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Optimal estimation with quantum optomechanical systems in the nonlinear regime
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We study the fundamental bounds on precision measurements of parameters contained in a time-dependent
nonlinear optomechanical Hamiltonian, which includes the nonlinear light-matter coupling, a mechanical
displacement term, and a single-mode mechanical squeezing term. By using a recently developed method to solve
the dynamics of this system, we derive a general expression for the quantum Fisher information and demonstrate
its applicability through three concrete examples: estimation of the strength of a nonlinear light-matter coupling,
the strength of a time-modulated mechanical displacement, and a single-mode mechanical squeezing parameter,
all of which are modulated at resonance. Our results can be used to compute the sensitivity of a nonlinear
optomechanical system to a number of external and internal effects, such as forces acting on the system or
modulations of the light-matter coupling.
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I. INTRODUCTION

Quantum metrology is the study of sensing schemes that
make use of unique properties of quantum systems, such as
coherence and entanglement [1]. Sensing with quantum sys-
tems is generally superior compared with classical schemes
since these quantum properties fundamentally alter the rate at
which information can be acquired [2].

A key task within the study of quantum metrology entails
investigating the sensing capabilities that can be achieved with
different quantum systems. Quantum sensing now features
prominently in the planning and building of larger-scale ex-
perimental efforts, such as the inclusion of squeezed light in
Advanced Laser Interferometer Gravitational-Wave Observa-
tory (LIGO) [3] and space-based tests of microgravity [4].
Additional prominent candidates for quantum sensors include
atomic and molecular interferometers for accelerometry and
rotation measurements [5]. Similarly, Bose-Einstein conden-
sates have been proposed as platforms for testing fundamental
physics [6,7] and precision measurements of external poten-
tials [8]. Quantum advantages in sensing are also furthering
the emergence of quantum precision technologies [9], which
include atomic clocks [10] and extremely precise magnetic-
field sensors [11,12].
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Optomechanical systems [13], which consist of a mechan-
ical element interacting with light, have emerged as ideal
candidates for a number of sensing applications [14]. Due to
the large mass of the mechanical element, many proposals
in fundamental physics could potentially be tested with op-
tomechanical experiments, such as collapse theories [15–17].
Furthermore, optomechanical systems have been proposed
as the main experimental platform for detection of possible
low-energy quantum gravity effects [18–20]. In terms of force
sensing, microspheres optically trapped in a lattice have been
considered [21,22], as well as mesoscopic interferometry for
the purpose of gravitational wave detection [23].

The addition of a cavity to the optomechanical system
introduces an inherently nonlinear cubic interaction between
the electromagnetic field and the mechanical element [24]. For
systems operating in the nonlinear regime, the quantum Fisher
information (QFI) for measurements of constant gravitational
acceleration has already been computed [25,26], and optimal
estimation schemes for the nonlinear coupling itself have been
considered [27]. In general, the estimation of anharmonicities
present in the system is a topic of great interest [28,29] as
well as the enhancement of parameter estimation granted by
Kerr nonlinearities [30,31]. Additional efforts have focused on
parametric driving of the cavity frequency, which manifests
itself as a single-mode mechanical squeezing term in the
Hamiltonian [32].

To date, due to challenges in solving the dynamical evo-
lution for time-dependent nonlinear optomechanical systems,
most approaches to the full nonlinear case have been restricted
to the estimation of static effects. As a result, the proposals
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considered so far are of limited interest for experimentalists,
since static effects are generally difficult to isolate from a
random noise floor. Furthermore, if feasible, time-dependent
signals also allow for the exploitation of resonances, which
can be used to increase the signal-to-noise ratio.

