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State Observers for Systems Subject to Bounded
Disturbances Using Quadratic Boundedness

Angelo Alessandri, Francesca Boem

Abstract—Quadratic boundedness is adopted to construct state
observers for linear, piecewise linear, and Lipschitz nonlinear
systems subject to bounded disturbances. Upper bounds on the
estimation error are derived by exploiting quadratic boundedness
and a design method based on linear matrix inequalities is pro-
posed to minimize such bounds. Simulation results are provided
to show the effectiveness of the proposed approach.

I. INTRODUCTION

The most popular way to perform estimation is by far the
Kalman filter [1]. Indeed, it is pretty well-known too that
its performances can degrade due to the wrong tuning of
the noise covariance matrices of the system model since also
such matrices may be subject to uncertainties. To overcome
such difficulties, other approaches based on H2/H∞ estimation
have been developed in the seventies by assuming noises with
bounded energy [2]. In this paper, we propose a novel design
method to construct Luenberger state observers [3] for various
types of continuous-time dynamic system, including piecewise
linear (PWL) and Lipschitz nonlinear systems. We assume
to have at disposal bounds on the system and measurement
disturbances, which are explicitly exploited for the purpose
of observer design by relying on quadratic boundedness (QB)
[4].

The potential of dealing with estimation with bounded
noises is pretty well-known [5]. The information available
on the boundedness of the disturbances is not usually taken
into account, as pointed out in [6]. This has motivated the
development of novel optimization approaches such as those
presented in [7]. However, the effectiveness of the resulting
estimation methods is still a topic under investigation. In this
context, we address the use of QB, which allows to deal with
positively invariant sets and enables to provide upper bounds
on the trajectories of the state of a system subject to bounded
disturbances [4]. To the authors’ knowledge, QB has been
applied only to discrete-time systems for the purpose of output
feedback control [8] and estimation [9], [10]. The proposed
approach based on QB allows to explicitly take into account
the bounds on the noises that could easily be available by the
plant operators for monitoring purposes. This information is
more helpful and easily used, compared to statistics or energy
of the noises. The knowledge of the bounds on system and
measurement disturbances is embedded in the proposed design
procedure without the need of a “trial-and-error” tuning.
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The main advantage of QB consists in deriving upper
bounds on the estimation error that can be treated by us-
ing linear matrix inequalities (LMIs). This makes possible
a convenient design that explicitly takes into account the
boundedness of the disturbances and, thanks to convexity, it
can be solved by means of well-established semi-definite pro-
gramming (SDP) tools [11]. Based on the preliminary results
presented in [12], in this paper we address state estimation for
PWL [13], [14] and Lipschitz nonlinear systems [15]–[18].
Looking at such a literature, few methods have been investi-
gated to estimate the state of dynamic systems by explicitly
accounting for the knowledge of bounds on the noises. Among
such methods, one can resort to moving horizon estimation
by suitably constraining the estimated disturbances [19], [20].
Of course, this demands an increased computational burden,
thus requiring the use of fast techniques [21]. As compared
to moving horizon estimation, the proposed method does not
require on-line optimization since the boundedness of the
noises is considered in the off-line design.

The paper is organized as follows. In Section II we will
present the proposed approach to observer design for LTI
(linear time-invariant) and PWL systems based on QB, while
the extension to systems having in addition Lipschitz non-
linearities is detailed in Section III. Simulations results are
reported in Section IV. Finally, the conclusions are drawn in
Section V.

Let (x, y) := [x>, y>]>, where x and y are column vectors
and the symbol > means transposition. The minimum and
maximum eigenvalues of a real, symmetric matrix P ∈ Rn×n
are denoted by λmin(P ) and λmax(P ), respectively. Moreover,
P > 0 (P < 0) means that it is also positive (negative)
definite; P ≥ 0 (P ≤ 0) denotes that it is positive (neg-
ative) semidefinite. Given a generic matrix M ∈ Rn×m,
|M | :=

(
λmax(M>M)

)1/2
=
(
λmax(MM>)

)1/2
and hence,

for a vector v ∈ Rn, |v| := (v>v)1/2 is its Euclidean norm.
Moreover, diag(v) ∈ Rn×n is the diagonal matrix with
v1, . . . , vn on the diagonal. The symbol ? in a block matrix is
used to denote completion trough symmetry.

