N 20274.9 37.10 5.1% 8.61E+22 1.16E+20 18862.4 48.72 6.7% 8.02E+16 1.08E+14

Multiple TP splines Y N 20488.6 38.19 5.3% 134.92 18.1% 18752.2 62.70 8.6% 2.41E+18 3.23E+15

Multiple TP splines N Y 21789.8 43.53 6.0% 2.28E+16 3.05E+13 19780.9 57.98 8.0% 96.68 13.0%

Multiple TP splines Y Y 22742.6 46.95 6.5% 111.58 15.0% 19040.7 52.19 7.2% 111.11 14.9%

NB2

AIC

Mean Absolute Error (MAE)

Tra ining TestingTra ining Testing

Mean Absolute Error (MAE)

Poisson

AIC

Model Shrinkage
Fixed BIC 

penalty



159 
 

Final models were affected by the overdispersion present within the data, rendering AIC 

comparison less helpful than comparisons of MAE.  Cubic spline and single-dimensional TPRS 

smoothers gave good performance, but multi-dimensional TPRS smooths led to very high 

testing error in some cases. 

 

6.2.7 GAM model conclusions 

GAM models, including random-intercept terms, have shown a reduction in mean absolute 

error compared to Poisson and NB2 GLMMS in Chapter 5.  Overdispersion and overfitting 

have, again, been issues in GAMs.  Model selection via AIC, even using conditional AIC, would 

have selected overfitted models that did not generalize to the testing dataset well.  Shrinkage 

penalties aided reductions in MAE in some, but not all cases.  The same could be said for the 

fixed, BIC-like penalty.  The best performance, with the exception of the Poisson single-

dimensional TPRS model, was seen when using both the shrinkage and BIC-like penalty.  When 

used together, the combined penalties showed further improvements over the fixed BIC-like 

penalty alone, suggesting that some of the model covariates are of low predictive value and 

may be confounding other predictors  The most plausible explanation for the combined effects 

is that the regularization from both penalties reduced the influence of the poor quality 

predictors that may contribute to overdispersion/confounding, and the increased fixed penalty 

reduced the ‘wiggliness’ of the smoothers.  The scale of the overdispersion/noise in the data 

would have been reflected to some extent in the estimation of smoothers by conventional 

means, but enforcing a smoother fit represents the expected relationships in a more general 

fashion.  Smoother models then fit testing data more appropriately, as they have minimised 

overfitting in the training set. 

 

Multidimensional TPRS showed very good fit to the training data, reducing the MAE 

substantially, but did not generalized well, suggesting they were overfitting.  This is likely due 

to the high number of basis functions, giving a complicated surface to the smoothers, and 

reflecting much of the noise in the data.  These complex surfaces, although composed of 

similar lower-order terms, would be a poor fit to testing data due to the high dimensionality of 

the smooths.  The additional penalties and shrinkage gave smoother surfaces and reduced 

testing MAE.  Given the better MAE performance of single-dimensional smooth models, and 

the lower complexity for both computation and interpretation, the cubic spline models may be 

considered the best option.  The model selection for GAMs suggest that the NB2 models gave 
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lower testing error, but lowest training error was seen in the multidimensional TPRS smooths, 

due to overfitting. 

 

6.3 Algorithmic methods  

Whilst ‘machine learning’ (ML) can be considered a field of statistical analysis, the term is 

frequently used in computational settings and tends to imply a focus on prediction.  Statistical 

modelling typically assumes a data model (usually a distribution or data generating 

mechanisms) before estimating parameters according to the assumed model, whereas 

machine learning techniques commonly “avoid(s) starting with a data model and use(s) an 

algorithm to learn the relationships between the response and it’s predictors” (Elith et al., 

2008).  Breiman (2001b) described this difference, saying:  “There are two cultures in the use of 

statistical modeling to reach conclusions from data.  One assumes that the data are generated 

by a given stochastic data model. The other uses algorithmic models and treats the data 

mechanism as unknown. The statistical community has been committed to the almost exclusive 

use of data models.”  The following section discusses and applies several common algorithmic 

methods to the dataset to assess whether they provide a better fit. 

6.3.1 Tree-based methods 

Methods presented so far have followed classical frequentist statistical estimation techniques, 

based on maximum likelihood and Generalized Linear Models.  An alternative approach to 

regression is common in machine learning applications, based on ‘trees’ (Breiman et al., 1984).   

Decision Tree models are algorithmic, and agnostic as to the data generating mechanism, but 

are often suitable for predictive models where we do not necessarily need to examine the 

relationship with each predictor (Shmueli, 2010).  Regression trees/classification trees do not 

use maximum likelihood estimation, and a full parametric distribution is not required, they are 

considered good options for non-parametric models.  Regression trees in-particular tend to 

use a loss functions such as root-mean squared error, but can also use many other loss 

functions such as accuracy, KL divergence, MAE, Poisson etc. 

Methods exist for both Classification And Regression Trees (‘CART’) that are conceptually 

simple, with simple trees easy to visualise (Figure 6.5).  “Leaves” or “nodes” represent the 

groups after partition, and “branches” describe the paths of split.  Tree models recursively 

partition data based on predictors that explain the most variance, with each split proceeding 

separately, using an appropriate loss function to judge error/deviance and stop at an 

appropriate point.  For categorical predictors, the splits simply map to categories, but for 
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continuous variables, both the variable and the cut point are estimated (Breiman et al., 1984).  

In the case of regression, a common splitting method is to find the variable and cut point that 

maximises the between group sum of the squares, equivalent an analysis of variance 

(commonly referred to as the anova method) and is therefore a mean-squared error loss 

function  For event rate data, a Poisson method may be use, that uses likelihood ratio tests 

between the two nodes, with the loss function then becoming the deviance contribution for a 

new observation, using the average event rate of that node (Therneau and Atkinson, 2018). 

 

Figure 6.5  Example structure for NRLS regression tree models 

NRLS regression tree model from section 6.3.2.1.  Trees recursively partition the data at nodes, splitting 
at points that explain the most variance and stopping based on appropriate rules. 

 

Tree-models are known to overfit training data.  They will continue to partition variance in the 

training set, even if it is noise, down to nodes containing individual results.  To counter this, 

early stopping rules are often implemented, such as: a maximum number of nodes/leaves, 

minimum variance required for partitioning, minimum number of results in terminal nodes etc.  

(Breiman et al., 1984) suggested a ‘one standard deviation’ rule, where the simplest model 

within one standard deviation of the best model is chosen. 
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A common alternative to pre-specified rules is to allow full estimation of a tree and “prune” it.  

Pruning involves removing terminal nodes and comparing trees on a complexity function.  The 

optimal complexity function can be controlled by using cross-validation. 

Overfitting is the dominant problem for regression trees.  Further developments on methods 

presented in Chapter 4 can be applied, such as cross-validation and bootstrapping to improve 

tree-based models.  Two common improvements based on resampling are: boosting, and 

bootstrap aggregation (‘bagging’). 

 

6.3.1.1 Boosting 

A regression/classification tree may be ‘boosted’ by following an adaptive refitting algorithm, 

such as the popular ADAboost algorithm.  Boosting generally iterates through the following 

steps: 

• Fit an initial model (usually a ‘weak learner’, see below) 

• Estimate a cost function such as root mean squared error 

• Re-weight the data using the cost function, with higher weighting on points with 

highest cost/error (encouraging the algorithm to bias towards these results) 

• Re-fit the weighted model 

• Iterate the previous steps until convergence criteria/stopping rule is met. 

A boosted regression tree can therefore be understood as an additive regression model in 

which individual terms are each simple tree, fitted in a forward, stage-wise fashion (Friedman 

et al., 2000).  Friedman’s ‘gradient boosting machines’ (GBM) are these additive regression 

models, estimated by gradient descent techniques.  These models sequentially fit least squares 

estimates to ‘pseudo-residuals’ that form a gradient of the loss function that can be minimised 

by descent techniques (Friedman, 2002).  Gradient descent takes steps down the gradient until 

it finds the local minimum, with the step-size referred to as the ‘learning rate.’  A high learning 

rate converges on the minimum more rapidly, but risks overshooting the true minimum, and a 

lower rate takes longer to fit but is more likely to converge on the true local minimum. 

Shortly after his initial publications on boosting, Friedman proposed an alternative approach 

referencing Brieman’s work on ‘bagging’ (see below) to fit ‘weak learners’ to sub-samples of 

training data.  A weak learner is a model that performs only slightly better than random 

guessing.  In his landmark paper, Schapire (1990) showed that weak learners can be used to 

construct ‘strong’ learners, and have many useful properties including lower computation 

burden and reduced correlation effects. 
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The question of overfitting in boosting is not fully understood.  Some proponents have shown 

boosting to rarely overfit data (Schapire et al., 1998), and this has led to a misconception, 

prevalent in some online ML and statistics communities, that boosting cannot overfit data.  

Boosting has, indeed, been shown to overfit data (Freund and Schapire, 1996, Breiman, 1999), 

particularly when there is a high degree of noise (Long and Servedio, 2010, Dietterich, 2000).  

Where the stopping rules are unclear because of noise such as overdispersion, boosting will 

continue to iterate until the rules are met.  Boosted classifiers appear to be more robust to 

overfitting than boosted regression trees, and removal of spurious results has been suggested 

as a remedy for classification models with overlapping classes (Vezhnevets and Barinova, 

2007), but regularization is the main option for GBM regressions.  Cross-validation can be used 

to chosen the appropriate regularization parameter that acts to limit the number of 

explanatory variables used at each step (Friedman, 2001).  This effectively acts like a 

testing/training split, with the loss assessed on the hold-out sample, and acts more 

appropriately than rigid stopping rules. 

Whilst boosting is an effective technique, it can be a complex to apply as it has many tuning 

parameters, including the learning rate, number of trees, boosting iterations etc. 

 

6.3.1.2 Bagging 

An alternative to boosting, and a common next step for regression trees, is bootstrapping 

(Efron, 1979).  As previously described in Chapter 4, bootstrapping is a random resampling and 

replacement approach where a sample of training data is used to calculate a statistic (or a 

regression tree in this case) with the process repeated multiple times on new samples.  The 

parametric nature of the resampling allows models to be averaged over many repeats.  

Bootstrap aggregation (“bagging”) (Breiman, 1996a) has been proposed as a solution for 

reducing overfitting.  The aggregation element means that bootstrapped models can then be 

averaged to determine the final parameters.  This technique can be applied to many modelling 

techniques, but has proved particularly useful for regression/classification trees where small 

perturbations in training datasets can cause large differences in tree structure.  Bagging can be 

extremely effective in reducing the variance in unstable estimates like trees (Hastie et al., 

2009b).  Bagging has been shown to be more successful than boosting in noisy datasets 

(Dietterich, 2000), but improvements in bagging may be limited due to correlations between 

prediction, and between models. 

 



164 
 

6.3.1.3 Random Forest 

A further adaptation to bagged trees is the ‘Random Forest’ (Breiman, 2001a).  This maintains 

the idea of using bootstrapped samples of the training dataset, but also randomly selects a 

subset of the available predictors (commonly referred to as ‘features’ in relevant publications).  

It is therefore averaging across weak learners, similar to boosting. 

This process reduces the correlation between trees, as trees do not all contain the same 

predictors.  The de-correlated trees are, in general, more robust to overfitting than bagged 

trees alone and, when trained appropriately, perform similarly to boosted trees or better.  The 

major advantages of Random Forests are the comparative simplicity of training compared to 

GBM, where only the number of predictors in a random forest (the ‘complexity’ or ‘mtry’ 

parameter) and the number of trees grown are tuned.  They also perform comparatively well 

over a range of tuning parameters. 

Random forests can use various stopping rules, but commonly the out-of-bag (OOB) error is 

used, in preference to cross-validation, as it requires no additional computation.  If bagged 

trees/boosted trees or random forests are fitted on bootstrapped samples, the portion of the 

dataset not used to train the model, can be used as a testing set instead.  Models are built on 

the boostrapped training sets, fitted to the remaining testing data, and the prediction error in 

this set drives a more robust fit (Breiman, 1996b) .  OOB can be used when tuning the model to 

select the number of trees or the complexity parameter. 

 

6.3.2 Applying regression trees and extensions to NRLS data 

The approaches described above have been used to fit tree-based models, improving these 

model’s performance using bagging and boosting approaches, and finally, using Random 

Forests.  Model performance was, as per chapter 5, best summarised in terms of prediction 

error using Mean Absolute Error.  This was used for final model comparisons, but relevant loss 

functions (such as OOB) were used for training each model as required. 

The models discussed above have various implementations in R, but the most common 

implementations were used for each.  All models were fitted using two different approaches:, 

direct use of the modelling functions themselves, and through the model fitting framework 

‘caret’ (Kuhn, 2008).  Caret is a suite of standardised model building functions, interfacing 

with other modelling procedures, that are all called through the same interface.  They allow for 

identical pre-processing, fitting, training and optimization processes.  One of caret’s many 

strengths is the ability to optimizes models over a grid of hyper-parameters (model tuning 

parameters).  In some cases, there are no exact analytical solutions to models, and 
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systematically testing combinations of tuning parameters is an acceptable, if computationally 

expensive, approach to select the lowest prediction error.  Caret’s cross-validation 

procedures were applied in parallel on a 4 CPU desktop, using Microsoft R Open with its 

optimized BLAS as described in Chapter 5. 

 

6.3.2.1 Regression trees 

The ‘rpart’ package was used to build regression trees.  Default optimization options were 

initially used, with the tree structure visualised using the ‘rpart.plot’ package (figure 6.5).  

A stopping rule of at least 20 observations per split was used, with a Poisson loss function.  As 

Poisson loss functions perform likelihood ratio tests between nodes, there was potential for 

overdispersion to affect results.  The Anova method was also examined using RMSE as the 

loss function, with poorer results.  As an alternative to the stopping rule, trees were also 

allowed to grow fully and were pruned on the complexity parameter (‘cp’ – another term for 

the loss-function), but both options resulted in the same tree structures and depths.  Cross-

validation was used to train trees and select an optimal complexity parameter giving the 

lowest prediction error.  Caret was use with 10 repeats of 10-fold cross-validation across a 

‘cp’ range 0.0001 – 0.1.  Complexity parameter of 0.01 gave the best performance based on 

cross-validation and was used for final tree model. 

 

6.3.2.2 Boosted trees 

Friedman’s gradient boosted trees were implemented using the gbm package, originally by 

Greg Ridgeway (Greenwell et al., 2018).  There are four mandatory tuning parameters within 

the gbm function: 

• Interaction depth: The number of split nodes for trees grown at each iteration.  E.g. an 

interaction depth of three allows up to three levels to trees.  A range of 1 – 5 was 

tested. 

• Number of trees grown: The number of trees grown.  A range of 1,000 – 15,000 in 

increments of 1,000, were tested. 

• Shrinkage: The step -size for the gradient descent (“learning rate”).  Values tested 

were 0.001, 0.005, 0.01, 0.05,0.1,0.5 and 0.1.  Shrinkage and number of trees interact, 

as more trees are needed with smaller learning rates. 

• Minimum observations in node: Akin to an early stopping rule, this aims to prevent 

overfitting.  This was set to 20, similar to the regression trees. 
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Boosted trees were fitted directly using the gbm package, and using parameter grid search and 

10-fold cross-validation in caret.  Cross-validation showed best performance with an 

interaction depth of 5, number of trees set to 3,000 and a shrinkage/learning rate set to 0.01. 

6.3.2.3 Bagged trees 

Bagged trees were examined using the ipred package using a complexity parameter of 0.01, 

as identified from the cross-validation of the rpart trees.  25, 50 and 100 bootstrapped 

resamples were performed, leading to reductions in both training and test error. 

6.3.2.4 Random Forest 

Random Forests were fitted to the dataset in R using an implementation of Breiman and 

Cutler’s original Fortran code, ported to R (Liaw and Wiener, 2002) in the randomForest 

package, and also using caret.  Random forest tuning is based on the ‘mtry’ value, or 

number of predictor variables to be randomly sampled, and was compared on OOB using 1000 

trees.  This was performed in the native package using the tuneRF function, and in caret by 

grid search across a range of 1 – 15.  Both methods refit using different values of mtry, with 

tuneRF following a search algorithm, and caret searching all values in the grid.  Both 

approaches agreed in output and selected an mtry value of 13. 

 

6.3.3 Tree-based Model Results and Conclusions 

MAE from prediction for the various tree-based methods is shown in table 6.2.  Regression 

trees fitted the data quickly, but MAE was comparatively high in training and testing sets.  

Bagged trees showed an improvement on single regression trees, but this was limited to small 

decreases in MAE.  Boosting showed the most marked improvement in the training set, 

reducing training MAE to the smallest value seen.  Whilst testing MAE was also dramatically 

reduced for boosted trees, Random Forests showed the best testing set MAE.  Random Forests 

also reduced training error to approximately half that produced by simple trees, and appeared 

to give the best performance. 
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Table 6.2  Mean Absolute Error (MAE) for regression tree-based NRLS-HES models 

Rows represent model type, with columns showing MAE for training (2015/16) and testing (2016/17) 
data.  ‘Package’ refers to models fitted models from their standard package functions, and ‘caret’ refers 
to the model fitting framework with hyper-parameter grid-search and 10-fold cross-validation 

 

The boosted tree models with extremely low MAE in the training set suggest overfitting, but 

no adjustment was made for overdispersion and trees were based on a Poisson (log-likelihood) 

loss function.  The unbiased nature of the Poisson distribution allows accurate prediction in 

this case, but the stopping rules based on the loss function will be compromised by the 

overdispersion.  These techniques could be further developed by creating a suitable custom 

loss function, such as a robust Poisson or quasipoisson function, if either of these approaches 

is feasible in an iterative process like boosting. 

The tree-based frameworks do not explicitly model the repeated measures structure in the 

data.  The success of random forest suggests that correlation between the predictors is a 

major source of overdispersion.  The bootstrapping and aggregation appear to have dealt with 

this better than other strategies.  Random Forests appear to be a competitive method for 

developing predictive models in this dataset, but the lack of repeated measures adjustment is 

of concern.  Although when compared to the GLM models (i.e. no random-effects), these 

models could be considered to have out-performed them. 

 

6.4 Artificial Neural Networks 

6.4.1 Artificial neural network structure and estimation 

Neural networks have been in development for many years (Yadav et al., 2015), and were 

somewhat eclipsed by techniques such as boosting in the 1990s (Efron and Hastie, 2016), but 

have regained popularity in the fields of machine learning, Artificial Intelligence (AI) and ‘Deep 

learning.’  They are high-profile in popular culture, perhaps with an over-emphasis on what 

they can achieve (Chollet and Allaire, 2018).  Neural networks essentially extract linear 

2015/16 2016/17 2015/16 2016/17

Tree 141.48 155.60 131.91 146.75

Boosted Tree 15.99 109.99 16.28 108.30

Bagged Tree 131.46 142.47 122.68 140.76

Random Forest 73.75 102.92 23.94 102.60

Package caret

Method
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combinations of inputs, as derived/projected features, and use them to model non-linear 

functions of these features (Hastie et al., 2009a). 

The term ‘Neural Network’ applies to a large class of related models and learning methods.  

They are, at their heart, two stage regression or classification systems that have particular 

feedback, regularization or other structures that can be combined in sequences.  (Hastie et al., 

2009a) 

Neural Networks have a conceptual link to how neurons are arranged in human brains, 

although this is a loose link (Goodfellow et al., 2018).  Each neuron in an artificial neural 

network is a function that receives inputs, and ‘activates’ based on their values.  It then 

transmits the signal forward, analogous to a transmission of a human synapse.  In this section, 

the term ‘node’ is used interchangeably with ‘neuron’ to refer to these artificial neurons. 

Neural Network techniques are an expansive subject, and the depth of their structures and 

applications is beyond the scope of this chapter.  For this application, a single architecture: the 

‘feed-forward’ neural network or ‘Multi-layer perceptron’, has been examined. 

An example of this type of feed-forward network, with a single hidden layer, is illustrated by 

Figure 6.6.  A series of inputs (𝑋1 … 𝑋𝑝) are fed into the network (blue).  Derived features 𝑍𝑚 

(red) are created from linear combinations of the inputs and used to predict 𝑌𝑘 (yellow) (Hastie 

et al., 2009a). 
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Figure 6.6  Schematic of a single hidden layer, feed-forward artificial neural network 

Taken from Hastie et al.(2009a).  Inputs (𝑋1 … 𝑋𝑝) are fed into the network (blue), with derived features 

𝑍𝑚 (red) are created from linear combinations of the inputs and used to predict 𝑌𝑘(yellow).  Neurons are 
fully connected to all other in the next layer. 

 

𝑍𝑚 are referred to as ‘hidden layers’ because they are not directly observed.  Network 

architectures can have a single hidden layer or many layers, with the term ‘deep learning’ 

commonly applied to networks with more than one hidden layer (although exactly what 

constitutes ‘deep’ is not well defined (Goodfellow et al., 2018)).  These layers are described as 

‘densely connected,’ as all nodes in our input are connected to all neurons in the next layer, 

and so on, from one layer to the next.  Our inputs could now be considered as basis 

expansions, feeding a linear model in the case of a regression, or a logistic for binary 

classification (Hastie et al., 2009a).  The structure and design of hidden layers is an active area 

of research, with few established ‘gold standards’ (Goodfellow et al., 2018) regarding the 

number of layers, or strategies for selecting the number of nodes in each layer.  It is common, 

however, to have a first hidden layer that corresponds to the number of input parameters.  

Increases in node numbers from one layer to the next expands the capacity of the model into 

higher dimensions, and fewer nodes reduces the dimensionality, often towards a desired 

number of output parameters. 
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Each node within a layer receives inputs from one or more nodes, either from the input or the 

previous layer.  The nodes multiply the inputs by a weight and sum them, before passing them 

to an activation function.  The goal of training a network is therefore to set these weights 

appropriately, iterating towards the best solutions. 

The activation function is another key concept of the neural networks that regulates the 

output of each layer.  Activation functions may differ between layers and are commonly 

different at the output layer.  The simplest activation function is the identity function, where 

inputs are weighted and summed but no further action is applied.  For binary classification, a 

sigmoidal activation function can be used that is similar to the logit function, and saturates at 

zero and one.  For multiclass classification the ‘softmax’ function (Efron and Hastie, 2016), a 

generalization of the sigmoid function, can be used.  In many cases, for continuous data or 

transitions between hidden layers, a rectified linear activation function (ReLU) is suitable 

(Hastie et al., 2009a).  ReLU is similar to a linear activation function, but truncates at zero and 

prevents negative signals being passed.  Activation functions are commonly applied with a 

small bias that ensures that most units are initially activated for most inputs, allowing the 

signal to pass through for training.  A bias node may also be included in each layer, that is not 

connected to the previous layer, and is permanently open.  Bias nodes allow the output of an 

activation function to be shifted, conceptually similar to an intercept term in a regression 

equation. 

Once a network architecture has been specified, the weights of the nodes in each layer can 

then be tuned (the ‘learning’ element of the neural network) from the training data, and an 

appropriate loss function (such as mean squared error (MSE) or mean absolute error (MAE)) is 

calculated to assess the fit.  ‘Back-propagation,’ a method of differentiation across layers using 

the chain rule (Rumelhart et al., 1986), is the standard method for feed-forward networks, 

used to estimate the gradient of the loss (Chollet and Allaire, 2018).  This error, per data row is 

then fed-back through the network in reverse and used to alter the weights associated with 

each link between the neurons, attempting to minimise the prediction error. 

A major difference between neural networks and traditional linear models is that the loss 

functions tend to become non-convex due to the high dimensionality.  As such, they are 

usually solved by stochastic gradient-descent optimisers (SGD), as opposed to least squares or 

finding a global optimum for convex functions such as the log-likelihood (Goodfellow et al., 

2018).  Adaptive optimizers, such as ADAM (Kingma and Ba, 2014) often improve training 

speed, but do not perform as well as stochastic gradient descent optimizers in terms of 

generalization to new datasets (which is of importance for application to NRLS) (Wilson et al., 
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2017).  Neural networks trained in this manner therefore share some of the properties of 

gradient boosting machines (section 6.3.1.1). 

Overfitting with Neural Networks, as with other machine learning techniques in this chapter, is 

a major problem with this type of model.  As with previous models, training and testing sets 

are used for evaluation, but the training set is further split to create a validation set.  This is 

usually smaller than the remaining training data (e.g. 80% training and 20% validation).  The 

loss function is then monitored in both training and validations sets, commonly by plotting.  In 

both sets, training and validation loss functions should reduce (or increase, depending on the 

loss functions used) with training loss dropping below validation loss.  As training continues, 

training loss may plateau or continue to reduce, but validation loss will begin to increase as 

overfitting starts to occur.  This is the ideal stopping point for the training process.  As with 

many regression models, or tree-based techniques, neural network benefit from standardised 

inputs, but various elements of neural network construction can improve fit and reduce the 

chance of overfitting: 

• Training time: models trained for too long will start to fit noise.  A reasonable 

number of epochs (one forward and backward pass through the network for all data 

points), can be controlled. 

• Samples/Batches:  Within each epoch, the number of training samples used in 

batches (often referred to as ‘mini-batches’) can be varied.  A neural network may 

pass individual data items, small-batches of data, or the whole data set in a single 

pass.  E.g. with a data set of 200 points, and a mini-batch size of 50 data points, an 

epoch would represent four mini-batches (equating to four passes through the 

network and four updates to the weights).  The larger the batch size, the quicker the 

training will be and the larger the gradient for optimization.  The main issue with this 

is that the gradient tends to become less linear (Goodfellow et al., 2018), may get 

stuck in local minima, or converge to sharp minima that tend be associated with 

overfitting and poorer generalization (Keskar et al., 2016).  Smaller batch sizes 

increase training time but may offer a small regularizing effect (Wilson and Martinez, 

2003). 

• Drop-out: A portion of the nodes, and their connections, can be randomly dropped 

out of training at each pass through the network.  This produces ‘thinned’ models 

that can be averaged and prevents networks adapting ‘too much’ (Srivastava et al., 

2014).  This is conceptually similar to the process used by Random Forests, where 

correlations are reduced due to the sub-sampling of predictors. 
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• Regularization:  Goodfellow et al.(2018) define regularization as ‘…any modification 

we make to a learning algorithm that is intended to reduce its generalization error but 

not its training error.’  Various strategies exist to do this, such as constraining 

parameter values or use of penalties use as ℓ1 or ℓ2 norms (Hastie et al., 2009a). 

• Batch regularization:  conceptually the same as mean-centring and scaling by the 

standard deviation within each batch (i.e. scale parameters so their mean is zero and 

variance is one), can reduce scale shifts between layers (Ioffe and Szegedy, 2015).  It 

has also been shown to allow the use of a higher learning rate and reduce training 

time, sometimes removing the need for drop out altogether. 

• Altering the learning rate:  as mentioned in section 6.3.2.2 in relation to boosting, 

learning rate is the step-size used by the gradient descent algorithm.  A higher 

learning rate will converge more quickly, but risks overshooting the local minimum 

and having similar effects to large batches regarding the sharp minima mentioned 

above (Efron and Hastie, 2016). 

• Early stopping rules:  stopping rules can be applied but differ somewhat from the 

approach for tree models.  These rules are commonly loss function related and aimed 

at stopping prior to overfitting.  Various rules exist, including stopping if the loss 

function does not improve by a certain threshold for a certain number of epochs. 

 

6.4.2 Fitting neural networks to NRLS data 

A feed-forward neural network, like the structure described above, was applied to NRLS data.  

Various frameworks exist for fitting Neural Networks, but a current leader is Google’s 

TensorFlow (Abadi et al., 2016), originally developed for Google’s internal use but released as 

Open Source software under an Apache Foundation licence.  TensorFlow has major strengths 

in its flexibility for model building and its ability to run on CPUs or GPUs on multiple 

environments/operating systems.  TensorFlow has its own syntax, but can be accessed through 

interfacing with other languages including Python, Java and R.  The R package Keras (Allaire 

and Chollet, 2018), based on the ‘keras’ Python interface to TensorFlow, has been used to fit 

models.  The training dataset was the same data fitted for models earlier in this chapter and in 

Chapters 5.  The scaling method described in Chapter 5, mean-centred and divided by two 

standard deviations, was maintained for the input layer for comparison against the GLMM 

models. 

An initial simple network with an input layer, a single hidden layer with the same number of 

nodes as the inputs, and a single node output layer was used as a first step.  This architecture 
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was then augmented by adding one additional hidden layer at a time.  Numbers of nodes in 

each layer were increased and decreased by 25% and 50% respectively and MAE loss function 

evaluated.  A training/evaluation split of 80% to 20% was used for validation, and final MAE 

was tested on the 2016/17 testing dataset.  Reduction in the loss function can be seen in 

Figure 6.7. 

Additional model settings were chosen by iteratively fitting and increasing or decreasing each 

setting in turn.  Model options and final settings included: 

• Batch normalization was used and improved both training and testing error in all 

models, so was retained for the final model. 

•  ℓ1 and ℓ2 regularization did not improve model fit further than batch normalization 

and were not used in the final model. 

• Early stopping rules did not appear to improve generalization to the test set and were 

not used in the final model. 

• Drop-out was tested but did not improve performance in any setting and was not used 

in the final model. 

• Learning rate was set at the default values of 0.01 (also the threshold that gbm 

optimization selected in section 6.3.2.2).  Keras settings allowed the model to reduce 

its learning rate when the loss function reached a plateau.  This allows smaller steps 

for the gradient descent and allowed higher resolution for identifying the local 

minimum. 

• Stochastic Gradient Descent (‘SGD’) optimizer was used. 

• 60 epochs with mini-batch sizes of 32 provided the best performance on testing data. 

• Models were fitted both with and without a constant from a bias node.  The bias 

improved model fit and was retained in the final model. 

• Final models used five hidden layers and one output layer, all using ReLU activation 

functions, with node numbers 37 (36 plus intercept), 24, 12, 6, 3, 1 from first layer to 

output. An initial layer of 48 nodes, expanding inputs to higher dimensions, did not 

improve fit. 

Final prediction error (MAE) was 59.40 for training set and 114.83 for testing.  Plots of model 

error suggested a plateau from 30 epochs. 
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Figure 6.7  Training and validation error for NRLS-HES Neural Network 

Mean absolute error (MAE) and mean-squared error (MSE), with MAE used for training via 
backpropagation 
 

6.4.3 Conclusions for neural networks 

The fitting process for the feed -forward network was relatively straight-forward, took minimal 

time and showed reasonable performance.  Neural networks did not show better performance 

than the boosting, random forests or GAMs, but this may be due to the limited training data.  

Neural network commonly perform best on large datasets (Chollet and Allaire, 2018) and the 

80% training set may be sub-optimal in terms of size.  Models performed best with several 

layers decreasing in node numbers with each layer.  This suggest that the network was able to 

successively simplify non-linear relationships down towards final predictions.  Training error 

was higher when numbers of nodes increased from one layer to the next, suggesting that 

projection to higher dimensions did not aid predictions and data may have become too sparse.  

This may have overfitted data is a similar fashion to the multi-TPRS smoothers. 

The training of neural networks, although simple to code using Keras, is essentially a trial and 

error process with several options to improve fit.  High performing Neural Networks take time 

to train and test a given architecture/layers/neuron numbers.  The time taken to optimize a 

network like this must be justified by the scale of the data, complexity of the data/question, or 

specific requirements for non-linearity.  The NRLS aggregated data, whilst non-linearity is of 

concern, does not appear to justify this approach. 
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6.5 Conclusions and comparisons with GLMM 

The models fitted in this chapter further address aim 3 of the thesis, and were used to improve 

upon predictions presented using GLM and GLMM methods presented in Chapter 5.  Table 6.3 

compares the best MAE performance in each of the model classes, excluding the single-level 

mixture models due to their increased bias compared with Poisson GLMs.  Random-intercept 

GLMMs clearly reduce prediction error and strongly support the clustering assumptions 

related to the hospital-level repeated measures, and this effect is also included in the GAM 

models.  GAM showed improved prediction error compared with GLMMs, suggesting that the 

non-linear/smooth terms better capture the relationships within the data.  They are more 

likely to reflect the underlying relationships within the data, but given the noise and the 

aggregation, this may be an artefact.  With a larger dataset, relationships may have been 

smoother and the difference between the models minimised.  A larger dataset would also 

have been advantageous for the Neural Network models.  This was difficult to examine in 

practice as, although prediction error was tested on 2016/17 data, step-changes in the 

organisation-level random-effects were large, and using a five-year training set led to noisier 

data and poorer models (see Chapter 5.8). 

 

Our aim in these models is to fit the underlying ‘average’ relationship of incident reports and 

predictors to allow generalization to other datasets without overfitting.  GAMs smooth out 

noisy predictors so are suitable for this task.  Trees are not concerned about fitting a 

theoretical distribution and split on covariates that explain the most variance.  If variance is 

constant, the noise is random (normally distributed) or proportional to the exposure size (size 

of hospital), trees will fit regardless. 
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Table 6.3  Comparison of GLM, GLMM, GAM, Tree and Neural Network prediction 
errors 

The best performing models based on testing MAE are presented.  2015/16 is the training set and 
2016/17 the testing set. 

 

The NB2 GAMs appear to show the best fit of all the models applied, as they: 

• Reflect the clustering with an organisation-level random-intercept 

• Smooth noisy predictors in a non-linear fashion, towards a more general relationship 

• Account for the aggregation in the NB2 variance scaling, giving more weight to the 

assessment of overdispersion at organisation with smaller conditional means.  This fits 

with the aggregation assumptions as a single incident is a larger proportion of the 

mean at an organisation with 100 bed-days than one with 1000 bed-days. 

 

Algorithmic methods, particularly random forest and boosting showed good performance 

without explicitly reflecting the clustered nature of the dataset.  Random Forests showed only 

marginally higher testing error than the NB2 GLMM.  Some of this may be due to de-

correlation effects of the random forest but may also suggest that, given the noise in the data, 

there are several possible solutions.  Random Forest models may produce biased predictions 

on the testing set if the correlation structure is notably different to the training set.  A 

potential solution to this is to combine both the random forest and random-intercept 

approaches.  This has been demonstrated in one proof of concept paper (Hajjem et al., 2014), 

but has yet to gain acceptance and wider implementation in standard statistical software.  The 

authors of the paper kindly provided R code to attempt this approach, but its non-standard 

implementation was not fault tolerant and could not be by applied within the timespan of this 

project.  Adapting random forests to sample within strata, and make use of their bootstrapped 

structure, is a subject for further research. 

 

2015/16 2016/17

Poisson GLM 138.78 143.46

NB2 GLMM 55.34 101.68

NB2 GAM CR 58.35 97.22

NB2 GAM TPRS 57.98 96.68

NB2 GAM Multi TPRS 46.95 111.58

Boosted Tree 16.28 108.30

Random Forest 23.94 102.60

Neural Network 59.40 114.83

Method
MAE
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A useful next step with algorithmic models was to include organisation as predictor, similar to 

the inclusion of organisation as a fixed effect as discussed in the conclusion from Chapter 5.  

Regression trees fitted in this way simply split by total bed days and organisations with distinct 

effects.  These models increased overfitting and degraded the performance of boosted 

models.  It is likely, however, that bed days are a reasonable proxy of the organisation code 

and that correlation is the issue.  Random Forests were then investigated to attempt mitigate 

the correlation problems.  RFs presented a further complication, as Breiman and Cutler’s 

fortran code is limited to categorical predictors with no more than 32 levels, corresponding to 

232 splits.  This is computationally intractable in this form, and but an alternative 

representation in Java-based machine learning library ‘H2O.ai’ (H2O.ai Team, 2018) allows 

this by representing predictors as histograms.  H2O random forest were compared with the 

models discussed in this chapter as a validation, but their application with organisational 

predictors did not increase predictive ability of the models.   

 

Many of these methods discussed in this chapter share similar principles, as described by 

Hastie & Tibshirani (Hastie et al., 2009a).  Methods included projections into higher or lower 

dimensions, choosing and minimising an appropriate loss function, data splitting, and 

validation on an out-of-sample set (or cross-validation).  These techniques, to a lesser or 

greater extent also suffer from the same pitfalls: being somewhat ‘blackbox’ to many 

practitioners.  This can be overcome in some senses by simulation methods or the use of 

frameworks such as Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al., 

2016).  Overfitting and lack of representation of the clusters structure in the data is also an 

issue.  However, given the lack of cluster representation these methods perform admirably, in 

terms of minimising prediction error through their own mechanism, leading to an important 

question about whether the cluster representation is required? 

 

In Chapter 8, GLMM, GAM and random forest techniques will be applied to the data to derive 

standardised indicators for use in surveillance and monitoring from both regulator and 

organisational perspectives, addressing aim 4 of the project.  Differences in these models, and 

the organisations they identify, will be discussed and reveal potential biases of random forest 

models.  Models will first be applied to a specific sub-set of severe harm or death incidents in 

Chapter 7. 
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Chapter 7  Development of death or 

severe harm models. 

7.1 Introduction 

The models developed in the previous chapters have focussed on total incident reports.  These 

are a mixture of reports at different harm level, only some of which are mandatory.  The 

current national publications on NRLS (see Chapter 8) focus on total incident reports, but also 

on the incident reports that are mandatory: those that lead to severe harm or death.  This 

chapter continues to address aim 3 by applying the model structures used in previous chapters 

to the death and severe incident reports only, discusses the issues relevant to repurposing the 

models in this fashion, and interpretation of the outputs. 

7.2 Development of death/severe harm incidents model 

The analytic framework based on the total incident reporting models was used as the starting 

point for developing a model for death and severe harm incident reports (DS).  Using the same 

predictor dataset is a reasonable starting point, as model training would identify different 

model coefficients for DS incidents, compared to total incidents. 

 

 

Figure 7.1  Histogram of counts of death or severe incident reports per trust, per 
month 

Death of severe harm incident reported in fiscal year 2015/16.  Red line represents the median value (3). 
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Figure 7.1 shows a summary of the response variable.  DS incidents are very rare in 

comparison to all incident reports, representing <1% of the annual reports.  Breaking them 

down by trust and by month gives a median value of 3 DS incidents per trust per month.  This 

poses the problem of sparseness for a predictive model, as there is very little evidence to 

model.  The impact of prediction error is also proportionally higher given that a single case 

represents 33.3% of the median value. 

Poisson models were initially considered, using the random-intercepts described in previous 

chapters for clustering.  Two additional predictors were included in the model: total incidents 

and non-mandatory incidents, both centred and standardised as discussed in Chapter 4.  In all 

cases, the models with total incidents as a predictor out-performed those with non-mandatory 

reports, suggesting that non-mandatory was an incomplete picture compared to using all 

incidents reports.  The non-mandatory incident predictor was then dropped from the model. 

Overdispersion was also present in these models, with a dispersion ratio of 1.43 for the 

Poisson GLMM base model.  This was much lower than the dispersion ratio of the total 

incident reports Poisson GLMM model, and suggested less noise in the data.  Though events 

were sparse, these reports are likely to be more objective and consistently observed due to 

their ‘extreme’ outcomes.  Alternative model distributions for NB1, NB2 and Tweedie (Dunn 

and Smyth, 2005) (with power estimated by modelling procedures) were fitted, but with such 

low counts, it is was logical to consider zero-inflation (as briefly mentioned in Chapter 4, in the 

context of overdispersion) (Cameron and Trivedi, 2013e).  In zero-inflated Poisson (ZIP) 

models, a Poisson model is fitted for non-zero counts and an alternative binomial model is 

fitted for the probability of zero counts.  These models therefore assume a specific mechanism 

dictates the probability of a zero count, and it is not simply a Poisson mean.  This may be due 

to reporting system quirks or other cultural issues at organisations that dictate the likelihood 

of reporting an event.  However, this is unlikely due to the mandatory reporting of these 

incidents.  It is possible that an unknown mechanism exists for zero-inflation, so this was 

formally tested in the data with the score test described by van den Broek (1995).  The test 

suggested zero-inflation in the dataset, but the mechanism that might cause zero-inflation was 

unclear, and may be an artefact of the low counts, noise, or aggregation.  ZIP models were 

fitted with three alternative zip formulae: all predictors, total bed-days, outpatient and A&E 

attenders, and just total bed-days.  ZIP models were no clear improvement on the Poisson 

models in terms of prediction error, with training MAE ranging from 1.71 – 1.73 and testing 

error ranging from 2.26 – 2.36. 

Inspection of parameter estimates in these full models suggested most parameters were not 

statistically significant at 95%.  Given that the effects of overdispersion on these estimates 
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would have been to overstate their significance, it suggests that many of the predictor 

variables were not aiding the model at all.  The models were therefore over-parametrised, and 

performance may have degraded because of this.  Model bias and variance are commonly 

described as a ‘trade-off’ (Hastie et al., 2009b), where decreasing variance commonly increases 

bias and vice-versa.  E.g. NB models reduce variance in comparison to Poisson models, but at 

the cost of some bias in predictions.  This trade-off suggests that the models may be biased 

from overfitting parameters to reduce variance.  Simplification of the models was the next 

logical step to see if bias could be reduced.  Rather than eliminate parameters using automatic 

step-wise techniques or shrinkages methods such as ridge regression or LASSO (Tibshirani, 

1996), models were instead rebuilt pragmatically using only the strongest predictor variables. 

Simplified model parametrisations were constructed as GAM and GLMM models using Poisson, 

NB1, NB2.  The following parametrisations were applied to all models, with cubic regression 

splines used for GAMs.  Parameterisations will be referred to by number for the rest of this 

chapter.  Parameterisations were: 

1. Random-intercept for trust, teaching hospital status, seasonality spline & total 

incidents counts 

2. Random-intercept for trust, seasonality spline, total incidents count, total outpatient 

attenders & total A&E attenders. 

3. Random-intercept for trust, teaching hospital status, seasonality spline, total incidents 

count, total outpatient attenders & total A&E attenders  

4. Random-intercept for trust, teaching hospital status, seasonality spline, total incidents 

count, total outpatient attenders, total A&E attenders, count of bed-days of admission, 

count of bed-day for patient admitted by transfer, count of bed-day for non-elective 

admissions, count of bed-day for maternity/birth admissions, count of bed-day for 

patients aged 70-84, count of bed-day for patients aged 85 and over, count of bed-day 

for patients with Charlson comorbidity score of 0, count of bed-day for patients with 

Charlson comorbidity score of 5 or greater, count of outpatient attenders age 50-69 

and count of outpatient attenders aged 70 or over. 

Model prediction errors for the best performing models are shown in table 7.1, with the 

simplified Poisson (parametrisation 1) shown at the bottom of the table for contrast.  A full 

table of model prediction error outputs for 60 models is presented in Appendix C.5.  Prediction 

error on testing sets was very close between all the models tested, varying by 0.52 between 

highest and lowest MAE values.  Variation between models was higher in the training set, with 

0.92 between the highest and lowest MAE values. 
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Table 7.1  Mean absolute prediction error for death or severe harm NRLS-HES model 

Columns relate to model class and distribution in training (2015/16) and testing (2016/17) datasets.  
Model descriptions indicate model parameterisation.  ‘Full’ indicates all predictors from earlier incident 
models plus total incidents.  Bottom row of the table shows this simplified Poisson parameterisation as a 
benchmark for comparison. 