In this paper we address this problem by computing the
ultimate bounds on the estimation of parameters encoded in an
optomechanical Hamiltonian with a time-dependent coupling
term, a time-dependent mechanical displacement term, and
a time-dependent single-mode mechanical squeezing term.
The time-dependent dynamics of standard optomechanical
systems was recently solved [34,35], and further extended to
time-dependent mechanical displacements and squeezing in
[36]. The methods used to obtain the dynamics have a long
history in quantum theory and quantum optics [37,38]. While
for concrete examples we mainly focus on optomechanics,
the dynamics we consider [specifically the Hamiltonian (1)]
can be implemented in different setups such as micro- and
nanocantilevers, membranes, levitated nanospheres, and op-
tomechanical resonators [24,33].

The paper is organized as follows. We first present the
optomechanical Hamiltonian of interest and its analytical
solution in Sec. II. We then proceed to define the QFI in
Sec. III and derive the main result in this paper: a general
expression for the QFI of an optomechanical system given the
dynamics at hand. Subsequently, in order to demonstrate the
applicability of our results, we present three examples of inter-
est: (i) estimation of the strength of a time-dependent optome-
chanical coupling (Sec. IV A), (ii) estimation of the strength
of a time-dependent linear displacement term (Sec. IV B), and
(iii) estimation of the strength of a time-dependent mechanical
squeezing term (Sec. IV C). These results are made more
concrete in Sec. V, where we compute the QFI given some
example experimental parameters. The paper is concluded by
a discussion of our results in Sec. VI, and some final remarks
can be found in Sec. VII.

II. THE SYSTEM

In this section we present the mathematical tools neces-
sary for our work. We begin by defining the optomechanical
Hamiltonian and an exact solution of the dynamics. A detailed
presentation of the techniques can be found in Appendix A
and the appropriate references mentioned throughout the text.

A. Optomechanical Hamiltonian

Nonlinear interactions appear in many physical systems,
including optomechanical ones, where the bare interaction
between the electromagnetic field and a mechanical resonator
couples the number of photons in the former with the position
of the latter [24,33]. An example of an optomechanical system
that achieves this nonlinear term is a moving end mirror that
forms part of a cavity, which is illustrated in Fig. 1.

In this paper we consider the generalized optomechanical
Hamiltonian of the form

Ĥ =ĤOM + h̄D1(t )(b̂† + b̂) + h̄D2(t )(b̂† + b̂)2, (1)

where we have introduced the standard optomechanical
Hamiltonian ĤOM defined by ĤOM := h̄ ωcâ†â + h̄ ωm b̂†b̂ −

FIG. 1. Cavity optomechanics is one realization of the Hamilto-
nian (1). A semitransparent mirror allows the electromagnetic field
to enter the cavity and interact with a moving-end mirror, which
therefore affects the frequency of the fundamental modes that can
be trapped in the cavity [33]. The degree of freedom of the mirror
(i.e., its position) can be modeled as a harmonic oscillator coherently
interacting with the field.

h̄G(t )â†â (b̂† + b̂), and the (possibly time-dependent) coeffi-
cients G(t ), D1(t ), and D2(t ). Here, ωc is the frequency of
the light mode with annihilation operator â, and ωm is the
trapping frequency of the mechanical mode with annihilation
operator b̂.

The Hamiltonian (1) reduces to the standard optomechani-
cal Hamiltonian with a constant light-matter coupling when
G(t ) = g0, and when D1(t ) = D2(t ) = 0. The time depen-
dence of G(t ) and the additional terms can be obtained in a
number of ways: A time-dependent optomechanical coupling
is observed in specific experimental systems [39]. Further-
more, the linear mechanical driving term controlled by D1(t )
allows for the modeling of an optomechanical system given
an externally imposed effect, such as gravitational acceler-
ation [25,26], while the single-mode mechanical squeezing
term controlled by D2(t ) can be obtained by modulating the
mechanical frequency [40,41].