II. QB FOR ESTIMATION OF LTI AND PWL SYSTEMS

In this section, after showing how to apply QB to design
observers for LTI systems, we will extend the approach to
PWL systems.

A. LTI systems
Let us consider the dynamic system

ẋ = Ax+B u+Dw
y = C x+ E w

(1)
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where t ≥ 0, x(t) ∈ Rn is the state, u(t) ∈ Rp is the control
input, y(t) ∈ Rm is the output; w(t) ∈ Rq is a vector that
collects all the disturbances that may affect both dynamics
and measurements; A, B, C, D, and E are real matrices of
appropriate dimension. Without loss of generality, we assume
that such disturbances are bounded as follows.

Assumption 1: The disturbance t 7→ w(t) ∈ Rq is such that
|wi(t)| ≤ 1, i = 1, . . . , q for all t ≥ 0.

Remark 1: The above assumption is not restrictive since, in
case of scalar disturbances having modulus larger than one,
we may scale the corresponding coefficients in D and/or E in
a such a way to refer to a new scalar noise that complies with
the unitary bounds.

Consider the Luenberger observer for (1) described by

˙̂x = A x̂+B u+ L (y − C x̂) (2)

where x̂(t) ∈ Rn is the estimate of x(t) and L ∈ Rn×m is the
observer gain to be chosen. We need to assume the following.

Assumption 2: The pair (A,C) is detectable.
The assumption above allows to construct an observer with

an asymptotically stable dynamics of the estimation error
e(t) :=x(t) − x̂(t) ∈ Rn in a noise-free setting but, in the
presence of disturbances, the observer design is required to
aim at noise rejection.

Using (1) and (2), the dynamics of the estimation error reads

ė = (A− LC) e+ (D − LE) w . (3)

In line with [4], the estimation error is said to be quadratically
bounded with Lyapunov function V : Rn → [0,+∞) if

V (e) > 1⇒ V̇ (e) < 0

for all wi ∈ R s.t. wi ∈ [−1, 1], i = 1, . . . , q. Using a quadratic
Lyapunov function V (e) = e>Pe with square n × n matrix
P > 0, the above definition becomes

e>Pe > 1⇒ 2 e>P ((A− LC) e

+ (D − LE)w) < 0 , ∀w ∈ [−1, 1]q . (4)

Owing to (4), the set EP :=
{
e ∈ Rn : e>Pe ≤ 1

}
turns out

to be positively invariant, it contains the reachable set from
the origin, and it is attractive (i.e., if the error is out of EP ,
it approaches EP asymptotically) [4]. Moreover, the error is
upper bounded as follows:

|e(t)|2 ≤ 1

λmin(P )
max

{
e(0)>Pe(0), 1

}
(5)

for all t ≥ 0. Clearly, such a bound combines the transient
and steady-state conditions. At steady state, we have

|e(t)| ≤ 1/
√
λmin(P ). (6)

Fig. 1 pictorially depicts the various subsets of the estimation
error space involved by (5) and (6).

Based on the aforesaid, we can state the following.

Fig. 1. The invariant set corresponding to the nominal steady-sate conditions
is the set given by e ∈ EP , i.e., all the points inside the dotted-dashed
ellipsoid. Such a set is contained inside the green ball centered in the origin
since e ∈ EP implies (6). i.e., |e| ≤ 1/

√
λmin(P ). The set EP is attractive:

if the initial estimation error is out of EP (i.e., e(0)>Pe(0) > 1), e(t) enters
EP in finite time.