 

The similarity of MAE performance between the full and simplified models suggest two things: 

the full models captured a degree of variation that is not well represented in the simpler 

models, but also that the major predictive value in the data rests with seasonality, the random-

intercept and the total incident reports.  The added complexity of including all predictors may 

not be justified.  The full models that performed best were GAMs with selection and additional 

BIC-like smoothing penalties (detailed in Chapter 6), whilst the most predictive reduced 

models were the simplest (parameterisations 1 & 2) GLMM models.  Figure 7.2 plots the 

relationship of the major predictors in the simplified models.  The effects of low number are 

stark, and although a slight upward trajectory is discernible as total incidents increase, the 

variance is high.  It also appears that teaching hospitals are generally larger in size and 

reporting more incidents in total, but death or sever harm incidents show only a slight increase 

with size.  When ‘total incidents’ and ‘total inpatient bed-days’ were both tested in the simpler 

parameterisations ‘total bed-days’ was no-longer significant once ‘total incidents’ entered the 

model.  When just total bed-days was fitted without ‘total incidents’, it appeared significant.  

This suggests that there is a confounding/proxy effect for total incident reports that is 

approximated by the size of the organisation/total bed-days.  This is an intuitive result, as we 

would expect larger organisations (with more bed-days) to report more incidents to their 

greater exposure. 

The relationships in Figure 7.2 do not give a clear picture on increasing DS incident reports.  On 

the one-hand, they could be interpreted that the number of DS reports increases with the total 

number of reports.  However, the low rate of change in the smoother suggests that there is 

little correlation between total incidents, and more erratic changes tend to occur in smaller 

non-teaching hospitals. 

 

Description

Model 

Class

Family / 

Distribution

Training 

MAE

Testing 

MAE

Full Model GAM NB2 1.908 2.055

Full Model GAM Poisson 1.772 2.078

Parameterisation 1 GLMM NB1 1.742 2.092

Parameterisation 2 GLMM NB1 1.736 2.098

Parameterisation 1 GLMM Poisson 1.733 2.121



182 
 

 

Figure 7.2  Relationships between death or severe, and total, NRLS incident reports 

Blue points represent non-teaching hospitals and green represent teaching hospitals.  Red line is a 
smooth GAM fit of the relationship.  NRLS data for incidents reported in 2015/16. 

 

7.3 Conclusions 

DS incidents can be modelled in a similar manner to the total incidents reports models, but 

fewer of the predictors are required to model them well.  Good performance can be achieved 

through replicating the important structural features, namely the clustering/repeated 

measurements at trusts, seasonal fluctuations and the total number of incidents reported (that 

can be assumed to be a proxy of the size of an organisation).  It is likely that, given the sparsity 

in the models, fewer of the predictors can be calibrated due to the low signal-to-noise ratio.  

Other predictors are likely to be dominated by the size predictor.  Reduced models showed 

similar performance to models with large number of predictors and a case for ‘Occam’s razer’ 

could be made, selecting the simpler models. 

NB1 distribution showed good performance in these models.  When compared to the 

performance of NB2 models for all incidents, it suggests conclusions about overdispersion and 

scaling.  Overdispersion was much lower in DS models.  NB2 models worked well for all 

incidents as they weighted the effects of overdispersion proportionally higher in small 

organisations, whereas NB1 models weight all trust in proportion to their conditional mean.  

The ‘size’ in question here is the ‘𝑦’ value in the model.  DS incidents are rare occurrences, 

with a median of 3 per organisation per month.  Secondly, the range of scaling applied by NB1 

is much smaller than the range of the ‘𝑦’ in the total incident reports models.  NB2 GAM 
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models appear to have performed best on testing set, but may have introduced bias on the 

training set. 

Although testing error was poorer in Poisson GLMM models, the Poisson’s unbiased nature is a 

useful benchmark for comparison.  The Poisson GLMM displayed lower training error, but 

slightly higher testing error.  This is somewhat unexpected, as it suggests that the Poisson 

model is less biased in the training set but may be mis-calibrated for the testing set.  The 

reduction in the overdispersion from the NB1 parameterisation may have reduced training 

error in terms of reduced variance, but at the cost of bias. 

These results in all models should also be viewed in the light of the sparsity in the model, and 

the differences in MAE results being minimal.  This leads to several question: will services have 

any ability to learn from such rare events, and does it add any value to monitor them in such a 

way?  Lilford et al.(2010) suggested that “Changes in clinical outcome (such as mortality or 

infection rates) can never be bigger than changes in the clinical error rates on which they 

depend and are usually much smaller; it is rare for the risk of an adverse outcome to be wholly 

attributable to clinical error.”  The ability to learn from such incidents can only be assessed 

over larger samples, and national level analysis would seem to be the more appropriate 

resolution for this.  This is very different take to that of learning from each error in clinical 

audit. 

 

The models reported in table 7.1, as the best performing models on testing set error, will be 

taken forward for fitting as standardised ratios in Chapter 8. 
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Chapter 8  Developing a risk-adjusted 

indicator for NHS regulatory use 

 

This chapter focuses on how the risk-adjusted prediction models, developed in previous 

chapters, can be used by current UK healthcare regulators.  It addresses aim 4 of this these, 

and first describes the current regulatory use of NRLS, major stakeholders, and proposes an 

alternative indicator, the Standardised Incident Reporting Ratio (SIRR), and shows how this fits 

with current systems for cross-sectional analysis and longitudinal modelling. 

8.1 Methods for UK health regulators 

 

8.1.1 Regulators 

Healthcare, and the NHS, are highly regulated industries in the UK with multiple lines of 

accountability and a degree of overlap between regulators.  This chapter focuses on the role 

and remit of these organisations and their use of NRLS for learning and safety monitoring.  The 

NHS is an evolving collection of organisations and regularly subject to political intervention.  It 

has had several regulatory bodies and functions during the lifespan of the NRLS, that have 

been merged or been replaced over the period.  When starting this PhD project, the NRLS was 

managed by the National Patient Safety Agency (NPSA), who held responsibility for NHS 

patient safety development and monitoring.  The NPSA was abolished and the functions 

combined with NHS England for a period (Parliament, 2012).  Patient safety functions were 

later transferred to NHS Improvement.  At the time of writing, and in terms of national focus 

on the acute hospital sector, the major NHS regulators are: 

• NHS Improvement (NHSI):   Formed by a merger of the former economic and quality 

regulators: Monitor and the Trust Development Authority; NHSI has roles in setting 

national payment tariffs, leadership in areas of productivity and efficiency, collecting 

NHS costing data, and a role providing intensive support and oversight for struggling 

organisations.  Patient safety is also a key theme of their portfolio, with dedicated 

teams focussed on patient safety interventions and learning from error.  NRLS is 

‘owned’ and managed by NHSI, who have provided data access for this project. 

• Care Quality Commission (CQC):  An independent non-governmental organisation, and 

successor to the Healthcare Commission, with a statutory duty to monitor and 
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regulate health and social care providers in the UK.  Their work applies to social care, 

primary care, secondary care, ambulance services and private organisations providing 

health or social care.  The CQC’s purpose is to assure care is safe, effective, 

compassionate and high-quality.  Their roles include registering, monitoring and 

inspecting providers, rating organisations and taking action to protect service users.  

The CQC makes regular inspections of organisations, but also runs an intelligence-led, 

targeted inspection programme, and a specific programme for mortality ‘outliers.’  

CQC have ‘Intelligence and Insight’ teams who produce packs of information for CQC 

central functions, inspectors and trusts.  They therefore have a major role in 

monitoring information to identify variation and potentially trigger inspections. 

• NHS England (NHSE):   The national NHS executive organisation, headed by the chief 

executive of the NHS.  NHSE has a wide variety of responsibilities for planning and 

overseeing the NHS’ work including emergency planning and future strategy.  This 

includes managing national and regional teams, ‘specialised commissioning’ (for 

complex, high-cost or specialist tertiary services), monitoring of national targets such 

as waiting times, leading or developing new models of care, and technological 

development (although a tension exists between them, NHS Digital, and the newly 

formed ‘NHSX’ on the later). 

• The Department of Health and Social Care (DH):  The DH is the civil service 

organisation supporting health ministers to implement the Government’s agenda for 

the NHS.  Much of its former responsibility was devolved to NHSE in the Health and 

Social Care Act 2012, but it holds influence over funding and policy agenda in the NHS.  

Under the tenure of the previous Secretary of State for Health, the Rt Hon. Jeremy 

Hunt, the patient safety agenda was highlighted, encouraging incident reporting, 

human factors analysis and wider safety programmes. 

• Medicines and Healthcare Authority (MHRA):  The MHRA regulates the use, trial and 

implementation of medicines, devices, and more recently, computer/mobile apps.  

They regulate packaging, labelling and legal compliance.  They run the yellow card 

scheme for drugs based adverse reaction (discussed in Chapter 2). 

• National Institute of Health and Care Excellence (NICE): NICE’s role is to produced 

evidence-based guidance on treatments and interventions, including safety and cost 

effectiveness, developing quality standard (such as safe staffing levels) and providing 

information to commissioners and practitioners. 
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8.1.2 Current users of NRLS incident reporting data 

Whilst the NRLS is used for research and special requests, such as this project, the major 

national users of these data, and their associated publications and indicators, are: 

• NHSI (with all indicators available on their website: www.improvement.nhs.uk): 

o Six-monthly data releases referred to as the National Patient Safety Incident 

Reports (NaPSIRs).  Published as spreadsheets, these releases contain numbers 

of incidents reported monthly, presented in various categorical groupings 

including ‘care setting’ and ‘incident type’ (NHS Improvement, 2017b). 

o Six-monthly Organisational Patient Safety Incident Reports (OPSIRs).  

Published as spreadsheets, these books contain organisational reporting rate 

data, based on incidents per 1000 bed-days (using the KH-03 bed-days, as 

described in Chapter 5, or similar activity units for other care settings).  

Reported figures include the median time between incident occurrence and 

reporting to NRLS and reporting rates in harm-level categories.  Data quality 

notes are provided, and incident data are presented in relation to both the 

date they were reported to the NRLS and the date incidents occurred (NHS 

Improvement, 2017c). 

o NRLS Explorer tool is a web interface to generate organisational reports that 

detail splits of incident harm levels, changes in incident reporting rates, and 

potential under-reporting of incident reports at local organisations. 

o NRLS data may be used as part of special publications to support/develop 

particular patient safety programmes. 

o Patient Safety Alerts are sent to organisations via the central alerting system 

(CAS) as emerging themes are identified.  These alerts may be driven by, or 

investigated using, NRLS data. 

o General patient safety work at NHSI may use the NRLS, but this does not 

necessarily lead to specific publications. 

 

• Care Quality Commission (some indicators externally published, others extracted from 

‘Insight’ reports sent to UHB): 

o CQC’s ‘Insight’ program publishes data packs that are used to inform hospital 

inspection, based on their ‘Key Lines of Enquiry’ (KLOE) (Care Quality 

Commission (CQC), 2017).  No formal methodology publication has been 

released for the Insight programme, but Insight packs contain a limited set of 

notes to describe indicators.   The inspection programme prior to ‘Insight’ was 

http://www.improvement.nhs.uk/
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referred to as ‘Intelligent Monitoring,’ and most indicators appear to be 

common between the two (Care Quality Commission (CQC), 2014b, Care 

Quality Commission (CQC), 2014a).  Insight packs are sent to trusts as regular 

monitoring information, and include the following indicators as part of KLOE 5 

and 6:  

▪ KLOE 5 NRLS - Proportion of reported patient safety incidents that are 

harmful (%); 

▪ KLOE 6 NRLS - Consistency of reporting, National Reporting Learning 

System (NRLS) – National; 

▪ KLOE 6 NRLS - Potential under-reporting of patient safety incidents 

resulting in death or severe harm; 

▪ KLOE 6 NRLS - Potential under-reporting of patient safety incidents. 

o ‘Intelligent Monitoring’ the predecessor to ‘Insight’ with published formal 

methodologies (Care Quality Commission (CQC), 2014a) included the following 

indicators with more detail than ‘Insight’: 

▪ NRLSL03: Proportion of reported patient safety incidents that are 

harmful (%), with numerator of total incident reports that cause harm, 

and denominator of the total incident reports. 

▪ NRLSL04: Potential under-reporting of patient safety incidents 

resulting in death or severe harm, a standardised ratio with numerator 

of the count of severe harm or death and denominator an expected 

number of incident reports based on trust’s bed-days multiplied by the 

national average ratio.  Bed-days are calculated from HES, with day 

cases treated as 0.5, but no description of how ‘zero-day’ (non-

daycase) stays are counted (see Chapter 5).  Specialist trusts, such as 

Children’s hospitals, are excluded due to their radically different 

casemix. 

▪ NRLSL05:  Potential under-reporting of patient safety incidents, as per 

NRLS04 but applied to all incident reports, not just severe harm or 

death. 

The major uses of NRLS data at regulatory level are therefore: analysing the free-text for 

specific themes and comparisons of reporting rates with some adjustments for the sizes of 

organisations.  The models developed in the previous chapters have shown an approach for 

total incident reports and death or severe incident reports that will be used later in this 

chapter to develop standardised ratios that can be used by NHSI, CQC, and trusts to examine 
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their reporting behaviour.  Current indicators do not make adjustments for case mix or 

“exposure”, and SIRR models can fill this gap. 

 

8.2 Creating a standardised incident reporting ratio (SIRR) 

Comparisons of incident reporting at organisations cannot be done directly using parameter 

estimates, as models built in Chapters 5-8 did not include ‘organisation’ as a fixed 

effect/predictor.  Comparisons of random-effects estimates are possible with the GLMM and 

GAM approaches used in earlier chapters, but these techniques are not common-place in 

current NHS monitoring schemes.  Many current indicators, such as mortality, readmission or 

LOS can, instead, use the model predictions as outputs for comparison (Bottle and Aylin, 

2008).  We have used predictive values to assess the error of models, but they can also be 

used for reporting.  Ratios of the observed events to predicted events are described as 

indirectly standardised ratio (Breslow and Day, 1980): 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑠𝑒𝑑 𝑅𝑎𝑡𝑖𝑜 =  
∑ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠

∑ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠
 

A ratio of one indicates that observed and expected are equal, below one indicates fewer 

observed than expected, and above one indicates more observed than expected.  This 

technique does not explicitly represent clustering and assumes that data points are 

independent.  Later sections of this chapter will address clustering and the conflict inherent in 

using these methods with outputs from multilevel models. 

In the case of NRLS models, two standardised ratios will be calculated, one for the ‘all incident 

report’ models and one for the ‘death or severe harm’ (DS) models.  These ratios are a good fit 

with the CQC monitoring methods discussed in the following section. 

8.3 Monitoring techniques used by CQC 

The CQC's role is to regulate organisations using inspections and a risk/compliance framework.  

The aim of the risk/compliance framework is to inform/trigger an inspection and monitor 

organisations between regular inspections (Bardsley et al., 2009).  The Insight reports 

mentioned above form the basis of this, generating 'key lines of enquiry.'  Much of the history 

of this framework comes from the tragic circumstances surrounding hospital failures such as 

events at Mid-Staffordshire hospitals (Francis, 2013) and cardiac surgery at Bristol 

(Spiegelhalter et al., 2002).  Some of the techniques associated with mortality monitoring, 

including the use of process control methods, and charts for comparing indicators, and 

monitoring change over time, have been developed in an authoritative source, presented to 
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the Royal Statistical Society, and adopted for CQC’s monitoring (Care Quality Commission 

(CQC), 2014b, Care Quality Commission (CQC), 2014a, Spiegelhalter et al., 2012c).  These 

techniques are inspired largely by meta-analysis methods for dealing with heterogeneity in 

clinical trials as described by DerSimonian & Laird (1986).  In meta-analysis, a reviewer is 

aiming to summarise the effects of several different clinical trials, usually of different sizes, 

without the original data.  This is conceptually similar to comparing many hospitals across 

different indicators using aggregated indicators, rather than record-level data. 

These processes use several techniques that are relevant to SIRR models and will be applied in 

the rest of this chapter.  The techniques include (Care Quality Commission (CQC), 2014b, 

Bardsley et al., 2009, Spiegelhalter et al., 2012c): 

• Comparison against expected ratios using Funnel Plots 

• Transformation to z-scores 

• Estimation of overdispersion using an additive model and adjusting z-scores and funnel 

plots accordingly 

• Time series monitoring using ‘Cusum’ charts 

Much of the following section is adapted from these sources, as the aim here is to fit with the 

current regulatory systems. 

 

8.3.1 Comparison using funnel plots 

Comparisons of mortality indicators such as the Hospital Standardised Mortality Ratio(HSMR) 

(Jarman et al., 1999), have been criticised for (amongst other things), their misinterpretation.  

Some of this stems from early presentation of mortality ratios as league tables, based on 

indirectly-standardised indicators (Lilford et al., 2004) and the tendency to interpret them as 

summary markers of ‘good’ or ‘bad’ hospitals (Lilford and Pronovost, 2010, Black, 2010). 

The two major problems of indicators presented in this fashion are that they do not reflect the 

uncertainty in the data, nor do they inform readers whether a given organisation requires 

investigation or not.  Funnel plots have been proposed as an alternative for representing this 

in a visual manner (Spiegelhalter et al., 2012c, Spiegelhalter, 2005a, Egger et al., 1997).  These 

plots are rooted meta-analysis techniques comparing studies of different sizes (Goldstein and 

Spiegelhalter, 1996).  These charts plot the indicator of choice on the y-axis and a measure of 

the size of the unit on the x-axis (Figure 8.1). 

In application to hospital mortality or other measures, the x-axis commonly presents the 

number of expected events from the indirect-standardisation, or some other measure of 
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organisation size such as the number of discharges.  This measure of size is commonly a count 

so can be regarded as Poisson distributed.  The fixed variance=mean relationship of the 

Poisson distribution (see Chapter 4) allows the construction of standard control limits that 

come together in a funnel shape as the standard error decreases as the sample size increases.  

These limits can be overlaid onto the scatter of the ratio against the size measure 

(Spiegelhalter, 2005a). 

The term ‘Control limits’ refers to a concept from statistical process control (Mohammed et al., 

2001, Benneyan et al., 2003) that are used to define boundaries between ‘common-cause 

variation’ (natural variation) or ‘special-cause variation’ (systematic differences/greater than 

natural fluctuation).  Control limits are designed to drive action, and a data point outside of the 

funnel is showing special-cause variation and should trigger investigation of that data point.  A 

data point within the funnel is showing common cause variation and should be regarded as ‘in-

control’ or within the expected natural variation. 

 

Figure 8.1  Example funnel plot using the ‘medpar’ dataset 

Data are reused from the COUNT R package (Hilbe, 2016), originally collected from Medicare data for 

Arizona in 1991, discussed in (Hilbe, 2014).  A standardised ratio has been created (y-axis) as the sum of 
observed LOS / the sum of predicted LOS (model predicted probabilities), built from a Poisson regression 
model, with the x-axis showing predicted LOS, and data points representing organisations. 

 

Funnel plot limits can be calculated in several different ways, as there are various methods for 

approximation and exact limits, including: 
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• Using the Poisson density function we can compute exact Poisson limits.  Due to the 

discrete nature of the Poisson distribution, this is not defined between integers, and 

requires an interpolation procedure for x-axis values that are not integers 

(Spiegelhalter, 2005a). 

• Using the relationship between the Poisson and Chi-squared distributions, a chi-

squared density function can be used to calculate an exact Poisson limit that is defined 

between integers, and therefore does not require interpolation (Ulm, 1990). 

• Using transformations such as square-root (Care Quality Commission (CQC), 2014a, 

Spiegelhalter et al., 2012c) or natural logarithm (Clinical Indicators Team, 2016b), we 

can calculate an appropriate standard error on the transformed scale and back 

transform to our original scale.  This is the approached used for expanded funnel plot 

limits with an additional variance component (see section 8.3.3). 

Funnel plots based on Poisson limits suffer from the same overdispersion issues discussed in 

previous chapters.  This means that, in the presence of overdispersion, the control limits are 

too conservative and too many points are outliers, as seen in Figure 8.1.  Spiegelhalter et al.’s 

(2005b) paper proposed a correction to this to account for the clustering using random-effects.  

This uses the same theory as the inclusion of a random-intercepts used in GLMMs in previous 

chapters but calculated using a different mechanism.  This method is applied post-hoc and is a 

somewhat blunter approach than estimating random-effects within a model.  This mechanism 

is described below, and the resulting 𝜏2 can be added to the standard error used to draw the 

control limits and expand them to account for overdispersion. 

Funnel plots are a clear representation of standardised ratio data that factor size and 

uncertainty into the plot.  Although they contain more information than a simple league table, 

funnel plots do still have a degree of ranking that may lead to stigma or misinterpretation 

(Lilford et al., 2004).  This is not an argument to abandon comparison, but an argument for 

comparing organisation on multiple indicators rather than one in isolation (Keogh, 2013). 

 

8.3.2 Transformation to z-scores 

When comparing indicators or viewing many of them, it is helpful to consider the data types 

and the differing natural scales.  It would be challenging to compare infection rates, mortality, 

length-of-stay, incident reports etc. when they differ in scale.  Its desirable from the regulator’s 

perspective to have a single unified framework to compare indicators.  The form adopted by 

CQC was the ‘z-score’ (Spiegelhalter et al., 2012c, Care Quality Commission (CQC), 2014a).  Z-

scores are standard scores that follow from the normal distribution.  In normally distributed 
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data, the mean is central, and the standard deviation is the average distance of points from 

the mean.  Figure 8.2 shows a theoretical normal distribution with density on the y-axis.  The 

distribution is centred on the mean at zero and the x-axis corresponds to the number of 

standard deviations (z-scores) from the mean.  The properties of the normal distribution are 

such that approximately 95% of data lie between two standard deviations below and above 

the mean.  Similarly, 99.8% lie between three standard deviations above and below the mean 

(Altman, 1990). 

 

 

Figure 8.2  Theoretical normal distribution and z-scores 

Y-axis represents density and x-axis the ‘z-score’, or number of standard deviations from the mean (0).  
Blue lines represent the central regions between -2 & 2, and -3 and 3 standard deviations and the 
percentage of values within this range. 

 

It follows that, if we centre a normally distributed dataset on the mean and divide by the 

standard deviation, we are now scaled such that a value of 1 represents 1 standard deviation 

above the mean and -2 represents 2 standard deviations below the mean, and so on.  This is 

the same process described as ‘centring and scaling’ for regression model input, discussed in 

Chapter 4.  Therefore, all normally distributed indicators could be compared on this z-score 

scale, and statistical significance determined by the value of the z-scores. 

The further complication is that our data are rarely normally distributed.  Various 

transformation have been recommended (Spiegelhalter et al., 2012c), rendering them 'more 
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normal' before transforming to z-scores.  This means applying a function of some kind to our 

data before we regard it as 'Y.' 

The CQC guidance (Care Quality Commission (CQC), 2014b) for constructing z-scores uses 

three specific transformations depending on indicator type.  Each transformation assumes a 

target value T, that is appropriate for that indicator type. 

For Standardised Ratios (SRs), such as HSMR, SHMI and the proposed SIRR, an 'expected' value 

is calculated by indirect standardisation.  For SRs, T=1 (observed = expected), and this 

corresponds to the idea of the national average.  SRs are then square-root transformed before 

z-scoring: 

𝑌 = √
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
    with standard deviation:  𝑠 =  

1

2√𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

The transformed z-score is therefore: 

𝑧 =  
𝑌 − 1

𝑠
= 2(√𝑂 − √𝐸) 

The standard error in these calculations is then interpreted as the within-trust standard 

deviation. The SIRR methods based on the regression models will all be represented as 

standardised ratios.  Although the CQC methods recommend a square-root transformation, 

log-transformation has also been suggested and adopted in the national mortality indicator 

SHMI (NHS Digital, 2017f).  This was described as too severe an adjustment in many cases 

(Spiegelhalter, 2005b), but appears to aid normality in the SIRR models (see section 8.4.2). 

 

8.3.3 Estimation of overdispersion using an additive model 

Overdispersion has been discussed at many points for these models, but the approach of 

Spiegelhalter et al. (2012b) is to assume an additive overdispersion model, rather than 

multiplicative one such as the quasi-likelihood or negative binomial models applied in earlier 

studies (Marshall et al., 2004), and in earlier chapters of this thesis.  This is conceptually 

identical to the random-intercepts estimated in the GLMM models, but its estimation takes a 

different form.  It is estimated directly from the data, adjusting for the cluster sizes, but does 

not affect the expected values directly.  Firstly, the dispersion ratio φ is estimated.  The 

dispersion ratio is a measure of the ratio of the model error over the degrees of freedom and 

is approximately 𝜒2 distributed on the degrees of freedom.  Its estimation is not, however, 

performed on the full dataset to avoid the undue influence of outliers.  Z-scores are first 

‘Winsorised’ before estimating φ. 



194 
 

Winsorising is the process, named after statistician Charles P Winsor, of scaling the extreme 

values in a distribution on the basis that they may not be representative.  The mean and 

standard deviation of a distribution are strongly affected by outliers, and Winsorisation 

attempts to reduce this.  In the context of CQC and Spiegelhalter’s approach, it is used to scale 

z-scores removing q% from each end of the distribution (where q is commonly 10%), by: 

• Ordering the z-score values from lowest to highest. 

• Finding the qth, and the (100-q)th percentile z-score. 

• Setting z-scores lower than the qth percentile, equal to the qth percentile, and values 

higher than the (100-q)th, equal to the (100-q)th.  In other words, z-scores <10% set to 

10% value, and values >90% set to 90% value. 

 

 
Figure 8.3  Example of Winsorisation of a distribution of z-scores 

The red plot represents the Winsorised version of the unadjusted z-scores (blue), with a 10% 
Winsorisation at both ends of the distribution. 

 

Figure 8.3 shows the effects of Winsorisation on the distribution which is used in place of the 

original z-scores.  In the context of our z-scores, the sum of the squared Winsorised z-scores 

(𝑍𝑖) is divided by the number of trusts to obtain φ:  

𝜙 =
∑ 𝑍𝑖

2𝑛
𝑖=1

𝑛
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A logic step is then applied, and if 𝑛 ∗ 𝜙 < (𝑛 − 1) we assume no evidence of overdispersion.  

If there is no evidence of overdispersion, unadjusted z-scores can be use. 

If we detect overdispersion, we then estimate the between-trust standard deviation 𝝉𝟐, and 

add this to 𝑠2 when calculating our z-scores or associated funnel plot limits.  The 𝜏2 can be 

calculated as follows: 

 

𝜏2 =
(𝑛𝜙 − (𝑛 − 1))

∑ 𝑤𝑖 − (∑ 𝑤𝑖
2/ ∑ 𝑤𝑖

𝑛
𝑖=1 )𝑛

𝑖=1
𝑛
𝑖=1

 

 

Where 𝑤𝑖 = 1/𝑆𝑖
2 and 𝑖 represents a particular trust, with 𝑆𝑖  the within trust standard 

deviation.  The adjusted z-score is then calculated as: 

𝑍𝑎𝑑𝑗 =
(𝑌 − 𝑇)

√(𝑆2 + 𝜏2)
 

The adjusted z-scores can be used for comparison between organisations, but a more 

desirable approach might be to substitute the 𝜏2 with the estimated variance from the 

random-effect models directly, rather than as a post-hoc calculation. 

The Summary Hospital-level Mortality Indicator (SHMI) (Campbell et al., 2012) published by 

NHS Digital uses this additive overdispersion approach to expand the limits of the SHMI funnel 

plot (Clinical Indicators Team, 2016b).  Although based on the Spiegelhalter et al. techniques, 

the SHMI limit calculation varies in two ways: 

• SHMI uses a log transformation rather than a square root transformation for 

calculating the z-score.  Spiegelhalter et al.discuss this in the appendix of their RSS 

paper, deeming it too severe a correction to the z-scores leaving a long negative tail 

(Spiegelhalter et al., 2012b). 

• SHMI process does not use Winsorisation per se, but rather truncates the distribution.  

On enquiry with NHS Digital, they referenced a single paragraph in the appendix of 

(Spiegelhalter, 2005b) that suggest truncation as a possible alternative.  This may be 

easier to calculate in NHSD’s database systems, and as they do not present z-scores, it 

is not necessarily an issue to remove organisations. 
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8.3.4 Time series monitoring using ‘cusum’ charts. 

Changes in mortality ratios, and other indicators may occur over time, but it is challenging to 

distinguish from fluctuations in case mix and changes in the number of patients seen.  The 

CQC/Spiegelhalter methods approach this by using a time-based control chart called a risk-

adjusted cumulative summary (CUSUM) plot (Care Quality Commission (CQC), 2014b, Grigg et 

al., 2003, Spiegelhalter et al., 2012c). 

CUSUMs are sequential hypothesis tests, testing evidence for observations occurring at a 

reference rate (Null hypothesis, 𝐻0), against evidence for a change in rate.  They are commonly 

use log-likelihood ratios to form weights that are then cumulatively summed, of the form: 

𝐶0 = 0 

𝐶𝑡 = max{ 𝐶𝑡−1 +  𝑤𝑡 , 0}, 

Where C = is the cusum value, starting from 0, 𝐶𝑡 the cusum value at observation/timepoint t, 

and 𝑤𝑡 the cusum weight (log-likelihood ratio) for observation/timepoint t. 

The cusum, used in this way, is usually started from zero and is restricted to be positive, to 

prevent ‘inertia’ (Woodall and Mahmoud, 2005) or building up ‘credit’ for a run of good 

performance (Grigg and Spiegelhalter, 2008).  The plot can, however be calibrated to detect 

increases in the rate by setting the 𝛿2 parameter, discussed below. 

A trigger value (h) is set for the plot, in a manner similar to the control limits discussed above.  

The trigger value is set for an acceptable limit to identify special-cause variation.  In this case 

the trigger is usually pre-selected for a given false-positive rate.  If a cusum plot reaches its 

trigger value, monitoring is expected to stop and remedial action taken (Grigg et al., 2003).  In 

reality, the monitoring usually continues whilst remedial action is taken but the chart is reset, 

usually to zero, to avoid continual triggers. 

The cusum is, however, known to trigger over time even with no signal.  An important metric 

used to measure this is average-run-length (ARL), or the amount of data points before a false 

trigger.  This in-control ARL can be used to calculate the time to alarm.  The cusum has been 

shown to have the fastest time to alert, amongst comparable charting techniques, when a rate 

is out-of-control (Moustakides, 1986).  The false positive rate of such charts will vary between 

groups/hospitals when using a fixed trigger value (Tian et al., 2015).  Simulation of many 

cusums under the same conditions allow calculation of an observed false alarm rate and is a 

valid method for setting appropriate triggers (Bottle and Aylin, 2011).  This method is 

computationally intensive and has led to the use of an approximation, demonstrated in the 
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paper, that is used in preference for Imperial College’s mortality outlier monitoring (confirmed 

by personal communication with Dr Bottle, November 2018). 

Grigg and Spiegelhalter, showed how to convert the ARL into a probability of false alarm that 

can be applied to general normally distributed cusum plots, and an approximation that can be 

used to set a desired false alarm rate (Grigg and Spiegelhalter, 2008).  This was described as a 

marginal model over normally distributed z-scores in the context of mortality indicators and 

can be interpreted as the average false alarm rate across all units in monitoring.  This approach 

is more feasible from a national monitoring perspective, given the use of z-scoring described 

above.  It can also be adapted to factor cusums across different organisations over time. 

Lucas and Crozier proposed an alternative set-up to the cusum chart, with a ‘Fast Initial 

Response’ (FIR) cusum (Lucas and Crosier, 1982).  Under the FIR schema, the start value is half 

of the trigger value, and resets to half the trigger value rather than to zero.  Lucas and Crozier 

suggest that this representation does not affect in-control cusums, as they will reduce to zero, 

but out-of-control charts will trigger more quickly.  This approach has not been applied to NRLS 

models, as it makes the assumption that the process is out-of-control at the start of the run, 

and this is as unknown for NRLS models.  The reset to half has, however, been adopted in 

Imperial College’s mortality monitoring scheme that sends data to the CQC (Bottle and Aylin, 

2008, Bottle and Aylin, 2011), and they have described it as putting an organisation ‘on 

probation’ after an alert.  

 

The CQC’s published method for cusums uses a similar structure to the cross-sectional 

approach detailed above, with two sources of variation.  In the context of the z-scores and 

funnel plots above, σ represents the within organisation standard deviation and τ the between 

organisation standard deviation.  Cusums are not cross-sectional, but longitudinal, occurring 

overtime.  They are therefore modelled in a similar manner, where σ is the within period 

standard deviation and τ is the between period standard deviation. 

The cusum is formulated from hypothesis tests where the null hypothesis is that the local 

mean (𝜃𝑘) of a z-score is in the upper part of its probability distribution (Care Quality 

Commission (CQC), 2014b): 

𝐻𝑜:   𝜃𝑘 =  𝛾1𝜏 , 

Where 𝛾1 is a tolerance factor for the mean, that is commonly set to 0.5, and 𝜏 is the same 

standard deviation calculated in the additive model described above.  It is therefore allowing 
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half of the ‘between period’ standard deviation around zero as a ‘null range’ for the local 

mean.  The test for the alternative hypothesis is: 

𝐻1:    𝜃𝑘 =  𝛾1𝜏 +  𝛾2𝜎, 

Where 𝛾2 is the difference in log-likelihood ratios deemed ‘out of control.’  𝜎 is the within-

organisation standard deviation, we are thus testing for a 𝛾2 multiple of the local standard 

deviation, given a tolerance of half the between-organisation standard deviation. 

The z-scores are then further transformed to normal deviated under the null hypothesis using: 

𝑧𝑘𝑡
∗ =  

𝑧𝑘𝑡 − 𝛾1𝜏

𝜎
 

With a corresponding change in the hypothesis test to: 

𝐻0 :    𝜃𝑘
∗ =  0 

𝐻1 :    𝜃𝑘
∗ =  𝛿 

Where 𝛿 =  𝛾2 and 𝛿 is commonly set to 2.  This corresponds to a z-score of two, a doubling in 

the odds of event in the period, and an approximated 95% confidence interval around the 

national mean (or, indeed, the 2𝜎 limit of a funnel plot). 

 

8.4 CQC-style techniques applied to NRLS data models. 

CQC techniques were applied to standardised incident reporting ratios (SIRRs), calculated using 

the outputs of incident reporting and DS models, as: 

𝑆𝐼𝑅𝑅 =
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑟𝑒𝑝𝑜𝑟𝑡𝑠
 

 

8.4.1 Marginal vs. conditional 

Models developed from GLMM & GAMs can be used to predict expected numbers of incident 

reports as either: 

• Marginal: Predicting without the random-effects estimates allows the model to predict 

the global ‘average’ values based on the predictor variables. 

• Conditional:  Predicting expected values including the random-effects estimates for 

cluster (model is ‘conditional’ on the random-effects) adds additional adjustments for 

the clustered units. 
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Both marginal and conditional values have been extracted from models, but the z-scoring and 

CQC processes have been applied to marginal predictions.  The rationale for this is two-fold: 

• Random-intercept models were used to account for correlations due to clusters when 

estimating the effects of predators, aiming to remove average cluster effects (local 

differences in intercept) from the model.  Marginal model predictions should better 

represent the global model effects, without allowance for the clusters, and are a ‘less 

biased’ prediction based on the exposure factors.  In the NRLS modes we can predict 

the number of incident reports as expected for the average hospital, based on 

casemix.  Conditional estimates would allow all organisations to deviate from this 

national model and absorb some of the variation between trusts. 

• The additive random-effects model described above calculates a random-effect 

estimate for the between-organisation variation.  Applying this to conditional 

estimates is nonsensical, as they are both attempting to adjust for the same effect, 

therefore counting the random-effect twice. 

Conditional estimates in models provide additional information for within-hospital monitoring, 

answering the question: ‘Are any data points high or low despite adjustments for the average 

effects of an organisation’s culture?’  These estimates are not presented as funnel plots, but 

conditional SIRRs can be compared with marginal SIRRs in scatter plots with an example in 

Chapter 10/Appendix B. 

Poisson versus NB2 models in a conditional setting present slightly differently.  The Poisson 

model showed residual overdispersion despite estimating the random-intercept.  This 

represents the residual deviance in the model that is not explained by clustering, and may be 

related to aggregation, missing covariates etc.  It presents as a wider spread within a funnel 

plot that, following the additive method above, would give a 𝜑 >1 and require adjustment.  

This is nonsensical, as the effects that the additive model are detecting have already been 

adjusted.  This is not the case with the NB2 model, as the residual variance is scaled out of the 

model.  Poisson and NB2 models were therefore both examined in case the NB2 model added 

obvious bias when visualising with a funnel plot. 

Random Forest models do not include random-effects and so, in this sense, conditional and 

marginal models equate to the same thing.  Model predictions were therefore presented as a 

single output. 
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8.4.2  NRLS results 

8.4.2.1 Z-score results for 2015/16 GLMM, GAM and RF models 

Transformations for indicators prior to z-scoring, described above, were applied to the data 

and comparison plots of the CQC method (square-root and Winsorisation) and SHMI (natural 

logarithm and truncation) were plotted and can be seen in Figure 8.4.  These plots suggest a 

pattern that was conserved across all the models fitted.  It appears that both transformations 

to z-scores are similar in shape with differences most notable in the Winsorisation/truncation 

stages (excluding 28 values each time for the SHMI method due to the truncation).  The final 

adjusted z-scores were similar in shape for both transformations, but the distribution of the 

SHMI/log-transformed z-scores showed more data in the lower tail of the distribution.  When 

combined with the higher number of outliers generated by the CQC method, it may suggest 

that the CQC method is under-adjusting the final z-scores, as many are larger than the 

expected range (see Appendix C.6 for tables).  Spiegelhalter et at (2012c) suggested the log-

transformation may be a ‘bit extreme,’ but the evidence for NRLS models suggests it may be 

less extreme in a sense (Figure 8.4) and a more suitable transformation than the square-

root/Winsorisation method.  The log-transformation also appears to have some precedent in 

the literature (Talbot et al., 2011, Hosmer and Lemeshow, 1995), and the SHMI method has 

therefore been adopted for funnel plot reporting on these models.  The difference, however, is 

likely to be due to denominators.  The SHMI method is calculating the φ based on only 80% of 

the organisations that the CQC method is (despite the extreme values being Winsorised), and 

the average squared z-scores in both techniques will bring about different effects.  The CQC 

method appears to estimate a larger 𝜏2, but the constraint on the z-scores during estimation 

appears to bias the calculation when applied to the full dataset.  There also appears to be a 

unit-size dynamic, when compared with figure 8.5.  SHMI limits are wider than CQC limits for 

DS incidents, but narrower for all incident models. 

The Winsorisation, 10% at both ends of the range, is arbitrary.  This threshold appears to be in 

general use for the SHMI truncation and CQC Winsorisation, but this threshold could also be 

altered to allow more suitable estimation.  It is, however, a difficult balance between 

characterising heterogeneity for adjustment, and censoring it if it is too extreme. 

According to CQC guidance, the adjusted z-scores should be calculated based on inflating the 

Winsorized values.  This is somewhat nonsensical, as it standardises all organisations in the 

upper and lower Winsorisation band.  This very likely to be a typo in the CQC guidance, as it is 

followed by a correct calculation using the raw z-score, and the academic publication from 

Spiegelhalter et al.(2012c) uses the raw z-score.  SHMI guidance does discuss the calculation of 

𝜏2, but does not go as far as calculating adjusted z-scores.  This has been done manually on the 
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log-transformed unadjusted z-scores, as using the truncated scores drops 20% of the data and, 

again, is nonsensical.  It is the most extreme values we are trying to identify, so dropping them 

is counterintuitive. 

A full list of z-score tables is included in Appendix C.6 for reference, generating too many 

outliers to list here when using thresholds of ±3.  The use of z-scores here is less definite than 

the SPC principles of funnel plots below.  Z-scores are continuous, and starting at the most 

extreme results, we can always choose the next successive score to investigate.  In a sense, 

this contradicts the principles espoused by Goldstein and Spiegelhalter (1996) and Lilford et al. 

(2004), but it is also a pragmatic approach that starts with the most extreme reporting 

behaviour after casemix-adjustment.  Care should be taken, however, not to present them as 

league tables that encourage comparisons between organisation, rather than against the 

national average.  In this sense, funnel plots may be preferred, but could be considered to 

yield less information than z-scores.  

 

 

 

 

 

 

At the request of NHS Improvement, the electronic version of this thesis censors 

the names of Trusts to guard against misinterpretation of experimental statistics.  

Organisation names are obscured with black boxes : 

Please contact the author, or UCL library, to view an uncensored copy. 
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Figure 8.4  Distribution of z-score transformation and adjustment methods 
CQC/Spiegelhalter technique (blue) and SHMI technique (red). 
Top row relates to all incident Poisson models and bottom row related to Poisson DS incident model. 
Left column is the transformed z-score, middle column is the Winsorised/truncated transformed z-score, and right column is the final adjusted z-score.
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8.4.2.2 Funnel Plots 

Funnel plot were calculated following the methods described above.  Overdispersion was 

present in all models, as known from the model fitting process, but also confirmed via the φ 

calculation.  The distribution of z-scores discussed suggested using the ‘SHMI’ method of log 

transformation and truncation for calculating the 𝜏2 value for inflating the funnel limits, but 

both techniques were examined and can be summarized on the Poisson GLMM data (for all 

incident reports) in figure8.5. 

 

Figure 8.5  Comparison of overdispersion adjusted funnel plot methods 

CQC/Spiegelhalter methods (square-root and Winsorisation) versus SHMI method (log and truncated).  

Upper plot represents all incidents and lower represents DS incident models.  
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Funnels calculated using the SHMI methodology appear to be more conservative than those 

based on the CQC/Spiegelhalter technique, on the all incident data, but the opposite is true for 

DS models.  Given that we do not know what the ‘true’ answer is, it is appear heuristically 

appropriate to select the log transformation and truncation approach, as it is slightly more 

conservative for larger counts, but more permissive for counts based on very small numbers 

(DS models) where we would expect chance to play a larger role.  An alternative method for 

future development of funnel plot might be to consider the false discovery rate, as suggested 

by Jones et al. (2008). 

 

The SHMI-derived method was then applied to the other models for total incidents (figure 8.6 

and 8.7) and DS incidents (figure 8.8).  Figures 8.6 and 8.7 suggest a degree of consistency 

between the Poisson GLMM, NB2 GLMM, NB2 GAM and NB1 GAMs.  The Poisson GAM 

appeared to have accentuated outliers, particularly for organizations: RRK (University Hospitals 

Birmingham) and R1K (North West London University Healthcare).  Observed incident reports 

numbers (numerator) are identical across models so differences in positions of points is due to 

differences the predicted values (‘expected’) between models (denominator).  In the case of 

RRK, the Poisson GAM appears to underestimate the expected number of incidents compared 

with other models, leading to a much higher standardised ratio. 