In what follows, it will be convenient to adopt the
dimensionless time τ := ωm t , the dimensionless optical
frequency �c := ωc/ωm, and the dimensionless Hamilto-
nian coefficients G̃(τ ) := G(t )/ωm, D̃1(τ ) := D1(t )/ωm, and
D̃2(τ ) := D2(t )/ωm. This means that we will use the rescaled
Hamiltonian

Ĥ/(h̄ ωm ) = ˆ̃HOM + D̃1(τ )(b̂† + b̂) + D̃2(τ )(b̂† + b̂)2, (2)

to compute the dynamics in the following section, and
throughout this paper, where ˆ̃HOM = �câ†â + b̂†b̂ −
G̃(τ )â†â(b̂† + b̂).

B. Decoupling of the time-evolution operator of a nonlinear
time-dependent optomechanical Hamiltonian

The main aim of this paper is to provide bounds on preci-
sion measurements of parameters that appear in the Hamilto-
nian (1). We assume that the parameter of interest can enter
into any of the coefficients or frequencies of (1). Therefore, it
is necessary to obtain the full time evolution of the system.
The time-evolution operator corresponding to the Hamilto-
nian (1) may be expressed as the time-ordered exponential

Û (τ ) :=
←
T exp[− i

h̄

∫ τ

0 dτ ′ Ĥ (τ ′)]. However, this expression
is usually cumbersome to manipulate and only perturbatively
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applicable. In order to reduce the complexity of the problem,
we exploit Lie algebra methods to obtain tractable expressions
for the time evolution of the full quantum system [37,38].
More specifically, in a first step, we identify the minimal
Lie algebra that generates the time-evolution operator. If the
minimal Lie algebra is finite, the time-evolution operator can
be written in terms of a finite product of exponentials of
real scalar functions Fn(τ ) multiplied by base elements ĥn of
the Lie algebra, i.e., Û (τ ) = ∏

n exp[−iFn(τ ) ĥn], where the
number of factors is equal to the dimension of the Lie algebra
[37]. The scalar functions Fn(τ ) have to be found by solving a
set of coupled ordinary differential equations [34].

The time evolution induced by the Hamiltonian (2) has
been already decoupled explicitly using the following set of
Hermitian operators as generators of the minimal Lie algebra
[34,36]:

N̂2
a := (â†â)2,

N̂a := â†â, N̂b := b̂†b̂,

B̂+ := b̂† + b̂, B̂− := i (b̂† − b̂),

B̂(2)
+ := b̂†2 + b̂2, B̂(2)

− := i (b̂†2 − b̂2),

N̂a B̂+ := â†â
(
b̂† + b̂

)
, N̂a B̂− := i â†â

(
b̂† − b̂

)
. (3)

It follows that the time-evolution operator can be written in
the following form:

Û (τ ) = e−iJbN̂be−iJ+B̂(2)
+ e−iJ−B̂(2)

− e−i(�cτ+FN̂a )N̂a

× e−iFN̂2
a

N̂2
a e−i(FB̂+ +FN̂a B̂+ N̂a )B̂+

× e−i(FB̂− +FN̂a B̂− N̂a )B̂− , (4)

where the explicit forms of the F and J coefficients depend on
the functions G̃(τ ), D̃1(τ ), and D̃2(τ ) in (2). Their expressions
can be found in Appendices A and C, respectively.

By defining the operators F̂± := FB̂± + FN̂a B̂± N̂a and

F̂N̂a
:= FN̂a

+ FN̂2
a

N̂a and using the definition of the Weyl dis-

placement operator D̂b(β ) = exp[β b̂† − β∗ b̂], we can rewrite
the time-evolution operator as1

Û (τ ) := ˆ̃Usq e−i(�c τ+F̂N̂a )N̂a−iF̂+F̂− D̂b(F̂− − iF̂+), (5)

where we used the standard formula for the composition of
two displacement operators and defined the operator

ˆ̃Usq = e−i JbN̂b Ŝb(2 i J+) Ŝb(−2 J−), (6)

using the definition of the squeezing operator Ŝb(ζ ) :=
exp[ 1

2 (−ζ b̂†2 + ζ ∗b̂2)]. As already mentioned, the coeffi-
cients Jb and J± can be determined by solving a set of
differential equations the derivation of which we show in
Appendix C.