Theorem 1: The estimation error is quadratically bounded
if there exist P > 0, Y ∈ Rn×m, α ∈ Rq with αi > 0,
i = 1, . . . , q, and a scalar β > 0 such that(
A>P − C>Y > + PA− Y C + βP PD − Y E

? −diag(α)

)
<0

(7a)
q∑
i=1

αi − β ≤ 0 (7b)

with L = P−1Y .
Proof. We need to verify that the estimation error is quadrati-
cally bounded with V (e) := e>Pe as a Lyapunov function, i.e.,
(4). Using [11, S-procedure, p. 23], it follows that

V̇ (e) = e>
[
(A− LC)>P + P (A− LC)

]
e

+ w>(D> − E>L>)Pe+ e>P (D − LE)w < 0

holds for all e ∈ Rn s.t. V (e) > 1 (i.e., −e>Pe+ 1 < 0) and
all wi ∈ R s.t. w2

i ≤ 1 (i.e., w2
i −1 < 0), i = 1, . . . , q, if there

exist αi > 0, i = 1, . . . , q, and β > 0 s.t.

e>
[
(A− LC)>P + P (A− LC)

]
e+ w>(D> − E>L>)Pe

+ e>P (D − LE)w + e>βPe−
q∑
i=1

αiw
2
i +

q∑
i=1

αi − β ≤ 0.

(8)

Such a condition is satisfied if, using Y = PL, we impose
(7a) to account for the first terms in (8) and similarly (7b)
for the last one. ♦

Based on Theorem 1, it is convenient to keep a small steady-
state error (6) by increasing λmin(P ) as much as possible. This
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TABLE I
DESIGN PROCEDURE

Input: A, C, D, E, ∆β > 0, and ε > 0
Output: L, ρmax

1: solve maxβ w.r.t. P > 0, Y, β > 0 s.t. (10) holds and
denote by βo its solution

2: β0 ← βo

3: k ← 0
4: do
5: solve maxλ w.r.t. P > 0, λ > 0, diag(α) > 0, Y

s.t. P > λI , (7a) and (7b) with β = βk hold
6: Lk ← P−1Y
7: Pk ← P
8: βk+1 ← βk −∆β
9: k ← k + 1
10: while

((
k == 1

)
OR

(
|Lk − Lk−1| > ε

))
AND βk+1 > 0

11: L← Lk

12: ρmax ← 1/
√
λmin(Pk)

design is pursued by maximizing λ subject to the LMI P > λI
as follows:

max λ w.r.t. P, Y, α, β, λ
s.t. P > 0, λ > 0,diag(α) > 0, β > 0,

P > λI , (7a), and (7b) hold.
(9)

This problem is not in an LMI due to the term βP in (7a) but
notice that the stability conditions reduce to the satisfaction of
the inequality

A>P − C>Y > + PA− Y C + βP < 0 (10)

if w = 0. Even this condition is not an LMI form in P ,
Y , and β. However, one can solve a generalized eigenvalue
(GEV) problem by maximizing β to ensure a transient as fast
as possible [11]. Based on the solution of such a problem,
we may take the resulting maximum β as a starting upper
bound to be iteratively reduced to get the satisfaction of (7)
by maximizing λmin(P ) as in (9). The design procedure is
summarized in Table I, where ε > 0 is the admitted tolerance.
The gain L is the final result of the procedure together with
the steady-state bound ρmax.

B. PWL systems

The approach presented so far can be extended to a wider
class of systems. Toward this end, consider the PWL systems
subject to instantaneous switching described by

ẋ = Aσ x+B u+Dw (11a)
y = Cσ x+ E w (11b)

σ(t+) = F
(
x(t−), u(t−)

)
(11c)

where t ≥ 0; σ(t) ∈ Σ := {1, . . . , s} represents a discrete state,
which will be denoted as “mode” of the system; (x, u) 7→
F (x, u) ∈ Σ is the impulsive mapping accounting for the
underlying switching law, namely, it is responsible to change
the system mode depending on both the state and input at the
switching time. Likewise for (1), all the matrices in (11) are
known as well as the impulsive mapping. The knowledge of
F (x, u) does not mean we know the mode of the system since

only y(t) is available at any time t ≥ 0, which is just a linear
combination of state variables subject to measurement noises.