NB1 and Random Forest models for all incidents (Figure 8.7) showed different patterns to 

other plots.  NB1 suggested a larger 𝜏2 value and inflated the control limits.  Random Forest 

methods showed the opposite, with points clustered more tightly and a lower 𝜏2, leading to 

tighter control limits.  Random Forests are not specifically modelling the clustering/random-

effects elements, but merely fitting on the fixed effects.  The decorrelating properties of 

random forest will likely reduce these effects, but the extent of this is unknown, and models 

may be biased. 
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Figure 8.6  Standardised Incident Reporting Ratio funnel plots for total incident report models 
Each plot represents a different modelling technique or distribution, denoted by the plot title.  Control limits are 2σ (purple) and 3σ (yellow), with control limits expanded to 
adjusted for overdispersion, as per the methods described in (Campbell et al., 2012, Clinical Indicators Team, 2016b)  
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Figure 8.7  Standardised Incident Reporting Ratio funnel plots for total incident report models (2) 

Each plot represents a different modelling technique or distribution, denoted by the plot title.  Control limits are 2σ (purple) and 3σ (yellow), with control limits 

expanded to adjusted for overdispersion, as per the methods described in (Campbell et al., 2012, Clinical Indicators Team, 2016b) 
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Figure 8.8  Standardised Incident Reporting Ratio funnel plots for death or severe harm NRLS incident report models 
Each plot represents a different modelling technique or distribution, denoted by the plot title.  Control limits are 2σ (purple) and 3σ (yellow), with control limits 

expanded to adjusted for overdispersion, as per the methods described in (Campbell et al., 2012, Clinical Indicators Team, 2016b) 
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8.4.2.2 Outlier organisations 

A consistent group of outlier organisations was seen amongst most of the models, for both ‘all 

incidents’ or ‘DS incidents’ (table 8.1).  These organisations are displaying the most variation in 

incident reporting, given their casemix/exposure.  These organisations would be the first ‘port 

of call’ for a regulator to investigate.  The organisations that are outliers in some models need 

a degree of validation and discussion with NHSI, and at the time of writing, have been sent to 

NHSI for comments.  The degree of support for these organisations being labelled as outliers, 

supported by NHSI’s other work streams, could act as further validation for model choice, and 

reduce down to single models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Poisson 

GLMM

NB1 

GLMM

NB2 

GLMM

Poisson 

GAM

NB2 

GAM

Random 

Forest Total

Full 

Poisson 

DS

Full NB2 

DS

Poisson 

GLMM 

(Param 1)

NB1 

GLMM 

(Param 1)

NB1 

GLMM 

(Param 2) Total

R1F - ISLE OF WIGHT NHS TRUST 1 1 0

R1K - LONDON NORTH WEST UNIVERSITY HEALTHCARE NHS TRUST 1 1 0

RA3 - WESTON AREA HEALTH NHS TRUST 1 1 1 1 1 2

RAE - BRADFORD TEACHING HOSPITALS NHS FOUNDATION TRUST 0 1 1 1 1 1 5

RAL - ROYAL FREE LONDON NHS FOUNDATION TRUST 1 1 0

RBK - WALSALL HEALTHCARE NHS TRUST 1 1 1 1 4 0

RCD - HARROGATE AND DISTRICT NHS FOUNDATION TRUST 1 1 0

RE9 - SOUTH TYNESIDE NHS FOUNDATION TRUST 1 1 1 3 0

REM - AINTREE UNIVERSITY HOSPITAL NHS FOUNDATION TRUST 1 1 1 3 0

RGN - NORTH WEST ANGLIA NHS FOUNDATION TRUST 1 1 1 1 1 5 0

RGP - JAMES PAGET UNIVERSITY HOSPITALS NHS FOUNDATION TRUST 0 1 1 1 1 4

RGR - WEST SUFFOLK NHS FOUNDATION TRUST 1 1 0

RH8 - ROYAL DEVON AND EXETER NHS FOUNDATION TRUST 0 0

RHM - UNIVERSITY HOSPITAL SOUTHAMPTON NHS FOUNDATION TRUST 0 1 1 1 1 1 5

RJ1 - GUY'S AND ST THOMAS' NHS FOUNDATION TRUST 1 1 0

RJ2 - LEWISHAM AND GREENWICH NHS TRUST 0 1 1 2

RJ6 - CROYDON HEALTH SERVICES NHS TRUST 1 1 2 0

RJC - SOUTH WARWICKSHIRE NHS FOUNDATION TRUST 0 1 1 1 1 1 5

RJN - EAST CHESHIRE NHS TRUST 1 1 1 1 1 1 6 1 1 2

RJR - COUNTESS OF CHESTER HOSPITAL NHS FOUNDATION TRUST 1 1 0

RLN - CITY HOSPITALS SUNDERLAND NHS FOUNDATION TRUST 1 1 1 1 4 0

RPA - MEDWAY NHS FOUNDATION TRUST 1 1 1 3 0

RQ8 - MID ESSEX HOSPITAL SERVICES NHS TRUST 1 1 2 0

RQM - CHELSEA AND WESTMINSTER HOSPITAL NHS FOUNDATION TRUST 1 1 2 1 0

RRK - UNIVERSITY HOSPITALS BIRMINGHAM NHS FOUNDATION TRUST 1 1 1 1 4 0

RVJ - NORTH BRISTOL NHS TRUST 1 1 0

RWD - UNITED LINCOLNSHIRE HOSPITALS NHS TRUST 0 1 1 1 1 1 5

RWF - MAIDSTONE AND TUNBRIDGE WELLS NHS TRUST 1 1 0

RWJ - STOCKPORT NHS FOUNDATION TRUST 1 1 0

RJL - NORTHERN LINCOLNSHIRE AND GOOLE NHS FOUNDATION TRUST 1 1

RW6 - PENNINE ACUTE HOSPITALS NHS TRUST 1 1

RXL - BLACKPOOL TEACHING HOSPITALS NHS FOUNDATION TRUST 1 1 1 3 0

Total 6 10 5 12 8 11 - 6 7 8 7 6 -

Trust Name

All incident models DS incident models

Outliers are based on 3σ limits using adjustments for overdispersion based on, (Campbell et al., 2012, 
Clinical Indicators Team, 2016b) 

Table 8.1  Funnel plot outlier organisations for 'All incidents' and death or sever harm (DS) 
incident models 
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In cases where organisations are consistent outliers across several models, we can assume that 

they are clear outliers, less affected by small shifts in the control limits between different 

modelling techniques.  They include: 

• Total Incident report models: 

o Walsall Healthcare Trust 

o North West Anglia Healthcare NHS FT 

o East Cheshire NHS Trust 

o City Hospital Sunderland NHS FT 

o University Hospital Birmingham NHS FT 

• Death or Severe Harm Incident reports: 

o Bradford Teaching Hospitals NHS FT 

o James Paget University Hospital NHS FT 

o University Hospital Southampton NHS FT 

o South Warwickshire NHS FT 

o United Lincolnshire Hospitals NHS FT 

Organisations that are single outliers in a given model may represent quirks of particular 

techniques/assumptions and could be used with other external data for validating model 

choice.  This validation, again, requires input from regulators to assess.  The number of outliers 

identified by models does not appear to be wholly consistent with the use of GLMMs, GAMS or 

RFs, nor specific quirks of distributions such as Poisson of NB2.  E.g. NB2 GLMMs and NB2 

GAMs do not share all outliers. 

The manner in which these funnel plots are interpreted is of importance.  Incident reporting 

rate is not an orthogonal outcome.  We do not know if an organisation with a high reporting 

rates has a comparatively high incidence of incidents, or is simply more aware/mature in its 

reporting culture and better at recording and learning from error.  The funnel plots, therefore, 

do not show ‘good’ or ‘bad’ organisations, but show organisations with systematically different 

incident reporting cultures that are not explained by natural variation or expected effects of 

exposure.  Being an outlier organisation should trigger examination of the data submitted to 

NRLS, local recording of practices, and whether there is anything to be learnt from an 

organisation’s incident reports.  They may have issues to address locally, or show behaviours 

that might benefit the wider system. 
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8.4.2.3 CUSUMs outputs 

Cusum outputs are presented in full in Appendix C.7.  Both conditional and marginal cusums 

were assessed for inclusion, but marginal plots were chosen as they better fit the concept of a 

national exposure effects for constructing the additive random-effects model described above.  

Conditional predictions gave more alerts for all organisations, due to the reduced variance 

from the conditional means in this case.  This works against the estimation of τ in the cusum 

calculations detailed in section 8.3.4, as variance assumptions are different between points.  It 

is also somewhat contradictory, as they are both predicting values using the modelled random-

intercept, but also attempting to estimate a further random-intercept in τ, i.e. they are 

estimating the same effect.  A point for future research would be to examine whether 

conditional models using unadjusted z-scores based on conditional predictions, without 

estimating τ, give similar results.  This may provide some measure as to whether the 

estimation of τ fits with the model estimated random-intercepts well. 

All organisations showed some Cusum triggers, depending on the model used.  This suggests 

that the variation from one month to the next is more extreme than in many other indicators 

used by CQC.  A possible solution to this is to increase the threshold delta value to 3 instead of 

2, corresponding to a tripling in the odds of death rather than a doubling.  To do so would also 

require shifting of the Cusum trigger value, according to the methods described by Grigg and 

Spiegelhalter (Grigg and Spiegelhalter, 2008), to maintain a false discovery rate of 0.1%.  This is 

an area for future development with these models.  It has not been possible within the 

timeframe of this thesis but is suggested as the next stage of this work, as it may make SIRR 

cusums more useful to organisations and regulators, only focusing on extremely different 

reporting rates or extreme changes. 

Figure 8.9 illustrates a set of Cusum plots for the organisation with provider code ‘RYX’ 

(Buckinghamshire Healthcare NHS Trust), using the NB2 GAM total incidents model.  This 

organisation was selected as it demonstrated high rates at the beginning of the monitoring 

period, resulting into two early triggers for the ‘increasing’ Cusum.  It then returned to an ‘in 

control’ state, before showing a significant decrease in reporting, triggering for a decrease in 

month 11.  The example of Buckinghamshire is a useful illustration of the different uses for 

funnel plots and Cusums.  Buckinghamshire is not an outlier organisation on the funnel plots, 

as their high and low rates average out over the year and suggest they are in control.  As a 

cross-sectional cut of the data, this is true, and the use of a funnel plot is therefore to identify 

which organisations are systematically different compared with expected behaviour.  The 

Cusum plots show the change in reporting rates from higher to lower than expected.  This 
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might be most useful for an organisation monitoring its own behaviour, or for regulators to 

identify shifts in reporting rates. 

 

Figure 8.9  Illustrative CUSUM charts for Standardised Incident Reporting Ratios 
(SIRRs) 

Plots are calculated using predicted values from ‘all incident’ Poisson GLMM models, for ‘RXH’ – 
Buckinghamshire Healthcare Trusts (green).  Y-axis is the cumulative log-likelihood ratio (Cusum value) 
that is reset after a trigger (red), dictated by present trigger values (yellow). 

 

Organisations with notably different reporting behaviour triggered regularly using the CUSUM 

techniques presented above.  Organisations that triggered at every month in the monitoring 

period were: 

• R1F - ISLE OF WIGHT NHS TRUST 

• R1K - LONDON NORTH WEST UNIVERSITY HEALTHCARE NHS TRUST 

• RAL - ROYAL FREE LONDON NHS FOUNDATION TRUST 

• RBK - WALSALL HEALTHCARE NHS TRUST 

• RE9 - SOUTH TYNESIDE NHS FOUNDATION TRUST 

• REM - AINTREE UNIVERSITY HOSPITAL NHS FOUNDATION TRUST 

• RF4 - BARKING, HAVERING AND REDBRIDGE UNIVERSITY HOSPITALS NHS TRUST 

• RGN - NORTH WEST ANGLIA NHS FOUNDATION TRUST 

• RGR - WEST SUFFOLK NHS FOUNDATION TRUST 

• RHQ - SHEFFIELD TEACHING HOSPITALS NHS FOUNDATION TRUST 

• RJ6 - CROYDON HEALTH SERVICES NHS TRUST 

• RJN - EAST CHESHIRE NHS TRUST 

• RKB - UNIVERSITY HOSPITALS COVENTRY AND WARWICKSHIRE NHS TRUST 
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• RLN - CITY HOSPITALS SUNDERLAND NHS FOUNDATION TRUST 

• RQ8 - MID ESSEX HOSPITAL SERVICES NHS TRUST 

• RRK - UNIVERSITY HOSPITALS BIRMINGHAM NHS FOUNDATION TRUST 

• RTD - THE NEWCASTLE UPON TYNE HOSPITALS NHS FOUNDATION TRUST 

• RVJ - NORTH BRISTOL NHS TRUST 

• RWF - MAIDSTONE AND TUNBRIDGE WELLS NHS TRUST 

• RXH - BRIGHTON AND SUSSEX UNIVERSITY HOSPITALS NHS TRUST 

• RXL - BLACKPOOL TEACHING HOSPITALS NHS FOUNDATION TRUST 

• RXN - LANCASHIRE TEACHING HOSPITALS NHS FOUNDATION TRUST 
 

This constant triggering effect illustrates consistent reporting behaviour above or below the 

national reporting rates, rather than changes in behaviour.  It also serves to highlight the 

problem with using cusums in this way: we are assuming the national average is ‘correct.’  The 

‘correct’ value for a reporting rate is unknown, and it may not be possible to frame reporting 

rates in such a way.  For the organisations above, such techniques will do little to help their 

monitoring, nor will they allow regulators to notice variation at these organisations.  The 

cusums are ‘saturated’ in a sense and no longer sensitive to changes. 

 

Death and severe harm incidents are, thankfully, rare events.  This means that their prediction 

is challenging and does not generalise to the normal distribution particularly well.  Given the 

low numbers, an approach based on cusums of z-scores is less helpful (Neuburger et al., 2017).  

The CQC guidance has also suggested an alternative parameterisation of the cusum based on 

Poison or Negative Binomial distributions (Care Quality Commission (CQC), 2014b), but their 

technique has been proposed for monitoring of raw counts and is not specifically targeted at 

standardised ratios.  This approach may hold potential for future work, as it is currently used 

by CQC for monitoring ‘Never Events,’ but a simulation study would be required to set 

appropriate limits based on false discover rates. 

 

Another commonly proposed control chart for rare events is the g-chart (Morton et al., 2013, 

Neuburger et al., 2017).  This focusses on the time between events, rather than the event 

themselves.  This is not suitable for reporting at SIRR-level as our aggregation is over months, 

with small counts in most months.  It may, however, be a useful tool for monitoring within 

trust level. 

A further alternative option is to consider the proportion of incident reports that are death or 

severe.  This could be rendered as a p-chart, or other common control charts for local 

monitoring.  This technique was examined for a number of hospitals, and due to the relative 
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stability of the incidents figure versus the very low count of the death/severe count, it 

amounted to little more than a scale change.  Data points remained in similar positions, with 

the same effects of small numbers in this case.  For an in-depth examination of control 

charting and analysis techniques for incident reporting, see the thesis by Deng (2013). 

Morton et al.(2013) suggest an alternative arrangement where charts can be plotted with 

smoothers based on GAMs (see Chapter 5).  The confidence interval around the smooth 

therefore represent the predicted mean even if this changes over time, and can be used in a 

manner similar to a control chart to identify aberrant data points, but confidence intervals for 

small events in the presence of overdispersion are likely to be very wide. 

 

8.5  Conclusions 

The task of monitoring NHS organisations requires intelligence and information on which to 

judge or measure them.  Methods have developed in this area to allow the comparison of 

organisations across multiple indicators, using both cross-sectional techniques and time-series 

methods.  NHSI and the CQC currently produce counts and simple reporting rate indicators 

that are not casemix-adjusted.  This chapter has answered aim 4 of this project by 

demonstrating that the models developed in preceding chapters can be used to derive a 

casemix-adjusted standardised incident reporting ratio (SIRR).  These techniques can then be 

used appropriately by casting them in the same manner that CQC monitor many indicators:  

transforming to z-scores, using an additive random-effects adjustment, plotting indicators 

using statistical process control techniques for cross-sectional comparisons (funnel plots) and 

monitoring timeseries (CUSUM). 

Incident reporting models have several major problems that complicate this application:  they 

are highly overdispersed for total incident models, DS models are based on very small numbers 

incident reports and the CQC’s default transformation for standardised ratios did not perform 

as well as an alternative method. 

Adjusted Z-scoring, and assessment of overdispersion based on this was susceptible to the 

choice of transformation used, and whether the distributions were truncated or winsorized 

prior to assessment of φ.  A method using a log transformation and truncation of the 

distribution before assessment of phi was adopted, as it appeared better suited to the dataset.  

Adjusted z-scores concurred with the funnel plots for the most extreme organisations but 

provide further detail that could allow a less drastic dichotomization into ‘in control’ and ‘out 

of control’ if required. 
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Funnel plots are a useful visual method that is suitable to summarise the modelling period and 

identify systematic variation.  Given the current NRLS publication schedules, it would be 

appropriate to include funnel plots, an SIRR, and expected incident reports data with their 

current OPSIR. 

These methods of adjustment could, of course, be replaced with an assessment of φ directly 

from the models.  This could be substituted in to the construction of z-scores, or the variance 

components of multilevel model could be used in place of 𝜏2.  A further alternative would be, 

rather than using the techniques described above, organisations could be described in terms of 

their estimated random-intercept with a profiled confidence interval. 

Whilst CUSUM methods have been applied, and can be used to monitor changes in incident 

reporting rates, they are calibrated to a doubling in the odds of incident and a halving of the 

odds.  This threshold may be too low to be practically helpful given the residual overdispersion 

and the volatility of the indicator.  Higher thresholds may be more appropriate, but this may 

be an inherent problem with this indicator.  It may also suggest that this type of indicator, as it 

not orthogonal, is a poor fit for this type of monitoring method, as ‘in control’ may not be a 

definable state for organisations with notably different reporting culture.  A CUSUM that 

triggers every month is a blunt tool in this setting, and it is of little use. 

These indicators function as expected in development and testing, but the real utility of these 

indicators can only be known in practice for the regulator.  At the time of writing, the outputs 

of this work have been shared with NHSI, and received enthusiastically, but further work is yet 

to be agreed.  The next appropriate step would be to validate these indicators to see if outlier 

organisations do show any appreciable differences to others and whether there are learning 

themes in this process. This validation process could include: 

1. Quantitative comparisons:  An initial comparison to other indicators including staff 

survey results, pressure ulcers, safety thermometer data, staff sickness, measures of 

mortality, readmission, length-of-stay or other clinically coded 

incidents/misadventure, but particularly CQC inspection ratings.  Some of these 

indicators have been examined against incident reporting before, but not against more 

extensively standardised incident reporting indicators as developed in this project 

(Howell et al., 2015, Hutchinson et al., 2009). 

2. Qualitative review: Interview or survey-based methods could be used to provide 

stronger evidence for differences in reporting culture and validate apparent culture 

differences seen in models.  This could be used to compare culture at outlier 

organisations against others and identify learning from/for these organisations. 
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These methods must be found useful by regulators and NHS organisation, through this 

validation process, or they will add to the burden of NHS bureaucracy without facilitating 

learning.  The aim of these metrics is to avoid future patient harm through learning and 

defensive changes to NHS systems.  Any validation studies, or operational use of these 

indicators must resist any drive to create performance measures, as this will create perverse 

incentives for reporting, encourage gaming, or become blunt instruments used to penalize 

organisations (Lilford et al., 2004). 
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Chapter 9  Text mining models 

9.1 Introduction 

NRLS research, discussed in Chapter 2, has often suggested that the primary signal in the data 

set is buried within the free-text incident descriptions.  This requires manual reading to extract 

meaning.  Models built in previous chapters have focused on predicting incident reporting 

rates, but quantitative techniques may also be used to analyse free-text.  This chapter presents 

and additional analysis route, that does not build directly on models in chapters 4 – 7, to 

answer aim 3 of the thesis.  It examines simple analysis options for free-text in NRLS, presents 

visualisations of common words and their association with harm categories, and presents an 

application to predict levels of harm from free-text descriptions of incidents. 

 

9.2 Text mining techniques 

Text mining approaches have seen significant advances in the last 20 years, spurred on by 

substantial increases in processing power and the increased availability of data in the internet 

age.  Internet search data, online shopping, product reviews and social media posts have been 

major resources in this development (Stieglitz et al., 2018).  Text mining, or Natural Language 

Processing (NLP), have many methods but they can usually be categorised as: 

• Analysis of term frequency 

• Sentiment analysis, often associating positive or negative sentiment within text 

articles, such as tweets or customer reviews of products 

• Supervised or, more commonly, unsupervised learning techniques (latent variable 

models) for semantic analysis, such as topics modelling 

• ‘Word embedding’, commonly performed with neural networks, fragments of text are 

rendered as word vectors in high-dimensional models, with distance metrics, and 

graph theory used to draw out relationships. 

 

9. 3 Previous work with NRLS text 

Text-based modelling has been applied to NRLS, most notably as the topic of a PhD thesis by 

Bentham (2010).  This work focused on understanding the data and transforming them into an 

analysable format.  NRLS has been shown to have many abbreviations, medical jargon, 

colloquialisms (Bentham and Hand, 2012, Bentham and Hand, 2009).  Spelling mistakes are 
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common, such as 371 different ways of spelling clostridium difficile identified in one 

publication (Mayer et al., 2017).  In Bentham’s analysis, median word length for free-text 

descriptions was 20 characters, with the minimum being a single character.  This single 

character is almost meaningless, and may be a full stop or series of ‘x’ characters.  Error 

messages from software systems were also present, some of which appeared to be application 

code from a reporting system, such as: 

‘: span class=“Number “onmouseover=”doHover(this);” 

onMouseOut=“doUnHover(this);” 2208595N :b Number /b /span’  

This appears to be HTML code, and is likely to be from a broken online reporting form 

(Bentham and Hand, 2012).  There was no consistent time or data format within free-text 

sections.  The NRLS team apply cleaning rules to remove all identifiable information where 

they find it, but some may remain in the text, as no rule set anticipates everything.  Bentham 

showed that confusing terms and acronyms not only vary by institution, but may also be 

confused with other words, such as ‘NICE,’ the National Institute for Health and Care 

Excellence, will appear the same as the word ‘nice’ to the model. 

Bentham’s work rendered the text as a high-dimensional numeric vector space model (similar 

to the word-embedding principle described above).  This model did not consider word order or 

grammar but considered distances between vectors in the projected space.  Term-weighting 

was applied using the TF-IDF method, described below. 

The dimensionality of the model was then reduced using principle components analysis (PCA) 

and the PEAKER anomaly detection algorithm (Zhang and Hand, 2005) used to find clusters 

that were closer than expected in the feature space.  Several methods of validation were used, 

including expert clinical review, and using samples from the data comparing classifications.  

This model appears to have validated well against expert review and identified additional 

groups that were also of clinical interest, and were taken for further analysis by the review 

group. 

Different text-based techniques have been applied in exploratory analyses by the NIHR 

Imperial Patient Safety Translational Research Centre at Imperial College.  Imperial have 

conducted a work programme, commissioned by NHS England/NHS Improvement, to conduct 

NRLS analyses and review.  Text mining techniques have been used to predict the level of harm 

associated with incidents in the current system and for use in data entry of new incidents 

(Mayer et al., 2017).  These techniques have also been examined by data science company 

Mastodon C, who have advised Imperial on scaling text mining approaches for live data input 

forms, as well as the use of Elastic Search (Mastodon C, 2015).   Mastodon C have also been 
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involved in incident report analysis, and used LDA text mining models (see below) with an NHS 

Trust in London (Mastodon C, 2019) (details of this work provided through personal 

communication, with the citation referring to a case-study on their website). 

A recently published paper on the Arxiv platform (Cornell University, 1991), a repository for 

pre-prints that is moderated but not peer-reviewed takes a complex, and extensive, approach 

to neural network-based text embedding techniques.  It examines incident reporting data, 

based on paragraph vectors, and constructs a document similarity graph (Altuncu et al., 2018).  

They then apply Markov Stability community detection algorithm that is used to identify 

groups of records with consistent content at different resolutions.  Authors extract topics and 

relevant word descriptions from the groups and compare them against hand-coded categories, 

finding good consistency and additional clinical detail. 

9.4 Preparing text for modelling 

Free-text/unstructured data are not usually subject to the same validation rules and 

processing that categorical/structured data often are.  It may contain many quirks of collection 

methods, situation/context and deficiencies that make analysis inconsistent and difficult for 

machines to process in a uniform manner.  Language also contains ambiguities.  A sentence is 

composed of words, but the information conveyed by the sentence may be more or less than 

the words themselves. i.e. the ‘sum’ may be more than it’s ‘parts.’  Depending on the 

algorithms chosen for parsing text to a machine analysable form, we may receive different 

outputs (Manning and Schütze, 1999).  Various approaches exist to do this, but they commonly 

follow grammatic/language rules, or algorithmically learn a data representation from a large 

corpus. 

In order to prepare text in general, and specifically for the NRLS case, a number of preparation 

steps are commonly used (Silge and Robinson, 2017): 

• Tokenisation:  Text must be split into the units of analysis (‘tokens’) and represented 

in a structure.  This is commonly a split by word, but may also be by sentences, 

paragraphs, letters or other constructed n-grams such as word groups of 2 or 3.  

Models exist for this in R with text stored as a ‘corpus.’  A corpus is a database 

representation usually structured as a set of documents, with each document forming 

a separate entry, and words/tokens as elements of the document (Feinerer et al., 

2008).  An alternative, the ‘tidy data’ format, is commonly advocated in R.  It is more 

suitable for modern systems structured around ‘key-value’ pairs, where columns 

represent values and row represent items (Wickham, 2014).  This takes the form of 

data tables that are ‘long’ rather than ‘wide,’ and are usually more suitable for 
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database applications and high volumes of data.  A text mining framework based on 

tidy principles has been created in R (Silge and Robinson, 2016) and was used as the 

basis for models in this chapter.  Conversion to corpus/matrix format has been used 

for topic models that require this structure, but data can be converted to either format 

as required.  The tidy framework was adopted primarily for its consistency, 

interoperability and easy of manipulation between R packages and the SQL Server 

database backend hosting the data.  In this tidy format, two alternative tokenizations 

were examined: uni-grams (words) and ‘skip-grams’ (windows of word groups allowing 

words to be skipped).  The skip-grams were chosen to capture the association between 

medical terms in incident reports. E.g. ‘pressure ulcer’ carries more information than 

‘pressure.’  Each document was then represented as a single line per token with ID and 

harm keys.  Table 9.1 shows how the two tokenizations represented two example 

incident reports: 1: ‘Patient fell’ (Moderate Harm), and ‘2: Missed antibiotic dose’ (No 

Harm). 

 

Table 9.1  Example of ‘tidy’ tokenization and database representation 

 

• Lemmatization:  For inflected languages, lemmatization is the process of finding the 

root form of words.  English has a reasonably simple morphology and lemmatization is 

not necessarily needed (Dalianis, 2018).  This was not applied to NRLS due to the risk 

of transforming meaningful words.  

• Removing ‘stop words’:  In English and other languages, some words are used 

frequently as part of sentence structure without lending any meaning to a sentence, 

such as ‘the’ and ‘a’.  The high presence of these words may skew text-mining, and 

they are commonly removed (Wilbur and Sirotkin, 1992).  The exact words used in 

standard stop lists may vary slightly, but the Snowball project is a common source of 

lists (snowball.org) and was used in this project.  Additional stop words may be 

considered if they dominate without adding meaning. 

Token type Report ID Token value Harm

1 Patient Moderate

1 Fell Moderate

2 Missed No Harm

2 antibiotic No Harm

2 dose No Harm

1 Patient fell Moderate

2 Missed antibiotic No Harm

2 Missed dose No Harm

2 antibiotic dose No Harm

U
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-g
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m
s
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-g
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m
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• Cleaning:  Text may be ‘messy’ with use of numbers, other non-alpha numeric 

characters, possessive endings (`’s`) etc.  These values are used inconstantly and, if 

their frequency is high, may skew topic modelling or other analyses.  Numbers, non-

alpha numeric and possessive characters were removed from NRLS, but wordclouds 

were calculated at each stage and the effects can be visualised in figure 9.1. 

• Stemming:  Similar to the possessive endings mentioned above, words that share 

common routes (“stems”) may mean similar or the same thing and could be 

considered the same for topic generation.  Stemming can be considered a more radical 

approach than lemmatization, and may lead to stems that aren’t really words, 

requiring additional interpretation (Dalianis, 2018).  This is context specific, e.g. 

‘Nurse,’ ‘nurses,’ and ‘nursing’ may be considered the same, but ‘nursing’ may also 

refer to community nursing home, breast feeding, or protecting/carrying an injury.  

Stemming can be helpful in noisy datasets, but stemming algorithms may blunt some 

of the context specific information.  NRLS was stemmed using the standard porter 

algorithm (Porter, 1980) and results before and after are visible in the wordclouds in 

Figure 9.1. 

 

The cleaned, stemmed, tokenized data, with stop words and variants of ‘patient’ removed 

were used for topic modelling later in this chapter.  The first iteration of modelling did not 

remove single letter words, but second modelling run for words and skip-grams removed these 

words. 
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Figure 9.1  Wordclouds of top 100 words at different stages of cleaning 

Top row:  left: with no cleaning 
right: with cleaned data (numeric, punctuating and invalid characters) removed 

Bottom row:  left: stop-words removed, and data cleaned 
right: stop-words removed, data cleaned and stemmed 
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Figure 9.2  Wordclouds of top 100 words, after cleaning/ stemming, by harm level 
Top row: left: ‘No Harm’  right: ‘Low Harm’ 
Middle row: ‘Moderate Harm’  right: ‘Severe Harm’ 
Bottom row: ‘Death incidents’  
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9.5 Word frequency and document frequency 

The frequencies of words in documents is a common first measure in text modelling.  The 

frequencies of words within NRLS reports was analysed with the most common 100 words 

selected arbitrarily for visualisation.  In total, and in all harm categories, the word ‘patient’ and 

its abbreviations dominated.  The ‘wordclouds’ in the figures 9.1 and 9.2 represent the top 100 

words in their respective groups: Figure 9.1 at different stages of data cleaning, and Figure 9.2 

at different harm levels after cleaning and stemming. 

In the NRLS data in figure 9.1, the word ‘patient’ and its abbreviation ‘pt’ or ‘pts’ dominated.  

Term counts revealed that it was 16 times more prevalent than the next most common word.  

‘Patient’ was therefore removed from the dataset before topic modelling, with ‘pt’ and ‘pts’ 

also mapped to ‘patient,’ as it is unlikely to add value to models.  On removal, other terms 

came to the fore, often mentioning nursing and wards, with ‘cardiac’ and ‘arrest’ particularly 

visible for ‘death’ incidents.  Words related to pressure ulcers were common in low and 

moderate harm incidents, and words associated with beds, staffing and transfer were common 

in most levels of harm. 

Visualisation of wordclouds is a helpful first step, but there are no semantics or word 

association included in this representation of words.  After removing variants of patient and 

single-letter words, the wordclouds were recalculated using skip-grams with a window of three 

words, skipping up to one word.  Wordclouds were then rebuilt and presented in Figure 9.3.  

‘Pressure ulcers’ was dominant in all levels of harm except death.  This is an interesting finding, 

when summary statistics (for a much longer period) based on level 1 incident types in Chapter 

3, showed only 24 incidents categorised as pressure ulcers.  Blood pressure was common in 

lower harm incident classes, but dominant in death incidents, along with similar terms of blood 

products, low pressure and low blood.  A possible interpretation of this is that lower harm 

grades were more common in everyday hospital settings, and so the term ‘ward’ etc. was 

more frequent, but death incidents are rarer and may be more associated with trauma 

and/critical care.  The terms ‘left leg’ and ‘neuro obs’ were surprisingly common to most harm 

levels. 
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Figure 9.3  Wordclouds of top 100 bigrams, from ski-gram models, by harm level 
Top row: left: ‘No Harm’   right: ‘Low Harm’ 
Middle row: left: ‘Moderate Harm’, right: ‘Severe Harm’ 
Bottom row: ‘Death incidents’  
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A common next step in text mining, is to use word frequency in combination with document 

frequency to give more meaning to groupings.  Per document, we can consider the term 

frequency (TF) as examined in the wordclouds above.  Stop lists were discussed in section 9.4 

as a way of dealing with high occurrences of low value words like ‘the’ and ‘a’, but stop word 

lists may not necessarily be the best approach (Saif et al., 2014).  Stop words also have the 

draw back that, once removed, they cannot be used as part of search terms (Manning and 

Schütze, 1999).  A more sophisticated approach might have considered that these terms are 

more important in some documents than in others.  An alternative approach to this rigorous 

cleaning is to look at the frequency across documents, as well as within documents, and derive 

weights to adjust TF.  Zipf’s law suggest that we can compare the occurrence of words within 

documents with the frequency across the whole corpus (Manning and Schütze, 1999).  The 

‘inverse document frequency’ (IDF) (Spärck Jones, 1972) was the one of the first methods for 

this, that is still used in many applications (such as search engines) today.  Silge and Robinson 

(2017) paraphrased this as: “..the frequency that a word appears is inversely proportional to its 

rank”.  IDF decreases for commonly used words and increases for words that are rarely used 

across a set of documents.  TF and IDF can be combined to weight the term frequency by 

multiplying them together (Salton and McGill, 1986).  This is referred to as ‘TF-IDF;’ (or 

sometimes ‘tfidf’), and can be used to infer how important a word is to a document in a 

collection (Silge and Robinson, 2017). 

TF-IDF is best used in applications comparing relevance of words in particular documents, e.g. 

searching for documents related to a given word, e.g. spotting hospital acquired infections 

from important words in patient health records (Ehrentraut et al., 2018).  Though commonly 

used for word relevance measures, TF-IDF in isolation can be spurious over large corpora 

where terms appear once in a document, as their low TF can be boosted by high IDF and make 

words seem more important than they may be (Salton and Buckley, 1988).  Depending on an 

analyst’s requirements, this may be unhelpful.  TF-IDF also does not consider synonyms and 

miss-spellings that may limit its effectiveness, and use of a thesaurus may increase its 

effectiveness (Salton and Buckley, 1988).  In the case of NRLS, if we define our document as 

the incident report and terms as words, a single instance of a word may be highly rated in TF-

IDF calculations, and this does not necessarily lend any meaning to terms.  This is particularly 

problematic when spelling mistakes and errors create rare variants of words, and may even 

repeat within a document, but be rare in the corpus.  With a corpus as large as NRLS for a full 

year, it is impossible to inspect TDF-IF in enough depth, and it is better suited to situations with 

fewer documents, such as a review within a clinical service or within hospital.  It may be a 

reasonable statistic for small-scale targeted review, or for use as a weighting for a larger 
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system.  For NRLS analysis, it did not show potential for reducing data to topics of interest 

across the whole dataset. 

 

9.6 Topic models 

Although TF-IDF gives some meaning to terms across documents, it does little to reduce the 

information in a corpus to a manageable or interpretable amount (Blei et al., 2003).  Topic 

modelling has often used a form of term frequency, but has been combined with the more 

formal statistical modelling approach of Latent Semantic Indexing (LSI) (Deerwester et al., 

1990), that uses TF-IDF as a weighting.  LSI was criticised as lacking a reason for its use of TF-

IDF, when Bayesian methods and maximum likelihood could be used more directly on the text 

(Blei et al., 2003).  LSI was, in turn, developed to ‘probabilistic LSI,’ where terms are viewed as 

multinomial random variables drawn from a mixture distribution within documents, and can 

be considered a latent class model (Hofmann, 1999).  LSI was considered an important step in 

topic modelling, but its limitation was its lack of document-spanning structure. 

9.7 Latent Dirichlet Allocation (LDA) 

LDA (Blei et al., 2003) was proposed as a development from LSI and other earlier topic models, 

using the ‘bag of words’ paradigm, where word order and semantics were not considered.  

LDA is an unsupervised, generative probabilistic model, with a three-level structure of words, 

topics and documents (Cao et al., 2009).  Words are distributed within topic, and topics are 

distributed across documents.  The technique assumes that topics across documents, and 

terms within topics have a Dirichlet distribution, and word/token counts within documents are 

Poisson distributed (Wilson and Chew, 2010).   

A more formal definition was given by Wilson and Chew (2010), as ‘…The LDA algorithm 

models the D documents in a corpus as mixtures of K topics where each topic is in turn a 

distribution over W terms. Given θ, the matrix of mixing weights for topics within each 

document, and ϕ, the matrix of multinomial coefficients for each topic, we can use this 

formulation to describe a generative model for documents…’.  LDA can therefore be used to 

examine and associate the frequency of terms across documents and words to give meaning to 

topics. 

LDA was further enhanced by the use of Gibbs sampling rather than expectation maximization 

(EM or VEM as originally proposed), at the cost of computation time but some increase in 

precision (Griffiths and Steyvers, 2004). 
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LDA does not use term weighing, so we return to the argument for removing stop words to 

prevent bias, as all word are weighted the same in LDA.  Several alternatives have been 

suggested to further enhance LDA by include term weighting, including: TF-IDF (Truica et al., 

2016) despite Blei et al’s objections, and Point-wise mutual information (PMI) (Wilson and 

Chew, 2010).  The driving reason for these enhancements is to reduce the reliance on arbitrary 

stop words lists, but none of these approaches are currently accepted as ideal or easily 

available in common software implementations of LDA. 

 

The number of topics to derive from a given corpus is also an open question.  Several 

suggestions have been made, including using expectation maximisation, minimisation 

techniques focussed on topic distance (Cao et al., 2009), Kullback–Leibler divergence (Arun et 

al., 2010), or Gibbs sampling techniques over the posterior distribution of topics (Griffiths and 

Steyvers, 2004).  Topic selection appears to be a case of trial and error in analyses, guided by 

some of these approaches. 

 

9.7.1 Using LDA to predict incident harm-level 

The ‘tidy’ dataset used in the word frequency and data preparation stages was used as the 

basis for LDA, however, the common implementation in R’s topicmodels package (Grün 

and Hornik, 2011) requires a ‘Document-term’ matrix as an input rather than tidy data 

structures.  This is a matrix where rows represent each document, in this case ‘document’ was 

each incident, and the columns are counts of the tokens/words.  The tidytext package 

(Silge and Robinson, 2016) was used to convert between formats, after initial processing in tidy 

format. 

 

Number of topics, as described above, is somewhat arbitrary and topics numbers were 

examined between 5 and 200, with 4 main metrics provided using the ldatuning R package 

(Murzintcev, 2019).  Gibbs sampling approach was used to fit models due to its greater 

accuracy, and VEM fitting exceeded available memory on the largest available server. 

LDA models can be used to predict on two levels within a corpus: 

• β:  the matrix of per-topic-per-word probabilities.  These can be used to find the most 

predictive words within topics. 



228 
 

• γ: The matrix of per-document-per-topic probabilities.  These can be used to examine 

the probability a given topic represents a document. 

LDA topic outputs (γ) were then considered as predictors for a multinomial classification 

problem to predict the harm level of incident reports.  The main approaches for classification 

models were chosen as they are common machine learning methods for multinomial 

classification.  All techniques could be progressed into finer tuning of models, but simple 

options were used for initial runs to assess whether modelling was possible.  Modelling 

techniques used were: 

• Naïve Bayes Classifier (NBC):  A common first approach is using a Naïve Bayes 

classifier.  Naïve Bayes is a family of simple classifiers that are ‘naïve’ in the sense that 

they assume all measurements are independent between classes, ignoring higher 

order interactions.  ‘Bayes’ refers to deducing the class membership from the 

probability of belonging to each class using Bayes rule, based on the product of their 

univariate marginals (Hand and Yu, 2001).  NBC scales well to large datasets, but can 

be accused of over-simplification, can show poor performance around decision 

boundaries, and down weight rare classes in multinomial problems (Rennie et al., 

2003).  The ‘standard’ implementation in R uses the e1071 package (Dimitriadou et 

al., 2018) and this was used to fit NRLS LDA models. 

• Multinomial Logistic Regression:  Logistic regression modelled (GLMs) can be 

extended from binary classes to multinomial classes, where a reference level is set, 

and coefficients for each level of outcome represent difference from the reference 

level.  There are several ways to estimate this kind of regression, but a common R 

implementation is using a neural network with a single hidden layer, made available in 

the nnet package (Venables and Ripley, 2002), that was fitted to topic predictions. 

• Least Absolute Shrinkage and Selection Operator (LASSO) regression:  L1-norm 

regularized regression that constrains the absolute sums of the regression coefficients 

to be less than a fixed value, is a common in high dimensional settings.  This uses 

shrinkage to penalise model coefficients, as far as zero some in some cases, and 

therefore performs both shrinkage and parameter selection (Tibshirani, 1996).  NRLS 

topic models were fitted and the lasso penalty, λ, was chosen using 10-fold cross-

validation within Tibshirani’s own glmnet R package (Friedman et al., 2010). 

• Random Forest (RF): as explored in Chapter 6, random forests are ensemble learning 

methods based on averaging many regression/classification trees with bootstrapped 

samples and bootstrapped predictors.  RF models can be used for classification, where 

each model casts a ‘vote’ for a tree, rather than predicting a variable value as it does 
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for regression.  RF is also tuned using its own out-of-bag error rate.  The standard R 

implementation of RF using Breiman and Cutlers code struggles with larger datasets, 

so the H2O.ai implementation of RF was used in the h2o (H2O.ai Team, 2018) 

package.  As mentioned in Chapter 7, H2O is a machine learning environment, using a 

java-virtual machine, that focusses on improving speed, scalability, memory usage and 

parallel processing elements or common algorithms (H2O.ai, 2018). 

• Gradient Boosting (GB):  as explored in Chapter 6, boosting uses regression trees 

(although it can be applied to many models types) and iterative model fitting, re-

weighting on prediction error, and re-fitting the weighted data (Friedman, 2001).  

Boosting shows good predictive performance on many problems, but has various 

parameters that required tuning (Vezhnevets and Barinova, 2007).  The H2O 

environment, as mentioned for RF model, was also used to fit GB models. 

Both random forest and gradient boosting models were fitted using H2O default of 200 trees, 

but trees were increased to 1000 to test performance.  Using more trees appeared to overfit 

the data and degrade predictive performance. 

Another common approach in classification problems of this type is the ‘Support Vector 

Machine’ (SVM) (Cortes and Vapnik, 1995), but they were not applied in this case.  SVMs 

attempt to find a hyperplane that maximises the separation between classes, sometimes using 

the ‘kernel trick’ to expand  data into higher dimensions to allow separation (Hastie et al., 

2009b).  SVM are very effective at this, but they struggle with scale due to the computations 

required (Hsieh et al., 2014), and were impractical because of this during testing. 

 

9.7.2 Model tuning, fitting and results 

Various numbers of topics were tested and compared using the 4 metrics discussed above.  

Initial models were based on word tokens without removing single letter words, and Figure 4 

was used as a ‘range-finder’ to identify numbers of topics.  Three of the 4 metrics supported 

increasing numbers of topics, but one measure (Deveaud) decreasing from 40 topics.  The Cao 

et al.(2009) metric also showed a levelling out at 40 topics, only to further decrease at > 50.  

Topics numbers greater than 100 showed some increase in the remaining three measures, the 

curve appears to have flattened, and applying Occam’s razer, we should opt for the simpler 

solution. 
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Figure 9.4 LDA metrics for word token models 

Word-token based LDA models for NRLS free-text incident descriptions of incidents reporting for 
incidents occurring in 2015/16.  Topic numbers ranges were initially tested between 5 and 300 topics, 
with metrics explained in section 9.7.1. 

 

Three comparisons were then tested in multinomial models using 40, 100 and 150 topics, 

based on the four calibration metrics in Figure 9.4. 

All techniques showed predictive ability for harm categorisation based on both 40 and 100 

topics (Table 9.2).  Naïve Bayes performed poorly compared to other tests on sensitivity and 

overall accuracy.  LASSO and multinomial logistic regression showed near identical 

performance in most cases, as both were performing a multinomial logistic regression by 

different methods.  Highest accuracy and sensitivity were observed in Random Forests models, 

with boosted trees performing slightly less well.  Random Forest also showed the highest 

sensitivity values for minority classes. 