1As N̂a commutes with all operators in (5), N̂a and N̂2
a can be

treated as c-number-valued functions in all manipulations of the
exponentials in Û (τ ). In particular, exponential terms containing
only N̂a and N̂2

a and the identity can be freely combined and shifted
in Û (τ ).

The form of Û (τ ) in (5) can now be interpreted as
follows: The mechanical oscillator experiences a photon-
number dependent displacement through D̂b(F̂− − i F̂+), fol-
lowed by two squeezing operations Ŝb(2 i J+) and Ŝb(−2 J−),
and a rotation e−i Jb N̂b . The cavity field is rotated through
e−i(�c+FN̂a )N̂a and then strongly translated by a nonlinear Kerr

self-interaction term: e−i FN̂2
a

N̂2
a . Using a general composition

law for squeezing operators given in Appendix C3, the full
time-evolution operator can be reordered and interpreted as
subsequent photon number dependent squeezing, displace-
ment, and rotation. Details can be found in Appendix C2.

C. Initial state of the system

In this paper, we assume that the mechanical element is
initially in a thermal state ρ̂Mech.(T ) (a standard assumption in
the usual regimes of operation), and the light is in a coherent
state |μc〉 (accessible through laser driving). Explicitly, the
initial state of the system is

ρ̂(0) = |μc〉 〈μc| ⊗
∞∑

n=0

tanh2n rT

cosh2 rT
|n〉 〈n| , (7)

where â |μc〉 = μc |μc〉, and where the parameter rT is defined
through the relation rT = tanh−1(exp[− h̄ ωm

2 kB T ]), for which kB

is Boltzmann’s constant and T is the temperature.

III. QUANTUM METROLOGY

Quantum metrology provides the tools to compute ultimate
bounds on precision measurements of parameters contained in
a quantum channel [1]. The general scheme requires an input
state ρ̂(0), a channel that propagates the state, and ρ̂(θ ) :=
P̂θ ρ̂(0) with propagator P̂θ , and depends on a classical pa-
rameter θ that will be estimated, and a set of measurements
on the final state ρ̂(θ ). The quantum Fisher information
(QFI) Iθ allows for the computation of ultimate bounds on
sensitivity imposed by the laws of physics [42,43]. The QFI
is a dimensionful information measure the inverse of which
provides a lower bound to the variance Var(θ ) of an unbiased
estimator of a parameter θ through the quantum Cramér–Rao
bound (QCRB) Var(θ ) � (M Iθ )−1 [1,44,45]. The QCRB is
optimized over all possible positive operator-valued mea-
sure measurements [46] and all possible unbiased estimator
functions. Its importance arises from the fact that it can be
saturated in the limit of a large number M of measurements,
independently of how the parameter is encoded into the state.
The optimal measurement is given by a projective measure-
ment onto the eigenstates of the symmetric logarithmic deriva-
tive [44]. Maximum likelihood estimation allows for optimal
parameter estimation based on the measurement results, and
the maximum likelihood estimator saturates the Cramér-Rao
bound and becomes unbiased in the limit M → ∞. When
taken as a measurement prescription rather than a benchmark
for the minimal uncertainty of estimating the parameter at the
position of its actual value, one faces the problem that the
actual value is a priori unknown. An adaptive strategy can
be used in this case, where the first measurements provide a
rough estimate of the parameter. The optimal measurement
can then be implemented based on this estimate [47], and
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iteratively refined. The QCRB hence constitutes an important
benchmark for the ultimate sensitivity that can be achieved
(at least in principle when all technical noise problems are
solved), and only the fundamental uncertainties due to the
quantum state itself remain.