Example 1: Consider the case study presented in [22]
about two cascaded interconnected plants subject to mutual
functional dependencies. The parameters µ1 (µ2) and λ1 (λ2)
denote the recovery and service loss rates of the first (second)
plant (see Fig. 2). The state variables x1 and x2 describe the
quality of service of the first and second plant, respectively. In
practice, if each of such variables belong to the range [0, r],
the service is adequately provided, while the overcoming of
threshold r due to the disturbances d1 and d2 corresponds to
loss of the minimum quality of service. Thus, the change of
state from functioning to non-functioning can be regarded as
a mode switching. Fig. 3 illustrates the essential of such a
system with four modes.

Fig. 2. Block scheme of two cascaded subsystems. The service state x1 of
the first block is input of the second block, whose state x2 is fed back in
turn.

mode 2

mode 1

mode 3

mode 4

mode 2

mode 1 mode 3
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r

r

Fig. 3. Sketch of state space partitioning and finite state machine with mode
transition, where Σ = {1, 2, 3, 4}.

To estimate the state of (11), we consider the switching
Luenberger observer given by

˙̂x = Aσ̂ x̂+B u+ Lσ̂ (y − Cσ̂ x̂) (12a)

σ̂(t+) = F
(
x̂(t−), u(t−)

)
(12b)

where x̂(t) ∈ Rn is the state estimate of x(t). The mode is
predicted according to the impulsive law (12b) and such a
prediction is used to estimate the continuous state in (12a).
Concerning stability, the following theorem holds.

Theorem 2: If there exist P > 0 and Yi ∈ Rn×m for i =
1, . . . , s, α ∈ Rq with αi > 0, i = 1, . . . , q, and a scalar β > 0
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such that

P > I (13a)(
A>i P − C>i Y >i + PAi − YiCi + βP PD − YiE

? −diag(α)

)
<0

i = 1, . . . , s (13b)
q∑
i=1

αi − β ≤ 0 (13c)

and the problem

minλ s.t. λ ≥ 0, and (14a)(
P PAi − PAj − YjCi + YjCj
? λI

)
≥ 0

i, j = 1, . . . , s, i 6= j (14b)

admits λ = 0 as solution, then the estimation error given by
(12) with Li = P−1Yi, i = 1, . . . , s, is quadratically bounded.
Proof. The error dynamics is given by

ė = (Aσ̂ − Lσ̂Cσ̂) e+ (D − Lσ̂E)w + (Aσ −Aσ̂
− Lσ̂(Cσ − Cσ̂))x . (15)

Clearly, the state does not affect (15) if the matrix Aσ−Aσ̂−
Lσ̂(Cσ − Cσ̂) is null for any σ, σ̂ ∈ Σ with σ 6= σ̂. Such a
decoupling ensures that the estimation error is quadratically
bounded and can be obtained by a suitable choice of the gains
via the minimization of |Ai −Aj − Lj(Ci − Cj)|. If

(Ai −Aj − Lj(Ci − Cj))(Ai −Aj − Lj(Ci − Cj))> ≤ λI
(16)

for i, j = 1, . . . , s, i 6= j, the minimization of λ ∈ [0,+∞)
guarantees to minimize |Ai − Aj − Lj(Ci − Cj)|. Using the
Schur lemma and pre-multiplying and post-multiplying for
diag(P, I), (16) turns to be equivalent to(