Performance across NBC models was identical for 40 or 100 topics.  Small increases in accuracy 

were observed for 100 topics using for multinomial regression and LASSO, but Random Forests 

and boosting showed better accuracy using 40 topics.  This may suggest that, although 100 

topics may be supported by some measures, a degree of overfitting is seen in Random Forest 

and boosting methods.  It also lends support to using the Griffiths and Deveaud metrics. 
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Table 9.2:  Results of multi-class prediction models, using word tokens, for level of harm 

Results based on LDA models of NRLS free-text description of incident reports, using for 40, 100 and 1550 topics. 
Colours gradients are per-row of the table, with red indicating the lowest figures and blue indicating the highest figures 

 

 

Topics 40 100 150 40 100 150 40 100 150 40 100 150 40 100 150

Accuracy

Total 55.34% 48.08% 44.11% 77.23% 77.52% 77.72% 77.23% 77.52% 77.71% 82.66% 81.40% 80.80% 81.43% 79.61% 79.65%

True Positive Rate (Sensitivity)

No Harm 55.10% 47.06% 42.19% 95.92% 95.90% 95.93% 95.92% 95.90% 95.94% 96.20% 96.29% 96.91% 96.34% 94.25% 94.71%

Low Harm 62.37% 55.41% 53.66% 24.23% 25.65% 26.37% 24.21% 25.63% 26.34% 46.01% 41.43% 36.94% 41.40% 40.43% 38.84%

Moderate 14.22% 22.21% 24.01% 1.05% 1.04% 1.41% 1.06% 1.01% 1.39% 14.02% 4.74% 2.53% 4.79% 3.37% 4.41%

Severe 9.46% 16.88% 19.85% 0.03% 0.23% 0.25% 0.03% 0.20% 0.23% 25.17% 10.07% 5.24% 10.19% 9.41% 10.22%

Death 56.39% 72.38% 75.44% 1.36% 2.93% 3.33% 1.36% 2.24% 2.93% 39.46% 20.75% 17.21% 21.09% 23.67% 25.85%

True Negative Rate (Specificity)

No Harm 77.55% 82.65% 84.73% 24.20% 25.46% 26.13% 24.18% 25.44% 82.16% 45.23% 39.81% 35.22% 39.79% 39.61% 38.23%

Low Harm 67.03% 69.89% 70.49% 95.23% 95.22% 95.28% 95.24% 95.22% 63.47% 95.33% 95.45% 96.15% 95.49% 93.32% 93.83%

Moderate 95.29% 93.01% 91.75% 99.91% 99.91% 99.88% 99.90% 99.91% 61.98% 100.00% 100.00% 100.00% 100.00% 99.94% 99.92%

Severe 97.28% 96.38% 95.09% 100.00% 100.00% 100.00% 100.00% 100.00% 83.92% 100.00% 100.00% 100.00% 100.00% 99.99% 99.99%

Death 94.06% 86.39% 83.93% 99.99% 99.98% 99.98% 99.99% 99.98% 88.58% 100.00% 100.00% 100.00% 100.00% 99.99% 100.00%

LassoMultinomial RegressionNaïve Bayes Random Forest Gradient Boosting
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A wider problem in the use of LDA methods for predicting harm in NRLS is the severe class 

imbalance (Klement et al., 2011) within the data (table 9.3).  This was also an issue in Chapter 7 

in the context of sparse/low counts of death and severe incidents.  This is common to all rare 

events/low counts in prediction settings, not just Poisson models (e.g. logistic regression 

(Harrell et al., 1996)).  Algorithms commonly maximise the accuracy of a given classifier but, 

with severely imbalanced problems, this amount to predicting the majority class (Drummond 

and Holte, 2005).  This problem is particularly pronounced in these models, as the minority 

classes are so small compared to the majority ‘No Harm’ events.  In this situation, the model is 

driven by classifying ‘No Harm’ and may perform poorly on the minority groups, yet still be 

globally accurate.  In the extremes of this case, we could simply assume all incidents are ‘No 

Harm’ and be globally accurate.  This accuracy is sometimes referred to as the ‘No Information 

Rate.’  The overall accuracy of our model predictions and the generalization to one class can be 

turned into a one-way binomial significance test.  This test was significant at >99% suggesting 

that, despite the extreme class imbalance within the data, the model was significantly more 

accurate that classifying all cases as ‘No Harm.’  Table 9.3 shows that, classifying all incidents 

as no harm would lead to an accuracy rate of 75.02%, the proportion of the data represented 

by the majority class 

 

Table 9.3  Distribution of incident reports in harm classes 

Counts and percentages of NRLS incident reports at different harm levels for 2015/16. 

 

Topic modelling was then repeated using skip-grams, constructed from with bi-grams only (i.e. 

fitting only two-word tokens).  Topic numbers were selected from tuning plots (Figure 9.5) 

over a range of 10 – 80 topics.  This more limited range was chosen due to the word token 

model performing best at 40 topics.  An assumption was made that a latent structure of 

approximately 40 topics would be approximated in all LDA models.  The skip-gram model 

tuning plot was less clear than the word-token plot, with the tuning metrics in Figure 9.5 

showing less agreement.  A range of topic numbers from 20 – 50 was therefore fitted to test 

Count Percentage (%)

No Harm 833,678 75.02%

Low 240,244 21.62%

Moderate 31,920 2.87%

Severe 3,934 0.35%

Death 1,470 0.13%

Total 1,111,246 100.00%

Harm level

Incident reports in training set
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this.  Models were refitted using just random forests and gradient boosted trees with results 

shown in table 9.4 

 

Figure 9.5  LDA metrics for skip-gram(bigram) token models 

Skip-gram (bigram) token based LDA models for NRLS free-text incident descriptions of incidents 
reporting for incidents occurring in 2015/16. Topic numbers between 10 and 80 were tested, using the 
metrics explained in section 9.7.1. 

 

 

Table 9.4  Results of multi-class prediction models, using skip-gram tokens, for level 
of harm 

Results based on LDA models of NRLS for 20,30,40, and 50 topics.  Colours gradients are per row of the 
table, with red indicating the lowest figures and blue indicating the highest figures 

 

Topics 20 30 40 50 20 30 40 50

Accuracy

Total 74.21% 74.04% 74.01% 73.97% 73.48% 73.49% 73.52% 73.54%

True Positive Rate (Sensitivity)

No Harm 99.03% 99.20% 99.26% 99.41% 98.79% 98.94% 98.94% 99.04%

Low Harm 7.20% 6.08% 5.85% 5.21% 5.32% 4.88% 5.01% 4.75%

Moderate 3.12% 2.26% 1.87% 1.57% 0.23% 0.26% 0.36% 0.42%

Severe 5.11% 3.73% 3.26% 2.70% 1.12% 1.20% 1.12% 1.20%

Death 9.72% 7.15% 5.70% 4.58% 3.46% 3.13% 2.68% 3.24%

True Negative Rate (Specificity)

No Harm 7.54% 6.33% 6.03% 5.35% 5.59% 5.13% 5.24% 5.00%

Low Harm 98.77% 98.97% 99.04% 99.21% 98.50% 98.68% 98.68% 98.79%

Moderate 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Severe 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Death 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Random Forest Gradient Boosting

Technique
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Random Forests again performed best, with an overall accuracy higher than boosting.  Random 

Forest also showed better performance in sensitivity and specificity in minority classes.  In this 

case, 20 topics was the best performing random forests.  As topic number increase, both 

random forest and boosting methods appear to focus more on the majority class (‘No Harm’) 

with accuracy increasing, but performance decreasing in relation to minority classes.  

Performance for skip-gram/bi-gram models was considerably lower than for word-token based 

models, with overall accuracy approximately 10% lower for random forest and performance in 

minority classes worse.  All models were significantly better than the no information rate, 

despite being poorer than the word-token model. 

 

Models were then further enhanced by including categorical predictors from the record-level 

NRLS data.  Categorical variables selected and included were: 

• Location (level1) – with example values of ‘Residence / home’ and ‘General / acute 

hospital’ 

• Location (level2) – with example values of ‘Inpatient areas’ and ‘Outpatient 

department’ 

• Location (level 3) – with example values of ‘Ward’ or ‘Radiology’ (but may be NULL) 

• Specialty (level 1) – with example values of ‘Medical specialties’ and ‘Obstetrics and 

gynaecology’ 

• Specialty (level 2) – with example values of ‘Cardiology’ and Obstetrics’  

The model matrix was expanded with variables coded as factors using dummy variables.  

Models were refitted as random forests and gradient boosted trees, using the word-token 

model with 40 topics.  The H2O.ai package was used due to the number of variables and 

category levels.  Model output is summarised in table 9.5. 

 

The inclusion of categorical predictors did not substantially improve model performance.  

Overall accuracy for Random Forest improved slightly but dropped for boosted trees.  Random 

forest performance improved slightly, for moderate and severe harm, in terms of sensitivity 

with specificity still 100%.  It also improved notably for ‘No Harm’, the majority class.  A small 

percentage change in this class represents many more cases that the other classes and is likely 

to be driving the overall accuracy.  Boosted models, again, tended to focus on predicting the 

majority class and the minority class prediction suffered. 
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Table 9.5  Results of multi-class prediction models, including NRLS categorical data, 
for level of harm 

Results of LDA models with additional NRLS categorical predictors, for 40 topics. 

 

9.8 Conclusions 

This chapter has taken a different approach to aim 3 of this project, compared to chapters 4-8, 

by examining analysis methods for the free-text descriptions of incident reporting.  Despite a 

few successful attempts (Altuncu et al., 2018, Bentham and Hand, 2012, Mayer et al., 2017), 

quantitative analysis of free-text in NRLS is not in common use.  This chapter lays groundwork 

for simple approaches to term frequency measures and topic modelling that might be applied 

by NHS organisations or regulators without significant academic experience of text mining. 

NRLS free-text data requires significant cleaning before use.  Issues of spelling error, synonyms 

and medical jargon (other than mapping the world ‘patient’) have not been addressed.  The 

techniques applied in this chapter are comparatively basic and not NHS/NRLS specific.  The 

mapping of drug terms, such as official BNF names, and the development of specific term maps 

for clinical specialties would aid discrimination.  The development of such resources, or pre-

trained corpuses, would be a next useful step, and would also benefit other areas of health-

related research and could be used with electronic patient records and other sources. 

Term frequency at different harm levels, or TF-IDF within a definable subset, will be useful in 

clinical review of a specific setting, but the volume and variety of words is less useful for 

general analysis at national level.  These tools would be useful for a subject specific, or 

organisation/setting specific review and indicate the important words driving particular sub-

Topics 40 40

Accuracy

Total 83.68% 80.20%

True Positive Rate (Sensitivity)

No Harm 97.46% 99.20%

Low Harm 46.00% 6.08%

Moderate 16.73% 2.26%

Severe 26.21% 3.73%

Death 37.69% 7.15%

True Negative Rate (Specificity)

No Harm 7.54% 6.33%

Low Harm 98.77% 98.97%

Moderate 100.00% 100.00%

Severe 100.00% 100.00%

Death 100.00% 100.00%

Random Forest Gradient Boosting
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groups of incidents.  The use of these techniques should be examined by NHS organisations 

and regulators to aid their established patterns of review.  

Word-token (unigram) models performed best when used for text modelling and, comparing 

the wordclouds in Figures 9.2 and 9.3, gave a greater variety of terms within each group 

(denoted by the colours gradients).  Skip-grams appeared to focus on ‘pressure ulcers’ and 

‘blood pressure’ that dominated plots.  This is an interesting finding, given the lack of incidents 

classified as ‘pressure ulcer’ from the ‘incident type’ category (Chapter 3), and supports the 

view prevalent in the literature (Chapter 2), that categorisation is a poor description of many 

incidents. 

LDA topic modelling proved useful for generating themes in the text despite a lack of specific 

NRLS mappings.  These models, when based on word-tokens, performed surprisingly well for 

predicting harm levels.  Skip-grams performed more poorly, but this may not be such a 

surprise given the dominant terms described in the last paragraph.  This may have degraded 

the fit, losing nuance and making the skip-gram models focus on terms more predictive of the 

majority class.  Other techniques for topic generation could be considered as next steps, or 

investigating different tokenisation schemes, as initial investigation of simple skip-grams did 

not improve models.  Models could be extended to other years, either as a larger single corpus 

or modelling individually within years.  These models do not necessarily have to build on year-

long datasets, but a year served as a useful sample to develop these techniques. 

The inclusion of extra NRLS categorical factors with LDA derived topics could be considered a 

better model if prediction of the minority classes (such as moderate, severe harm or death 

incidents) is of higher value than general accuracy.  This will ultimately be dictated by the 

intended use of models.  If their use is for basic analysis of all events, validation of the whole 

dataset, or to act as an input filter (where incident report forms might suggest a level of harm 

to the user from their text description, as suggested by other literature (Mastodon C, 2015, 

Mayer et al., 2017)), overall classification without the categorical predictors may be better.  If 

the intended use is for the detection and potential reclassification of the minority classes, then 

the model with additional categorical data would be preferred.  Simple categorical factors 

were included, due to complications with missing data etc., but it would be possible to include 

seasonality, time of day and other data types into the models in principle.  The main hurdle 

with these data fields is the data quality, as described in Chapters 2 and 3, rather than analysis 

techniques. 

The class imbalance in the data was a major hurdle for predicting harm in these models.  This 

will be true for any prediction model with such an imbalance (Drummond and Holte, 2005).  
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Options to increase performance of models in these settings often use resampling techniques 

such as bootstrapping (already performed by the random forest model) or techniques such as 

up/down sampling or Synthetic Minority Over-sampling techniques (SMOTE) (Chawla et al., 

2002, García et al., 2012).  The major draw backs of techniques such as SMOTE is that they 

make more sense in binary classification settings and they may underestimate the features in 

the majority class if down-sampling is used.  SMOTE techniques were attempted with the 40 

topic word-token dataset, before reclassification using random forests and boosting, but 

significant accuracy was lost with only small gains in minority classes and therefore unsuitable 

for these models. 

 

Text-based quantitative analysis is a viable option for NRLS data and has been demonstrated 

here and by others, as described in this chapter, further address aim 4 of this project.  NHSI, 

and other investigators, would be advised to invest the minimal resource required to use these 

techniques.  They are not restricted to harm prediction, and could be used to predict other 

variables, or in a generative manner.  This may bear fruit in identifying incidents groups, 

patterns not detected elsewhere, or aid current review processes by providing targets for 

clinical review and associated resources. 
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Chapter 10  Development of a reporting 

tool 

10.1 Introduction 

The sponsors of this PhD project (my employers), stipulated the outputs should be used to 

develop tools to be incorporated into their online NHS benchmarking tool, Healthcare 

Evaluation Data (HED) (University Hospitals Birmingham NHS Foundation Trust, 2019).  HED is 

primarily based on HES data (as described in Chapter 4).  HED also incorporates, and links to, 

other datasets including the NRLS, with most data refreshed monthly.  The system is used by 

approximately 60 NHS organisations at the time of writing.  Access controls limit the levels of 

data access available to individual users.  HED allows national, regional and local comparisons 

of indicators with Trusts able to identify patient records within their own organisation if 

required.  Data are processed and presented in interactive, point-and-click ‘modules’ to allow 

users to analyse, visualise and extract data.  This tool provides a means for users to access 

model outputs from chapters 4-8 and addresses aim 4 of the project. 

10.2 Designing and building reporting processes 

The following chapter describes the process developed from the methods developed in 

previous chapters.  A major requirement is for this process is to be documented and 

transparent for other members of staff to use, maintain and further develop.  HES data are 

downloaded and processed, by several members of the UHB team, as part of HED’s regular 

monthly update process.  HES base data were used from this point, and NRLS data are 

downloaded and processed entirely for the purposes of this module. 

10.2.1 Software architecture for designing a report 

The structure of the HED system can be summarised as having two main analysis layers: 

• Dashboard layer: Pre-processed data, hosted on an SQL Server instance, accessed and 

presented in tables or graphical form.  These tables respond to the organisation of the 

user and present suitable overviews of indicators and trust position relative to the 

national distribution.  This is comparable to the CQC’s Intelligent Monitoring/Insight 

reports. 

• Module layers:  Interactive data reports including a range of visualisations, tables and 

text areas.  These areas can be controlled by sets of filter panels (controlling the data 
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available within module) and selection boxes controlling the focus and aggregation 

levels of tables/visualisations. 

HED already has modules for examining NRLS data as published by NHSI.  The aggregation level 

of these data, including the bed-day calculations from KH-03, limit the ability to further 

examine it.  To develop a standardised incident reporting model, with access to individual 

data, both a module and indicator for the dashboard layer are required.  The following 

requirements were specified by the HED team and shaped the build process: 

• The ability to load data either monthly or quarterly, in-line with HES publications. 

• Loading and refresh scripts should be self-contained, with minimal interventions from 

analysts, allowing various team members to run the loading/update procedure. 

• Statistical modelling should be explained in a manner that is accessible and available to 

the users, and: 

• Modules should be developed in Spotfire, using HED standard filter panels, and point-

and-click elements linking tables/visualisations. 

At the time of writing, HED and NRLS are in the process of negotiating a new data access 

agreement.  Current data access rules extend to the end of 2016/17, but 2017/18 and 2018/19 

data are yet to be received.  The module and dashboard indicators have been developed on 

2015/16 and 2016/17 data, but data structures have been designed to be extended when new 

data are available. 

Processes required to receive, load, model and deploy new data can be summarised as: 

• Download monthly NRLS extracts from NHSI secured FTP site 

• Resolved delimiting issues using SAS (as described in Chapter 3) 

• Loading text files to database servers and constructing base tables 

• Constructing a modelling dataset 

• Running models and building CUSUMs 

• Loading data and modelling output into modules 

The requirements were then tackled in three main steps: 

1. Building/coding and documentation for Microsoft SQL Server stored procedures 

2. Building/documentation and an R package 

3. Building a working module 
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10.2.2 Building and coding SQL Server stored procedures. 

Stored procedures are saved T-SQL scripts that can be recalled and run by users or automated 

by servers.  They can receive input parameters, perform any valid T-SQL actions, and can 

return tables and parameters.  Stored procedures are commonly used for processes that are 

repeated or performed regularly.  They allow the database server to cache query plans and 

statistics that can be used to optimise the procedure for the future. 

The scripts created for these procedures are not included in this thesis, as they are unlikely to 

be of interest to the reader and contain significant internal server details for HED that pose 

security issues.  A summary of each procedure and the relevant SQL constructs is detailed 

below, with a summary in table 10.1, and a full flow chart detailed in Appendix D: 

1. Download monthly files in comma-delimited format from NRLS secured FTP server 

using Mozilla FileZilla.  Data are processed by NRLS using SAS, the conventional .csv 

format is used with free-text surrounded by double quotes (i.e. “free-text”).  As 

detailed in Chapter 3, this holds for text that does not contain double quotes or invalid 

characters.  SAS is intermittent in its application of double quotes, and this prevents 

other systems loading files manually.  A SAS macro, originally described in Chapter 3, 

was written to load, reformat and export as files in tab-delimited format.  Tabs are 

invalid in NRLS free-text fields, so this was robust for import.  A second phase of this 

development work will automate these actions from the command line using batch 

files, but it is currently triggered manually. 

Stage Technology Used Script/File Name 

1 FileZilla FTP 

SAS 

Download & Reformat NRLS text file 

2 MS SQL Server Database server load of files and base-table build 

3 MS SQL Server NRLS aggregation, joining with HES data and collation of report 
tables 

4 R Load and format modelling data, model and predict 

5 MS SQL Server Upload predictions to database server and build CUSUMs 

6 TIBCO Spotfire Present data in interactive module 

Table 10.1  Summary of stages to build HED NRLS reporting module 

 

2. The first database processing section involves two distinct scripts: 

a. [Update_NRLS_1_load_data]  -  The year and month of the datafile are 

supplied as a parameter and the parameters are used to construct dynamic 
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SQL queries to build table names containing the month and year.  Data are 

then uploaded to this table using the ‘BULK INSERT’ syntax. 

b. [Update_NRLS_2_clean]  -  A parameter control is used to determine whether 

to load just the new data or reload all data sequentially to a single NRLS base 

table.   A de-duplication procedure checks for Incident IDs that are already 

present in the table, copying duplicated records to a duplicated table, and 

retaining the most recent record in the main table.  This base table is used for 

the following models but is also available for other applications within the HED 

system for future development. 

3. The second database stage takes the base table, selecting just acute hospital data, 

then builds aggregates, summarises HES data and then creates the hybrid dataset: 

a. [Update_NRLS_3_aggregate]  -  The procedure creates an aggregated incident 

reporting table by hospital, age, sex, year, month, and harm level. 

b. [Update_NRLS_4_build_base_tables]  -  This procedure is the most extensive 

in the process.  It further aggregates the NRLS by trust, year, month and harm 

level.  HES inpatient data is joined to a calendar table and used to identify bed-

days and their demographics as detailed in Chapter 5.  Organisation naming is 

then resolved to the organisation at the end of the financial year, and the two 

tables joined to form a modelling table.  HES outpatient and A&E attendances 

are summarised by ages, naming is resolved and then joined back to the 

modelling table.  A&E waiting time percentiles are calculated and joined back 

to the main table. 

c. [Update_NRLS_5_Final_Datatset]  -  The modelling table is reformatted, with 

relevant reporting measures added. 

Tables produced are available for import into R for modelling.  UHB’s plans are to move R 

execution in the SQL Server environment, but this is reliant on the commissioning of new 

servers that are not in production at the time of writing. 

 

10.2.3 Modelling procedures and creating an R-package 

R has been used for building all models used in this thesis, and as an exploratory or analysis 

tool, it is sufficient to work in R-script format.  This is not robust for regular model building, 

reproduction, fault tolerance, and deployment to other users.  R code is commonly built into 

an R package (as discussed in Chapter 5) for this purpose.  An R package contains several 

structures (Wickham, 2015): 
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• A NAMESPACE file that declares the package name and dependencies 

• A DESCRIPTION file that details the function, author, source and licence 

• R scripts formatted as functions.  Functions are encapsulated code that can take input 

parameters, perform actions, and output parameters in a similar manner to the SQL 

stored procedures. 

• Support and details files that are generated for each function, explaining expected 

inputs/outputs, what the functions do, and further details such as examples of use. 

The R scripts must be manually built and tested, with parameters at the top of the script that 

are interpreted by the package building utilities (‘devtools’ (Wickham et al., 2018)) and 

turned into the support files.  The easiest approach to package building that reduces 

development time and sources of error is to use the roxygen2 package and RStudio that, 

together, automatically format and rebuild parts of the process.  This approach was taken to 

create a package called SIRRmodels.  This package contained two scripts: 

• run_models()  -   a wrapper function for the modelling process.  This function picks 

up the modelling table from the database server, formats some of the R-specific 

elements (such as factor encoding) that cannot be performed in SQL Server, 

parallelises model build by modelling year.  GLMM, GAM and random forest models 

for all incidents and death/severe incident models are built, as detailed in previous 

chapters.  Conditional and marginal model predictions, and model metrics such as 

MAE are exported to csv files. 

• funnel_plot()  -  a wrapper for plot functions use in Chapter 8 to provide ad-hoc 

reporting facilities.  This function allows the use of overdispersed or traditional Poisson 

control limits and the highlighting of outliers on plots. 

Once this package was built and tested, a departmental decision was taken to replace it with a 

single departmental R package, HEDfunctions, based on SIRRmodels format but 

extended to other HED processes as well.  This has been adopted as the main R-modelling 

package in use and contains a variety of other functions for statistical modelling, plotting, 

confident interval estimation and z-scoring methods.  The package has been committed to 

source control software ‘git,’ and hosted internally on a source control server.  UHB assert’s its 

intellectual property rights regarding this code, and I have been unable to include it in the 

thesis or release it as open-source. 
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10.2.4 Final processing 

Data are reloaded, after completion of the R modelling function, to the SQL Server Database 

location where it can be accessed for loading into a live server environment.  A load script 

retrieves the model prediction outputs and loads them, performs a final cleaning routine 

consisting of formatting labels for data manipulation, and adds metadata for servers. 

Cusums are then built in the SQL Server environment.  These metrics are a technical challenge 

for processing.  In the R environment, row-comparison operations (comparing the last row 

with the current one) are simple to construct, but this is not the case in SQL Server.  SQL Server 

is highly optimized for join and column-level calculations, but several options exist for tackling 

this problem: 

• An SQL ‘cursor,’ a type of iteration method that is designed for stepping through 

sequences and they are commonly used for administrative operations like shrinking 

tables or rebuilding indexes.  Cursors can also be used to step through rows of tables, 

but the common belief is that this is slow and can have unintended consequences.  

Training material for SQL Server commonly treats this as a ‘last resort.’ 

• Loop functions can use variables to iterate through rows, saving values to variables for 

use in the subsequent iteration. 

• A SQL construct known colloquially as the ‘quirky update.’  This loophole in the T-SQL 

syntax allows a user to both assign a value to row in a table and to a separate variable 

simultaneous without extra processing overhead, i.e. using:  row value = variable name 

= calculated value. 

All three options described above were examined and tested for efficiency, with cursors and 

loops similar in processing time, but the ‘quirky update’ taking less than 2% of the run time of 

the other techniques.  The ‘quirky update’ syntax was therefore implemented for cusums built 

from model outputs. 

 

10.2.5 Construction of analysis module 

Modules are designed in a desktop tool that allows data exploration and structuring of 

visualisations and filters. 

Two data tables were loaded containing the SIRR data and cusum data.  The size of data tables 

was small, at less than 10Mb, and below the threshold that causes load time issues.  The data 

were therefore embedded in the reports without issue. 
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10.2.5.1 HED design specification 

HED modules have conserved formats and sets of design standards.  These include: 

• A structured cover page with an ‘Overview’, ‘Usage instruction’ and a detail ‘Analyst 

summary’ with extensive notes relating to the data processing, modelling and 

exclusions. 

• HED logo branding, standard descriptions, and order of pages.  (E.g. first analysis page 

contains a left aligned filter ‘tab’ that can be shown or hidden by users clicking on 

appropriate buttons). 

• Filter panels contain standard, consistent filters including time-period in a hierarchy of 

fiscal year, fiscal quarter and month, organisation with hierarchies for regions and a 

mechanism for pre-set peer groupings. 

• Pages of the module should proceed left to right from highest level of aggregation to 

lowest, with the final page reserved for record-level data extraction. 

• Selection of data items on visualisation or tables should highlight an item and either 

restrict data in subsequent visualisations, or highlight it, depending on the context. 

• Visualisations are rarely anchored to particular data items or groupings, and usually 

allow users to select from a list.  In this case, this rule was broken, as the 

overdispersion requirements of the funnel plots meant restricting them to plot by 

organisation only. 

10.2.5.2 Final spotfire module construction 

The construction and flow of the module can be seen in a set of screen shots in Appendix B, 

with filter panels visible, and two organisations highlighted to demonstrate the 

marking/restriction of HED modules.  The content of each page is as follows: 

1. Cover page (not numbered in the module by convention) 

a. A summary of the SIRR indicator and it’s intended use 

b. A set of instruction/directions for use of each subsequent page 

c. An ‘Analyst Summary,’ giving an extensive explanation of the data used, 

restrictions, assumptions and modelling techniques.  This is to allow analyst 

users to further interpret what figures may mean. 

2. All incident models 

a. Filter panels (controlled and hidden with ‘action’ buttons).  Creating filter 

panels involves first creating data hierarchies and using normal Spotfire 

functions, and aliasing values, such as month numbers, with text values.  
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Hierarchies can then be added as filter items.  Items in filters can be clicked by 

users to select or deselect them in various groupings. 

b. A summary table with aggregated bed-days, observed incidents, expected 

incidents and SIRR at trust level. 

c. A funnel plot based on a scatter plot of x= Expected incidents, 

y=100*(observed/expected).  The y axis is scaled to centre on 100, matching 

other standardised indicators available in HED, with a centre line drawn for 

reference and gridlines hidden to avoid confusion.  Funnel limits are drawn in 

two ways, the 99% Poisson limit by a pre-calculated lookup table, and 

overdispersed limits by calculating the 𝜏2 value from the data and inflating a 

log transformed limit calculation based on the SHMI methodology (explained 

in chapter 8).  An ‘action’ button triggers the calculation of 𝜏2, due to 

complications of Spotfire’s API (explained in detail below). 

d. A cusum plot of values for organisations selected in the funnel plot or 

summary table.  This entails a further scatter plot, with Spotfire set to join 

consecutive points with a line, rather than using a ‘line’ plot.  This plotting 

method allows easier control of the trigger limit.  Calculated values for triggers 

were used to control the point size and the point shape to highlight triggers 

with a larger pointer of a different shape and colour.  This trigger value of 5.4 

was included (see Chapter 8). 

3. Death or Severe Harm models 

a. A summary table, similar to the previous page, focussed on DS incidents rather 

than all incidents. 

b. A funnel plot, similar to the previous page, focussed on DS incidents rather 

than all incidents.  The calculation of 𝜏2,  for this plot was also linked to the 

action button on the previous page to align both plots simultaneously. 

4. Comparison of marginal and conditional models 

a. A scatter plot of SIR values calculated, for all incidents, with both marginal (y-

axis) and conditional (x-axis) predictions.  This allows comparison of national-

average SIRRs (marginal model predictions) and SIRRs with local adjustments 

for culture (conditional model predictions). 

b. A second scatter plot, as per 4.a), but using DS incidents. 

5. Extraction of record level data. 

a. For users with appropriate access, an export table linked to both their login ID 

and a checking clause to ensure they have selected their own trust.  Data will 

only be displayed for a user’s own organisation and is subject to filter 
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selections.  Users can directly export these records to ‘csv’ format using ‘right-

click’ options. 

 

10.2.5.3 Calculating overdispersion 

The calculation of 𝜏2,  presents a technical issue for Spotfire, as it needs to be related to the 

user-selected filter option in the filter panel.  Users are encouraged to use 12-month periods 

but have the facility to change this to match specific analysis needs.  Spotfire can automate 

recalculation of values based on filter panels, but this is comparatively slow and appears as a 

latency for users.  An alternative solution is to link a recalculation script to an ‘action’ button 

that requires the user to click on it to recalculate the funnel plot limits.  This approach required 

writing a script using the programming language ‘Iron Python’ (a .NET implementation of the 

Python programming language) to take ‘snapshot’ of the data and run the calculation 

described in Chapter 8.  The 𝜏2,  is then used to expand the plot funnel limits. 

 

10.3 Module release review and update 

The module will be released to users, and debuted at the HED user group tentatively 

scheduled for 2020, pending the renewal of UHB’s data sharing agreement with NHSI and 

NHSI’s approval.  At the time of writing, the module is not currently live.  Modules are released 

in HED to a ‘Pre-release’ section, noting that they are new and requesting comment form 

users.  After three months of publication, feedback from users will be sought and comments 

used to shape a review of the modules function and form. 

The replacement for the NRLS is scheduled for roll-out during 2019.  This may be an 

impediment to promoting a module based on older data, but until new data are made 

available and differences understood, this module will remain available in the HED system. 

10.4 Summary 

The models and methods demonstrated in Chapters 5 - 8 can be readily applied to live 

analytics platforms such as HED that allow users, whether NHS truth staff or regulators, to 

investigate their data.  The strengths of this approach are the visualisation of large volumes of 

incident data, the ability to highlight areas of interest and view them in several visualisations, 

ultimately exporting data as required for further investigation. 

This module also provides the HED system with a rational, evidence-based case mix adjusted 

indicator for comparison with crude reporting rates reported elsewhere.  HED has no plans to 
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charge for accessing these data, and charges only a subscription fee to an organisation to 

cover the cost of software, hardware and resources for running the HED system.  All current 

HED users (with sufficient information governance approvals) will be able to view the SIRR 

module.  Data export options are only enabled for staff with approval of their NHS Trust 

Caldicott. 

This chapter, although technical in nature, demonstrates the process of turning secondary care 

data research into practical use for hospital monitoring and learning from incident reporting.  

The majority of SIRR module development was conducted in isolation, as part of my PhD work, 

and coded in SQL, R, SAS and Iron Python by me.  A small number of sections interface with 

other HED processes and dataflows, with some code reuse for HED procedures such as 

encryption.  A full description of authorship of work is included at the start of this thesis. 
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Chapter 11 Discussion 

Medical error and unsafe care have been globally recognised as leading causes of harm in 

healthcare (Jha et al., 2013).  Measurement of error is a major issue, with incident reporting 

being recognised as a process to help organisations learn from error (Donaldson, 2002, 

Berwick, 2013).  These systems also have their short-comings (Pham et al., 2013), but the UK’s 

experience is now over 13 years old and has provided a wealth of information for the NHS.  

The National Reporting and Learning System (NRLS), the NHS repository for incident reports in 

England and Wales, has been examined in this thesis.  This final chapter summarises the 

analyses conducted and their outcomes, and places them in the wider context of incident 

reporting.  It also makes recommendations for both NRLS’ structure/development and 

analytical processes.  It addresses the aims of this thesis, stated in the introduction (Chapter 

1), by: 

1. Using a literature review to identify prior analysis of NRLS data, it’s strength and 

limitations (Chapter 2). 

2. Investigating the structure and possible parametrisations of the NRLS for quantitative 

analysis from the literature review, direct analysis of the NRLS and pre-modelling work 

on parametrisation and construction of an aggregated dataset (Chapters 2,3 & 5). 

3. Identifying appropriate statistical modelling methods both theoretically and by 

applying and testing count-based statistical methods, free-text analysis methods, and 

assessing their strengths and limitations (Chapters 3-7 & 9). 

4. Examining reporting and presentation methods that could be used for analysis by 

submitting organisation, regulators and researchers.  This includes representation as 

standardised ratios and display in funnel plots, using cusums for time series 

monitoring, developing an online reporting tool, and by examining wordclouds, term-

frequency measures, and prediction of harm categories in free-text (Chapters 8, 9 & 

10). 

 

11.1 Incident reporting in the context of patient safety 

In assessing patient safety, we might pose the simple question: are health services becoming 

safer or not (Vincent et al., 2008)?  Our definition of safety in healthcare is constantly evolving 

(Pedersen, 2016), with the idea of safety difficult to define, and sensitive to cultural factors 

and time periods (Vincent and Amalberti, 2015).  Despite more patient safety interventions 

and programmes, trends in adverse events do not appear to be reducing, and it is unclear 



249 
 

whether this is due to increased incidence or improvements in methods of observation and 

detection (Shojania and Thomas, 2013).  It is unclear whether or not many patient safety 

interventions and policies are effective and whether this can be measured or distinguished 

from larger secular trends (Benning et al., 2011).  Whilst there appears to be some correlation 

between higher reporting rates and other markers of safety culture (Hutchinson et al., 2009), 

the claim that this is fact(Macrae, 2016), is not well supported with evidence.  Depending on 

the measures of adverse events, the number of cases qualifying may be vastly different 

(Classen et al., 2011).  Studies have suggested that, despite increases in overall reporting rates, 

reductions in preventable incidents have been elusive (Benning et al., 2011, Baines et al., 2013, 

Landrigan et al., 2010). 

Under-reporting is a major issue for incident reporting systems (Pham et al., 2013), and this 

reduces our ability to make inference or estimate the true levels of adverse events (Noble and 

Pronovost, 2010), and they may not be suited to this task (Sari et al., 2007).  Nonetheless, 

incident reporting systems have led to a greater understanding of patient safety and direct 

action in the NHS (Franklin et al., 2014, Panesar et al., 2009). 

Analysis of adverse events/medical error in NHS hospitals has tended to focus on clinical case-

note review techniques (Carson-Stevens et al., 2015, Hogan et al., 2012, Vincent et al., 2001), 

or has used these techniques to infer overall error rates through methods such as the Global 

Trigger Tool (Landrigan et al., 2010). 

 

There is an important distinction to be made between ‘hard’ and ‘soft’ data related to incident 

reporting (Samuriwo et al., 2016).  There is much depth, nuance and information to be gleaned 

from in case-note reviews, particularly related to ‘soft’ data (Martin et al., 2015).  It appears 

common opinion that narrow reviews, in great depth, are of more value than shallower, wider-

ranging techniques (Vincent, 2004).  ‘Hard data’ and quantitative methods in this field have 

not been well developed, partly due to the scale of the task and the challenges with the quality 

and classification of the data (Howell et al., 2017, Carson-Stevens et al., 2018). 

The methods presented in this thesis use the ‘hard’ data from NRLS, including treating the 

free-text as ‘hard’ data.  They go further than those previously presented (Pham et al., 2010, 

Howell et al., 2015, NHS Improvement, 2017c, NHS Improvement, 2017b, Stuttaford et al., 

2018, Panesar et al., 2013b, Wahr et al., 2014) and develop a casemix-adjustment method for 

comparing observed reporting rates against expected reporting rates.  These methods have 

been presented as indirectly-standardised ratios (referred to as a ‘Standardised Incident 

Reporting Ratios’ (SIRR)).  This thesis examines how SIRRs can be used in-line with current 
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regulatory frameworks for cross-sectional comparison and monitoring, as well as text-mining 

methods for NRLS.  Vincent (2007) lamented the lack of formal testing of methods related to 

incident reporting, and the methods presented here answer this need by providing tools for 

quantitative analysis of incidents, including statistical process control techniques previously 

advocated for learning from error (Battles and Stevens, 2009). 

 

11.2 NRLS data set structure 

The structure of the NRLS has been investigated primarily through literature review (Chapter 

2) summary statics and analysis (Chapter 3).  This structure has shown significant weaknesses 

and incompatibilities with large-scale numerical analyses, mainly related to under-reporting 

and data quality.  Major issues include: 

• The definitions and perception of incidents is not clear.  There are differing 

perceptions of whether certain events class as ‘incidents’ at all and whether staff 

considered reporting them, or even knew how to (Evans et al., 2006). 

• Many barriers to staff reporting exist (Pinto et al., 2012), but fundamentally, staff are 

pressed for time and incident reporting is of lower value than direct patient care 

activities.  Incidents may silently take their toll on staff members, without these effects 

being recognised as secondary incidents in themselves (Quillivan et al., 2016), further 

reducing staff inclination to report.  Fear of blame, what Reason termed the ‘blame 

trap’ (Reason, 1990), and disciplinary action is a key barrier (Cooper et al., 2017, 

Radhakrishna, 2015), recently highlighted by the high profile case of Dr Hadiza Barwa-

Garba (Cohen, 2017) whose private reflections of practice were indirectly provided to 

prosecutors.  Barriers may be exacerbated by organisational cultures and differences 

between staff groups (Braithwaite et al., 2008), and generic reporting systems/forms 

that are overly long or ill-suited to particular clinical settings/specialties (Scott-Warren 

et al., 2012). 

• The non-mandatory nature of reporting (Francis, 2013).  Simply increasing reporting 

level is not an adequate method to adjust for under-reporting (Williams et al., 2016).  

Vincent has suggested that, with hindsight, a systematic data collection would have 

made more sense than voluntary reporting (Vincent, 2007). 

• Missing data items are a huge problem for analyses, affecting case ascertainment 

(MacLennan and Smith, 2011) and the ability to analyse reports effectively (Hignett et 

al., 2013). 
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• Inflexible and misclassified categorical data were highlighted in many publications.  

Incidents often relate to multiple settings, specialties and the underlying processes 

may be multifaceted (Fowler, 2013).  Classifying a drug error on a ward round as a 

‘medication error’ might miss the fact that low staffing was an issue leading to the 

distraction of a nurse, or a dose-form/labelling issues may have led to the error.  This is 

also a ‘staffing’ incident, and potentially an ‘equipment’ incident, but the current 

structures do not allow more than one classification.  The studies of higher quality 

assumed this was the case and looked, for example, at anaesthetics and surgical 

reports when trying to find incidents related to anaesthesia (Thomas and McGrath, 

2009).  The text mining techniques presented in Chapter 9 offer methods to mediate 

some of these issues by generating latent structures from topic models with 

probabilities for each topic, rather than dichotomising. 

• Anonymisation is a cornerstone of patient (and staff) data practices in the NHS for 

good reason.  A just and open safety culture necessitates a degrees of protection for 

staff and anonymisation is a key principle in protecting patient identifiable data (NHS 

Digital, 2018b).  These practices also make information governance and sharing of 

incident data easier.  There are two key problems with anonymisation in NRLS reports: 

firstly, identification of repeated incidents for the same patient, such as choking 

(Guthrie et al., 2015), self-harm (James et al., 2012) or attempted suicide (Bowers and 

James, 2011), is impossible.  Knowing the number of patients these incidents relate to 

is key to understanding and learning from them.  Secondly, linking data at patient-level 

is impossible, and this prevents fully patient-centric case-note reviews.  Using 

identifiers, with proper access controls and information governance arrangements, 

would substantially strengthen the data asset, allowing patient related incidents to be 

tracked through systems from primary care, hospitals, and electronic prescribing for 

instance. 

 

NRLS-related literature suggested that the main ‘signal’ in NRLS data is contained within the 

free-text descriptions of incidents (Mayer et al., 2017, Howell et al., 2017, Evans et al., 2019).  

Making use of these data currently requires clinical review and qualitative techniques, taking 

time and considerable clinical expertise that could arguably be better spent delivering care.  If 

NRLS classification structures were reviewed, and better suited to multiple categorisation, they 

could save time and help target review and analysis activities. 
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Despite the limitations of the NRLS in its raw form, the strategy advanced in this thesis is to 

add value to the NRLS dataset by augmenting it with data from other sources.  When 

discussing the frustrations of incident reporting systems, Shojania (2008) lamented the lack of 

denominators when dealing with incident reports.  This thesis has advanced this area by 

providing casemix adjusted denominators.  Techniques are advanced by creating an aggregate 

‘panel’ dataset with incident counts per organisation per month, combined with similarly 

aggregated casemix variables from Hospital Episode Statistics (HES).  Chapters 5 and 10 detail 

the creation and processing cycles for the dataset, and they could be applied by other 

analysts/organisations by following the methods described.  These approaches for combining 

datasets could be readily applied to other datasets that might benefit from augmentation for 

casemix-adjustment.  

 

11.3 Statistical models build, and overdispersion 

Models were based on count data using the Poisson regression model as a basic framework 

(Chapter 5).  The major limitation with Poisson regression models is overdispersion.  

Overdispersion was considerable in the dataset, and appeared to arise from: 

• Clustering/repeated measurements at trusts  -  demonstrated by the success of 

random-intercept models, allowing clusters to vary from the global intercept (national 

average). 

• The aggregation processes  -  supported by the success of the negative binomial 

models, that weighted variance at small and large organisations differently.  A single 

incident is a larger proportion of the outcome for a small organisation than it is for a 

large one. 

• Inadequate specification of predictors  -  Predictors were not necessarily 

characterised in the best form, and are likely to be proxies for unmeasurable factors.  

E.g. age and comorbidity score may be a proxy for ‘unwellness.’  Some of the shared, 

unmeasured characteristics will be absorbed into the intercept, and random-intercept 

terms, but better specification may yield better predictions. 

• ‘Noise’ / random variation in the dataset 

 

Poisson models, without random-intercepts, were improved upon by using quasi-likelihood 

and negative binomial models.  These models gave better estimates of the variance within the 

data at the cost of increased bias.  The inclusion of a random-intercept greatly improved the 

models and allowed the scaling in the negative binomial models to focus on the effects of 
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aggregation.  The structure of a Standardised Incident Reporting Ratio has some precedent, 

with other studies also using bed-days as a proxy for size and random-effects for clustering 

(Landrigan et al., 2010, Baines et al., 2013). 