For unitary channels that imprint the parameter θ on
an initial state ρ̂(0) = ∑

n λn |λn〉 〈λn| according to ρ̂(θ ) =
Ûθ ρ̂(0)Û †

θ , the quantum Fisher information can in general be
written in the form [48,49]

Iθ = 4
∑

n

λn
(〈λn|Ĥ2

θ |λn〉 − 〈λn|Ĥθ |λn〉2
)

− 8
∑
n 
=m

λnλm

λn + λm

∣∣〈λn|Ĥθ |λm〉∣∣2, (8)

where the second sum is over all terms with λn + λm 
= 0,
λn is the eigenvalue of the eigenstate |λn〉, and the Her-
mitian operator Ĥθ is defined by Ĥθ = −iÛ †

θ ∂θÛθ [48,49].
The expression (8) was derived for the so-called phase-shift
Hamiltonian, where the dependence of Ûθ = exp[−iĤ (θ )] on
θ is through an arbitrary (differentiable) Ĥ (θ ). While we here
consider single-parameter estimation, it should in principle be
possible to extend these methods to multiparameter metrol-
ogy. However, this is beyond the scope of this paper.

In this paper, the channel Ûθ is the time-evolution operator
(5), and the parameter θ to be estimated is chosen depending
on the specific case of interest. Using the decoupled time-
evolution operator (5), we find

Ĥθ = ĤN̂a
+

∑
s∈{+,−}

ĤsB̂s + EN̂b + FB̂(2)
+ + GB̂(2)

− , (9)

with ĤN̂a
= AN̂2

a + BN̂a + K , where K is a constant, and
Ĥ± = C± + CN̂a,±N̂a. The c-valued functions A, B, C+, CN̂a,+,
C−, and CN̂a,− are given in (D8) in Appendix D.

The QFI (8) can now be computed by taking the expec-
tation values of the operator-valued terms in (9) with respect
to the initial state ρ̂(0) [see (7)]. The eigenvectors |λn〉 and
eigenvalues λn in (8) are given by |λn〉 = |μc〉 ⊗ |n〉 and λn =
tanh2n(rT )/ cosh2(rT ) for the initial state (7). This leads us to
the main result of this paper, which is an expression for the
quantum Fisher information for general metrology with the
nonlinear optomechanical Hamiltonian (1):

Iθ = 4

[
(4|μc|6 + 6|μc|4 + |μc|2)A2 + 2(2|μc|4 + |μc|2)AB

+ |μc|2B2 + cosh(2 rT )
∑

s∈{+,−}
C2

N̂a,s
|μc|2

+ 1

cosh(2 rT )

∑
s∈{+,−}

(Cs + CN̂a,s|μc|2)2

+ 4
cosh2(2rT )

cosh2(2rT ) + 1
(F 2 + G2)

]
. (10)

A detailed derivation of (10) is given in Appendix D. The
explicit form of the functions A, B, C±, CN̂a,±, F , and G
depends on the parameter θ that we wish to estimate. They
also contain the time dependence of Ûθ .

Let us briefly comment on the form (9) of the QFI. The
full explicit expression (10) is not particularly revealing, since

the coefficients can take different forms depending on the
dynamics at hand and the estimation parameter of interest.
We note that, in general, the system scales strongly with the
parameter |μc|, in particular with the leading term 16 |μc|6A2.
It arises from the fact that Ĥθ contains the term N̂2

a , which
when squared yields an expectation value (B3) containing
terms of order |μc|8 and |μc|6. The eight-order terms cancel,
while the leading behavior of |μc|6 is retained.