PP PAi − PAj − YjCi + YjCj
? λI

)
≥ 0

and thus to (14b) using PP > P owing to (13a). Following
the same reasoning of the proof of Theorem 1, it follows that
QB holds for the estimation error if λ = 0 solves (14). ♦

Remark 2: If the solution of (14) is given by λ = 0,
we obtain the perfect decoupling of the error dynamics. If
the solution is greater than zero, QB does not hold and we
have only an imperfect decoupling. However, the estimation
is bounded if the state trajectories are bounded and the design
can be accomplished without the constraints (13a) and (14b),
namely, by using only (13b) and (13c). In special cases, the
problem above can be more easily treated (see, e.g, [14]). For
example, the use of a high gain in the transient provides a
large bandwidth, which is unsuitable at steady state, whereas
instead a small gain is preferable to avoid the amplification of
the measurement noises. This motivates the use of a switching-
gain estimator [23], which can be studied for LTI systems in
the proposed framework with the use of two gains, i.e., Ltr and
Lst for transient and steady state, respectively. The stability
analysis in such a case turns out to be much simpler since the
disturbing term depends on either Atr−Ast−Lst(Ctr−Cst)

or Ast − Atr − Ltr(Cst − Ctr), which are both null matrices
as Atr = Ast = A and Ctr = Cst = C. Notice that in general
the error is not asymptotically stable to zero in a noise-free
setting. This depends on the possible wrong identification of
the system mode, which cannot be correctly identified at each
time instant but only after some delay, even in case all the
pairs (Ai, Ci) are observable [24], [25].

III. EXTENSION TO LIPSCHITZ SYSTEMS

Instead of (1), let us consider the systems described by

ẋ = Ax+ f(x, u) +Dw (17a)
y = C x+ E w (17b)

where t ≥ 0 and the function f : Rn×Rp → Rn is Lipschitz.
More specifically, we assume the following.

Assumption 3: There exists kf > 0 such that

|f(x′, u)− f(x′′, u)| ≤ kf |x′ − x′′| , x′, x′′ ∈ Rn

for all u ∈ Rp.
In addition, Assumptions 1 and 2 hold. Consider the Luen-

berger observer

˙̂x = A x̂+ f(x̂, u) + L (y − C x̂) (18)

where the gain L ∈ Rn×m must be chosen in such a way to
ensure the QB of the estimation error. The dynamics of the
estimation error is given by

ė = (A− LC) e+ f(x, u)− f(x̂, u) + (D − LE)w . (19)

Theorem 3: The estimation error is quadratically bounded
if there exist P > 0, Y ∈ Rn×m, α ∈ Rq with αi > 0,
i = 1, . . . , q, and scalars β > 0, χ > 0 such that Q P PD − Y E

? −χI 0
? ? −diag(α)

 < 0 (20a)

q∑
i=1

αi − β ≤ 0 (20b)

where Q :=A>P − C>Y > + PA − Y C + βP + χk2fI and
L = P−1Y .
Proof. Consider the Lyapunov function V (e) := e>Pe. From
(17) and (18), it follows that

V̇ (e) = e>
[
(A− LC)>P + P (A− LC)

]
e

+ (f − f̂)>Pe+ e>P (f − f̂)

+ w>(D> − E>L>)Pe+ e>P (D − LE)w < 0

where f := f(x, u) and f̂ := f(x̂, u), for the sake of brevity.
Following the same reasoning of Theorem 1, we apply [11,
S-procedure, p. 23] with, in addition,

(f − f̂)>(f − f̂)− k2f |e|2 ≤ 0

from Assumption 3 for some χ > 0 and obtain that QB holds
by getting V̇ (e) < 0 if (20a) and (20b) are satisfied. ♦
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It is now possible to extend the previous result to the
Lipschitz PWL systems described by

ẋ = Aσ x+ fσ(x, u) +Dw (21a)
y = Cσ x+ E w (21b)

σ(t+) = F
(
x(t−), u(t−)

)
(21c)

by using the Luenberger observer given by

˙̂x = Aσ̂ x̂+ fσ̂(x̂, u) + Lσ̂ (y − Cσ̂ x̂) (22a)

σ̂(t+) = F
(
x̂(t−), u(t−)

)
(22b)

where t ≥ 0 and the functions fi : Rn×Rp → Rn satisfy the
usual Lipschitz assumption, as follows.