 

Generalized Additive Models (Chapter 6) improved upon the regressions in Chapter 5 by 

allowing smoothed predictors (more representative of the overall trend / less ‘noisy’) to be 

fitted instead.  When combined with the random-intercept, and negative binomial 

distributions, these models appeared to give the best performance of all models (for the total 

incident reports model).  Using multidimensional smooth terms to model related factors 

degraded model predictions due to overfitting, and the experience of these models suggests 

that simpler, independent, smooth terms were preferable.  Overdispersion affected the 

estimation of how smooth models should be, and the introduction of extra penalty terms 

improved fit on testing data. 

 

Several machine learning techniques, regression trees, boosted/bagged trees, random forest 

and artificial neural networks (ANN) were also fitted to the data.  Random forests are a 

promising technique, but are comparatively rare in medical research compared to traditional 

regression techniques.  Although random forest have recently been applied to  similar 

problems (Cafri et al., 2018).  Random forests performed well, due to their resampling and 

decorrelating properties, but gave notably different output predictions to the other maximum 

likelihood-based GLM(M) and GAM models, when compared at trust level (Chapter 8).  The 

lack of distribution assumptions, that is sometimes a strength of algorithmic learning methods, 

may have been the downfall in this application, as the strength of the Poisson assumptions 

helped regression models.  GLMM and GAM techniques outperformed these approaches in 

general, likely due to the properties of count data and the distributional assumptions.  ANNs 

did not show any strengths over GLMM/GAM approaches in this setting.  ANNs are 

complicated non-linear models that hold the potential for better performance, but they may 

have been limited by the modestly sized training data set, and inexperience in their tuning. 

 

Model assessment was performed using Mean Absolute Error (MAE) on a testing dataset 

(2016/17 fiscal year).  This was the preferred approach available to check that model 

generalised underlying relationships to new data (Chai and Draxler, 2014), but MAE may still 

be deficient as a loss function.  It is possible that data from 2016/17, used as the testing set, is 
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spurious in some way and could give misleading output.  This is supported by the drop in 

incident reports, due to reporting cut-offs described in Chapter 3.  Models could be further 

tested using data from other periods and greater use of cross-validation or bootstrapping 

approaches.  Although this was a pragmatic approach to choosing the best predictive model, 

its output is relative, allowing us to choose the best model from a set of candidates.  A 

comparison against error based entirely on incidents per bed-day (similar to that used in CQC’s 

key lines of enquiry), with no casemix-adjustment, showed casemix-adjusted models to be 

substantially better in terms of prediction error.  We do not, however, know whether a model 

is ‘acceptable’ or ‘good.’  This can only be judged through external validation and comparison 

to other indicators, which is the next logical progression of this work.   

 

Once developed on total incident reporting, model structures were retrained on death or 

severe harm incidents only (Chapter 7).  These rare events created a sparsity problem, and 

fitting approaches demonstrated very similar fits between complex models and substantially 

reduced models.  The model’s reliance on the seasonality, measures of organisational size and 

random-intercepts suggested that that these incidents were not well predicted by case mix 

variables, but the effects of overdispersion were not as strong as those in in the total incident 

models.  The reduced overdispersion could, however, be an artefact of the sparsity.  Lilford et 

al.(2010) suggested it is difficult to use data based on small numbers for evaluating policy, or 

applying causal inference in healthcare and, in this case, it may be difficult to judge whether 

any intervention related to these incidents is successful in bringing down rates.  They apply this 

rationale to the Harvard Medical Practice study (Brennan et al., 1991), suggesting that the 

changes in rates of death even when halving the number of adverse events, is small.  It also 

suggests that undue focus on these events, rather than on specialties where harm is rare but 

incidents are common, may overlook important issues affecting many more patients (Shojania, 

2012).  Does this mean we should abandon these methods for death or severe incidents?  The 

results here suggest not, but caution should remain around them, and SIRR methods may 

require further development before their strengths and limitation are understood.  The small 

numbers of these events mean that it remains practical to clinically review all reports, even 

given resource constraints.  Quantitative analysis techniques could be used to bring additional 

value to monitoring at trust level, identifying targets for clinical review, or deriving new 

learning from events using the text mining techniques. 
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Chapter 8 examined how these methods might interface with current regulatory indicators and 

monitoring processes, focussing on NHS Improvement and the Care Quality Commission’s 

techniques.  The chapter demonstrated how a casemix-adjusted reporting indicator is treated 

under this framework, where this fits NRLS data and where it does not.  The model predictions 

were used to generate casemix-adjusted marginal predictions that corresponded to the 

‘expected number of incident reports’ per trust, per month.  Predictions were then included as 

part of a ratio of observed to expected, where a value of 1 represented the same numbers of 

observed and expected, and is referred to as the ‘Standardised Incident Reporting Ratio’ 

(SIRR).  Techniques used to examine these indicators included z-scoring and funnel plots, both 

of which used an additive overdispersion model calculated in a post-hoc fashion.  Both 

techniques showed promise for identifying variation greater than expected, but care may be 

required around the presentation and use of such indicators to avoid the appearance of league 

tables.  The valid interpretation of these techniques is assessing how far a data point is from 

the expected range (0 for z-score, 1 for funnel plot), not comparing organisation with each 

other.  Which technique to use is a choice for regulators, as both carry useful information, but 

the aim of such indicators is to be used in a process control fashion, identifying organisations 

with significantly different reporting behaviour.  Methods published by CQC suggested a 

square-root transformation to SIRRs before calculating the overdispersion elements.  A log-

transformed version of these techniques described elsewhere yielded better results due to 

more correction of the lower tail of the transformed distribution.  This suggests that CQC may 

wish to examine whether their transformation of other indicators is also similarly affected. 

Chapter 8 also explored the use of Cusum techniques for monitoring changes in the SIRR over 

time.  These techniques adjust for clustering within organisations over time, but their 

compatibility with SIRRs is questionable.  Calibration of these plots was set, as per published 

CQC practice, to a doubling of the odds compared to the reference rate (national rate), but this 

may be better set to a tripling.  This would be in-line theoretically with 3σ limits used in the 

funnel plots, and may be a more appropriate standard.  A change such as this would require 

adjustments to trigger values, and may require simulation studies, particularly in the case of 

DS incidents.  The utility of cusum techniques is not clear from initial work in this thesis.  

Despite conforming to the frameworks described in regulatory information guidance, other 

control chart approaches or monitoring techniques may be more appropriate for these data.  

Cusum techniques require more work on calibration and external validation before they could 

be recommended for use in monitoring NRLS incident reports. 
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The text mining approaches examined in Chapter 9 demonstrate the ease with which such 

techniques can be applied, without NRLS-specific developments.  Topic generation using LDA 

was combined with random forests for prediction of harm levels, achieving high accuracy, but 

driven significantly by the class imbalances, as death and severe harm are rare compared to 

‘no harm.’  Text mining is recognised as the approach with the most potential for large-scale 

analysis of incident data (Howell et al., 2017).  If not adopted for primary analysis, it could be 

used as a useful secondary source/validation for assessment of harm.  Studies have shown 

disagreement between the recorded level of harm and the level of harm assessed from clinical 

review or incidents (Thomas et al., 2002), and these techniques may aid consistency. 

The next steps with such approaches are to continue using the bag-of-words models with 

NRLS-specific dictionaries and mapping of terms.  This could be achieved in-part through the 

use of nearest neighbour techniques on projected features, or using word2vec/text embedding 

approaches, to predict the ‘correct’ terms for abbreviations or mis-spellings.  Mapping of 

specific medical terms could be achieved by using external data sources such as SNOMED 

(Ruch et al., 2008), or drug names, trade names and abbreviations using the British National 

Formulary (BNF) (Joint Formulary Committee, 2019).  E.g. mapping ‘Ventolin’ to ‘Salbutamol.’  

Such mappings will greatly increase the coherency and consistency of topics, as well as aiding 

analyses that use TF-IDF approaches for understanding key terms in the description of subsets 

of incidents. 

 

Chapter 10 describes the processes associated with turning research into usable tools to allow 

NHS organisations to benefit from these analyses.  The initial interactive module is planned for 

launch using the Healthcare Evaluation Data (HED) benchmarking tool, pending approval from 

NHS Improvement.  This approach directly moves research in this thesis into practice and 

makes it accessible to NHS trusts. 

 

Much of the work in this thesis would benefit from further external verification.  At the time of 

writing, I am engaging with NHSI to present and demonstrate this work.  Outlier organisations 

from funnel plots, z-scoring approaches and use of text mining could be validated by 

comparison with NHSI’s other workstreams, clinical expertise and experience, as described in 

Chapters 8 and 9. These validation process would likely include: 

• Standardised ratios:  Quantitative comparison with other proxy indicators such as staff 

survey results, staff sickness, other clinical indicators, and CQC ratings.  Qualitative 
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comparisons based on interviews or surveys examining reporting culture.  These 

measures could help validate whether outlier organisation really do show differences 

in reporting culture when compared to others. 

• Text mining methods:  in the examples demonstrated in chapter 9, visualization 

methods can aid understanding of incident groups, but the major emphasis was 

prediction of harm.  This was tested within the chapter on both the training and 

testing sets.  Further planned validation of these methods should include examining 

reports from each of the projected 40 topics to identify what each topic represents.  

Further development work, such as identifying incident clusters should be examined 

by comparison with clinical review of the same reports. 

In any validation studies, or operational use of these indicators, care should be taken to avoid 

gaming or unhelpful incentives or penalization of organisations (Lilford et al., 2004). 

 

11.4 Applications in NHS organisations and barriers 

To use the models described in this thesis in practise, they may be applied in either a 

regulatory/monitoring capacity, or further targeted to identify and learn from error. 

The methods in this thesis, particularly the GAM and random-intercept models require a 

significant understanding of statistics and this may present barriers for their use in local NHS 

organisations.  As a member of a team in an NHD Informatics services, I am fortunate to have 

had the investment in my PhD to learn these skills, but the majority of NHS informatics staff 

would likely require significant training to implement them locally.  They would also struggle to 

do so without the use of HES data, which is not routinely available to NHS organisations.  I 

attempted to address this lack of skill and resource by building the interactive ‘module’ in 

Chapter 10, as this provides access to the data in a controlled manner without the burden of 

applying the statistical methods to the raw data. 

The text mining methods are an area of growth for NHS organisations at present.  Some teams 

have, or are developing these skills, but it is not yet part of routine work.  I have presented my 

work to NHS Improvement, who are keen to apply text mining methods, but I am prevented 

from publishing further technical details at present due to UHB asserting their intellectual 

property.  I hope to further this work by publishing academic papers.  text mining methods 

hold the most potential for benefitting patient care, as they can be used to highlight reports 

for review, or find paters, that are not currently seen. 
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11.5 Wider applications 

This work has shown that it is feasible to use multilevel modelling approaches for hospital 

administrative datasets.  Multilevel modelling appeared to be the right choice for NRLS models 

using aggregated data.  A similar analysis of adverse events in hospitals in the Netherlands 

(Baines et al., 2013) used GLMMs to account for repeated measures, including a centring of 

predictors in a uniform manner for all years, conceptually similar to that performed on the 

training/testing sets in Chapters 5-8.  Cultural differences at organisations appear to be 

obscured by the scale of the overdispersion but, when adjustments are made with multilevel 

models, patterns can emerge from the noise (Baines et al., 2015).  The use of these techniques 

for directly estimating random-intercepts and clustering could be employed more widely in 

NHS national indicators such as SHMI or HSMR (Campbell et al., 2012, Jarman et al., 1999) and 

may lead to more robust models.  The techniques currently used ignore clustering or adjust 

with the comparatively crude post-hoc fix (see Chapter 8).  These approaches could be 

considered for other indicators, such as the SHMI which is currently under review (Clinical 

Indicators Team, 2019). 

 

A similar case could be made for the use of GAMs, that have the ability to fit ‘noisy’ data with 

smoothed predictors.  The ability to select and compare the smoothness of these models is a 

major attraction, and they allow additional penalties to impose further smoothing if necessary.  

These methods are currently being applied in my work with HED, modelling emergency 

readmissions to hospitals.  They are unlikely to be published due to commercial interests but 

have shown better performance than logistic regression in this setting. 

The development of text mining techniques using bag-of-words methods should prompt the 

creation of medical dictionaries/lookup tables that would be directly relevant to the analysis of 

text.  Text data are present in other areas of healthcare (and more widely), including patient 

notes, patient feedback or other electronic heath record elements.  The incentive to develop 

these resources may have been lacking until recent years, given the perceived complexity.  

Some of this could be achieved through the methods described above but would require 

external validation from professional groups including clinicians, clinical coders and 

researchers.  Such a dictionary/reference source would quickly be adopted and spur other 

research.  The increasing use of electronic health records, social media and ‘app’ data, and 

advances in data management and analysis (through ‘big data’ techniques and the ‘AI’/’Deep 

Learning’ boom) may drive the call for such a reference. 
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The data processing and construction of the hybrid dataset described in Chapter 5 also 

suggested several smaller points related to the use of HES.  Firstly, the lack of a universal ‘bed-

day’ calculation is a huge oversight for the NHS, given its need to manage capacity and quality.  

The current standard methods are either inequitable, ignore short stays and day cases, or add 

arbitrary biases.  The calculation proposed here is equally biased, but better describes 

exposure than other alternatives.  This will not be solved until times of admission and 

discharge become mandatory in HES.  Secondly, A&E waiting times appear to be unvalidated, 

and it is surprising that so many hospitals clearly stop monitoring time (or sending it to 

SUS/HES at least) after 4 hours.  This may be remedied by the planned replacement A&E 

dataset that is yet to be rolled out (the Emergency Care Dataset or ‘ECDS’), but this should be a 

known data quality warning for all users of national A&E HES. 

 

11.6 Future NRLS analyses 

This thesis suggests that data quality in NRLS, models based on aggregated NRLS data, and 

methods for handling clustered/overdispersed data, would all be improved by better 

characterisation of predictors (referred to as ‘feature engineering’ in machine learning 

literature).  This could involve more in-depth exploratory analysis of sources such as HES, 

transformation/projection techniques to describe latent variable predictors or drawing on 

additional datasets.  Additional data sources may also shed light on incident reporting at 

trusts.  The most obvious missing data source in terms of exposure variables is the ‘critical 

care’ HES dataset.  This forms a separate dataset from other HES sources and was not included 

for practical reasons around data sharing agreements and a lack of data warehousing at the 

start of the project.  Critical care has been referenced in many of the articles discussed in 

Chapter 2, and the intensive intervention and high clinical risk in this setting may be a strong 

risk factor for incidents.  This may not influence predicted values, but it may remove some of 

the uncertainty in models that is currently absorbed into the intercept term or the random-

intercepts.  It may, therefore, reduce the overdispersion.  Other data sources such as litigation 

rates or staffing data from electronic staff records may also increase predictive ability in these 

models.  Various sources of information on adverse events exist (Hogan et al., 2008), not just 

incident reports, and methods should be further expanded to consider other data. 

 

A further alternative is to consider if the methods of comparison presented here, using 

predicted values, might be better conveyed by using other metrics such odds ratios, or by 

examining estimates of the random-effect for identification of outliers. 
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A major issue in future NRLS reporting work is the future of the NRLS itself.  During the course 

of this project, and the transfer of NRLS legacy systems between different NHS bodies, a 

review process for NRLS has been held.  A new system, the Development of the Patient Safety 

Incident Management System (DPSIMS) project (NHS Improvement, 2017a) is in-progress and 

building a replacement for the NRLS and the StEIS system (used for reporting ‘never events’).  

It is being built using Agile development methodologies (Agile delivery community, 2016), a 

software development process that focusses on capturing ‘user stories’ to drive development 

requirements, prioritising fast development and deployment.  It is currently in the ‘beta’ phase 

described by Agile techniques (NHS Improvement, 2018), where a working system is being 

built, and then tested at scale.  This phase was scheduled to end in February 2019, but there 

have been no further releases of project details, or technical specifications, at the time of 

writing.  At this stage, it is not clear how these methods will fit with the new reporting system, 

but it is likely they could be adapted. 

 

The further development of text-based models is a major target.  As demonstrated elsewhere 

(Mayer et al., 2017) text mining models are being taken seriously for aiding data entry and 

classification of incidents.  These techniques could provide a welcome boost to data quality 

and save clinical teams valuable time.  They also risk undermining the same processes by 

making default answers too easily accepted and may encourage a ‘path of least resistance’ for 

incident reporting.  It will be important to test these text mining-based approaches over time 

to ensure they are still representative of incident descriptions, rather than being dominated by 

default values.  Care must also be taken around variables dominated by large class imbalances, 

such as the no harm incidents discussed in Chapter 9.  Further development of these models 

using under or over sampling, with greater use of specific mapping tools, or even larger 

corpora (potentially using neural networks with text embedding methods) may increase the 

sensitivity to minority class groups. 

 

11.7 Recommendations 

The following list summarises recommendation for NHS Improvement and DPSIMS for incident 

reporting structures and analysis techniques: 

1. Reduce the reporting routes for incidents, all of which should be mapped to the NRLS 

database to make a single central repository.  This will allow central analysis of 
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incident data from an authoritative source (with DPSIMS already aiming to include 

never events as well). 

2. Make incident reporting mandatory at all level of harm, from all NHS organisations, 

integrated care, and private health and care organisations.  This is to say that, where 

they are already reported locally, they should be mapped to the national system, and 

where systems are absent, they should be implemented. 

3. Implement more rigorous data validation rules that reject reports with missing or 

invalid fields, with the onus on providers to resubmit.  This will reduce uncertainty in 

modelling and analysis. 

4. NHSI should encourage software providers, and local organisations, to consider the 

burden of incident reporting on staff with regards to their time.  Electronic systems 

that allow easy reporting, including text-based prediction of categorical variables, 

should be implemented. 

 

Two recommendation for all standardised ratio indicators where clustering and overdispersion 

is likely, including the current NHSD SHMI review (Clinical Indicators Team, 2019): 

5. Examine multilevel modelling approaches including random-intercepts for clusters.  

Relying on post-hoc techniques to assess overdispersion is an indirect and imprecise 

approach, particularly when relying on transformations and asymptotics.  Marginal 

models may still be used for presenting funnel plots in the currently accepted fashion. 

6. CQC would be advised to consider whether square-root transformation is appropriate 

for all the standardised ratios they monitor.  The log-transformation techniques 

associated with SHMI performed better for SIRRs, and may suggest squared-

transformed indicators are not strict enough. 

 

A final recommendation for NHS Digital, regarding SUS and HES, is: 

7. Admission and Discharge times should become mandatory for all providers to solve 

the deficient bed-day calculations currently used. 

 

11.8 Final comments 

The NRLS and its DPSIMS replacement are vast and underused resources for patient safety 

learning.  A reluctance to tackle the systematic issues around classification and missing data 

have led to the view that it cannot be analysed quantitatively.  I believe my work has 

demonstrated this to be false.  The methods presented here are not avant-garde, but 
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systematic application of common statistical processes.  If DPSIMS is constructed effectively, 

quantitative techniques may advance significantly using its data.  This could free up clinical 

time and help direct analysis to areas that may be missed through sampling methods for audit 

alone. 

The task of monitoring patient safety for teams at NHSI, and CQC, is an unenviable one.  They 

are expected to monitor and identify ‘bad’ organisations, spot errant practitioners, spot 

deterioration and prevent poor care.  They are expected to do this amid criticism from all 

sides, and they are underfunded given those expectations.  The systems and constraints they 

work under may be old and in need of investment, and DPSIMS is a welcome development.  

We must, however, consider how data are used, as well as how they are entered.  Building 

infrastructure to extract maximum benefit from DPSIMS would include more clinical review 

teams, but also investment in analytical and data science functions.  The implementation of 

new techniques may be hampered by a lack of technical skill or awareness in some areas, or a 

lack of will to implement them.  To improve the use of incident reporting that aids patient 

safety, analytical resource, not just clinical resource, should be considered. 

Text-analysis may be the most exciting element of this project, with substantial promise to 

generalise to much of the electronic patient record agenda and increase benefits for patients 

and organisations.  The NHS and regulators should invest in these skill sets to make use of 

data, rather than relying on external consultants, and build a sustainable set of expertise to 

tackle these developments.  The increase of digital connectivity, and electronic health data 

only makes this need more pressing.  
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Appendices 

Appendix A: Full Literature review search strategy 

 

Medline & Embase 
Both databases separately searched using the Ovid interface, using the same search terms with the 
exception of search 9. 
All text string searches used the ‘mp’ setting: title, abstract, original title, name of substance word, 
subject heading word, keyword heading word, protocol supplementary concept word, rare disease 
supplementary concept word, unique identifier.  Final searches conducted on 23/03/2016. 
 
1. NRLS 
2. "reporting and learning system" 
3. NPSA 
4. "patient safety agency" 
5. report* 
6. 3 or 4 
7. 5 and 6 
8. ((incident? adj3 report*) and (database or NHS)). 
9. exp Great Britain/  ( Medline)  exp United Kingdom/  (Embase) 
10. 8 and 9 
11. inciden* 
12. 6 and 11 
13. 1 or 2 or 7 or 12 
14. limit 13 to yr="2001 -Current" 
15. 13 not 14 
 
 
Health Management Information Consortium (HMIC) 
HMIC was queried using the Ovid search engine.  Index terms were used in this search for geography 
and for NPSA publications, as a specific term for the National Patient Safety Agency (NPSA) exists.  Text 
searches conducted using the ‘mp’ setting: title, other title, abstract, heading words.  Final search 
conducted on 31/03/2016. 
 

1. (NRLS or "reporting and learning system") 
2. (NPSA or "Patient safety agency") 
3. report* 
4. inciden* 
5. 2 and 3 
6. 2 and 4 
7. ((inciden* adj3 report*) and (NHS or database)) 
8. exp great britain/ or exp united kingdom/ 
9. exp National Patient Safety Agency/ 
10. 7 and 8 
11. 1 or 5 or 6 or 9 or 10 

 
 
CINAL Plus 
CINAL Plus database was searched using the EBSCO host interface.  Index terms were not used, except 
for geographical location (search 8). 
All fields were searched.  Final search conducted on 31/03/2016. 
 

1. "NRLS" or "reporting and learning system"  
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2. NPSA or "patient safety agency"  
3. inciden*  
4. report*  
5. 2 AND 4  
6. 2 AND 3  
7. (inciden* N3 report*) and (NHS or database)  
8. (MH "United Kingdom+") OR (MH "Great Britain+")  
9. 7 AND 8  
10. 1 OR 5 OR 6 OR 9  
11.  1 OR 5 OR 6 OR 9   -   Limiters - Publication Year: 2001-2016 

 
 
Cochrane library 
Cochrane library was queried using the Cochrane collaboration website, using ‘Advanced Search’ tool. 
All text searches using the ‘ti, ab, kw’ setting: Title, abstract and keywords.  The Cochrane library 
automatically searches for word variations.  Final search conducted on 25/03/2016.  No results were 
returned. 
 

1. NRLS 
2. "reporting and learning system" 
3. NPSA 
4. "patient safety agency" 
5. inciden? 
6. report* 
7. 3 or 4 
8. 7 and 5 
9. 7 and 6 
10. 1 or 2 or 8 or 9 

 
 
National Institute for Health Research (NIHR): Centre for Reviews and Dissemination  (CRD), Database 
of Abstracts of Reviews of Effects (DARE) & NHS Economic Evaluations (NHS EED) 
These database, hosted by University of York, were access via their website. 
Final searches conducted on 10/04/2015. 
 

1. NRLS 
2. “reporting and learning system” 
3. NPSA 
4. “Patient safety agency" 
5. 1 OR 2 OR 3 OR 4 

 
 
The British Medical Journal (BMJ) Quality and Safety 
At the time searches were conducted, this database was only partially indexed within MEDLINE, 
necessitating a separates search.  The journal website was queries directly using the advanced search 
option using the ‘Text | Abstract | Title’ search box. 
Final search conducted 4/04/2016. 
 

1. (("NRLS" OR "reporting and learning system") OR (("NPSA" OR "patient safety agency") and 
(inciden* OR report*)))   -  From: Jan 2001. 

 
 
Web of Science 
The web of science search engine was directly queried via its website using the ‘Advanced Search’ page. 
All test searches conducted using the TS setting: Titles, Abstracts, Keywords and Indexing fields such as 
Systematics, Taxonomic Terms and Descriptors.  Additional subject terms were added due to web of 
science’s interdisciplinary nature.  Final search conducted 01/04/2016. 
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1. "Patient Safety" OR "Medical Errors" OR "Safety Management" OR "Risk Management" OR 
"Quality Assurance, Health Care" OR "Medication Errors"   - Timespan=2001-2016 

2. "NRLS" OR "Reporting and learning system"   - Timespan=2001-2016 
3. (("patient safety agency" OR "NPSA") and "report*") NOT TS=("prostate specific antigen")   - 

Timespan=2001-2016 
4. (("patient safety agency" OR "NPSA") and "report*") NOT TS=("prostate specific antigen")   - 

Timespan=2001-2016 
5. 3 OR 4 OR 2   - Timespan=2001-2016 
6. 5 AND 1   - Timespan=2001-2016 

 
 
ProQuest Dissertations and Theses 
Searches were conducted using the ‘Advanced search’ option on the ProQuest search engine using the 
‘All- anywhere except full text’ option.  Final search conducted on 01/04/2016. 
 

1. "NRLS" OR "reporting and learning system" OR "NPSA" OR "patient safety agency" 
 
 
ProQuest Environmental Sciences and Pollution Management (Risk Abstracts) 
The Risk abstracts database includes articles on risk management, but has been combined with the 
ProQuest Environmental Sciences and Pollution Management database.  Searches were conducted using 
the ‘Advanced search’ option on the ProQuest search engine using the ‘All- anywhere except full text’ 
option.  Final search conducted on 10/03/2016. 
 

1. "NRLS" or "reporting and learning system" or (("NPSA" or "patient safety agency") and 
"report*"
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Appendix B: Screen captures 

 

 

B.1  Entity Diagram of system designed for literature review 

Database structure was created in MS SQL Server 2014, with an entity diagram extracted using database 
diagramming tools. Database structure was designed for multiple tagging of articles with subjects and 
biases database diagramming tools with one-to-many relationships represented by key and infinity 
symbols. 
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B.2  Data input and analysis form for NRLS literature review 

Form designed in MS Access and connected to database described in B1, with tag windows for subjects 
and biases. 
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B.3 HED prototype module Cover page (1 of 3)   



289 
 

 

B.3 HED prototype module Cover page (2 of 3)   
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B.3 HED prototype module Cover page (3 of 3) screenshots   
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B.3 HED prototype module Page 2 Death & Severe Harm Incident reports   
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B.3 HED prototype module Page 3 National and Local comparisons 
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B.3 HED prototype module Page 4 Export table  

Data have been censored to protect small numbers form HED data, and only column headers are available. 
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Appendix C: Supplementary tables 

 

Death or 

Severe

Total 

Incidents

Death or 

Severe

Total 

Incidents

Death or 

Severe

Total 

Incidents

Death or 

Severe

Total 

Incidents

Death or 

Severe

Total 

Incidents

Death or 

Severe

Total 

Incidents

Death or 

Severe

Total 

Incidents

Death or 

Severe

Total 

Incidents

Death or 

Severe

Total 

Incidents

Clinical Commissioning Groups 0 6 0 6 0 26 0 13 0 30 0 18 0 8 0 107

06H - NHS CAMBRIDGESHIRE AND PETERBOROUGH CCG 0 6 0 6 0 24 0 6 0 13 0 14 0 8 0 77

09Y - NHS NORTH WEST SURREY CCG 0 2 0 2

99H - NHS SURREY DOWNS CCG 0 2 0 7 0 15 0 4 0 28

Independent Sector Healthcare Providers 0 175 44 5,280 65 8,027 137 12,537 141 14,512 134 15,496 66 10,192 0 2 587 66,221

NAX - EAST COAST COMMUNITY HEALTHCARE C.I.C 7 184 9 213 2 41 18 438

NDJ - FIRST COMMUNITY HEALTH AND CARE CIC 0 1 0 107 1 46 0 59 1 213

NHM - SUFFOLK COMMUNITY HEALTHCARE 1 451 1 451

NL3 - CARE PLUS GROUP 0 1 6 158 0 316 1 303 4 256 10 530 11 808 0 1 32 2,373

NL8 - LOCALA COMMUNITY PARTNERSHIPS CIC 0 5 1 730 1 841 0 826 0 499 2 2,901

NLL - PENINSULA COMMUNITY HEALTH C.I.C 0 1 2 7 6 78 82 3,209 72 3,405 39 3,362 201 10,062

NLT - NORTH SOMERSET COMMUNITY PARTNERSHIP COMMUNITY INTEREST COMPANY 7 127 3 314 4 398 2 244 1 259 2 387 19 1,729

NLW - BRISTOL COMMUNITY HEALTH 0 31 0 569 0 814 0 1,040 0 1,439 0 1,839 0 5,732

NLY - SEQOL 0 3 3 298 16 561 11 506 9 394 21 452 5 254 65 2,468

NQ7 - MEDWAY COMMUNITY HEALTHCARE 0 1 0 2 0 3

NQA - PROVIDE 0 34 1 1,025 0 1,322 1 1,414 2 1,652 1 1,197 2 457 7 7,101

NQE - NENE COMMISSIONING COMMUNITY INTEREST COMPANY 0 3 0 3

NQL - NAVIGO HEALTH AND SOCIAL CARE CIC 2 157 10 242 10 227 13 186 6 426 4 291 45 1,529

NQV - BROMLEY HEALTHCARE 15 691 15 963 13 1,287 8 1,413 10 1,530 1 1,018 62 6,902

NR3 - NOTTINGHAM CITYCARE PARTNERSHIP 0 127 7 1,625 8 2,084 4 2,946 17 3,436 6 2,391 6 1,614 48 14,223

NR5 - LIVEWELL SOUTHWEST 0 4 0 431 6 736 11 1,427 7 2,195 29 2,374 33 2,925 0 1 86 10,093

NHS Care Trusts 16 840 26 1,219 1 121 43 2,180

TAL - TORBAY CARE TRUST 16 840 26 1,219 1 121 43 2,180

NHS Primary Care Trusts 1,653 131,976 643 37,310 208 14,623 2 81 2,506 183,990

5A3 - SOUTH GLOUCESTERSHIRE PCT 0 247 0 3 0 250

5A4 - HAVERING PCT 1 1,275 0 810 0 11 1 2,096

5A5 - KINGSTON PCT 10 106 10 106

5A7 - BROMLEY PCT 20 564 0 5 0 1 20 570

5A8 - GREENWICH TEACHING PCT 0 371 0 1 0 1 0 373

5A9 - BARNET PCT 7 269 0 2 7 271

5AT - HILLINGDON PCT 8 1,068 1 19 0 14 9 1,101

5C1 - ENFIELD PCT 10 137 1 23 11 160

5C2 - BARKING AND DAGENHAM PCT 5 320 1 2 0 10 6 332

5C3 - CITY AND HACKNEY TEACHING PCT 1 20 1 20

5C4 - TOWER HAMLETS PCT 5 497 0 5 0 2 5 504

5C5 - NEWHAM PCT 4 182 0 2 0 2 4 186

5C9 - HARINGEY TEACHING PCT 2 127 2 127

5CN - HEREFORDSHIRE PCT 22 2,147 0 3 22 2,150

5CQ - MILTON KEYNES PCT 27 1,436 16 1,669 23 1,925 2 11 68 5,041

5D7 - NEWCASTLE PCT 1 2 0 10 1 9 0 1 2 22

5D8 - NORTH TYNESIDE PCT 5 651 0 2 0 1 5 654

5D9 - HARTLEPOOL PCT 0 40 3 62 0 11 3 113

5EF - NORTH LINCOLNSHIRE PCT 3 250 0 8 0 13 0 2 3 273

5EM - NOTTINGHAM CITY PCT 0 1,357 0 2 0 10 0 1,369

5ET - BASSETLAW PCT 0 55 0 30 0 1 0 86

5F1 - PLYMOUTH TEACHING PCT 1 922 7 897 0 4 8 1,823

5F5 - SALFORD PCT 10 239 0 1 0 2 10 242

Year

TotalOrganisation 2010/11 2012/13 2013/14 2014/15 2015/16 2016/17 Incorrect2011/12
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Death or 

Severe

Total 

Incidents

Death or 

Severe

Total 

Incidents

Death or 

Severe

Total 

Incidents

Death or 

Severe

Total 

Incidents

Death or 

Severe

Total 

Incidents

Death or 

Severe

Total 

Incidents

Death or 

Severe

Total 

Incidents

Death or 

Severe

Total 

Incidents

Death or 

Severe

Total 

Incidents

5F7 - STOCKPORT PCT 2 284 4 363 1 4 7 651

5FE - PORTSMOUTH CITY TEACHING PCT 1 5 0 1 1 6

5FL - BATH AND NORTH EAST SOMERSET PCT 4 356 4 252 8 608

5GC - LUTON PCT 8 254 1 13 0 3 0 2 9 272

5H1 - HAMMERSMITH AND FULHAM PCT 1 22 0 14 0 6 1 42

5H8 - ROTHERHAM PCT 2 193 0 3 0 20 0 1 2 217

5HG - ASHTON, LEIGH AND WIGAN PCT 1 636 0 47 0 39 1 722

5HP - BLACKPOOL PCT 9 581 9 333 0 1 18 915

5HQ - BOLTON PCT 3 327 0 117 0 2 3 446

5HX - EALING PCT 6 208 1 17 0 7 7 232

5HY - HOUNSLOW PCT 1 38 2 23 0 10 3 71

5J2 - WARRINGTON PCT 1 74 1 13 0 2 2 89

5J4 - KNOWSLEY PCT 2 53 0 1 0 7 2 61

5J5 - OLDHAM PCT 0 458 0 122 0 10 0 590

5J6 - CALDERDALE PCT 23 776 8 195 5 163 36 1,134

5J9 - DARLINGTON PCT 3 618 0 7 3 444 0 1 6 1,070

5JE - BARNSLEY PCT 14 1,189 0 145 0 24 0 1 14 1,359

5JX - BURY PCT 0 166 0 2 0 168

5K3 - SWINDON PCT 8 1,121 3 537 0 22 0 1 11 1,681

5K5 - BRENT TEACHING PCT 4 184 0 4 0 3 4 191

5K6 - HARROW PCT 4 135 0 3 0 1 0 1 4 140

5K7 - CAMDEN PCT 1 794 1 794

5K8 - ISLINGTON PCT 15 441 1 76 0 138 16 655

5K9 - CROYDON PCT 0 13 0 8 0 21 0 1 0 43

5KF - GATESHEAD PCT 2 398 1 184 1 97 4 679

5KG - SOUTH TYNESIDE PCT 1 437 2 156 1 79 4 672

5KL - SUNDERLAND TEACHING PCT 0 513 2 302 1 213 0 2 3 1,030

5KM - MIDDLESBROUGH PCT 0 29 0 54 0 45 0 6 0 134

5L1 - SOUTHAMPTON CITY PCT 51 2,034 0 91 0 11 51 2,136

5L3 - MEDWAY PCT 1 617 0 6 0 3 0 1 1 627

5LA - KENSINGTON AND CHELSEA PCT 7 854 0 1 7 855

5LC - WESTMINSTER PCT 0 3 0 3

5LD - LAMBETH PCT 5 284 2 161 0 25 7 470

5LE - SOUTHWARK PCT 1 60 1 40 0 3 2 103

5LF - LEWISHAM PCT 0 27 1 7 0 6 1 40

5LG - WANDSWORTH PCT 13 530 13 530

5LH - TAMESIDE AND GLOSSOP PCT 2 425 0 1 0 5 2 431

5LQ - BRIGHTON AND HOVE CITY PCT 4 10 0 2 1 10 5 22

5M1 - SOUTH BIRMINGHAM PCT 13 2,620 7 1,171 0 4 0 2 20 3,797

5M2 - SHROPSHIRE COUNTY PCT 4 1,288 2 345 0 3 6 1,636

5M3 - WALSALL TEACHING PCT 21 768 0 52 0 34 21 854

5M6 - RICHMOND AND TWICKENHAM PCT 6 388 0 1 6 389

5M7 - SUTTON AND MERTON PCT 0 117 0 3 0 22 0 1 0 143

5M8 - NORTH SOMERSET PCT 3 101 3 73 0 1 6 175

5MD - COVENTRY TEACHING PCT 3 583 0 1 3 584

5MK - TELFORD AND WREKIN PCT 3 44 0 26 0 1 3 71

2014/15 2015/16 2016/17 Incorrect TotalOrganisation

Year

2010/11 2012/13 2013/142011/12
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Death or 
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Death or 
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Death or 

Severe
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Incidents

Death or 

Severe

Total 
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5MV - WOLVERHAMPTON CITY PCT 45 1,389 9 231 0 6 54 1,626

5MX - HEART OF BIRMINGHAM TEACHING PCT 11 880 0 3 11 883

5N1 - LEEDS PCT 39 3,368 9 830 4 564 52 4,762

5N2 - KIRKLEES PCT 5 1,103 0 631 0 8 5 1,742

5N3 - WAKEFIELD DISTRICT PCT 5 2,009 2 111 2 70 9 2,190

5N4 - SHEFFIELD PCT 4 737 0 8 0 7 4 752

5N5 - DONCASTER PCT 38 3,029 0 3 0 2 38 3,034

5N6 - DERBYSHIRE COUNTY PCT 17 3,942 0 38 0 146 0 3 17 4,129

5N7 - DERBY CITY PCT 4 265 0 9 0 4 4 278

5N8 - NOTTINGHAMSHIRE COUNTY TEACHING PCT 10 1,264 0 77 0 66 0 1 10 1,408

5N9 - LINCOLNSHIRE TEACHING PCT 3 1,275 0 5 0 6 3 1,286

5NA - REDBRIDGE PCT 1 14 0 8 0 18 1 40

5NC - WALTHAM FOREST PCT 2 42 1 6 3 48

5ND - COUNTY DURHAM PCT 31 665 9 575 11 1,292 51 2,532

5NE - CUMBRIA TEACHING PCT 2 1,570 0 15 0 7 2 1,592

5NF - NORTH LANCASHIRE TEACHING PCT 6 575 7 709 0 9 13 1,293

5NG - CENTRAL LANCASHIRE PCT 7 1,304 0 127 0 5 7 1,436

5NH - EAST LANCASHIRE TEACHING PCT 25 960 2 50 0 8 27 1,018

5NJ - SEFTON PCT 9 479 0 16 0 5 9 500

5NK - WIRRAL PCT 4 1,081 0 5 0 15 0 1 4 1,102

5NL - LIVERPOOL PCT 0 415 1 145 0 3 1 563

5NM - HALTON AND ST HELENS PCT 0 395 0 4 0 12 0 411

5NN - WESTERN CHESHIRE PCT 15 912 13 241 0 24 28 1,177

5NP - CENTRAL AND EASTERN CHESHIRE PCT 10 1,484 3 209 0 1 13 1,694

5NQ - HEYWOOD, MIDDLETON AND ROCHDALE PCT 0 36 0 1 0 37

5NR - TRAFFORD PCT 0 107 0 1 0 108

5NT - MANCHESTER PCT 2 397 0 8 0 8 2 413

5NV - NORTH YORKSHIRE AND YORK PCT 16 3,557 3 1,629 3 142 22 5,328

5NW - EAST RIDING OF YORKSHIRE PCT 20 583 2 157 4 63 0 1 26 804

5NX - HULL TEACHING PCT 14 324 4 184 4 185 0 12 22 705

5NY - BRADFORD AND AIREDALE TEACHING PCT 6 1,417 1 41 0 15 7 1,473

5P1 - SOUTH EAST ESSEX PCT 22 331 4 69 0 2 26 402

5P2 - BEDFORDSHIRE PCT 2 1,407 12 608 2 9 16 2,024

5P5 - SURREY PCT 11 2,309 30 2,545 5 1,039 0 1 46 5,894

5P6 - WEST SUSSEX PCT 27 1,226 0 1 0 11 0 1 27 1,239

5P7 - EAST SUSSEX DOWNS AND WEALD PCT 5 807 0 1 3 6 8 814

5P8 - HASTINGS AND ROTHER PCT 1 529 0 15 0 3 1 547

5P9 - WEST KENT PCT 6 1,172 0 3 0 3 6 1,178

5PA - LEICESTERSHIRE COUNTY AND RUTLAND PCT 10 2,223 0 70 1 74 0 1 11 2,368

5PC - LEICESTER CITY PCT 12 572 0 34 0 55 0 1 12 662

5PD - NORTHAMPTONSHIRE TEACHING PCT 35 1,650 5 200 0 13 0 1 40 1,864

5PE - DUDLEY PCT 0 194 0 22 1 22 1 238

5PF - SANDWELL PCT 48 700 29 1,247 6 158 83 2,105

5PG - BIRMINGHAM EAST AND NORTH PCT 20 1,397 0 5 20 1,402

5PH - NORTH STAFFORDSHIRE PCT 3 543 12 590 15 1,133

5PJ - STOKE ON TRENT PCT 43 869 6 249 0 3 49 1,121
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5PK - SOUTH STAFFORDSHIRE PCT 6 756 9 407 0 53 0 1 15 1,217

5PL - WORCESTERSHIRE PCT 15 1,729 0 372 0 5 15 2,106

5PM - WARWICKSHIRE PCT 22 1,022 20 720 0 5 0 2 42 1,749

5PN - PETERBOROUGH PCT 7 1,305 4 1,042 0 20 0 4 11 2,371

5PP - CAMBRIDGESHIRE PCT 19 1,446 0 59 0 34 19 1,539

5PQ - NORFOLK PCT 5 3,955 1 12 0 43 0 1 6 4,011

5PR - GREAT YARMOUTH AND WAVENEY PCT 11 698 24 408 0 6 35 1,112

5PT - SUFFOLK PCT 1 981 4 741 3 271 0 1 8 1,994

5PV - WEST ESSEX PCT 23 568 9 123 5 38 37 729

5PW - NORTH EAST ESSEX PCT 7 987 0 223 0 96 7 1,306

5PX - MID ESSEX PCT 4 764 0 7 0 13 4 784

5PY - SOUTH WEST ESSEX PCT 5 1,103 4 124 0 1 9 1,228

5QA - EASTERN AND COASTAL KENT PCT 15 1,939 2 184 0 102 0 6 17 2,231

5QC - HAMPSHIRE PCT 81 2,456 0 18 1 8 0 2 82 2,484

5QD - BUCKINGHAMSHIRE PCT 2 192 0 1 0 5 2 198

5QE - OXFORDSHIRE PCT 45 2,524 8 108 0 26 53 2,658

5QF - BERKSHIRE WEST PCT 5 1,453 0 73 0 58 0 2 5 1,586

5QG - BERKSHIRE EAST PCT 2 399 0 25 0 12 0 1 2 437

5QH - GLOUCESTERSHIRE PCT 44 3,074 68 2,588 59 3,156 171 8,818

5QJ - BRISTOL PCT 2 624 0 640 1 119 3 1,383

5QK - WILTSHIRE PCT 6 2,197 2 352 0 7 8 2,556

5QL - SOMERSET PCT 15 2,489 6 1,477 0 31 21 3,997

5QM - DORSET PCT 89 2,611 47 765 0 12 136 3,388

5QN - BOURNEMOUTH AND POOLE TEACHING PCT 0 832 0 102 0 12 0 1 0 947

5QP - CORNWALL AND ISLES OF SCILLY PCT 13 2,563 66 2,602 55 2,738 134 7,903

5QQ - DEVON PCT 113 2,954 11 389 0 121 124 3,464

5QR - REDCAR AND CLEVELAND PCT 7 515 0 22 0 4 7 541

5QT - ISLE OF WIGHT NHS PCT 95 2,636 109 3,446 204 6,082

5QV - HERTFORDSHIRE PCT 3 2,359 2 30 0 17 0 2 5 2,408

5QW - SOLIHULL PCT 0 1 0 1

NHS Trusts (acute trust) 6,762 821,192 7,111 933,947 6,869 1,030,798 6,427 1,129,209 6,512 1,257,849 6,508 1,305,897 5,248 1,169,877 10 742 45,447 7,649,511