We also note that the term multiplying the first sum in
(10) scales exponentially with the temperature parameter rT .
This implies that, in certain cases, the QFI will increase
with the temperature parameter rT of the initial thermal state.
Such a behavior is reminiscent of the increase of QFI with
temperature for the measurement of frequency of a simple
harmonic oscillator [50], which in turn can be attributed to
the increasing sensitivity of higher excited Fock states of the
resonator. For estimating the frequency of the mechanical
oscillator or the cavity, it should be mentioned that in principle
also the operators â and â† depend on ωc (and correspond-
ingly b̂ and b̂† depend on ωm). This can be seen most easily
from the fact that the Fock states, i.e., the eigenstates of
â†â, depend on ωc via the oscillator length, which becomes
clear when writing them in position basis. This dependence
becomes important for times much smaller than the period
(see [50], and for a careful analysis of frequency estimation of
a harmonic oscillator see [51]). Neglecting this contribution
means that the QFI for frequency estimation is underesti-
mated. In what follows, we focus on estimation of parameters
other than frequency, however, where this plays no role.

IV. EXAMPLES

In this section, we demonstrate the applicability of the
main result (10) by considering three concrete scenarios:
(i) estimation of the strength of a time-dependent optome-
chanical coupling, (ii) estimation of the strength of a time-
dependent linear mechanical displacement, and (iii) estima-
tion of a time-dependent mechanical squeezing term.

A. Example (i): Estimating the strength of an oscillating
optomechanical coupling G̃(τ )

Characterizing the nonlinear coupling in optomechanical
systems is a key task when calibrating an experimental sys-
tem. The case of a constant coupling G̃(τ ) ≡ g̃0 has already
been thoroughly considered [27]. As an example application
of our methods we therefore compute the QFI for estimating
the strength g̃0 of an oscillating optomechanical coupling
G̃(τ ). We assume that it has the functional form

G̃(τ ) := g̃0[1 + ε sin (�gτ )], (11)

where g̃0 = g0/ωm is the strength of the coupling, ε is the
oscillation amplitude, and �g = ωg/ωm. We additionally as-
sume that D̃1 = D̃2 = 0.

A nonlinear coupling of this form appears for levitated
microscopical particles such as microspheres or nanospheres
in Paul traps, where the time-dependent modulation is caused
by micromotion of the sphere [39,52,53]. A time-varying
coupling is also essential for the purpose of exploiting and
exploring the quantum thermodynamics of optomechanical
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(a) (b)

FIG. 2. QFI for estimation of (a) g̃0 and (b) d̃1 as a function of dimensionless time τ for different values of �g (respectively, �d̃1
). While

overall the QFI tends to increase with time in both cases, modulations with the period of the harmonic oscillators are clearly visible. For
�d̃1

� 1, Id̃1
is bounded from above, and a doubling of the period is observed. For a discussion of the relation of the QFI plotted here to the

Heisenberg limit, see the Discussion section (Sec. VI).

systems [54], and the same dynamics can be simulated by
an optomechanical system where the photon number couples
quadratically to the mechanics with â†âx̂2

m [34].
Using the form (11) of the coupling we can compute the

F coefficients in (A10) explicitly. First of all, we find that
whenever D̃1(τ ) = 0 it follows that FN̂a

= FB̂+ = FB̂− = 0,
and when D̃2 = 0 we have Jb = τ and J± = 0. Then, the
remaining nonzero coefficients in (10) are given by

A = −∂θFN̂2
a
− 2FN̂a B̂−∂θFN̂a B̂+ , (12)

CN̂a,± = − ∂θ FN̂a B̂± .

The QFI thus becomes

Ig̃0 = 4 |μc|2
[

(4 |μc|4 + 6 |μc|2 + 1)A2

+ cosh(2rT )

(
1 + |μc|2

cosh2 (2rT )

) ∑
s∈{+,−}

C2
N̂a,s

]
. (13)

We observe that the QFI increases for increasing tempera-
tures, which is due to the higher occupied phonon states [see
the discussion after (10)]. The remaining coefficients A and
CN̂a,± in (13) need to be complemented with the appropriate
expressions (A10) for the nonzero F coefficients. To compute
them, we note that ξ = e−iτ in our case [see (A9) and the
expressions for the F coefficients in Sec. E]. The resulting
expression for the QFI (13) is long and cumbersome, so we
display it in (E3) in Appendix E.