Assumption 4: There exists k̄f > 0 such that

|fi(x′, u)− fi(x′′, u)| ≤ k̄f |x′ − x′′| , x′, x′′ ∈ Rn

for all u ∈ Rp and i = 1, . . . , s.
Thus, we can state the following.
Theorem 4: If there exist P > 0 and Yi ∈ Rn×m for i =

1, . . . , s, α ∈ Rq with αi > 0, i = 1, . . . , q, and scalars β > 0,
χ > 0 such that

P > I (23a) Qi P PD − Y E
? −χI 0
? ? −diag(α)

 < 0 , i = 1, . . . , s (23b)

q∑
i=1

αi − β ≤ 0 (23c)

where Qi :=A>i P −C>i Y >i +PAi− YiCi + βP +χ k̄2fI and
the problem

minλ s.t. λ ≥ 0, and(
P PAi − PAj − YjCi + YjCj
? λI

)
≥ 0

i, j = 1, . . . , s, i 6= j

admits λ = 0 as solution, then the estimation error given by
(22) with Li = P−1Yi, i = 1, . . . , s, is quadratically bounded.
Proof. It is straightforward by combining the proofs of
Theorems 2 and 3. ♦

Remark 3: It is worth noting that the proposed approach
based on QB is quite flexible and appropriate for fault diag-
nosis [26]. The tools that we have introduced can be used in
different scenarios. For example, the switching observer (12)
for PWL systems (possibly with the extension for Lipschitz
nonlinearities presented in Section III) allows to detect the
presence of process faults and identify them, in the case one of
the modes represents nominal dynamics, while the other modes
describe some faulty dynamics (a similar scenario is illustrated
in [27]). Moreover, all the proposed observers can be used
in a classical model-based fault detection framework [28],
by comparing a residual r(t) := y(t) − ŷ(t), computed as the
difference between the measurements y(t) and the estimated
output ŷ(t) = Cx̂(t), with threshold r̄ := |C|ē+q|E| based on
(6), where ē := 1/

√
λmin(P ) . Using state augmentation, bias

faults may be estimated as well [12]. Contrarily to approaches

based on H2/H∞ estimation for which such bounds cannot
be determined since the noises are modeled as L2 signals,
the upper bound (5) on the estimation error allows to select
fault-detection thresholds able by taking into account the noise
bounds in such a way to reduce false alarms. The algorithm
in Table I is well-suited to optimizing such thresholds by
providing less conservative results.

In the next section, we will show numerical results concern-
ing what proposed so far.

IV. SIMULATION RESULTS

Let us consider Example 1, where in addition to the original
state variables denoted by x1, x2 ∈ R, we introduce two new
state variables x3, x4 ∈ R as unknown biases affecting the the
dynamics of x1 and x2, respectively. Such a system is thus de-
scribed by a PWL model with state vector x := (x1, x2, x3, x4)
and

A1 =


−µ1 0 1 0

0 −µ2 0 1
0 0 0 0
0 0 0 0

A2 =


−λ1 0 1 0

0 −µ2 0 1
0 0 0 0
0 0 0 0



A3 =


−µ1 0 1 0

0 −λ2 0 1
0 0 0 0
0 0 0 0

A4 =


−λ1 0 1 0

0 −λ2 0 1
0 0 0 0
0 0 0 0


C1 = C2 = C3 = C4 =

(
1 0 0 0
0 1 0 0

)
.