R1F - ISLE OF WIGHT NHS TRUST 0 1 0 12 94 3,043 102 2,620 95 3,795 41 3,801 13 3,710 0 16 345 16,998

R1H - BARTS HEALTH NHS TRUST 3 19 8 117 113 14,190 55 20,219 74 22,907 123 23,797 112 23,822 0 15 488 105,086

R1K - LONDON NORTH WEST UNIVERSITY HEALTHCARE NHS TRUST 1 3 1 2 2 9 4 446 14 942 113 11,492 98 12,905 0 17 233 25,816

RA2 - ROYAL SURREY COUNTY HOSPITAL NHS FOUNDATION TRUST 5 4,013 14 4,915 7 4,155 39 4,415 52 5,464 44 5,445 51 4,675 1 4 213 33,086

RA3 - WESTON AREA HEALTH NHS TRUST 50 1,752 17 2,019 5 2,064 12 2,583 9 3,306 5 3,708 13 3,157 111 18,589

RA4 - YEOVIL DISTRICT HOSPITAL NHS FOUNDATION TRUST 16 2,186 14 2,773 2 2,667 6 3,508 14 3,508 20 3,719 25 3,730 97 22,091

RA7 - UNIVERSITY HOSPITALS BRISTOL NHS FOUNDATION TRUST 142 8,354 100 9,073 77 11,236 41 12,154 51 13,079 55 13,594 57 13,492 0 5 523 80,987

RA9 - TORBAY AND SOUTH DEVON NHS FOUNDATION TRUST 58 4,001 48 4,238 27 4,352 13 4,516 9 5,260 18 5,684 19 5,106 192 33,157

RAE - BRADFORD TEACHING HOSPITALS NHS FOUNDATION TRUST 56 5,886 66 6,833 49 7,215 14 7,727 20 9,061 8 9,663 12 7,601 0 19 225 54,005

RAJ - SOUTHEND UNIVERSITY HOSPITAL NHS FOUNDATION TRUST 25 4,175 22 5,365 37 5,964 30 6,862 60 7,508 52 8,691 43 7,907 0 10 269 46,482

RAL - ROYAL FREE LONDON NHS FOUNDATION TRUST 74 4,857 65 4,781 53 4,742 33 4,869 66 9,433 50 11,081 53 11,161 0 1 394 50,925

RAP - NORTH MIDDLESEX UNIVERSITY HOSPITAL NHS TRUST 48 3,025 50 3,281 27 2,752 12 4,204 22 7,055 39 6,754 18 6,296 0 8 216 33,375

RAS - THE HILLINGDON HOSPITALS NHS FOUNDATION TRUST 19 3,700 42 4,250 47 4,686 54 5,310 45 5,633 30 5,645 28 5,028 265 34,252

RAX - KINGSTON HOSPITAL NHS FOUNDATION TRUST 38 2,902 14 1,757 26 3,081 43 4,739 25 4,700 32 4,957 12 4,292 190 26,428

RBA - TAUNTON AND SOMERSET NHS FOUNDATION TRUST 47 3,504 29 3,995 16 5,352 10 6,120 23 6,463 13 6,123 10 5,901 148 37,458
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RBD - DORSET COUNTY HOSPITAL NHS FOUNDATION TRUST 32 2,777 30 3,001 25 3,078 1 3,276 38 4,116 26 4,542 17 2,793 0 1 169 23,584

RBK - WALSALL HEALTHCARE NHS TRUST 11 3,457 115 4,677 133 9,835 52 9,661 29 10,438 47 11,486 56 9,257 443 58,811

RBL - WIRRAL UNIVERSITY TEACHING HOSPITAL NHS FOUNDATION TRUST 13 8,875 25 9,849 15 12,317 20 10,174 32 9,731 44 9,415 36 10,082 185 70,443

RBN - ST HELENS AND KNOWSLEY HOSPITAL SERVICES NHS TRUST 2 4,220 11 4,879 11 7,870 4 6,008 46 8,158 38 9,067 42 8,411 0 3 154 48,616

RBT - MID CHESHIRE HOSPITALS NHS FOUNDATION TRUST 6 6,171 8 6,393 11 6,546 7 6,746 13 6,156 26 6,541 33 5,877 104 44,430

RBZ - NORTHERN DEVON HEALTHCARE NHS TRUST 55 4,527 138 7,480 112 9,239 82 8,230 89 7,831 89 7,539 68 5,370 0 6 633 50,222

RC1 - BEDFORD HOSPITAL NHS TRUST 12 1,759 8 1,850 27 2,755 22 3,223 41 4,743 64 5,131 30 4,992 204 24,453

RC3 - EALING HOSPITAL NHS TRUST 16 2,411 22 2,649 26 2,473 44 3,176 36 3,981 6 181 150 14,871

RC9 - LUTON AND DUNSTABLE UNIVERSITY HOSPITAL NHS FOUNDATION TRUST 22 5,113 26 7,977 24 8,782 24 7,527 43 6,841 14 6,917 10 3,346 0 1 163 46,504

RCB - YORK TEACHING HOSPITAL NHS FOUNDATION TRUST 48 9,895 42 9,265 67 9,573 88 11,089 71 10,680 93 12,189 73 8,656 0 2 482 71,349

RCC - SCARBOROUGH AND NORTH EAST YORKSHIRE HEALTH CARE NHS TRUST 21 2,630 17 2,639 6 503 44 5,772

RCD - HARROGATE AND DISTRICT NHS FOUNDATION TRUST 2 2,164 2 2,729 7 3,348 8 2,514 5 3,230 9 3,997 10 4,120 0 2 43 22,104

RCF - AIREDALE NHS FOUNDATION TRUST 19 3,486 7 3,857 7 4,563 9 4,914 12 4,726 18 5,044 12 4,165 84 30,755

RCX - THE QUEEN ELIZABETH HOSPITAL, KING'S LYNN, NHS FOUNDATION TRUST 13 4,739 13 5,460 20 5,485 17 7,160 29 7,154 27 6,307 34 4,730 153 41,035

RD1 - ROYAL UNITED HOSPITALS BATH NHS FOUNDATION TRUST 21 2,630 40 2,669 27 3,049 65 4,888 21 7,735 25 6,850 42 5,881 241 33,702

RD3 - POOLE HOSPITAL NHS FOUNDATION TRUST 17 6,902 22 7,895 18 8,020 19 7,434 4 8,645 21 8,676 26 7,118 0 4 127 54,694

RD7 - HEATHERWOOD AND WEXHAM PARK HOSPITALS NHS FOUNDATION TRUST 58 5,743 65 5,182 78 6,320 133 6,000 43 3,859 0 14 377 27,118

RD8 - MILTON KEYNES UNIVERSITY HOSPITAL NHS FOUNDATION TRUST 37 3,398 22 3,185 22 3,096 25 3,307 33 4,276 24 4,629 6 4,575 0 1 169 26,467

RDD - BASILDON AND THURROCK UNIVERSITY HOSPITALS NHS FOUNDATION TRUST 46 4,324 81 3,488 67 1,952 140 7,993 30 11,097 49 10,479 85 9,606 498 48,939

RDE - EAST SUFFOLK AND NORTH ESSEX NHS FOUNDATION TRUST 29 3,966 16 4,303 29 5,387 44 7,459 26 7,127 53 7,605 36 7,051 233 42,898

RDU - FRIMLEY HEALTH NHS FOUNDATION TRUST 29 4,398 19 5,601 17 5,171 25 5,019 54 8,398 56 12,424 36 11,818 0 3 236 52,832

RDZ - THE ROYAL BOURNEMOUTH AND CHRISTCHURCH HOSPITALS NHS FOUNDATION TRUST 19 4,227 29 5,192 30 6,134 42 7,163 26 7,198 42 8,038 32 7,501 220 45,453

RE9 - SOUTH TYNESIDE NHS FOUNDATION TRUST 6 2,818 31 3,257 19 4,455 11 4,122 20 4,545 12 3,776 4 2,811 103 25,784

REF - ROYAL CORNWALL HOSPITALS NHS TRUST 87 6,279 46 6,878 57 7,731 60 8,982 56 9,032 51 9,151 39 8,263 0 6 396 56,322

REM - AINTREE UNIVERSITY HOSPITAL NHS FOUNDATION TRUST 14 4,824 9 6,065 12 5,915 17 5,759 14 5,485 20 5,943 18 5,788 0 2 104 39,781

RF4 - BARKING, HAVERING AND REDBRIDGE UNIVERSITY HOSPITALS NHS TRUST 13 7,556 21 7,983 27 7,427 30 8,099 84 8,347 117 9,523 58 8,274 350 57,209

RFF - BARNSLEY HOSPITAL NHS FOUNDATION TRUST 36 2,980 42 3,401 44 3,262 38 6,281 25 7,173 30 7,033 25 6,343 240 36,473

RFR - THE ROTHERHAM NHS FOUNDATION TRUST 5 4,729 15 5,406 8 6,186 30 6,116 47 6,680 24 6,427 32 6,047 0 10 161 41,601

RFS - CHESTERFIELD ROYAL HOSPITAL NHS FOUNDATION TRUST 26 4,809 29 5,023 27 5,503 28 5,843 17 6,067 15 5,846 42 5,288 1 5 185 38,384

RFW - WEST MIDDLESEX UNIVERSITY HOSPITAL NHS TRUST 15 2,175 17 2,339 24 2,371 32 3,115 36 4,345 39 3,317 0 1 163 17,663

RGC - WHIPPS CROSS UNIVERSITY HOSPITAL NHS TRUST 61 2,851 69 4,791 130 7,642

RGN - NORTH WEST ANGLIA NHS FOUNDATION TRUST 27 5,983 11 7,226 20 8,068 22 7,958 54 7,881 47 8,077 50 7,392 231 52,585

RGP - JAMES PAGET UNIVERSITY HOSPITALS NHS FOUNDATION TRUST 25 3,097 21 3,840 32 4,971 14 5,991 18 5,058 8 4,337 12 3,989 130 31,283

RGQ - IPSWICH HOSPITAL NHS TRUST 12 6,593 18 6,777 25 8,057 23 5,364 42 5,539 39 6,344 35 6,613 0 1 194 45,288

RGR - WEST SUFFOLK NHS FOUNDATION TRUST 52 2,690 34 2,866 36 3,504 42 4,136 25 4,089 27 4,289 40 3,629 256 25,203

RGT - CAMBRIDGE UNIVERSITY HOSPITALS NHS FOUNDATION TRUST 26 10,734 21 12,533 40 12,090 42 12,067 33 12,104 18 11,428 51 8,977 231 79,933

RH8 - ROYAL DEVON AND EXETER NHS FOUNDATION TRUST 18 6,205 28 6,452 19 8,609 16 10,029 9 13,059 11 11,553 1 9,606 0 8 102 65,521

RHM - UNIVERSITY HOSPITAL SOUTHAMPTON NHS FOUNDATION TRUST 85 6,268 91 8,929 82 9,265 108 12,792 155 14,298 178 14,931 100 14,735 799 81,218

RHQ - SHEFFIELD TEACHING HOSPITALS NHS FOUNDATION TRUST 56 10,453 51 10,833 58 11,136 75 11,720 62 17,746 41 20,529 25 17,677 0 20 368 100,114

RHU - PORTSMOUTH HOSPITALS NHS TRUST 70 8,636 115 7,687 114 7,976 112 7,800 125 8,959 75 8,991 97 12,195 0 5 708 62,249

RHW - ROYAL BERKSHIRE NHS FOUNDATION TRUST 44 5,351 38 4,940 19 5,529 17 4,939 18 8,477 26 10,253 35 9,059 0 7 197 48,555

RJ1 - GUY'S AND ST THOMAS' NHS FOUNDATION TRUST 71 8,736 35 9,126 35 10,284 14 12,203 48 14,614 54 16,894 78 15,421 0 17 335 87,295

RJ2 - LEWISHAM AND GREENWICH NHS TRUST 38 2,873 40 4,045 27 3,603 26 7,323 69 11,302 17 13,187 6 10,518 223 52,851

RJ6 - CROYDON HEALTH SERVICES NHS TRUST 46 3,282 40 5,189 163 5,176 89 4,519 57 4,404 44 5,042 66 6,263 0 1 505 33,876

RJ7 - ST GEORGE'S UNIVERSITY HOSPITALS NHS FOUNDATION TRUST 70 6,874 24 9,707 16 9,505 14 9,867 33 10,324 51 10,744 26 7,185 0 3 234 64,209

RJC - SOUTH WARWICKSHIRE NHS FOUNDATION TRUST 82 2,670 53 3,776 45 4,510 94 5,557 194 5,285 153 6,810 20 6,737 0 1 641 35,346
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RJD - MID STAFFORDSHIRE NHS FOUNDATION TRUST 131 3,612 168 4,772 113 5,082 21 4,919 12 2,714 445 21,099

RJE - UNIVERSITY HOSPITALS OF NORTH MIDLANDS NHS TRUST 74 6,482 63 6,322 71 7,964 22 8,226 48 12,141 18 13,671 28 11,382 324 66,188

RJF - BURTON HOSPITALS NHS FOUNDATION TRUST 28 4,006 67 5,421 93 5,883 40 4,969 39 4,692 15 5,504 27 3,408 309 33,883

RJL - NORTHERN LINCOLNSHIRE AND GOOLE NHS FOUNDATION TRUST 10 7,450 18 8,330 14 9,437 17 9,703 26 10,703 16 10,617 26 11,076 0 6 127 67,322

RJN - EAST CHESHIRE NHS TRUST 3 2,585 18 4,478 23 4,515 14 5,491 8 6,687 8 7,774 23 6,417 0 8 97 37,955

RJR - COUNTESS OF CHESTER HOSPITAL NHS FOUNDATION TRUST 7 7,211 17 7,068 22 4,529 18 7,158 12 7,679 29 9,734 24 8,248 129 51,627

RJZ - KING'S COLLEGE HOSPITAL NHS FOUNDATION TRUST 89 7,830 31 6,918 41 8,117 124 14,480 147 19,130 151 21,494 94 11,189 0 26 677 89,184

RK5 - SHERWOOD FOREST HOSPITALS NHS FOUNDATION TRUST 7 4,263 7 5,724 9 6,302 16 6,441 16 7,120 18 7,275 6 5,430 0 8 79 42,563

RK9 - UNIVERSITY HOSPITALS PLYMOUTH NHS TRUST 44 5,346 56 7,405 93 9,755 92 10,403 81 12,614 54 13,023 41 11,153 0 12 461 69,711

RKB - UNIVERSITY HOSPITALS COVENTRY AND WARWICKSHIRE NHS TRUST 28 8,889 23 10,671 30 10,206 46 10,751 34 11,696 61 12,117 34 11,593 256 75,923

RKE - WHITTINGTON HEALTH NHS TRUST 70 2,625 110 3,579 75 2,853 73 3,817 78 3,902 72 4,130 31 3,244 509 24,150

RL4 - THE ROYAL WOLVERHAMPTON NHS TRUST 23 6,379 45 8,805 28 8,616 10 9,024 34 9,913 32 9,966 24 7,310 196 60,013

RLN - CITY HOSPITALS SUNDERLAND NHS FOUNDATION TRUST 124 6,291 62 5,658 94 8,672 20 10,389 16 12,799 40 14,135 30 12,274 386 70,218

RLQ - WYE VALLEY NHS TRUST 14 2,595 19 3,425 24 3,567 10 3,575 9 5,958 11 6,452 21 6,171 0 2 108 31,745

RLT - GEORGE ELIOT HOSPITAL NHS TRUST 126 2,068 82 1,971 20 2,182 69 3,678 5 4,013 26 4,456 21 4,203 0 1 349 22,572

RM1 - NORFOLK AND NORWICH UNIVERSITY HOSPITALS NHS FOUNDATION TRUST 73 8,700 263 11,096 128 12,700 11 13,345 16 15,152 32 15,487 20 10,798 0 6 543 87,284

RM2 - UNIVERSITY HOSPITAL OF SOUTH MANCHESTER NHS FOUNDATION TRUST 18 4,332 34 5,446 52 7,442 34 7,724 31 9,881 33 11,027 29 12,293 0 2 231 58,147

RM3 - SALFORD ROYAL NHS FOUNDATION TRUST 33 7,264 40 7,278 28 7,470 37 7,616 27 9,760 24 9,074 21 7,434 210 55,896

RM4 - TRAFFORD HEALTHCARE NHS TRUST 0 911 2 1,624 2 2,535

RMC - BOLTON NHS FOUNDATION TRUST 17 4,141 23 3,103 19 4,870 36 5,623 40 7,585 25 8,990 19 8,672 179 42,984

RMP - TAMESIDE AND GLOSSOP INTEGRATED CARE NHS FOUNDATION TRUST 7 3,588 8 3,454 17 4,135 8 6,094 10 5,798 14 7,791 15 7,067 79 37,927

RN3 - GREAT WESTERN HOSPITALS NHS FOUNDATION TRUST 27 4,710 44 6,516 42 6,908 44 6,870 43 6,663 35 6,165 36 6,161 0 60 271 44,053

RN5 - HAMPSHIRE HOSPITALS NHS FOUNDATION TRUST 49 4,231 66 5,507 103 6,753 56 6,362 69 6,788 57 8,457 34 7,786 0 4 434 45,888

RN7 - DARTFORD AND GRAVESHAM NHS TRUST 2 3,935 10 3,886 23 4,175 16 4,598 12 6,269 12 7,333 8 5,952 0 2 83 36,150

RNA - THE DUDLEY GROUP NHS FOUNDATION TRUST 73 9,330 99 10,732 48 9,128 19 10,489 32 9,574 48 7,380 30 7,346 0 5 349 63,984

RNH - NEWHAM UNIVERSITY HOSPITAL NHS TRUST 11 3,898 10 3,788 21 7,686

RNJ - BARTS AND THE LONDON NHS TRUST 82 6,578 52 8,082 0 3 134 14,663

RNL - NORTH CUMBRIA UNIVERSITY HOSPITALS NHS TRUST 11 2,548 18 3,339 50 5,092 59 5,736 79 6,171 64 8,076 56 7,295 0 2 337 38,259

RNQ - KETTERING GENERAL HOSPITAL NHS FOUNDATION TRUST 15 2,910 22 2,935 37 4,397 98 5,661 67 6,562 44 6,175 86 5,755 0 3 369 34,398

RNS - NORTHAMPTON GENERAL HOSPITAL NHS TRUST 23 4,599 37 5,629 47 6,764 44 7,653 31 6,522 28 7,272 13 4,749 0 6 223 43,194

RNZ - SALISBURY NHS FOUNDATION TRUST 41 4,826 36 5,140 34 5,566 22 6,220 17 6,348 13 6,029 33 6,254 196 40,383

RP5 - DONCASTER AND BASSETLAW TEACHING HOSPITALS NHS FOUNDATION TRUST 70 2,005 122 4,208 170 5,186 186 6,696 157 10,332 104 11,259 57 8,840 0 1 866 48,527

RPA - MEDWAY NHS FOUNDATION TRUST 35 5,082 36 3,714 39 4,385 67 5,868 69 6,650 76 5,451 53 7,161 0 17 375 38,328

RQ6 - ROYAL LIVERPOOL AND BROADGREEN UNIVERSITY HOSPITALS NHS TRUST 33 4,806 5 4,565 7 4,261 28 5,053 47 8,163 35 10,657 9 11,241 0 2 164 48,748

RQ8 - MID ESSEX HOSPITAL SERVICES NHS TRUST 9 3,277 40 4,614 40 6,395 31 5,838 26 5,655 22 5,066 15 5,977 0 13 183 36,835

RQM - CHELSEA AND WESTMINSTER HOSPITAL NHS FOUNDATION TRUST 14 4,962 1 4,976 4 5,154 2 5,892 13 6,472 12 5,812 29 6,925 0 2 75 40,195

RQQ - HINCHINGBROOKE HEALTH CARE NHS TRUST 10 3,241 28 3,030 13 2,534 36 3,320 35 4,314 26 3,519 9 3,023 157 22,981

RQW - THE PRINCESS ALEXANDRA HOSPITAL NHS TRUST 48 3,927 86 4,834 23 4,657 39 5,521 21 6,409 20 7,391 24 7,017 0 3 261 39,759

RQX - HOMERTON UNIVERSITY HOSPITAL NHS FOUNDATION TRUST 38 3,418 45 4,118 40 4,714 38 6,377 23 5,891 24 5,846 14 4,368 222 34,732

RR1 - HEART OF ENGLAND NHS FOUNDATION TRUST 186 12,952 173 12,790 238 15,026 161 15,427 176 14,689 177 15,428 98 14,806 0 1 1,209 101,119

RR7 - GATESHEAD HEALTH NHS FOUNDATION TRUST 37 4,907 30 4,924 28 4,765 40 4,509 35 5,062 40 5,408 34 5,061 0 1 244 34,637

RR8 - LEEDS TEACHING HOSPITALS NHS TRUST 49 15,659 74 17,395 34 19,882 62 19,603 54 20,469 48 22,386 23 19,012 0 4 344 134,410

RRF - WRIGHTINGTON, WIGAN AND LEIGH NHS FOUNDATION TRUST 51 3,450 28 2,539 22 2,381 33 2,850 33 5,906 82 7,444 58 7,057 1 11 308 31,638

RRK - UNIVERSITY HOSPITALS BIRMINGHAM NHS FOUNDATION TRUST 49 8,940 113 8,591 88 9,620 24 10,152 24 16,750 20 21,365 21 21,293 0 20 339 96,731

RRV - UNIVERSITY COLLEGE LONDON HOSPITALS NHS FOUNDATION TRUST 54 5,604 55 6,218 38 7,319 44 8,630 35 9,765 55 9,837 20 7,869 0 8 301 55,250

RTD - THE NEWCASTLE UPON TYNE HOSPITALS NHS FOUNDATION TRUST 61 7,971 70 8,767 55 10,054 40 11,966 72 14,900 81 15,861 37 11,002 416 80,521
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RTE - GLOUCESTERSHIRE HOSPITALS NHS FOUNDATION TRUST 34 10,619 77 10,309 165 9,533 125 8,423 67 9,932 39 11,360 77 12,784 0 1 584 72,961

RTF - NORTHUMBRIA HEALTHCARE NHS FOUNDATION TRUST 88 8,368 79 9,182 98 10,076 54 11,044 19 11,421 38 12,102 42 10,161 0 24 418 72,378

RTG - UNIVERSITY HOSPITALS OF DERBY AND BURTON NHS FOUNDATION TRUST 16 10,946 18 13,406 12 12,367 30 11,120 33 12,596 26 11,238 30 10,574 0 11 165 82,258

RTH - OXFORD UNIVERSITY HOSPITALS NHS FOUNDATION TRUST 177 10,251 168 11,610 48 8,657 50 16,706 47 17,887 50 18,001 11 15,761 1 8 552 98,881

RTK - ASHFORD AND ST PETER'S HOSPITALS NHS FOUNDATION TRUST 30 4,441 11 5,486 20 4,491 31 4,473 26 5,438 22 6,266 19 5,568 159 36,163

RTP - SURREY AND SUSSEX HEALTHCARE NHS TRUST 41 3,923 45 3,782 49 4,028 42 4,722 41 5,931 39 6,389 27 6,488 0 2 284 35,265

RTR - SOUTH TEES HOSPITALS NHS FOUNDATION TRUST 78 9,356 52 11,133 66 12,541 41 12,302 38 12,690 45 10,851 7 6,783 327 75,656

RTX - UNIVERSITY HOSPITALS OF MORECAMBE BAY NHS FOUNDATION TRUST 22 6,671 43 7,656 65 11,715 48 9,009 37 9,599 32 8,605 26 7,983 1 2 274 61,240

RV8 - NORTH WEST LONDON HOSPITALS NHS TRUST 59 4,688 65 4,636 51 5,109 37 6,761 49 8,033 10 846 271 30,073

RVJ - NORTH BRISTOL NHS TRUST 48 5,932 41 7,220 61 9,286 78 9,905 87 10,374 79 10,034 86 10,394 480 63,145

RVL - BARNET AND CHASE FARM HOSPITALS NHS TRUST 37 6,836 51 7,024 42 6,167 49 5,820 18 2,209 197 28,056

RVR - EPSOM AND ST HELIER UNIVERSITY HOSPITALS NHS TRUST 52 4,529 49 4,374 41 4,117 81 5,165 59 7,797 61 8,444 29 8,239 0 3 372 42,668

RVV - EAST KENT HOSPITALS UNIVERSITY NHS FOUNDATION TRUST 63 4,090 128 6,546 106 8,605 41 11,217 28 12,253 55 13,096 94 13,386 0 3 515 69,196

RVW - NORTH TEES AND HARTLEPOOL NHS FOUNDATION TRUST 36 3,881 53 4,639 47 5,250 30 5,961 20 6,292 11 5,980 12 5,518 209 37,521

RVY - SOUTHPORT AND ORMSKIRK HOSPITAL NHS TRUST 2 3,356 7 3,725 19 4,040 20 3,884 23 4,547 33 5,501 16 4,998 0 4 120 30,055

RW3 - CENTRAL MANCHESTER UNIVERSITY HOSPITALS NHS FOUNDATION TRUST 135 8,449 25 13,696 63 21,848 47 22,846 56 24,944 76 23,782 95 22,541 1 6 498 138,112

RW6 - PENNINE ACUTE HOSPITALS NHS TRUST 349 10,792 192 11,311 26 10,611 34 12,007 73 14,028 187 13,403 216 13,802 1 1 1,078 85,955

RWA - HULL AND EAST YORKSHIRE HOSPITALS NHS TRUST 71 11,879 38 13,740 20 11,353 51 11,541 60 11,008 58 12,134 39 10,937 0 16 337 82,608

RWD - UNITED LINCOLNSHIRE HOSPITALS NHS TRUST 87 10,307 108 10,319 122 10,878 152 10,635 170 9,178 207 9,347 179 10,109 0 11 1,025 70,784

RWE - UNIVERSITY HOSPITALS OF LEICESTER NHS TRUST 173 15,815 168 17,558 159 22,310 119 23,810 70 24,531 38 22,257 33 19,961 0 6 760 146,248

RWF - MAIDSTONE AND TUNBRIDGE WELLS NHS TRUST 58 4,595 38 4,668 60 5,461 65 5,567 60 5,883 75 6,624 80 6,243 0 5 436 39,046

RWG - WEST HERTFORDSHIRE HOSPITALS NHS TRUST 29 4,888 17 4,323 41 6,000 41 5,771 35 6,546 46 8,656 38 7,286 0 1 247 43,471

RWH - EAST AND NORTH HERTFORDSHIRE NHS TRUST 31 8,816 42 9,585 31 9,132 48 5,863 34 5,242 49 7,012 49 5,968 0 1 284 51,619

RWJ - STOCKPORT NHS FOUNDATION TRUST 122 6,845 72 7,279 81 8,603 145 9,210 189 10,986 91 10,752 74 6,591 774 60,266

RWP - WORCESTERSHIRE ACUTE HOSPITALS NHS TRUST 49 8,155 41 9,353 34 11,296 47 10,333 62 10,160 43 10,754 39 8,349 0 8 315 68,408

RWW - WARRINGTON AND HALTON HOSPITALS NHS FOUNDATION TRUST 17 5,362 22 6,327 9 6,899 14 7,443 9 6,952 61 7,080 26 6,137 0 4 158 46,204

RWY - CALDERDALE AND HUDDERSFIELD NHS FOUNDATION TRUST 90 7,669 135 7,597 174 7,357 151 7,352 142 8,903 112 10,363 26 7,466 1 13 831 56,720

RX1 - NOTTINGHAM UNIVERSITY HOSPITALS NHS TRUST 49 12,745 46 16,145 104 18,549 76 22,873 50 23,047 47 20,651 33 17,093 0 90 405 131,193

RXC - EAST SUSSEX HEALTHCARE NHS TRUST 51 5,639 73 7,813 82 8,565 36 8,791 21 7,452 59 9,353 40 13,725 0 16 362 61,354

RXF - MID YORKSHIRE HOSPITALS NHS TRUST 25 3,865 34 8,746 75 8,662 39 10,188 73 13,359 63 15,057 53 15,143 362 75,020

RXH - BRIGHTON AND SUSSEX UNIVERSITY HOSPITALS NHS TRUST 20 6,731 22 6,747 12 6,872 15 8,129 21 8,631 19 8,980 22 10,432 0 27 131 56,549

RXK - SANDWELL AND WEST BIRMINGHAM HOSPITALS NHS TRUST 81 5,812 107 7,861 38 11,261 46 13,943 43 14,312 58 11,985 16 10,037 389 75,211

RXL - BLACKPOOL TEACHING HOSPITALS NHS FOUNDATION TRUST 24 6,114 12 6,145 18 9,743 39 10,873 30 11,742 17 14,122 7 14,741 147 73,480

RXN - LANCASHIRE TEACHING HOSPITALS NHS FOUNDATION TRUST 37 5,146 30 6,690 48 9,988 26 11,044 56 12,889 83 12,747 99 11,415 0 5 379 69,924

RXP - COUNTY DURHAM AND DARLINGTON NHS FOUNDATION TRUST 17 6,876 21 7,410 22 8,543 28 9,381 20 10,417 55 11,538 37 9,558 200 63,723

RXQ - BUCKINGHAMSHIRE HEALTHCARE NHS TRUST 129 6,394 115 7,241 63 7,760 56 8,233 63 8,615 45 8,432 8 6,553 0 3 479 53,231

RXR - EAST LANCASHIRE HOSPITALS NHS TRUST 5 8,077 3 10,122 3 11,634 53 15,227 66 15,850 48 13,440 31 9,789 0 17 209 84,156

RXW - SHREWSBURY AND TELFORD HOSPITAL NHS TRUST 40 7,406 76 7,724 61 8,098 34 7,590 53 7,651 40 7,651 24 5,459 1 3 329 51,582

RYJ - IMPERIAL COLLEGE HEALTHCARE NHS TRUST 42 9,039 37 11,121 31 11,587 44 12,571 40 14,861 37 14,998 31 15,350 0 9 262 89,536

RYQ - SOUTH LONDON HEALTHCARE NHS TRUST 121 8,406 130 9,605 64 7,904 45 4,064 360 29,979

RYR - WESTERN SUSSEX HOSPITALS NHS FOUNDATION TRUST 28 7,493 17 8,008 11 8,349 19 8,860 24 8,355 41 8,082 38 8,301 1 1 179 57,449

NHS Trusts (ambulance) 111 4,927 56 5,445 116 6,209 206 7,652 331 11,280 306 15,857 228 10,018 0 30 1,354 61,418

RRU - LONDON AMBULANCE SERVICE NHS TRUST 2 393 7 731 14 1,454 4 441 0 731 9 1,689 64 492 0 4 100 5,935

RT4 - WELSH AMBULANCE SERVICES NHS TRUST 1 618 0 544 1 796 10 956 10 806 12 1,072 4 497 38 5,289

RX6 - NORTH EAST AMBULANCE SERVICE NHS FOUNDATION TRUST 1 48 7 546 21 615 54 1,184 70 1,256 53 2,098 45 1,179 0 26 251 6,952

RX7 - NORTH WEST AMBULANCE SERVICE NHS TRUST 21 869 2 454 9 173 8 715 15 1,771 11 967 11 1,211 77 6,160
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RX8 - YORKSHIRE AMBULANCE SERVICE NHS TRUST 10 580 6 586 18 367 23 184 60 1,801 66 1,659 59 1,548 242 6,725

RX9 - EAST MIDLANDS AMBULANCE SERVICE NHS TRUST 31 415 2 199 1 171 3 490 8 567 38 718 13 870 96 3,430

RYA - WEST MIDLANDS AMBULANCE SERVICE NHS FOUNDATION TRUST 5 451 2 540 16 624 10 585 12 588 7 752 6 1,128 58 4,668

RYC - EAST OF ENGLAND AMBULANCE SERVICE NHS TRUST 8 339 2 540 9 224 7 326 5 580 2 1,787 1 1,292 34 5,088

RYD - SOUTH EAST COAST AMBULANCE SERVICE NHS FOUNDATION TRUST 7 227 6 215 11 498 19 628 34 577 34 528 8 167 119 2,840

RYE - SOUTH CENTRAL AMBULANCE SERVICE NHS FOUNDATION TRUST 9 148 15 218 7 249 46 674 94 1,069 31 849 9 139 211 3,346

RYF - SOUTH WESTERN AMBULANCE SERVICE NHS FOUNDATION TRUST 16 839 7 872 9 1,038 22 1,469 23 1,534 43 3,738 8 1,495 128 10,985

NHS Trusts (community) 36 4,605 422 44,833 549 59,179 655 68,307 736 72,712 653 68,235 457 58,639 0 24 3,508 376,534

AXG - WILTSHIRE HEALTH & CARE 0 8 14 677 14 685

R1A - WORCESTERSHIRE HEALTH AND CARE NHS TRUST 0 6 22 1,482 34 1,325 158 4,155 88 5,985 129 5,775 86 4,878 517 23,606

R1D - SHROPSHIRE COMMUNITY HEALTH NHS TRUST 19 1,298 62 2,145 42 1,829 36 1,727 25 1,810 22 1,202 206 10,011

R1E - STAFFORDSHIRE AND STOKE ON TRENT PARTNERSHIP NHS TRUST 0 6 16 1,385 38 3,133 20 3,349 25 6,139 58 10,544 42 9,567 199 34,123

R1G - TORBAY AND SOUTHERN DEVON HEALTH AND CARE NHS TRUST 0 3 2 100 10 2,183 10 3,291 1 2,919 2 998 25 9,494

R1J - GLOUCESTERSHIRE CARE SERVICES NHS TRUST 4 69 25 2,760 12 1,846 11 2,486 6 1,750 58 8,911

RDR - SUSSEX COMMUNITY NHS FOUNDATION TRUST 6 706 23 2,830 11 3,791 20 4,684 23 4,265 31 2,937 3 2,405 0 2 117 21,620

RY1 - LIVERPOOL COMMUNITY HEALTH NHS TRUST 1 622 2 321 35 1,479 131 3,968 69 4,069 43 2,909 0 2 281 13,370

RY2 - BRIDGEWATER COMMUNITY HEALTHCARE NHS FOUNDATION TRUST 0 337 5 1,192 7 1,627 8 1,091 14 1,291 4 1,250 11 1,090 49 7,878

RY3 - NORFOLK COMMUNITY HEALTH AND CARE NHS TRUST 1 26 94 4,745 77 6,953 73 6,818 49 6,359 57 5,585 56 4,825 0 2 407 35,313

RY4 - HERTFORDSHIRE COMMUNITY NHS TRUST 0 386 30 4,338 24 4,502 31 4,543 9 4,586 10 4,658 7 4,486 0 2 111 27,501

RY5 - LINCOLNSHIRE COMMUNITY HEALTH SERVICES NHS TRUST 1 1,916 0 1,776 0 2,101 2 2,614 1 3,320 0 2,792 4 14,519

RY6 - LEEDS COMMUNITY HEALTHCARE NHS TRUST 5 348 32 2,383 17 2,336 28 3,193 31 3,670 60 4,108 14 3,555 0 3 187 19,596

RY7 - WIRRAL COMMUNITY NHS FOUNDATION TRUST 0 39 5 1,088 13 1,631 9 2,307 17 2,110 27 2,725 26 2,327 0 2 97 12,229

RY8 - DERBYSHIRE COMMUNITY HEALTH SERVICES NHS FOUNDATION TRUST 0 3 26 5,274 11 6,778 14 8,185 4 6,471 14 6,860 4 6,412 73 39,983

RY9 - HOUNSLOW AND RICHMOND COMMUNITY HEALTHCARE NHS TRUST 0 415 16 565 18 1,529 10 1,782 31 2,063 16 1,871 0 1 91 8,226

RYV - CAMBRIDGESHIRE COMMUNITY SERVICES NHS TRUST 15 802 80 4,475 97 5,732 38 3,317 17 3,426 1 1,082 3 1,083 0 7 251 19,924

RYW - BIRMINGHAM COMMUNITY HEALTHCARE NHS FOUNDATION TRUST 0 44 18 2,995 42 4,372 23 4,757 43 4,677 13 3,733 8 3,076 0 2 147 23,656

RYX - CENTRAL LONDON COMMUNITY HEALTHCARE NHS TRUST 7 906 35 3,321 74 3,944 95 4,799 206 3,854 101 2,401 90 2,464 0 1 608 21,690

RYY - KENT COMMUNITY HEALTH NHS FOUNDATION TRUST 2 993 13 4,974 10 5,996 8 4,120 18 5,023 9 1,823 6 1,270 66 24,199

NHS Trusts (mental health/learning disability) 1,634 177,917 2,419 222,030 3,023 232,273 3,096 257,220 3,114 276,586 3,696 295,149 3,737 285,572 6 62 20,725 1,746,809

R1C - SOLENT NHS TRUST 4 194 6 2,459 12 2,516 25 2,945 39 3,277 69 2,143 172 2,776 327 16,310

RAT - NORTH EAST LONDON NHS FOUNDATION TRUST 27 1,343 76 3,828 62 4,906 36 5,389 21 5,740 43 7,232 47 7,529 0 1 312 35,968

RDY - DORSET HEALTHCARE UNIVERSITY NHS FOUNDATION TRUST 16 3,239 122 5,578 55 5,483 94 5,781 60 5,652 53 5,809 34 5,734 1 1 435 37,277

RGD - LEEDS AND YORK PARTNERSHIP NHS FOUNDATION TRUST 1 5,149 14 5,242 61 6,308 25 6,186 32 6,286 29 5,760 24 4,640 0 1 186 39,572

RH5 - SOMERSET PARTNERSHIP NHS FOUNDATION TRUST 26 1,021 18 2,144 31 2,992 34 2,654 26 3,157 69 3,024 72 2,140 276 17,132

RHA - NOTTINGHAMSHIRE HEALTHCARE NHS FOUNDATION TRUST 58 5,426 72 7,698 41 8,939 39 9,360 67 10,385 57 10,998 47 11,601 381 64,407

RHX - OXFORDSHIRE LEARNING DISABILITY NHS TRUST 0 1,960 1 2,477 1 1,066 2 5,503

RJ8 - CORNWALL PARTNERSHIP NHS FOUNDATION TRUST 20 966 15 1,146 24 1,179 34 1,668 37 2,342 67 2,862 69 5,669 266 15,832

RJX - CALDERSTONES PARTNERSHIP NHS FOUNDATION TRUST 0 1,773 5 1,701 3 1,560 7 1,501 2 1,782 2 2,140 1 453 20 10,910

RKL - WEST LONDON NHS TRUST 55 2,002 18 2,035 31 2,034 24 2,021 17 2,078 39 3,476 26 3,165 210 16,811

RLY - NORTH STAFFORDSHIRE COMBINED HEALTHCARE NHS TRUST 16 888 39 1,509 71 2,537 60 2,191 40 2,506 44 2,605 45 2,485 315 14,721

RMY - NORFOLK AND SUFFOLK NHS FOUNDATION TRUST 4 3,805 10 4,034 42 6,031 49 7,553 47 8,618 64 9,275 47 7,801 263 47,117

RNK - TAVISTOCK AND PORTMAN NHS FOUNDATION TRUST 0 61 0 69 1 27 0 41 0 12 2 37 4 97 7 344

RNN - CUMBRIA PARTNERSHIP NHS FOUNDATION TRUST 9 1,587 52 4,790 98 5,963 69 4,833 145 4,257 74 3,713 46 2,469 493 27,612

RNU - OXFORD HEALTH NHS FOUNDATION TRUST 58 2,447 150 5,375 109 6,807 85 7,833 62 7,635 61 7,713 134 6,071 659 43,881

RP1 - NORTHAMPTONSHIRE HEALTHCARE NHS FOUNDATION TRUST 27 2,468 19 2,629 54 2,795 43 3,497 38 3,768 14 4,004 34 4,186 0 3 229 23,350

RP7 - LINCOLNSHIRE PARTNERSHIP NHS FOUNDATION TRUST 20 1,576 41 1,507 47 1,633 55 1,701 34 2,174 47 2,365 11 1,655 0 1 255 12,612
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RPG - OXLEAS NHS FOUNDATION TRUST 23 2,203 25 2,939 50 4,859 54 7,656 64 8,032 84 7,665 75 7,823 375 41,177

RQY - SOUTH WEST LONDON AND ST GEORGE'S MENTAL HEALTH NHS TRUST 9 1,446 14 1,306 50 2,518 29 3,542 28 3,891 64 4,614 100 4,282 0 9 294 21,608

RRD - NORTH ESSEX PARTNERSHIP UNIVERSITY NHS FOUNDATION TRUST 24 2,780 7 2,582 8 2,444 2 2,436 10 2,424 4 1,912 15 1,226 0 1 70 15,805

RRE - MIDLANDS PARTNERSHIP NHS FOUNDATION TRUST 50 2,962 154 2,642 87 2,484 73 3,506 60 3,114 64 2,755 213 4,204 701 21,667

RRP - BARNET, ENFIELD AND HARINGEY MENTAL HEALTH NHS TRUST 14 2,349 19 2,654 24 2,389 41 3,501 76 2,698 41 2,859 89 4,970 304 21,420

RT1 - CAMBRIDGESHIRE AND PETERBOROUGH NHS FOUNDATION TRUST 47 4,111 77 4,551 63 4,598 54 5,226 38 6,357 41 6,980 24 5,934 344 37,757

RT2 - PENNINE CARE NHS FOUNDATION TRUST 0 3,281 14 4,247 29 4,469 43 4,094 54 4,572 207 7,076 136 7,270 483 35,009

RT5 - LEICESTERSHIRE PARTNERSHIP NHS TRUST 12 2,893 11 5,849 19 6,117 18 7,517 46 8,509 48 9,518 35 9,839 189 50,242

RTQ - 2GETHER NHS FOUNDATION TRUST 2 1,349 6 2,532 28 3,227 26 3,242 22 2,550 10 2,641 57 4,347 151 19,888

RTV - NORTH WEST BOROUGHS HEALTHCARE NHS FOUNDATION TRUST 2 2,381 8 2,568 17 3,537 47 5,712 32 5,354 56 5,166 58 5,348 220 30,066

RV3 - CENTRAL AND NORTH WEST LONDON NHS FOUNDATION TRUST 19 3,999 40 5,122 29 5,750 44 7,684 48 8,963 21 7,754 40 9,002 0 4 241 48,278

RV5 - SOUTH LONDON AND MAUDSLEY NHS FOUNDATION TRUST 114 7,509 61 8,053 92 6,996 75 6,596 55 6,273 70 6,895 39 3,786 0 2 506 46,110

RV9 - HUMBER TEACHING NHS FOUNDATION TRUST 2 1,306 10 2,430 17 2,805 18 2,795 10 3,603 52 4,191 82 4,334 191 21,464

RVN - AVON AND WILTSHIRE MENTAL HEALTH PARTNERSHIP NHS TRUST 108 5,304 87 5,498 93 5,858 59 6,968 60 7,433 70 7,947 51 8,086 528 47,094

RW1 - SOUTHERN HEALTH NHS FOUNDATION TRUST 34 5,556 87 6,567 100 6,543 73 8,523 219 11,266 242 12,513 120 10,628 3 4 878 61,600

RW4 - MERSEY CARE NHS FOUNDATION TRUST 5 1,763 4 4,002 15 4,644 44 5,112 60 4,907 88 5,775 85 5,389 0 13 301 31,605

RW5 - LANCASHIRE CARE NHS FOUNDATION TRUST 22 8,407 38 10,682 63 9,094 66 10,362 48 10,333 49 10,525 152 9,291 2 6 440 68,700

RWK - EAST LONDON NHS FOUNDATION TRUST 78 1,915 50 2,378 11 2,661 145 4,424 66 2,325 194 6,855 59 4,866 0 1 603 25,425

RWN - SOUTH ESSEX PARTNERSHIP UNIVERSITY NHS FOUNDATION TRUST 15 3,403 117 5,438 125 7,546 75 7,468 90 9,409 39 7,619 32 6,089 493 46,972

RWR - HERTFORDSHIRE PARTNERSHIP UNIVERSITY NHS FOUNDATION TRUST 2 2,957 8 3,119 17 2,811 25 4,450 27 3,997 33 3,871 44 3,986 156 25,191

RWV - DEVON PARTNERSHIP NHS TRUST 24 1,619 83 1,619 78 2,026 83 1,614 46 1,936 30 2,382 81 3,017 425 14,213

RWX - BERKSHIRE HEALTHCARE NHS FOUNDATION TRUST 13 1,251 28 3,882 40 3,706 33 3,730 47 3,592 67 3,662 37 2,891 265 22,714

RX2 - SUSSEX PARTNERSHIP NHS FOUNDATION TRUST 8 3,431 17 3,237 44 2,978 104 2,856 80 3,253 124 3,809 123 4,005 500 23,569

RX3 - TEES, ESK AND WEAR VALLEYS NHS FOUNDATION TRUST 4 6,999 29 6,075 82 5,988 61 6,482 66 7,568 171 7,618 190 10,937 603 51,667

RX4 - NORTHUMBERLAND, TYNE AND WEAR NHS FOUNDATION TRUST 142 11,551 165 12,558 277 13,764 179 12,560 183 11,093 138 10,038 185 12,047 0 2 1,269 83,613

RXA - CHESHIRE AND WIRRAL PARTNERSHIP NHS FOUNDATION TRUST 29 1,924 16 2,311 58 3,774 100 3,197 122 2,104 178 6,138 223 4,834 726 24,282

RXE - ROTHERHAM DONCASTER AND SOUTH HUMBER NHS FOUNDATION TRUST 55 2,879 75 6,443 64 5,389 82 5,182 59 5,724 89 4,494 75 3,920 499 34,031

RXG - SOUTH WEST YORKSHIRE PARTNERSHIP NHS FOUNDATION TRUST 52 3,765 74 4,459 76 4,051 79 4,605 66 4,717 58 6,098 55 6,144 0 1 460 33,840

RXM - DERBYSHIRE HEALTHCARE NHS FOUNDATION TRUST 9 2,458 26 2,619 37 2,728 77 2,972 79 2,715 119 2,879 97 2,638 444 19,009

RXT - BIRMINGHAM AND SOLIHULL MENTAL HEALTH NHS FOUNDATION TRUST 55 8,921 71 8,905 122 6,745 95 9,030 82 10,782 70 10,200 57 8,234 0 1 552 62,818

RXV - GREATER MANCHESTER MENTAL HEALTH NHS FOUNDATION TRUST 20 4,708 15 4,288 49 3,831 35 3,682 37 4,913 40 6,530 36 8,524 0 5 232 36,481

RXX - SURREY AND BORDERS PARTNERSHIP NHS FOUNDATION TRUST 66 1,665 84 1,411 66 1,701 84 2,300 82 2,215 102 2,622 47 2,135 0 1 531 14,050

RXY - KENT AND MEDWAY NHS AND SOCIAL CARE PARTNERSHIP TRUST 21 4,669 13 3,923 71 3,855 53 3,828 82 3,427 110 3,302 67 3,500 0 1 417 26,505

RYG - COVENTRY AND WARWICKSHIRE PARTNERSHIP NHS TRUST 38 3,775 74 4,533 104 5,338 132 6,408 155 10,122 56 9,411 30 7,470 589 47,057

RYK - DUDLEY AND WALSALL MENTAL HEALTH PARTNERSHIP NHS TRUST 16 935 19 997 36 1,257 35 1,527 28 1,554 16 1,722 14 2,125 164 10,117

TAD - BRADFORD DISTRICT CARE NHS FOUNDATION TRUST 14 4,738 17 5,233 31 2,771 59 2,923 31 3,857 26 4,234 35 4,588 213 28,344

TAE - MANCHESTER MENTAL HEALTH AND SOCIAL CARE TRUST 52 1,861 19 1,535 11 860 24 1,892 26 2,669 20 2,492 8 2,430 0 1 160 13,740

TAF - CAMDEN AND ISLINGTON NHS FOUNDATION TRUST 43 1,455 27 1,127 41 1,285 43 1,409 24 2,268 21 2,840 9 2,251 0 2 208 12,637

TAH - SHEFFIELD HEALTH & SOCIAL CARE NHS FOUNDATION TRUST 28 3,404 42 3,633 44 3,408 36 3,164 25 4,585 27 4,116 30 3,337 232 25,647

TAJ - BLACK COUNTRY PARTNERSHIP NHS FOUNDATION TRUST 22 2,130 30 3,862 12 2,692 12 1,891 14 1,813 23 2,275 19 1,374 0 1 132 16,038

NHS Trusts (other) 43 7,369 32 8,513 9 5,507 6 2,029 2 5 0 7 0 10 3 3 95 23,443

RYH - NHS DIRECT NHS TRUST 43 6,944 30 8,201 9 5,445 2 2,023 84 22,613

RYT - PUBLIC HEALTH WALES NHS TRUST 0 425 2 312 0 62 4 6 2 5 0 7 0 10 3 3 11 830

NHS Trusts (specialist) 189 26,223 150 30,916 148 32,659 201 37,572 180 43,964 98 46,941 77 44,938 1 5 1,044 263,218

RAN - ROYAL NATIONAL ORTHOPAEDIC HOSPITAL NHS TRUST 12 492 12 734 11 806 29 923 37 873 4 663 3 705 0 1 108 5,197

RBB - ROYAL NATIONAL HOSPITAL FOR RHEUMATIC DISEASES NHS FOUNDATION TRUST 1 134 0 194 2 273 0 210 0 109 3 920
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RBQ - LIVERPOOL HEART AND CHEST HOSPITAL NHS FOUNDATION TRUST 3 1,338 7 1,097 2 1,339 2 1,352 1 1,099 3 1,538 0 1,244 18 9,007

RBS - ALDER HEY CHILDREN'S NHS FOUNDATION TRUST 0 853 0 1,170 1 1,698 2 2,096 10 3,720 4 4,698 2 4,131 19 18,366

RBV - THE CHRISTIE NHS FOUNDATION TRUST 2 2,103 1 3,155 2 2,320 6 1,793 6 1,537 3 1,716 2 1,611 22 14,235

RCU - SHEFFIELD CHILDREN'S NHS FOUNDATION TRUST 0 2,020 10 2,207 0 2,468 13 2,715 1 3,151 1 2,749 0 3,324 25 18,634

REN - THE CLATTERBRIDGE CANCER CENTRE NHS FOUNDATION TRUST 0 1,087 0 1,017 0 1,338 0 1,531 0 1,861 0 2,467 0 1,905 0 1 0 11,207

REP - LIVERPOOL WOMEN'S NHS FOUNDATION TRUST 86 2,743 35 2,740 53 3,087 56 2,117 35 2,717 14 3,372 7 4,040 0 1 286 20,817

RET - THE WALTON CENTRE NHS FOUNDATION TRUST 7 818 2 564 0 533 1 627 2 865 2 1,011 6 999 20 5,417

RGM - ROYAL PAPWORTH HOSPITAL NHS FOUNDATION TRUST 4 1,120 4 1,508 8 1,969 8 1,834 1 2,359 6 2,192 5 1,886 36 12,868

RL1 - THE ROBERT JONES AND AGNES HUNT ORTHOPAEDIC HOSPITAL NHS FOUNDATION TRUST 5 968 14 1,022 12 1,272 6 1,415 3 1,445 3 1,615 3 1,373 46 9,110

RLU - BIRMINGHAM WOMEN'S NHS FOUNDATION TRUST 15 1,045 15 1,470 4 1,468 4 1,884 10 1,385 6 1,847 5 1,804 59 10,903

RP4 - GREAT ORMOND STREET HOSPITAL FOR CHILDREN NHS FOUNDATION TRUST 18 2,813 5 2,787 16 3,434 17 4,627 15 4,778 10 3,698 4 1,761 0 1 85 23,899

RP6 - MOORFIELDS EYE HOSPITAL NHS FOUNDATION TRUST 5 581 7 833 9 1,206 12 3,446 9 6,201 14 5,716 13 7,464 1 1 70 25,448

RPC - QUEEN VICTORIA HOSPITAL NHS FOUNDATION TRUST 3 467 0 619 0 638 2 888 3 794 1 874 3 645 12 4,925

RPY - THE ROYAL MARSDEN NHS FOUNDATION TRUST 7 1,598 7 3,535 3 2,854 3 3,383 2 3,379 4 4,004 2 3,969 28 22,722

RQ3 - BIRMINGHAM WOMEN'S AND CHILDREN'S NHS FOUNDATION TRUST 7 2,514 9 2,797 12 2,342 18 2,706 31 3,201 10 3,226 14 3,293 101 20,079

RQF - VELINDRE NHS TRUST 0 691 0 646 1 619 1 750 2 699 0 789 1 721 5 4,915

RRJ - THE ROYAL ORTHOPAEDIC HOSPITAL NHS FOUNDATION TRUST 6 695 21 596 7 845 17 889 8 929 10 948 6 714 75 5,616

RT3 - ROYAL BROMPTON & HAREFIELD NHS FOUNDATION TRUST 8 2,143 1 2,225 5 2,150 4 2,386 4 2,862 3 3,818 1 3,349 26 18,933

NULL 525 72,273 486 74,575 419 80,152 546 88,018 611 89,232 723 96,668 536 85,290 5 82 3,851 586,290

NULL 525 72,273 486 74,575 419 80,152 546 88,017 611 89,232 723 96,667 536 85,290 5 82 3,851 586,288

to be updated 0 1 0 1 0 2

Other 78 2,752 61 1,968 0 4 0 57 0 10 0 2 139 4,793

02Y - NHS EAST RIDING OF YORKSHIRE CCG 0 4 0 57 0 10 0 2 0 73

RN1 - To be updated 78 2,752 61 1,968 139 4,720

Grand Total 11,047 1,250,249 11,450 1,366,042 11,407 1,469,558 11,276 1,602,708 11,627 1,766,163 12,118 1,844,282 10,349 1,664,554 25 958 79,299 10,964,514

2011/12 2015/16 2016/17 Incorrect TotalOrganisation

Year

2010/11 2012/13 2013/14 2014/15
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Total 

number 

incidents 

Incidents as a 

percentage 

of total

Ambulance (including call / control centre) 27,706 0.25%

Call / control centre 8,550 0.08%

NULL 8,550 0.08%

In vehicle / in transit 13,061 0.12%

NULL 13,061 0.12%

NHS Direct 13 0.00%

NULL 13 0.00%

NULL 15 0.00%

NULL 15 0.00%

Other 6,067 0.06%

NULL 6,067 0.06%

Community hospital 572,122 5.22%

Day care services 9,497 0.09%

NULL 9,495 0.09%

Other 2 0.00%

General areas 72,975 0.67%

Hospital buildings (inside) 46,045 0.42%

Hospital grounds (outside) 5,538 0.05%

NULL 18,305 0.17%

Other 3,087 0.03%

Inpatient areas 391,753 3.57%

NULL 47,364 0.43%

Other 6,901 0.06%

Ward 337,488 3.08%

NULL 507 0.00%

NULL 507 0.00%

Other 43,416 0.40%

NULL 43,416 0.40%

Outpatient department 26,054 0.24%

NULL 26,053 0.24%

Other 1 0.00%

Support Services 27,920 0.25%

Hospital transport (car) 253 0.00%

Laboratory 2,977 0.03%

NULL 9,541 0.09%

Other 4,297 0.04%

Pharmacy 3,036 0.03%

Therapy department 7,816 0.07%

General / acute hospital 7,671,154 69.96%

Accident  (A) / minor injury unit / medical assessment unit 610,631 5.57%

NULL 610,586 5.57%

Other 45 0.00%

Ambulatory care  treatment centre 14,548 0.13%

NULL 14,548 0.13%

Location Levels (1/2/3)
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Total 

number 

incidents 

reported

Incidents as a 

percentage 

of total

Day care pre-assessment clinc 145 0.00%

NULL 145 0.00%

Day care services 122,102 1.11%

NULL 122,089 1.11%

Other 13 0.00%

General areas 286,145 2.61%

Hospital buildings (inside) 239,762 2.19%

Hospital grounds (outside) 15,371 0.14%

Mortuary 3,405 0.03%

NULL 4,932 0.04%

Other 22,675 0.21%

Inpatient areas 5,650,166 51.53%

Anaesthetic room 16,667 0.15%

Intensive care unit / high dependency unit 338,800 3.09%

NULL 55,757 0.51%

Operating theatre 356,103 3.25%

Other 53,449 0.49%

Recovery room 31,374 0.29%

Ward 4,798,016 43.76%

NULL 496 0.00%

NULL 496 0.00%

Other 83,928 0.77%

NULL 83,923 0.77%

Other 5 0.00%

Outpatient department 446,565 4.07%

NULL 446,409 4.07%

Other 143 0.00%

Therapy department 13 0.00%

Outpatient pre-assessment clinic 121 0.00%

NULL 121 0.00%

Support Services 456,307 4.16%

Hospital transport (car) 2,495 0.02%

Laboratory 153,141 1.40%

NULL 18,915 0.17%

Other 25,141 0.23%

Pharmacy 68,731 0.63%

Radiology 159,348 1.45%

Therapy department 28,536 0.26%

Mental health unit / facility 1,389,480 12.67%

Community mental health facility 136,662 1.25%

NULL 136,662 1.25%

Day care services 17,386 0.16%

NULL 17,386 0.16%

Location Levels (1/2/3)
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Total 

number 

incidents 

reported

Incidents as a 

percentage 

of total

General areas 105,854 0.97%

Hospital buildings (inside) 74,711 0.68%

Hospital grounds (outside) 14,627 0.13%

NULL 12,904 0.12%

Other 3,612 0.03%

Inpatient areas 1,082,612 9.87%

ECT Suite 965 0.01%

Intensive care unit / high dependency unit 28,105 0.26%

NULL 38,043 0.35%

Other 12,190 0.11%

Secure unit 114,076 1.04%

Ward 889,233 8.11%

NULL 1,269 0.01%

NULL 1,269 0.01%

Other 22,871 0.21%

NULL 22,871 0.21%

Outpatient department 10,263 0.09%

NULL 10,263 0.09%

Support Services 12,563 0.11%

Hospital transport 988 0.01%

NULL 2,306 0.02%

Other 2,917 0.03%

Pharmacy 6,352 0.06%

Not applicable 18,330 0.17%

NULL 18,330 0.17%

NULL 18,330 0.17%

NULL 4 0.00%

NULL 4 0.00%

NULL 4 0.00%

Other 151,474 1.38%

NULL 151,472 1.38%

NULL 151,472 1.38%

Other 2 0.00%

NULL 2 0.00%

Primary care setting 339,863 3.10%

Ambulatory care  treatment centre 2,164 0.02%

NULL 2,164 0.02%

Community pharmacy 84,891 0.77%

NULL 84,891 0.77%

Dental surgery 20,951 0.19%

NULL 3,219 0.03%

Other 12,779 0.12%

Treatment / consulting room 4,382 0.04%

Waiting room / reception 571 0.01%

Location Levels (1/2/3)
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Total 

number 

incidents 

reported

Incidents as a 

percentage 

of total

GP Surgery 37,136 0.34%

Dispensary 1,070 0.01%

NULL 23,126 0.21%

Other 4,142 0.04%

Treatment / consulting room 5,604 0.05%

Waiting room / reception 3,194 0.03%

Health centre / out-of-hours centre 125,370 1.14%

NULL 125,365 1.14%

Other 5 0.00%

NHS Direct 22,736 0.21%

NULL 22,736 0.21%

NULL 29 0.00%

NULL 29 0.00%

Optician / optometrist 3,650 0.03%

Dispensing area 2 0.00%

NULL 165 0.00%

Other 622 0.01%

Treatment / consulting room 2,527 0.02%

Waiting room / reception 334 0.00%

Other 34,232 0.31%

NULL 34,232 0.31%

Rehabilitation centre 8,704 0.08%

NULL 8,704 0.08%

Public place (specify) 37,035 0.34%

NULL 37,035 0.34%

NULL 37,035 0.34%

Residence / home 639,884 5.84%

Hospice 7,962 0.07%

NULL 7,962 0.07%

Intermediate care setting 27,570 0.25%

NULL 27,570 0.25%

NULL 290 0.00%

NULL 290 0.00%

Nursing home 62,813 0.57%

NULL 62,810 0.57%

Other 3 0.00%

Other 15,481 0.14%

NULL 15,481 0.14%

Prison / remand centre 35,914 0.33%

NULL 35,914 0.33%

Private house / flat etc. 489,854 4.47%

NULL 489,818 4.47%

Other 36 0.00%

Location Levels (1/2/3)
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C.2 NRLS levels 1,2 and 3 incident locations for incidents reported to NRLS 2015/16-
2016/17 

 

Total 

number 

incidents 

reported

Incidents as a 

percentage 

of total

Social care facility 96,141 0.88%

Day care services 1,907 0.02%

NULL 1,907 0.02%

Local Authority (non-residential) 558 0.01%

NULL 558 0.01%

NULL 126 0.00%

NULL 126 0.00%

Other 7,152 0.07%

NULL 7,152 0.07%

Residential care home 86,398 0.79%

Unknown 21,321 0.19%

10,964,514 100.00%Grand Total

Location Levels (1/2/3)
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Incidents % of total

Accident and Emergency (A) 672,352 6.13%

NULL 672,352 6.13%

Anaesthesia Pain Management and Critical Care 149,591 1.36%

Anaesthesia 1,645 0.02%

Critical Care 8,974 0.08%

NULL 204 0.00%

Other 132,025 1.20%

Pain service 6,743 0.06%

Children's Specialties 12,026 0.11%

Critical Care 1,351 0.01%

Medical specialties 1,161 0.01%

Neonatology 3,557 0.03%

Other 1,059 0.01%

Paediatrics (not specified) 3,184 0.03%

Surgical specialties 1,714 0.02%

Dentistry - General and Community 12,695 0.12%

Endodontics 966 0.01%

NULL 10 0.00%

Oral surgery 1,257 0.01%

Orthodontics 1,478 0.01%

Other 7,850 0.07%

Paedodontics 606 0.01%

Periodontics 11 0.00%

Restorative dentistry 517 0.00%

Diagnostic services 400,177 3.65%

Blood transfusion 16,912 0.15%

Chemical pathology 37,451 0.34%

Haematology 51,515 0.47%

Histopathology 24,810 0.23%

Immunopathology 3,215 0.03%

Microbiology 20,249 0.18%

Neuropathology 2,067 0.02%

NULL 149 0.00%

Other 69,637 0.64%

Radiology 172,153 1.57%

Virology 2,019 0.02%

Learning disabilities 226,858 2.07%

Community teams 33,217 0.30%

Day care 6,537 0.06%

Forensic 28,693 0.26%

Inpatient assessment and treatment 81,970 0.75%

NULL 27 0.00%

Other 24,684 0.23%

Residential care 24,596 0.22%

Respite care 8,150 0.07%

Supported living 17,964 0.16%

(blank) 1,020 0.01%

Specialty Levels 1/2)
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Incidents % of total

Medical specialties 3,369,003 30.73%

Audiological medicine 6,944 0.06%

Cardiology 228,760 2.09%

Care of older people 681,071 6.21%

Clinical cytogenetics and molecular genetics 1,258 0.01%

Clinical haematology 47,157 0.43%

Clinical immunology and allergy 1,826 0.02%

Clinical oncology (previously radiotherapy) 81,144 0.74%

Dental medicine 2,875 0.03%

Dermatology 18,779 0.17%

Endocrinology 84,165 0.77%

Gastroenterology 192,124 1.75%

General medicine 896,479 8.18%

Genetics 3,309 0.03%

Genito-urinary medicine 17,027 0.16%

Infectious diseases 18,106 0.17%

Medical oncology 122,940 1.12%

Medical ophthalmology 18,439 0.17%

Neonatology 106,613 0.97%

Nephrology / renal 111,715 1.02%

Neurology 82,626 0.75%

Nuclear medicine 4,608 0.04%

NULL 451 0.00%

Other 195,600 1.78%

Palliative medicine 24,309 0.22%

Rehabilitation 211,296 1.93%

Rheumatology 20,696 0.19%

Thoracic / respiratory medicine 188,686 1.72%

Mental health 1,380,566 12.59%

Adult mental health 666,439 6.08%

Child and adolescent mental health 107,362 0.98%

Drug and alcohol service 19,540 0.18%

Forensic mental health 149,470 1.36%

Mental health rehabilitation 37,699 0.34%

NULL 197 0.00%

Older adult mental health 348,265 3.18%

Other 51,594 0.47%

Not applicable 106,360 0.97%

NULL 106,360 0.97%

NULL 79,621 0.73%

NULL 79,621 0.73%

Obstetrics and gynaecology 998,749 9.11%

Community midwifery 29,348 0.27%

Fertil ity treatment 3,245 0.03%

Gynaecology 131,188 1.20%

NULL 60 0.00%

Obstetrics 817,684 7.46%

Other 17,224 0.16%

Specialty Levels 1/2)
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C.3 NRLS levels 1 and 2 incident specialties for incidents reported to NRLS 2015/16-
2016/17 

 

Incidents % of total

Other 647,546 5.91%

General medicine 1 0.00%

Neonatology 2 0.00%

NULL 647,542 5.91%

Other 1 0.00%

Other specialties 296,734 2.71%

NULL 1 0.00%

Nutrition and dietetics 8,931 0.08%

Occupational therapy 16,086 0.15%

Other 113,363 1.03%

Pharmacy (inpatient) 108,692 0.99%

Physiotherapy 40,646 0.37%

Speech and language therapy 9,015 0.08%

Primary care / Community 891,989 8.14%

Chiropody / podiatry 11,847 0.11%

Community medicine 36,821 0.34%

Community midwifery 8,553 0.08%

Community nursing 575,911 5.25%

Community paediatrics 14,507 0.13%

General practice - no specialism 32,211 0.29%

General practice - with specialism relevant to this patient (specify)1,185 0.01%

Health visiting / school nursing 38,039 0.35%

Intermediate care 77,953 0.71%

NULL 102 0.00%

Other 82,062 0.75%

Sexual health / family planning 12,798 0.12%

PTS (Patient Transport Service) 38,018 0.35%

NULL 38,018 0.35%

Surgical specialties 1,599,356 14.59%

Breast surgery 11,152 0.10%

Burns surgery 6,272 0.06%

Cardiac surgery 45,346 0.41%

Colorectal surgery 33,092 0.30%

Dental surgery 3,350 0.03%

ENT 48,164 0.44%

General surgery 432,459 3.94%

Maxillofacial / oral surgery 16,563 0.15%

Neurosurgery 56,566 0.52%

NULL 69 0.00%

Ophthalmology 75,127 0.69%

Orthodontics 2,049 0.02%

Other 233,635 2.13%

Paedodontics 1,218 0.01%

Plastic surgery 23,369 0.21%

Renal surgery 8,265 0.08%

Thoracic surgery 18,998 0.17%

Trauma and orthopaedics 451,390 4.12%

Urology 77,791 0.71%

Vascular surgery 54,481 0.50%

Unknown 82,873 0.76%

NULL 82,873 0.76%

Grand Total 10,964,514 100.00%

Specialty Levels 1/2)
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Incidents % of total

Access, admission, transfer, discharge (including missing patient) 990,024 9.029%

Absconder / missing patient 166,681 1.520%

Access / admission - delay / failure in access to hospital / care 87,589 0.799%

Access / admission - unexpected readmission / reattendance 57,291 0.523%

Access / admission - unplanned admission / transfer to specialist care unit 92,601 0.845%

Delay / difficulty in obtaining clinical assistance 2 0.000%

Discharge - delay / failure 42,586 0.388%

Discharge - inappropriate 32,634 0.298%

Discharge - planning failure 51,942 0.474%

Discharge - self or against medical advice 20,868 0.190%

Documentation / missing / inadequate / wrong / illegible healthcare record / card 3 0.000%

Failure in referral process 49,024 0.447%

Failure to return from authorised leave 29,556 0.270%

NULL 23 0.000%

Other 155,145 1.415%

Transfer / delay / failure / inappropriate 112,641 1.027%

Transport - delay / failure 46,915 0.428%

Unsafe / inappropriate clinical environment (including clinical waste) 44,523 0.406%

Clinical assessment (including diagnosis, scans, tests, assessments) 543,290 4.955%

Assessment - lack of clinical or risk assessment 59,624 0.544%

Cross-matching error 4,670 0.043%

Diagnosis - delay / failure to 72,171 0.658%

Diagnosis - wrong 11,568 0.106%

Documentation / missing / inadequate / wrong / illegible healthcare record / card 3 0.000%

NULL 44 0.000%

Other 66,693 0.608%

Patient incorrectly identified 2 0.000%

Scans / X-rays / specimens - inadequate / incomplete 39,160 0.357%

Scans / X-rays / specimens - mislabelled / unlabelled 81,177 0.740%

Scans / X-rays / specimens - missing 25,662 0.234%

Scans / X-rays / specimens - wrong 10,269 0.094%

Test results / reports - failure / delay to interpret or act on 24,379 0.222%

Test results / reports - failure / delay to receive 57,629 0.526%

Test results / reports - incorrect 33,698 0.307%

Test results / reports - missing 8,923 0.081%

Tests - failure / delay to undertake 47,618 0.434%

Consent, communication, confidentiality 400,101 3.649%

Breach of patient confidentiality 67,364 0.614%

Communication failure - outside of immediate team 101,347 0.924%

Communication failure - with patient / parent / carer 54,853 0.500%

Communication failure - within team 76,955 0.702%

Delay / difficulty in obtaining clinical assistance 2 0.000%

Documentation / missing / inadequate / wrong / illegible healthcare record / card 2 0.000%

Failure to receive informed consent (includes doctrine of necessity) 16,767 0.153%

NULL 94 0.001%

Other 82,717 0.754%

Disruptive, aggressive behaviour (includes patient-to-patient) 348,538 3.179%

NULL 41 0.000%

Other 96,608 0.881%

Physical 186,816 1.704%

Racial 2,805 0.026%

Sexual 11,385 0.104%

Verbal 50,883 0.464%

Incident type (Level 1/2)
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Documentation (including electronic & paper records, identification and drug charts) 690,025 6.293%

Appointment recording error 39,600 0.361%

Documentation - delay in obtaining healthcare record / card 41,572 0.379%

Documentation - healthcare record / card - mislabelled 13,097 0.119%

Documentation - misfiled 65,829 0.600%

Documentation - no access to 38,727 0.353%

Documentation / missing / inadequate / wrong / illegible healthcare record / card 218,722 1.995%

Documentation / missing / inadequate / wrong / illegible referral letter 11,687 0.107%

NULL 26 0.000%

Other 131,724 1.201%

Patient incorrectly identified 96,591 0.881%

Test request form - none / incomplete 20,825 0.190%

Test results / reports - mislabelled 11,625 0.106%

Implementation of care and ongoing monitoring / review 1,257,205 11.466%

Delay / difficulty in obtaining clinical assistance 48,537 0.443%

Delay / failure in recognising complication of treatment 28,893 0.264%

Delay or failure to monitor 345,512 3.151%

Failure to discontinue treatment 1 0.000%

Failure to follow up missed appointment 22,769 0.208%

NULL 70 0.001%

Other 811,422 7.400%

Patient incorrectly identified 1 0.000%

Infection Control Incident 194,714 1.776%

Diagnosis - delay / failure to 2,675 0.024%

Diagnosis - wrong 132 0.001%

Failure of sterilisation or contamination of equipment 16,634 0.152%

Infection - cross / healthcare associated 56,128 0.512%

Infection - wound 22,297 0.203%

NULL 78 0.001%

Other 59,969 0.547%

Test results / reports - failure / delay to interpret or act on 1,068 0.010%

Test results / reports - failure / delay to receive 286 0.003%

Test results / reports - incorrect 52 0.000%

Test results / reports - missing 138 0.001%

Tests - failure / delay to undertake 781 0.007%

Treatment / procedure - delay / failure 4,170 0.038%

Treatment / procedure - inappropriate 4,678 0.043%

Unsafe / inappropriate clinical environment (including clinical waste) 25,628 0.234%

Infrastructure (including staffing, facilities, environment) 621,828 5.671%

Exposure to cold / heat (includes fire) 18 0.000%

Failure / delay in collection / delivery systems 23,638 0.216%

Inadequate check on equipment / supplies 10,420 0.095%

IT / telecommunications failure / overload 16,077 0.147%

Lack of / delayed availability of beds (general) 91,943 0.839%

Lack of / delayed availability of beds (high dependency / intensive care) 13,803 0.126%

Lack of / delayed availability of operating theatre 4,522 0.041%

Lack of suitably trained / skilled staff 336,188 3.066%

NULL 59 0.001%

Other 58,803 0.536%

Unsafe / inappropriate clinical environment (including clinical waste) 36,669 0.334%

Unsafe environment (light, temperature, noise, air quality) - personal safety 29,688 0.271%

Medical device / equipment 307,573 2.805%

Failure of device / equipment 119,343 1.088%

Lack / unavailability of device / equipment 103,889 0.948%

NULL 150 0.001%

Other 44,475 0.406%

User error 32,340 0.295%

Wrong device / equipment used 7,376 0.067%

Incident type (Level 1/2)
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C.4 NRLS levels 1 and 2 incident type for incidents reported to NRLS 2015/16-2016/17 

  

Incidents % of total

Medication 1,230,715 11.225%

Delay or failure to monitor 1 0.000%

NULL 1,230,712 11.225%

Other 2 0.000%

NULL 1 0.000%

NULL 1 0.000%

Other 426,007 3.885%

Other 426,007 3.885%

Patient abuse (by staff / third party) 57,916 0.528%

NULL 273 0.002%

Other 34,359 0.313%

Physical 15,089 0.138%

Racial 149 0.001%

Sexual 2,117 0.019%

Verbal 5,929 0.054%

Patient accident 2,357,183 21.498%

Ambulance / patient in road traffic accident 1,390 0.013%

Collision / contact with an object 81,258 0.741%

Contact with sharps (includes needle stick) 21,718 0.198%

Exposure to cold / heat (includes fire) 22,857 0.208%

Exposure to hazardous substance 16,738 0.153%

Inappropriate patient handling / positioning 9,250 0.084%

NULL 97 0.001%

Other 193,294 1.763%

Slips, trips, falls 2,010,581 18.337%

Pressure Ulcer 24 0.000%

NULL 24 0.000%

Self-harming behaviour 406,280 3.705%

Other 39,129 0.357%

Self-harm 337,036 3.074%

Suspected suicide (actual) 6,939 0.063%

Suspected suicide (attempted) 23,176 0.211%

Treatment, procedure 1,133,090 10.334%

Delay / difficulty in obtaining clinical assistance 19,017 0.173%

Delay / failure in recognising complication of treatment 1 0.000%

Extended stay / episode of care 51,761 0.472%

Failure to discontinue treatment 2,287 0.021%

Inappropriate patient handling / positioning 14,957 0.136%

Infusion injury (extravasation) 21,905 0.200%

Missing needle / swab / instrument 8,413 0.077%

NULL 84 0.001%

Other 602,827 5.498%

Patient incorrectly identified 1 0.000%

Restraint 4,809 0.044%

Retained needle / swab / instrument 4,598 0.042%

Theatre list details incorrect 13,020 0.119%

Transfer / delay / failure / inappropriate 1 0.000%

Treatment / procedure - delay / failure 243,641 2.222%

Treatment / procedure - inappropriate / wrong 126,137 1.150%

Treatment not clinically indicated 7,121 0.065%

Unplanned return to theatre 12,510 0.114%

Grand Total 10,964,514 100.000%

Incident type (Level 1/2)
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Parametrization

Type of scale 

predictor used

Model 

Class

Family / 

Distribution zero-inflation

Parameter 

Selection

Training 

MAE

Testing 

MAE

Full IN GAM NB2 0 0 1.908 2.055

Full NM GAM NB2 0 1 1.915 2.061

Full NM GAM TW 0 1 1.784 2.074

Full NM GAM Pois 1 1 1.792 2.075

Full NM GAM Pois 0 1 1.783 2.075

Full IN GAM Pois 0 0 1.772 2.078

Full BD GAM Pois 0 1 1.788 2.085

Param 1 IN GLMM NB1 0 0 1.742 2.092

Param 2 IN GLMM NB1 0 0 1.736 2.098

Param 1 IN GLMM NB2 0 0 1.742 2.099

Param 1 IN GLMM NB1 1 0 1.744 2.099

Param 2 IN GLMM NB1 1 0 1.737 2.105

Param 2 IN GLMM NB2 0 0 1.737 2.105

Param 1 IN GLMM NB2 1 0 1.744 2.106

Param 2 IN GAM NB2 0 0 1.735 2.106

Param 2 IN GLMM NB2 1 0 1.739 2.111

Param 1 IN GAM NB2 0 0 1.740 2.111

Param 1 IN GLMM Pois 0 0 1.733 2.121

Param 1 IN GLMM Pois 1 0 1.737 2.123

Param 3 IN GLMM NB2 0 0 1.736 2.124

Param 2 IN GLMM Pois 0 0 1.733 2.124

Param 2 IN GLMM Pois 1 0 1.737 2.126

Param 3 IN GAM NB2 0 0 1.734 2.126

Param 2 IN GAM TW 0 0 1.732 2.126

Param 1 IN GAM TW 0 0 1.737 2.128

Param 4 IN GLMM Pois 0 0 1.715 2.129

Param 4 IN GLMM Pois 1 0 1.719 2.129

Param 3 IN GLMM NB2 1 0 1.738 2.130

Param 2 IN GAM Pois 1 0 1.734 2.131

Param 1 IN GAM Pois 1 0 1.739 2.133

Param 1 IN GAM Pois 0 0 1.736 2.137

Param 2 IN GAM Pois 0 0 1.729 2.139

Param 3 IN GLMM Pois 0 0 1.732 2.143

Param 3 IN GLMM Pois 1 0 1.737 2.144

Param 3 IN GAM TW 0 0 1.731 2.147

Param 3 IN GAM Pois 1 0 1.732 2.149

Full BD RF - 0 1 0.806 2.155

Full IN RF - 0 1 0.806 2.156

Full NM RF - 0 1 0.813 2.158

Param 3 IN GAM Pois 0 0 1.729 2.165

Full IN GLMM NB1 0 0 1.721 2.292

Param 4 IN GAM NB2 0 0 2.273 2.340
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C.5 Model summary for death or severe harm incident reports  

NRLS data for 2015/16 (training) and 2016/17 (testing) data sets.  Parametrizations are detailed in 
Chapter 7.  MAE = Mean Absolute Error.  Type of scale predictors: NB=Non-mandatory incidents, 
BD=total bed-days and IN=total incidents. Zero-inflation indicates presences or absence, or specific 
formulae for zero inflation used.

Parametrization

Type of scale 

predictor used

Model 

Class

Family / 

Distribution zero-inflation

Parameter 

Selection

Training 

MAE

Testing 

MAE

Full NM GLMM Pois
total bed-days, op & 

ae attendaers 0 1.715 2.342

Param 4 IN GAM TW 0 0 2.258 2.363

Full BD GLMM Pois 0 0 1.718 2.367

Full NM GLMM NB2 0 0 1.726 2.368

Full NM GLMM Pois 0 0 1.714 2.370

Full NM GLMM Pois total bed-days 0 1.715 2.370

Full NM GLMM Pois 1 0 1.715 2.379

Param 4 IN GAM Pois 1 0 2.225 2.398

Param 4 IN GLMM NB1 1 0 2.471 2.415

Param 4 IN GLMM NB1 0 0 2.473 2.426

Param 4 IN GLMM NB2 1 0 2.490 2.426

Param 4 IN GAM Pois 0 0 2.201 2.433

Param 4 IN GLMM NB2 0 0 2.491 2.437

Param 3 IN GLMM NB1 1 0 2.532 2.446

Param 3 IN GLMM NB1 0 0 2.534 2.463

Full NM GAM TW 0 0 1.634 2.566

Full NM GAM Pois 0 0 1.632 2.571

Full BD GAM Pois 0 0 1.635 2.576
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Row Labels CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI

R1F -  ISLE OF WIGHT NHS TRUST -4.602 -3.385 -2.310 -1.530 -3.934 -2.842 -3.465 -2.545 -1.941 -1.174 -3.454 -2.253 3.427 1.416 5.080 1.878 2.573 1.175 2.581 1.179 3.631 1.480

R1H -  BARTS HEALTH NHS TRUST -1.963 -1.266 -2.824 -1.922 -3.353 -2.354 -0.582 -0.361 -1.010 -0.590 0.417 0.263 1.238 0.622 1.172 0.592 3.052 1.377 2.715 1.259 -0.240 -0.143

R1K -  LONDON NORTH WEST UNIVERSITY HEALTHCARE NHS TRUST -2.274 -1.487 -3.933 -2.849 -2.652 -1.799 -4.702 -3.788 -3.705 -2.423 -0.545 -0.346 -0.184 -0.106 0.051 0.028 5.785 2.158 5.492 2.088 0.625 0.339

RA2 -  ROYAL SURREY COUNTY HOSPITAL NHS FOUNDATION TRUST -2.515 -1.663 -1.797 -1.160 -2.122 -1.404 -2.608 -1.811 -1.569 -0.935 -2.651 -1.719 1.138 0.567 1.014 0.510 1.493 0.754 1.468 0.743 2.388 1.075

RA3 -  WESTON AREA HEALTH NHS TRUST -2.637 -1.752 -4.227 -3.115 -1.862 -1.217 -3.841 -2.897 -2.339 -1.439 -2.596 -1.669 -3.153 -3.057 -3.023 -2.783 -3.271 -4.095 -3.273 -4.096 -3.254 -3.687

RA4 -  YEOVIL DISTRICT HOSPITAL NHS FOUNDATION TRUST -3.857 -2.724 -3.635 -2.587 -3.350 -2.349 -2.745 -1.923 -3.147 -2.005 -3.173 -2.060 0.431 0.225 0.403 0.211 -1.093 -0.758 -1.092 -0.757 -0.520 -0.316

RA7 -  UNIVERSITY HOSPITALS BRISTOL NHS FOUNDATION TRUST 2.688 1.450 2.712 1.453 3.003 1.634 -0.610 -0.378 1.163 0.627 1.156 0.719 1.532 0.741 1.760 0.834 1.731 0.860 1.667 0.834 1.092 0.560

RA9 -  TORBAY AND SOUTH DEVON NHS FOUNDATION TRUST -3.428 -2.368 -2.986 -2.050 -3.367 -2.364 -0.924 -0.582 -2.665 -1.663 -3.501 -2.299 -2.769 -2.315 -2.836 -2.360 -1.770 -1.390 -1.786 -1.406 -1.824 -1.371

RAE -  BRADFORD TEACHING HOSPITALS NHS FOUNDATION TRUST 1.092 0.623 -0.396 -0.240 1.774 1.006 -2.066 -1.389 -0.948 -0.552 0.028 0.018 -3.538 -3.678 -3.479 -3.465 -2.947 -3.183 -2.946 -3.176 -3.375 -3.880

RAJ -  SOUTHEND UNIVERSITY HOSPITAL NHS FOUNDATION TRUST 2.465 1.339 2.800 1.495 2.732 1.499 2.093 1.145 2.935 1.495 1.918 1.176 1.278 0.631 1.377 0.673 1.423 0.728 1.330 0.687 2.335 1.063

RAL -  ROYAL FREE LONDON NHS FOUNDATION TRUST -2.443 -1.610 -4.210 -3.101 -2.477 -1.666 -3.512 -2.588 -4.153 -2.775 -2.073 -1.344 0.510 0.271 0.698 0.363 2.011 0.970 2.002 0.967 -0.854 -0.550

RAP -  NORTH MIDDLESEX UNIVERSITY HOSPITAL NHS TRUST 0.503 0.293 -1.394 -0.883 0.503 0.299 -2.369 -1.621 -1.654 -0.990 -2.194 -1.417 0.470 0.249 0.583 0.305 0.537 0.300 0.495 0.278 -0.043 -0.025

RAS -  THE HILLINGDON HOSPITALS NHS FOUNDATION TRUST -2.147 -1.396 -1.116 -0.698 -2.127 -1.407 -0.213 -0.130 -1.209 -0.711 -1.098 -0.697 -0.565 -0.335 -0.590 -0.348 -0.298 -0.184 -0.320 -0.198 0.109 0.061

RAX -  KINGSTON HOSPITAL NHS FOUNDATION TRUST -0.573 -0.348 -1.906 -1.237 0.110 0.066 -2.302 -1.569 -1.681 -1.006 -2.130 -1.368 0.923 0.465 0.549 0.287 0.136 0.079 0.124 0.072 0.115 0.065

RBA -  TAUNTON AND SOMERSET NHS FOUNDATION TRUST -1.774 -1.133 -1.575 -1.006 -1.347 -0.861 -1.831 -1.214 -1.943 -1.176 -1.834 -1.177 -2.605 -2.124 -2.777 -2.303 -2.432 -2.228 -2.448 -2.250 -2.176 -1.761

RBD -  DORSET COUNTY HOSPITAL NHS FOUNDATION TRUST -3.085 -2.095 -2.248 -1.485 -2.399 -1.607 -0.610 -0.378 -2.641 -1.646 -1.175 -0.743 0.035 0.020 0.135 0.073 -0.285 -0.176 -0.291 -0.179 0.561 0.299

RBK -  WALSALL HEALTHCARE NHS TRUST 6.360 3.067 7.795 3.561 6.618 3.231 4.682 2.320 8.890 3.855 8.503 4.835 1.187 0.589 1.460 0.706 0.077 0.046 -0.037 -0.022 1.463 0.719

RBL -  WIRRAL UNIVERSITY TEACHING HOSPITAL NHS FOUNDATION TRUST -0.248 -0.149 1.176 0.667 -0.296 -0.181 1.583 0.885 0.412 0.228 -0.367 -0.232 -0.050 -0.028 -0.739 -0.446 0.297 0.171 0.207 0.120 1.242 0.623