To complete the system description, we need

F (x, u) =



1 if x1 ≤ r and x2 ≤ r
2 if x1 ≤ min

{
r, 1− (1− r)(x2/r)λ1/µ2

}
and x2 > r

3 if x2 ≤ min
{
r, 1− (1− r)(x1/r)λ2/µ1

}
and x1 > r

4 otherwise
(24)

for the switching dynamics [22] and

D =


0 0 0.1 0
0 0 0 0.1
0 0 0 0
0 0 0 0

 E =

(
0.01 0 0 0

0 0.01 0 0

)
.

The state variables x3 and x4 account for the regime values
associated with each mode, i.e., x3 = µ1 r/2 and x4 = µ2 r/2
for mode 1, x3 = λ1 and x4 = µ2 r/2 for mode 2, x3 =
µ1 r/2 and x4 = λ2 for mode 3, x3 = λ1 and x4 = λ2 for
mode 4. Note also that at regime in the absence of noises
the operating point in mode 1 is just given by x1 = x2 =
r/2, while in mode 4 such state variables tend to 1. Thus,
the estimates of the state variables may be used to detect the
occurrence of a service downgrade.

We have chosen µ1 = µ2 = 0.2, λ1 = λ2 = 0.5, and r =
0.4. Based on Theorem 2, we have solved (14) by obtaining
λ > 0 as solution. Since perfect decoupling is not satisfied
but the state trajectories are bounded, we have addressed the
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design according to Remark 2 by using the procedure in Table
I based only on (13b) and (13c) and getting

P =


80.6811 0 −18.1225 0

0 94.1508 0 −18.1225
−18.1225 0 41.3424 0

0 −18.1225 0 41.3424



L1 =


4.4563 0

0 4.4563
1.8203 0

0 1.8203

 L2 =


3.4456 0

0 4.4563
1.6928 0

0 1.82036



L3 =


4.4563 0

0 3.4456
1.8203 0

0 1.6928

 L4 =


3.4456 0

0 3.4456
1.6928 0

0 1.6928



α =


0.0359
0.0359
0.1881
0.1881

 β = 0.4480 .

In the following we will refer to such an estimator as QB
observer, for short.
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Fig. 4. Time behavior of y1 and y2.

Each simulation run has been initialized ac-
cording to a Gaussian distribution with covariance
P0 = diag(0.01, 0.01, 0.001, 0.001) and mean equal to
x̄(0) = (r/2, r/2, µ1 r/2, µ2 r/2). The noises have been
generated according to an uniform distribution in the range
[−1, 1]. For the purpose of comparison with the proposed
approach we have designed a switching Kalman filter (SKF,
see [29], [30]) with the same mode estimator of the QB
observer, i.e., (24) with the corresponding state estimates as
input. The initial estimated states of the QB observer and the
SKF in all the simulation runs have been taken equal to x̄(0).
Concerning only the SKF, we have chosen the covariance
matrices of the initial-state and system noise equal to P0

and Q = diag(0.0001, 0.0001, 0.0001, 0.0001), respectively.
Instead, different matrices R (i.e., the covariance matrix of
the measurement noise) have been chosen in order to improve
the SKF performances.
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Fig. 5. Time behavior of x1 and its estimates.
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Fig. 6. Time behavior of x3 and its estimates.

Figs. 4-6 show the result of a simulation run, in which the
QB observer provides a quicker reaction to the occurrence
of the fault, as compared to the SKF (only x1, x3 and their
estimates are plotted since the behaviors of x2, x4 and corre-
sponding estimates are similar). Generally speaking, the tuning
of the SKF is not easy at all. Depending on the selection of
covariance matrix of the measurement noises, on one hand
the response to the fault may be rapid but with an estimation
error very sensitive to the noises or, on the other hand, slow
but more robust to noises.