RBN -  ST HELENS AND KNOWSLEY HOSPITAL SERVICES NHS TRUST 0.473 0.276 1.422 0.799 0.477 0.283 1.459 0.821 0.356 0.198 -1.011 -0.645 -0.717 -0.434 -0.737 -0.444 -0.111 -0.067 -0.187 -0.114 -0.156 -0.091

RBT -  MID CHESHIRE HOSPITALS NHS FOUNDATION TRUST -0.287 -0.172 0.642 0.372 -0.373 -0.229 0.833 0.482 -0.272 -0.154 -0.775 -0.490 -0.353 -0.203 -0.304 -0.173 -0.949 -0.644 -0.978 -0.667 -0.481 -0.291

RBZ -  NORTHERN DEVON HEALTHCARE NHS TRUST 1.706 0.951 3.311 1.736 1.679 0.955 3.010 1.587 6.313 2.919 1.568 0.965 5.164 1.951 4.092 1.658 5.808 2.142 5.692 2.116 7.719 2.497

RC1 -  BEDFORD HOSPITAL NHS TRUST -2.285 -1.494 -1.030 -0.641 -1.929 -1.265 -1.078 -0.685 -1.077 -0.630 -3.297 -2.155 5.653 2.043 6.108 2.158 4.188 1.700 4.163 1.694 5.582 2.012

RC9 -  LUTON AND DUNSTABLE UNIVERSITY HOSPITAL NHS FOUNDATION TRUST-0.919 -0.566 -0.484 -0.294 -0.633 -0.393 -0.044 -0.027 -1.610 -0.961 -1.359 -0.868 -2.387 -1.861 -2.764 -2.281 -2.409 -2.191 -2.431 -2.222 -2.326 -1.944

RCB -  YORK TEACHING HOSPITAL NHS FOUNDATION TRUST 0.859 0.494 1.409 0.792 0.548 0.325 2.252 1.225 1.417 0.758 1.831 1.128 2.656 1.188 2.360 1.080 3.802 1.611 3.576 1.542 4.409 1.743

RCD -  HARROGATE AND DISTRICT NHS FOUNDATION TRUST -2.401 -1.578 -2.259 -1.492 -2.153 -1.425 -1.648 -1.081 -2.309 -1.419 -4.680 -3.111 -2.784 -2.386 -2.859 -2.446 -2.746 -2.770 -2.750 -2.773 -2.591 -2.331

RCF -  AIREDALE NHS FOUNDATION TRUST -1.643 -1.044 -0.466 -0.283 -1.395 -0.894 1.497 0.840 -0.830 -0.481 -1.182 -0.749 -0.711 -0.426 -0.650 -0.384 -1.690 -1.306 -1.702 -1.317 -1.247 -0.846

RCX -  THE QUEEN ELIZABETH HOSPITAL, KING'S LYNN, NHS FOUNDATION TRUST-0.951 -0.587 0.222 0.131 -0.795 -0.497 0.352 0.208 -0.224 -0.127 0.693 0.430 -0.035 -0.020 0.147 0.080 -0.783 -0.518 -0.811 -0.539 -0.069 -0.039

RD1 -  ROYAL UNITED HOSPITALS BATH NHS FOUNDATION TRUST -1.183 -0.737 -0.105 -0.063 -1.505 -0.969 -1.432 -0.928 -0.827 -0.479 -0.521 -0.329 -1.109 -0.704 -1.315 -0.851 -0.851 -0.570 -0.890 -0.599 -0.237 -0.139

RD3 -  POOLE HOSPITAL NHS FOUNDATION TRUST 2.884 1.545 2.776 1.484 2.813 1.539 2.938 1.554 3.432 1.722 3.844 2.300 -1.183 -0.757 -1.303 -0.841 -1.847 -1.474 -1.888 -1.518 -1.266 -0.862

RD8 -  MILTON KEYNES UNIVERSITY HOSPITAL NHS FOUNDATION TRUST -3.342 -2.299 -3.607 -2.563 -2.827 -1.932 -2.746 -1.923 -3.647 -2.378 -4.561 -3.033 -0.324 -0.186 -0.347 -0.199 -0.304 -0.188 -0.311 -0.192 0.024 0.013

RDD -  BASILDON AND THURROCK UNIVERSITY HOSPITALS NHS FOUNDATION TRUST1.552 0.870 3.405 1.781 1.995 1.123 2.163 1.181 3.893 1.927 2.786 1.694 0.143 0.079 0.324 0.175 0.597 0.333 0.485 0.275 1.324 0.661

RDE -  EAST SUFFOLK AND NORTH ESSEX NHS FOUNDATION TRUST -0.159 -0.095 -0.385 -0.233 0.112 0.067 -1.695 -1.115 -0.343 -0.195 -1.486 -0.952 1.761 0.834 1.941 0.906 2.014 0.973 1.937 0.943 3.163 1.345

RDU -  FRIMLEY HEALTH NHS FOUNDATION TRUST -0.524 -0.318 -1.380 -0.874 -1.080 -0.683 -0.624 -0.388 -1.339 -0.791 -0.550 -0.350 -0.764 -0.467 -1.048 -0.657 0.483 0.274 0.336 0.194 -0.414 -0.252

RDZ -  THE ROYAL BOURNEMOUTH AND CHRISTCHURCH HOSPITALS NHS FOUNDATION TRUST3.063 1.630 3.147 1.660 2.940 1.602 3.894 1.985 2.709 1.389 0.554 0.345 1.841 0.859 1.504 0.723 0.510 0.286 0.445 0.252 1.362 0.674

Poisson 

GLMM 

(Param 1)

NB1 GLMM 

(Param 1)

NB1 GLMM 

(Param 2)
Trust Name

All DS Incidents

Poisson 

GLMM NB1 GLMM NB2 GLMM

Poisson 

GAM NB2 GAM

Random 

Forest

Poisson 

GAM (Full)

NB2 GAM 

(Full)
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CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI

RE9 -  SOUTH TYNESIDE NHS FOUNDATION TRUST -4.951 -3.716 -4.310 -3.193 -4.175 -3.056 -4.711 -3.798 -3.337 -2.145 -4.640 -3.079 -2.313 -1.785 -2.100 -1.539 -2.315 -2.059 -2.315 -2.058 -2.195 -1.786

REF -  ROYAL CORNWALL HOSPITALS NHS TRUST 0.094 0.056 0.670 0.388 0.266 0.159 0.096 0.057 -0.041 -0.023 -0.620 -0.394 1.259 0.624 1.163 0.581 1.664 0.833 1.557 0.788 3.020 1.301

REM -  AINTREE UNIVERSITY HOSPITAL NHS FOUNDATION TRUST -3.368 -2.320 -4.907 -3.777 -2.312 -1.543 -0.858 -0.539 -4.674 -3.204 -5.081 -3.418 0.418 0.219 0.216 0.115 -0.707 -0.460 -0.647 -0.417 -1.928 -1.478

RF4 -  BARKING, HAVERING AND REDBRIDGE UNIVERSITY HOSPITALS NHS TRUST-0.848 -0.521 -1.292 -0.815 -1.164 -0.739 -3.586 -2.657 -1.931 -1.169 -2.377 -1.546 3.309 1.419 3.099 1.351 7.493 2.534 7.274 2.492 4.767 1.852

RFF -  BARNSLEY HOSPITAL NHS FOUNDATION TRUST -2.387 -1.569 -2.390 -1.590 -2.237 -1.488 -0.126 -0.076 -0.465 -0.266 -0.026 -0.016 0.260 0.140 0.386 0.205 -0.589 -0.379 -0.627 -0.406 -0.026 -0.015

RFR -  THE ROTHERHAM NHS FOUNDATION TRUST -1.526 -0.965 -0.100 -0.060 -1.064 -0.672 -0.362 -0.221 -0.490 -0.280 -1.261 -0.803 -1.359 -0.892 -1.295 -0.835 -1.158 -0.813 -1.184 -0.835 -0.740 -0.465

RFS -  CHESTERFIELD ROYAL HOSPITAL NHS FOUNDATION TRUST -2.625 -1.745 -1.646 -1.055 -2.430 -1.630 -0.781 -0.489 -1.865 -1.125 -1.281 -0.815 -1.842 -1.303 -1.893 -1.335 -1.934 -1.571 -1.952 -1.591 -1.649 -1.199

RGN -  NORTH WEST ANGLIA NHS FOUNDATION TRUST 8.325 3.811 7.943 3.615 8.087 3.798 9.876 4.160 9.195 3.961 5.043 2.995 1.714 0.825 2.257 1.041 2.305 1.102 2.023 0.992 3.709 1.541

RGP -  JAMES PAGET UNIVERSITY HOSPITALS NHS FOUNDATION TRUST -3.900 -2.761 -3.019 -2.075 -3.589 -2.548 -1.444 -0.936 -3.559 -2.311 -2.595 -1.675 -3.231 -3.094 -3.336 -3.203 -2.912 -3.108 -2.917 -3.115 -2.885 -2.825

RGQ -  IPSWICH HOSPITAL NHS TRUST -1.994 -1.287 -1.707 -1.098 -1.752 -1.140 -2.540 -1.757 -1.993 -1.209 -3.364 -2.208 -0.086 -0.048 -0.070 -0.039 0.763 0.415 0.725 0.397 1.342 0.664

RGR -  WEST SUFFOLK NHS FOUNDATION TRUST -4.187 -3.010 -3.883 -2.804 -3.799 -2.726 -3.465 -2.546 -3.814 -2.507 -4.971 -3.322 -0.031 -0.017 0.025 0.014 -0.354 -0.220 -0.356 -0.221 0.146 0.082

RGT -  CAMBRIDGE UNIVERSITY HOSPITALS NHS FOUNDATION TRUST -0.167 -0.100 -0.972 -0.604 0.078 0.047 -1.991 -1.332 -0.869 -0.505 -0.890 -0.568 -2.536 -2.025 -2.657 -2.135 -1.973 -1.616 -1.985 -1.630 -2.525 -2.202

RH8 -  ROYAL DEVON AND EXETER NHS FOUNDATION TRUST 4.656 2.359 3.317 1.740 4.367 2.276 1.124 0.642 3.908 1.933 1.971 1.212 -3.195 -2.983 -3.251 -3.007 -2.737 -2.739 -2.746 -2.751 -3.027 -3.054

RHM -  UNIVERSITY HOSPITAL SOUTHAMPTON NHS FOUNDATION TRUST -0.948 -0.585 1.249 0.707 -1.399 -0.897 1.331 0.753 0.600 0.330 0.979 0.611 11.485 3.287 10.893 3.214 12.924 3.473 12.677 3.443 12.382 3.343

RHQ -  SHEFFIELD TEACHING HOSPITALS NHS FOUNDATION TRUST 0.765 0.441 2.358 1.280 0.031 0.019 5.895 2.802 3.555 1.778 2.064 1.274 -0.623 -0.373 -1.032 -0.645 -1.254 -0.900 -1.365 -0.998 -1.449 -1.020

RHU -  PORTSMOUTH HOSPITALS NHS TRUST -2.733 -1.826 -1.672 -1.074 -3.219 -2.244 -1.454 -0.944 -2.482 -1.537 -4.151 -2.767 1.326 0.657 0.568 0.301 3.614 1.542 3.471 1.499 3.703 1.529

RHW -  ROYAL BERKSHIRE NHS FOUNDATION TRUST 3.717 1.939 4.100 2.094 4.270 2.232 4.668 2.314 2.746 1.407 0.248 0.156 -2.517 -1.992 -2.619 -2.078 -1.599 -1.216 -1.659 -1.276 -1.367 -0.947

RJ1 -  GUY'S AND ST THOMAS' NHS FOUNDATION TRUST 1.275 0.722 3.576 1.860 1.237 0.715 9.285 3.976 1.983 1.041 0.660 0.414 0.543 0.288 0.663 0.346 0.806 0.440 0.682 0.378 -0.085 -0.050

RJ2 -  LEWISHAM AND GREENWICH NHS TRUST 3.241 1.717 1.993 1.096 3.204 1.732 0.972 0.559 1.807 0.954 1.484 0.919 -3.697 -3.881 -3.837 -4.058 -2.736 -2.714 -2.790 -2.810 -3.034 -3.031

RJ6 -  CROYDON HEALTH SERVICES NHS TRUST -2.493 -1.646 -2.295 -1.519 -1.796 -1.171 -4.193 -3.246 -3.255 -2.085 -5.049 -3.387 2.103 0.961 2.186 0.992 1.667 0.827 1.652 0.821 2.506 1.116

RJ7 -  ST GEORGE'S UNIVERSITY HOSPITALS NHS FOUNDATION TRUST -1.559 -0.987 -0.499 -0.303 -2.156 -1.429 -2.076 -1.396 -1.980 -1.201 -0.989 -0.632 0.689 0.359 0.190 0.104 2.207 1.045 2.212 1.047 0.623 0.334

RJC -  SOUTH WARWICKSHIRE NHS FOUNDATION TRUST 1.349 0.762 1.746 0.969 1.618 0.922 1.437 0.809 3.326 1.673 2.801 1.692 15.306 3.786 15.929 3.892 13.648 3.540 13.494 3.524 17.967 3.958

RJE -  UNIVERSITY HOSPITALS OF NORTH MIDLANDS NHS TRUST -2.683 -1.788 -2.620 -1.764 -3.045 -2.105 -3.489 -2.567 -2.944 -1.860 -1.176 -0.754 -2.662 -2.179 -2.829 -2.351 -2.011 -1.661 -2.035 -1.690 -2.683 -2.432

RJF -  BURTON HOSPITALS NHS FOUNDATION TRUST -0.858 -0.527 -1.043 -0.650 -0.936 -0.588 -0.313 -0.191 -0.182 -0.103 -1.968 -1.264 -2.058 -1.508 -2.042 -1.474 -1.767 -1.387 -1.783 -1.403 -1.942 -1.492

RJL -  NORTHERN LINCOLNSHIRE AND GOOLE NHS FOUNDATION TRUST 1.568 0.879 2.761 1.477 1.606 0.916 3.134 1.645 3.002 1.526 1.779 1.096 -3.258 -3.048 -3.365 -3.151 -2.605 -2.492 -2.649 -2.564 -2.676 -2.426

RJN -  EAST CHESHIRE NHS TRUST 6.812 3.242 7.181 3.335 6.822 3.310 4.974 2.438 9.936 4.201 5.485 3.213 -3.107 -2.885 -2.976 -2.626 -3.154 -3.671 -3.173 -3.715 -2.964 -2.971

RJR -  COUNTESS OF CHESTER HOSPITAL NHS FOUNDATION TRUST 4.499 2.290 5.593 2.724 4.731 2.438 4.266 2.145 6.010 2.802 6.804 3.936 -1.513 -1.016 -1.436 -0.945 -1.211 -0.860 -1.273 -0.914 -0.510 -0.311

RJZ -  KING'S COLLEGE HOSPITAL NHS FOUNDATION TRUST 2.564 1.389 1.828 1.012 2.141 1.199 1.125 0.642 2.842 1.453 1.450 0.902 5.557 2.085 5.906 2.183 5.755 2.169 5.380 2.077 3.901 1.615

RK5 -  SHERWOOD FOREST HOSPITALS NHS FOUNDATION TRUST -1.411 -0.888 -1.682 -1.080 -0.917 -0.576 -1.006 -0.637 -1.027 -0.599 -1.346 -0.860 -2.512 -1.997 -2.616 -2.086 -1.995 -1.642 -2.023 -1.675 -2.031 -1.590

RK9 -  UNIVERSITY HOSPITALS PLYMOUTH NHS TRUST 2.505 1.359 2.730 1.462 3.031 1.648 -0.519 -0.320 3.300 1.663 1.996 1.229 2.527 1.124 2.687 1.181 1.626 0.815 1.576 0.794 1.557 0.761

RKB -  UNIVERSITY HOSPITALS COVENTRY AND WARWICKSHIRE NHS TRUST -0.610 -0.371 -0.738 -0.454 -0.874 -0.548 -2.409 -1.653 -1.088 -0.637 -0.077 -0.049 1.804 0.855 1.926 0.903 2.946 1.317 2.916 1.307 0.914 0.477

RKE -  WHITTINGTON HEALTH NHS TRUST -2.680 -1.785 -1.568 -1.001 -2.313 -1.543 -3.356 -2.447 -2.609 -1.624 -4.052 -2.669 6.869 2.330 6.568 2.276 5.759 2.109 5.767 2.113 6.316 2.188

RL4 -  THE ROYAL WOLVERHAMPTON NHS TRUST -1.409 -0.887 -0.969 -0.602 -1.372 -0.879 -0.895 -0.563 -0.744 -0.430 -1.654 -1.066 -2.225 -1.669 -2.107 -1.530 -0.792 -0.527 -0.873 -0.588 -1.151 -0.772

RLN -  CITY HOSPITALS SUNDERLAND NHS FOUNDATION TRUST 6.765 3.227 8.232 3.717 6.067 3.009 9.795 4.134 8.027 3.556 4.654 2.775 -1.742 -1.210 -1.355 -0.883 -0.974 -0.668 -1.097 -0.767 -0.581 -0.359

RLQ -  WYE VALLEY NHS TRUST -0.212 -0.127 0.301 0.177 0.122 0.073 0.981 0.564 1.249 0.672 2.134 1.299 -2.750 -2.322 -2.778 -2.318 -2.704 -2.678 -2.720 -2.705 -2.471 -2.146
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C.6  Adjusted z-score output for organisations from NRLS-HES models for 2015/16. 
Row are organisations, and columns represent models, grouped by total or DS incidents.  Purple indicates z-score below -3 and yellow indicates a z-score above 3. 

CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI CQC SHMI

RLT -  GEORGE ELIOT HOSPITAL NHS TRUST -2.608 -1.731 -2.271 -1.501 -2.346 -1.567 -2.852 -2.012 -0.795 -0.460 -2.407 -1.549 0.295 0.158 0.430 0.226 -0.388 -0.242 -0.392 -0.245 0.069 0.039

RM1 -  NORFOLK AND NORWICH UNIVERSITY HOSPITALS NHS FOUNDATION TRUST3.462 1.821 2.368 1.285 3.441 1.847 0.379 0.224 3.378 1.698 2.306 1.416 -0.986 -0.616 -1.087 -0.683 -0.995 -0.683 -1.051 -0.728 -1.231 -0.836

RM2 -  UNIVERSITY HOSPITAL OF SOUTH MANCHESTER NHS FOUNDATION TRUST 1.465 0.824 2.071 1.136 1.797 1.019 -1.057 -0.671 2.207 1.150 1.724 1.063 -0.065 -0.036 0.102 0.056 0.153 0.090 0.149 0.087 -0.235 -0.139

RM3 -  SALFORD ROYAL NHS FOUNDATION TRUST 0.483 0.282 1.664 0.926 0.784 0.461 3.556 1.836 -0.603 -0.347 -0.542 -0.343 -0.802 -0.488 -1.439 -0.947 -1.623 -1.239 -1.672 -1.289 -1.292 -0.884

RMC -  BOLTON NHS FOUNDATION TRUST 1.545 0.866 3.230 1.699 1.585 0.905 3.545 1.831 3.095 1.569 3.509 2.110 -1.504 -1.008 -1.608 -1.084 -1.485 -1.105 -1.535 -1.153 -1.260 -0.858

RMP -  TAMESIDE AND GLOSSOP INTEGRATED CARE NHS FOUNDATION TRUST 1.592 0.891 1.409 0.792 2.597 1.431 1.465 0.824 3.343 1.681 2.831 1.713 -2.574 -2.082 -2.430 -1.883 -2.501 -2.330 -2.528 -2.370 -2.283 -1.890

RN3 -  GREAT WESTERN HOSPITALS NHS FOUNDATION TRUST -1.701 -1.084 -2.384 -1.586 -1.634 -1.058 -1.492 -0.970 -2.041 -1.240 -2.433 -1.575 -1.002 -0.628 -0.934 -0.576 0.323 0.185 0.291 0.167 0.228 0.127

RN5 -  HAMPSHIRE HOSPITALS NHS FOUNDATION TRUST 0.992 0.568 0.040 0.024 0.821 0.482 0.083 0.050 0.757 0.414 0.162 0.101 0.845 0.436 0.477 0.254 2.324 1.095 2.222 1.057 2.789 1.227

RN7 -  DARTFORD AND GRAVESHAM NHS TRUST 1.154 0.656 1.278 0.722 1.022 0.595 0.397 0.234 1.619 0.860 0.912 0.565 -3.209 -2.987 -3.285 -3.041 -2.566 -2.435 -2.589 -2.472 -2.512 -2.195

RNA -  THE DUDLEY GROUP NHS FOUNDATION TRUST -2.146 -1.395 -0.320 -0.193 -1.859 -1.216 -1.444 -0.936 -2.313 -1.422 -2.917 -1.906 0.778 0.402 0.857 0.439 1.440 0.733 1.376 0.706 2.124 0.982

RNL -  NORTH CUMBRIA UNIVERSITY HOSPITALS NHS TRUST 0.677 0.392 1.647 0.918 0.969 0.565 0.406 0.239 2.014 1.056 2.035 1.245 4.097 1.635 4.151 1.655 2.849 1.285 2.753 1.253 4.237 1.672

RNQ -  KETTERING GENERAL HOSPITAL NHS FOUNDATION TRUST -1.407 -0.885 -1.709 -1.099 -1.327 -0.848 -1.332 -0.859 -1.711 -1.026 -4.232 -2.812 2.079 0.952 1.952 0.904 1.278 0.660 1.240 0.643 2.065 0.957

RNS -  NORTHAMPTON GENERAL HOSPITAL NHS TRUST -1.853 -1.189 -0.894 -0.554 -1.436 -0.922 -0.680 -0.423 -2.065 -1.256 -2.732 -1.780 -1.311 -0.856 -1.545 -1.032 -0.742 -0.489 -0.782 -0.518 -0.614 -0.380

RNZ -  SALISBURY NHS FOUNDATION TRUST -1.236 -0.772 0.949 0.543 -0.719 -0.448 2.521 1.355 0.605 0.332 1.473 0.904 -2.638 -2.165 -2.692 -2.196 -2.432 -2.227 -2.448 -2.250 -2.056 -1.622

RP5 -  DONCASTER AND BASSETLAW TEACHING HOSPITALS NHS FOUNDATION TRUST1.702 0.949 1.442 0.810 1.579 0.902 2.907 1.539 1.859 0.980 0.003 0.002 4.180 1.688 4.118 1.674 5.395 2.057 5.155 1.997 5.768 2.099

RPA -  MEDWAY NHS FOUNDATION TRUST -4.413 -3.212 -3.902 -2.821 -4.471 -3.327 -2.877 -2.032 -4.371 -2.951 -5.795 -3.937 5.490 2.022 5.243 1.967 5.617 2.083 5.580 2.076 6.193 2.169

RQ6 -  ROYAL LIVERPOOL AND BROADGREEN UNIVERSITY HOSPITALS NHS TRUST-0.498 -0.302 -2.029 -1.326 0.301 0.180 -0.728 -0.454 -1.037 -0.606 -1.430 -0.919 1.160 0.573 1.141 0.563 0.292 0.167 0.294 0.169 -1.476 -1.043

RQ8 -  MID ESSEX HOSPITAL SERVICES NHS TRUST -3.638 -2.540 -3.230 -2.247 -3.520 -2.490 -4.072 -3.124 -4.196 -2.809 -5.186 -3.488 -2.033 -1.479 -1.935 -1.370 -0.813 -0.540 -0.826 -0.550 -0.696 -0.435

RQM -  CHELSEA AND WESTMINSTER HOSPITAL NHS FOUNDATION TRUST -1.903 -1.223 -3.967 -2.879 -2.148 -1.423 -5.140 -4.296 -5.583 -4.016 -4.433 -2.952 -2.507 -2.019 -2.495 -1.975 -2.193 -1.897 -2.162 -1.854 -3.113 -3.238

RQW -  THE PRINCESS ALEXANDRA HOSPITAL NHS TRUST 0.808 0.465 2.339 1.270 0.944 0.551 0.950 0.547 2.335 1.211 1.224 0.755 -1.604 -1.092 -1.743 -1.199 -1.778 -1.398 -1.809 -1.431 -1.607 -1.160

RQX -  HOMERTON UNIVERSITY HOSPITAL NHS FOUNDATION TRUST 1.810 1.005 2.577 1.386 1.459 0.836 1.225 0.696 0.862 0.469 0.188 0.117 -1.291 -0.839 -1.720 -1.178 -1.069 -0.739 -1.090 -0.757 -1.125 -0.749

RR1 -  HEART OF ENGLAND NHS FOUNDATION TRUST -1.794 -1.149 -1.288 -0.812 -2.466 -1.658 1.576 0.882 -0.920 -0.535 0.222 0.140 5.369 2.043 4.163 1.706 8.261 2.725 7.760 2.628 6.188 2.229

RR7 -  GATESHEAD HEALTH NHS FOUNDATION TRUST -2.803 -1.878 -2.342 -1.554 -2.443 -1.640 -1.966 -1.313 -1.774 -1.066 -1.709 -1.093 0.862 0.439 0.876 0.445 1.015 0.537 0.993 0.527 1.074 0.546

RR8 -  LEEDS TEACHING HOSPITALS NHS TRUST -1.098 -0.682 0.050 0.030 -1.856 -1.214 1.682 0.937 0.954 0.519 2.268 1.396 -1.513 -1.017 -1.622 -1.096 -1.236 -0.886 -1.373 -1.006 -1.819 -1.365

RRF -  WRIGHTINGTON, WIGAN AND LEIGH NHS FOUNDATION TRUST -1.804 -1.154 1.347 0.759 -1.746 -1.136 1.361 0.769 0.937 0.509 0.002 0.001 4.654 1.809 4.872 1.874 5.104 1.963 4.996 1.937 6.604 2.264

RRK -  UNIVERSITY HOSPITALS BIRMINGHAM NHS FOUNDATION TRUST 5.201 2.595 7.926 3.610 6.382 3.139 20.888 6.847 8.619 3.765 2.964 1.809 -2.296 -1.751 -1.937 -1.374 -2.818 -2.857 -2.878 -2.970 -2.755 -2.539

RRV -  UNIVERSITY COLLEGE LONDON HOSPITALS NHS FOUNDATION TRUST -2.223 -1.450 -0.529 -0.322 -1.653 -1.071 2.578 1.383 -2.188 -1.338 -1.004 -0.641 2.378 1.072 2.366 1.068 3.043 1.344 3.063 1.351 1.450 0.717

RTD -  THE NEWCASTLE UPON TYNE HOSPITALS NHS FOUNDATION TRUST -3.210 -2.195 -1.453 -0.923 -3.907 -2.821 -1.269 -0.816 -1.957 -1.185 -1.491 -0.962 3.010 1.307 2.572 1.155 3.338 1.459 3.203 1.416 1.512 0.749

RTE -  GLOUCESTERSHIRE HOSPITALS NHS FOUNDATION TRUST 0.387 0.226 0.970 0.555 0.536 0.318 1.901 1.050 0.835 0.456 1.122 0.697 -1.202 -0.774 -1.494 -0.992 -0.293 -0.182 -0.398 -0.251 0.098 0.056

RTF -  NORTHUMBRIA HEALTHCARE NHS FOUNDATION TRUST 4.350 2.225 2.594 1.396 4.609 2.385 3.109 1.634 4.957 2.380 2.122 1.303 -1.281 -0.833 -1.130 -0.715 -0.695 -0.457 -0.800 -0.534 -0.892 -0.577

RTG -  UNIVERSITY HOSPITALS OF DERBY AND BURTON NHS FOUNDATION TRUST-0.435 -0.263 -1.336 -0.844 -0.239 -0.146 -2.377 -1.628 -0.670 -0.386 -0.517 -0.328 -1.482 -0.991 -1.602 -1.079 -0.948 -0.644 -0.957 -0.651 -1.686 -1.235

RTH -  OXFORD UNIVERSITY HOSPITALS NHS FOUNDATION TRUST 1.373 0.775 3.238 1.704 1.013 0.590 1.927 1.063 3.034 1.541 0.980 0.612 -0.032 -0.018 -0.181 -0.102 0.012 0.007 -0.097 -0.059 -0.121 -0.071

RTK -  ASHFORD AND ST PETER'S HOSPITALS NHS FOUNDATION TRUST 0.316 0.185 -1.115 -0.697 0.467 0.278 -1.227 -0.786 -0.046 -0.026 -1.348 -0.859 -1.823 -1.284 -1.976 -1.409 -1.374 -1.001 -1.397 -1.022 -1.203 -0.811

RTP -  SURREY AND SUSSEX HEALTHCARE NHS TRUST -1.982 -1.279 -1.514 -0.965 -1.896 -1.242 -1.636 -1.072 -2.341 -1.441 -3.092 -2.022 0.949 0.480 0.678 0.351 0.738 0.403 0.699 0.383 1.319 0.655
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+ - + - + - + - + - + - + - + - + - + - + -

R1F 0 11 0 5 0 8 0 12 0 3 0 3 1 0 1 0 0 0 0 0 1 0

R1K 0 6 0 10 0 6 0 12 0 7 0 7 0 1 0 1 3 0 3 0 0 0

RA2 0 5 0 5 0 4 0 10 0 2 0 2 0 0 0 0 0 0 0 0 0 0

RA3 0 4 0 11 0 3 0 11 0 4 0 4 0 6 0 5 0 8 0 8 0 8

RA4 0 7 0 9 0 5 0 8 0 5 0 5 0 2 0 2 0 2 0 2 0 2

RA7 4 0 5 0 4 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RA9 0 8 0 8 0 8 0 3 0 5 0 5 0 5 0 5 0 4 0 4 0 4

RAE 0 0 0 1 1 0 0 10 0 2 0 2 0 8 0 8 0 8 0 8 0 8

RAJ 1 0 3 0 2 0 2 0 3 0 3 0 1 0 1 0 0 0 0 0 1 0

RAL 0 7 0 12 0 6 0 12 0 12 0 12 0 2 0 2 0 1 0 1 0 2

RAP 0 0 0 3 0 0 0 8 0 3 0 3 0 0 0 0 0 0 0 0 0 0

RAS 0 4 0 3 0 4 0 0 0 2 0 2 0 2 0 2 0 1 0 1 0 1

RAX 0 0 0 5 0 0 0 7 0 3 0 3 0 2 0 2 0 2 0 2 0 2

RBA 0 3 0 4 0 2 0 7 0 4 0 4 0 4 0 4 0 4 0 4 0 4

RBD 0 6 0 6 0 4 0 3 0 6 0 6 0 0 0 0 0 0 0 0 0 0

RBK 11 0 12 0 11 0 11 0 12 0 12 0 0 0 0 0 0 0 0 0 0 0

RBL 1 5 3 2 2 5 3 0 3 3 3 3 0 2 0 2 0 1 0 1 0 1

RBN 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 1 0 1 0 1 0 1

RBT 0 0 0 0 0 0 0 0 0 0 0 0 1 3 1 3 1 3 1 3 1 3

RBZ 0 0 4 0 0 0 5 0 7 0 7 0 2 0 1 0 2 0 2 0 3 0

RC1 0 4 0 2 0 4 0 4 0 1 0 1 2 1 2 1 2 1 2 1 2 1

RC9 0 1 0 1 0 1 0 1 0 2 0 2 0 6 0 6 0 6 0 6 0 6

RCB 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 2 0 2 0 2 0

RCD 0 4 0 5 0 3 0 5 0 4 0 4 0 5 0 5 0 5 0 5 0 5

RCF 0 3 0 1 0 2 1 0 0 1 0 1 0 4 0 4 0 4 0 4 0 4

RCX 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 1

RD1 0 2 0 0 0 2 0 6 0 1 0 1 0 1 0 1 0 0 0 0 0 0

RD3 2 0 3 0 3 0 4 0 3 0 3 0 0 5 0 5 0 5 0 5 0 5

RD8 0 8 0 10 0 5 0 10 0 8 0 8 0 0 0 0 0 0 0 0 0 0

RDD 0 0 5 0 2 0 3 0 5 0 5 0 0 0 0 0 0 0 0 0 0 0

RDE 0 0 0 0 0 0 0 7 0 0 0 0 0 1 0 1 0 1 0 1 0 1

RDU 0 1 0 5 0 2 0 3 0 4 0 4 0 1 0 2 0 0 0 0 0 1

RDZ 3 0 4 0 3 0 7 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0

RE9 0 11 0 12 0 8 0 12 0 6 0 6 0 3 0 3 0 3 0 3 0 3

REF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

REM 0 8 0 12 0 5 0 4 0 11 0 11 0 1 0 1 0 1 0 1 0 3

RF4 0 2 0 4 0 2 0 12 0 5 0 5 1 0 1 0 4 0 4 0 3 0

RFF 0 6 0 7 0 5 0 1 0 1 0 1 0 2 0 2 0 2 0 2 0 2

RFR 0 2 0 0 0 1 0 1 0 0 0 0 0 2 0 2 0 2 0 2 0 1

RFS 0 6 0 4 0 5 0 3 0 4 0 4 0 4 0 4 0 4 0 4 0 3

RGN 12 0 12 0 12 0 12 0 12 0 12 0 0 0 0 0 0 0 0 0 1 0

RGP 0 9 0 7 0 7 0 4 0 7 0 7 0 7 0 7 0 6 0 6 0 6

RGQ 0 4 0 4 0 3 0 11 0 4 0 4 0 0 0 0 0 0 0 0 0 0

RGR 0 9 0 10 0 8 0 12 0 7 0 7 0 3 0 3 0 2 0 2 0 2

RGT 1 3 0 5 1 2 0 9 0 5 0 5 0 5 0 4 0 3 0 3 0 5

RH8 7 0 6 0 7 0 0 0 6 0 6 0 0 7 0 7 0 6 0 6 0 7

RHM 0 4 3 1 0 5 3 0 2 2 2 2 7 0 7 0 7 0 7 0 7 0

RHQ 1 0 5 0 1 1 12 0 7 0 7 0 0 2 0 3 0 3 0 3 0 3

RHU 0 6 0 4 0 7 0 6 0 5 0 5 0 0 0 0 1 0 0 0 1 0

RHW 5 0 6 0 6 0 9 0 3 0 3 0 0 4 0 4 0 3 0 3 0 3

RJ2 4 0 3 0 4 0 0 0 2 0 2 0 0 8 0 8 0 5 0 5 0 5

RJ6 0 5 0 5 0 3 0 12 0 6 0 6 0 0 0 0 0 0 0 0 0 0

RJ7 0 4 0 1 0 6 0 11 0 5 0 5 0 0 0 0 0 0 0 0 0 0

RJC 0 0 1 0 1 0 0 0 3 0 3 0 5 1 5 1 5 1 5 1 5 1

RJF 0 1 0 2 0 1 0 1 0 0 0 0 0 4 0 4 0 4 0 4 0 4

RJL 1 0 4 0 1 0 6 0 4 0 4 0 0 6 0 5 0 5 0 5 0 4

RJN 9 0 9 0 9 0 9 0 12 0 12 0 0 6 0 6 0 7 0 7 0 6

RJR 6 0 9 0 6 0 9 0 9 0 9 0 0 2 0 2 0 2 0 2 0 0

RJZ 5 0 4 0 4 0 1 0 7 0 7 0 3 0 4 0 4 0 4 0 3 0

RK5 0 3 0 5 0 1 0 4 0 2 0 2 0 5 0 5 0 4 0 4 0 3

RK9 4 0 5 0 5 0 0 3 6 0 6 0 0 0 0 0 0 0 0 0 0 0

RKB 0 1 0 2 0 2 0 12 0 2 0 2 0 0 0 0 0 0 0 0 0 0

RKE 0 5 0 4 0 4 0 10 0 4 0 4 2 0 2 0 2 0 2 0 2 0

RL4 0 3 0 3 0 3 0 4 0 2 0 2 0 4 0 3 0 0 0 0 0 2

RLN 11 0 12 0 10 0 12 0 12 0 12 0 0 5 0 3 0 1 0 1 0 1

Trust Poisson GAM 

(full)Poisson GAMPoisson GLMM Random Forest

Total Incidents DS Incidents

NB1 GLMM NB2 GAMNB2 GLMM
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(parameterisat

ion 1)
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C.7  Marginal CUSUM alerts for organisations from NRLS-HES models for 2015/16. 

Row are organisations, and columns represent number of alerts for increasing (=) and decreasing (-) 
weights, grouped by total or DS incidents.  

+ - + - + - + - + - + - + - + - + - + - + -

RLQ 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5 0 5 0 5 0 5

RLT 0 5 0 6 0 4 0 10 0 1 0 1 0 0 0 0 0 1 0 1 0 0

RM1 6 0 5 0 6 0 0 0 6 0 6 0 0 1 0 2 0 2 0 2 0 2

RM2 0 0 2 0 1 0 0 4 2 0 2 0 0 1 0 1 0 1 0 1 0 1

RM3 0 1 2 0 0 1 7 0 0 3 0 3 0 3 0 3 0 3 0 3 0 3

RMC 0 0 4 0 0 0 7 0 4 0 4 0 0 3 0 2 0 3 0 3 0 2

RMP 0 0 0 0 2 0 0 0 4 0 4 0 0 4 0 4 0 5 0 5 0 4

RN3 0 3 0 6 0 3 0 5 0 4 0 4 0 1 0 1 0 0 0 0 0 0

RN5 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0

RN7 0 0 1 0 0 0 0 0 1 0 1 0 0 6 0 6 0 6 0 6 0 6

RNA 0 6 0 3 0 4 0 6 0 6 0 6 0 0 0 0 0 0 0 0 0 0

RNL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RNQ 0 3 0 4 0 2 0 5 0 4 0 4 0 1 0 1 0 1 0 1 0 1

RNS 0 4 0 3 0 3 0 3 0 5 0 5 0 3 0 3 0 2 0 2 0 2

RNZ 0 2 0 0 0 0 2 0 0 0 0 0 0 3 0 3 0 3 0 3 0 3

RP5 2 0 2 0 2 0 6 0 2 0 2 0 3 1 3 1 3 0 3 0 3 0

RPA 0 9 0 9 0 9 0 9 0 9 0 9 2 0 2 0 2 0 2 0 2 0

RQ6 1 3 0 6 1 2 0 4 0 4 0 4 0 0 0 0 0 0 0 0 0 3

RQ8 0 9 0 9 0 9 0 12 0 10 0 10 0 3 0 3 0 0 0 0 0 0

RQW 1 0 1 0 1 0 0 0 2 0 2 0 0 2 0 2 0 2 0 3 0 2

RQX 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 3 0 1 0 1 0 1

RR1 0 5 0 4 0 9 3 0 0 2 0 2 4 0 3 0 5 0 5 0 4 0

RR7 0 6 0 6 0 5 0 7 0 3 0 3 0 0 0 0 0 0 0 0 0 0

RR8 0 5 0 0 0 7 5 0 1 0 1 0 0 2 0 3 0 2 0 2 0 4

RRF 0 4 1 0 0 4 1 0 0 0 0 0 3 0 3 0 3 0 3 0 3 0

RRK 10 0 12 0 11 0 12 0 12 0 12 0 0 5 0 5 0 6 0 7 0 5

RRV 0 7 0 2 0 4 4 0 0 6 0 6 0 0 0 0 0 0 0 0 0 0

RTD 0 11 0 5 0 12 0 8 0 8 0 8 1 0 1 0 1 0 1 0 0 0

RTE 0 0 0 0 0 0 3 0 0 0 0 0 0 3 0 4 0 1 0 1 0 1

RTF 6 0 5 0 6 0 7 0 8 0 8 0 0 2 0 2 0 2 0 2 0 2

RTG 0 1 0 4 0 1 0 10 0 2 0 2 0 2 0 2 0 2 0 2 0 2

RTH 1 0 8 0 0 0 5 0 6 0 6 0 0 1 0 0 0 0 0 1 0 0

RTK 0 0 0 2 0 0 0 5 0 0 0 0 0 2 0 2 0 2 0 2 0 1

RTP 0 4 0 4 0 4 0 6 0 5 0 5 0 1 0 1 0 1 0 1 0 1

RTR 0 4 0 2 0 3 0 8 0 1 0 1 0 0 0 0 0 0 0 0 0 0

RTX 0 0 1 0 0 0 0 0 1 0 1 0 0 3 0 3 0 2 0 3 0 2

RVJ 0 1 0 0 0 2 12 0 0 0 0 0 3 0 1 0 2 0 2 0 1 0

RVR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RVV 0 0 0 2 0 1 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 1

RVW 0 3 0 3 0 2 0 4 0 3 0 3 0 5 0 5 0 5 0 5 0 5

RVY 0 3 0 0 0 3 0 0 0 0 0 0 0 2 0 2 0 2 0 2 0 2

RW6 0 2 0 4 0 5 1 0 0 4 0 4 4 0 4 0 8 0 8 0 4 0

RWA 0 4 0 1 0 5 0 4 0 2 0 2 1 0 1 0 1 0 1 0 0 0

RWD 0 5 0 5 0 5 0 7 0 5 0 5 10 0 8 0 11 0 11 0 11 0

RWE 1 0 1 0 0 0 1 0 7 0 7 0 0 4 0 4 0 4 0 4 0 6

RWF 0 6 0 11 0 6 0 12 0 10 0 10 0 0 0 0 2 0 2 0 2 0

RWG 4 0 4 0 3 0 2 0 0 0 0 0 0 2 0 2 0 1 0 1 0 1

RWH 0 4 0 5 0 4 0 10 0 5 0 5 0 1 0 1 0 1 0 1 0 1

RWJ 6 0 11 0 7 0 9 0 7 0 7 0 3 1 4 1 1 1 1 1 3 1

RWP 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 2 0 1 0 1 0 1

RWW 0 0 0 0 0 0 0 5 0 0 0 0 1 0 1 0 1 0 1 0 1 0

RWY 4 0 5 1 3 1 9 0 2 1 2 1 4 0 4 0 4 0 4 0 4 0

RX1 0 3 1 0 0 6 2 0 2 0 2 0 0 3 0 3 0 1 0 1 0 3

RXC 0 0 0 0 0 0 3 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

RXF 6 0 4 0 6 0 10 0 6 0 6 0 0 2 0 2 0 0 0 0 0 0

RXH 0 1 0 7 0 2 0 12 0 5 0 5 0 4 0 4 0 2 0 2 0 4

RXK 6 0 3 0 8 0 3 0 3 0 3 0 0 2 0 1 0 1 0 1 0 1

RXL 11 0 12 0 11 0 12 0 12 0 12 0 0 6 0 6 0 7 0 7 0 5

RXN 0 1 7 0 0 0 12 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0

RXP 1 0 0 3 1 0 0 0 0 1 0 1 0 4 0 4 1 0 1 0 0 2

RXQ 2 1 4 0 2 1 3 1 2 1 2 1 0 1 0 1 0 0 0 0 0 0

RXR 0 0 5 0 0 0 0 0 2 0 2 0 0 2 0 3 0 2 0 2 0 2

RXW 0 4 0 2 0 4 0 1 0 5 0 5 0 1 0 1 0 1 0 1 0 1

RYJ 0 0 0 0 0 0 0 6 0 0 0 0 0 3 0 4 0 2 0 2 0 5

RYR 0 3 0 4 0 3 0 3 0 4 0 4 0 2 0 2 0 1 0 1 0 1

Total 156 315 221 324 166 290 255 444 214 280 214 280 64 255 60 253 79 208 77 212 72 219
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Appendix D:  Interactive module development process flow chart 

Fitting statistical models
SIRmodels::rum_models()

Final clean prior to modelling
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