As an alternative to previous mathematical description of
Example 1, one can refer to an autonomous Lipschitz PWL
model with two additional state variables that account for bias
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on the original dynamics, i.e.,

A1 = A2 = A3 = A4 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


f1(x) = (−µ1x1 + µ1r/2 , −µ2x2 + µ2r/2 , 0 , 0)

f2(x) = (−λ1x1 + λ1 , −µ2x2 + µ2r/2 , 0 , 0)

f3(x) = (−µ1x1 + µ1r/2 , −λ2x2 + λ2 , 0 , 0)

f4(x) = (−λ1x1 + λ1 , −λ2x2 + λ2 , 0 , 0)

C1 = C2 = C3 = C4 =

(
1 0 0 0
0 1 0 0

)

D =


0 0 0.1 0
0 0 0 0.1
0 0 0 0
0 0 0 0

 E =

(
0.01 0 0 0

0 0.01 0 0

)

and the same switching mapping (24). The observer (22) has
been designed likewise the previous estimator but of course
according to the stability conditions of Theorem 4 without
perfect decoupling, i.e., using only (23b) and (23c) in the
design procedure of Table I. We have obtained

P =


163.0767 0 −18.9876 0

0 163.0767 0 −18.9876
−18.9876 0 7.9556 0

0 −18.9876 0 7.9556



L1 = L2 = L3 = L4 =


11.7927 0

0 11.7927
28.1459 0

0 28.1459



α =


0.1389
0.1389
0.5051
0.5051

 β = 1.2880

with k̄f = max(µ1, µ2, λ1, λ2). We will refer to this estimator
as Lipschitz QB or LQB observer for short. The result of a
simulation run is shown in Fig. 7-9.

Fig. 9 shows how good the resulting QB threshold ρmax is as
compared to the standard noise level and upon the occurrence
of the fault, which causes a mode transition. Thus, in principle
one can rely also on a decision rule based on this threshold
to detect a fault.

Table II shows that the proposed approaches perform quite
well as compared to the SKF (see also Fig. 10). The gain
of the LQB observer turns out to be higher than that of
the QB observer, which is not surprising since the Lipschitz
nonlinearity demands an increase of the gain to some extent in
such a way to dominate the nonlinear component of the error
dynamics. The performances of the SKF are very sensitive to
the choice of the matrix R. A “smaller” R ensures a lower
estimation error but at a prize of a slower reaction to the
occurrence of mode switching, which entails a worse correct-
detection rate. Moreover, the computational effort required by
QB/LQB estimators is about 80% lower than that of the SKF
since all the gain matrices of such estimators are computed
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Fig. 7. Time behavior of y1 and y2.
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Fig. 8. Time behavior of x1 and its estimate.

off line, while the on-line computation of the gain is required
for the SKF.

TABLE II
PERCENTAGE OF CORRECT MODE ESTIMATION (PCME) AND MEDIAN OF

ROOT MEAN SQUARE ERROR (RMSE) OVER 1000 SIMULATION RUNS.

PCME RMSE median
QB observer 99.8 0.028

LQB observer 99.9 0.048
SKF with R = diag(0.01, 0.01) 99.3 0.034

SKF with R = diag(0.1, 0.1) 99.6 0.060
SKF with R = diag(1, 1) 97.4 0.112

V. CONCLUSIONS

In this paper, the problem of observer design for dynamic
systems affected by bounded noises has been addressed by us-
ing the notion of quadratic boundedness for both LTI and PWL
systems, even with a possible Lipschitz nonlinearity in the
dynamics. The design of the estimators can be accomplished
by minimizing a steady-state upper bound on the estimation
error. The proposed observers perform quite well in terms
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Fig. 9. Time behavior of x3 and its estimate.
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Fig. 10. Boxplots the RMSEs over 1000 simulation runs (SKF with R =
diag(0.1, 0.1)).

of accuracy as compared to the Kalman filter and demand
a much lower computational effort. As a future work, we
aim at applying the proposed approach to fault diagnosis in
general and, in particular, to attack detection for cyber-physical
systems [31], where we may take advantage of the possibility
to account for bounds on the noises.
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