We plot Ig̃0 (E3) as a function of time τ for various
frequencies �g in Fig. 2(a). We note that the different choices
of �g lead to distinct oscillation patterns in Ig̃0 . Furthermore,
we plot Ig̃0 as a function of �g in Fig. 3(a) for the values
g̃0 = |μc| = 1, and rT = 0. We note that the QFI peaks at the
resonance frequency �g = 1, but only at later times τ 
 1.
At earlier time, the peak occurs for values of �g � 1.

When the coupling modulation occurs at mechanical reso-
nance with �g → 1, the QFI takes on a more compact form.
We present the full expression in (E4) in Appendix E. We
can simplify it even further by noting that, at large timescales
τ 
 1, the first term of (E4) dominates. Furthermore, when
the mechanical oscillator in the vacuum state with rT = 0, and
when the optomechanical coupling is much greater than the
oscillation amplitude, g̃0 
 ε, and when ε � 1, the expres-

sion simplifies significantly to

I (res,app)
g̃0

∼ 16 g̃2
0 τ 2 |μc|2(4 |μc|4 + 6 |μc|2 + 1)

× [1 − ε sin(τ )], (14)

where we kept terms up to ε. As expected, when |μc|2 is
zero (no initial cavity mode excitations) or g̃0 is zero (no
coupling), the QFI vanishes. The same can be seen from the
full expression (E4).

The expression (14) shows that the leading time depen-
dence of the QFI is quadratic. This is also true for the more
general nonresonant case [see (E3)]. However, in both cases
there are important time-dependent modulations that can lead
to a rather large gain or loss of QFI in relatively short time
[see, e.g., �g = 1 in Fig. 2(a)], which makes the choice of
time of measurement crucial.

B. Example (ii): Estimating a parameter in the linear
displacement D̃1(τ )

The case of constant D̃1 has already been explored in the
context of gravimetry [25,26]. Here we extended the analysis
by the case of a time-dependent driving D̃1(τ ), which leads
to a signal that is generally easier to detect experimentally
compared with a static signal.

We consider a periodic modulation of the mechanical
driving term D̃1(τ ) of the form

D̃1(τ ) = d̃1 cos(�d1τ ), (15)

where d̃1 is the dimensionless driving strength and �d1 =
ωd1/ωm is the oscillation frequency of the driving. A coupling
of this form can, for example, be produced in levitating setups
by applying any ac electric field to the system [22] that exerts
a periodic force to the levitated object.

We are interested in estimating the driving strength d̃1 of
the time-dependent coupling. As opposed to the last section,
here we assume that the light-matter coupling is constant with
G̃(τ ) ≡ g̃0, and we also assume that D̃2 = 0. This implies that
∂θFN̂2

a
= ∂θFN̂a B̂± = 0. Furthermore, since D̃2 = 0, it follows

that Jb = τ and J± = 0, as well as ξ (τ ) = e−i τ . As a result,
the following coefficients are zero: A = CN̂a,+ = CN̂a,− = F =
G = 0 and the only nonzero coefficients that appear in the
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(a) (b)

FIG. 3. QFI for estimation of (a) g̃0 and (b) d̃1 for different frequencies. Parameters are g̃0 = 1, ε = 0.5, and μc = 1 for (a), and g̃0 = 1
and μc = 1 for (b). We find that the constant case and the resonances perform best. While the resonance at about �g = 1 gives the best QFI
for the estimation of g̃0, the QFI for the estimation of d̃1 at the resonance �d1 = 1 is smaller compared with when D̃1(τ ) is constant.

expression (10) of the QFI are

B = −∂θFN̂a
− 2FN̂a B̂−∂θFB̂+ ,

C± = −∂θFB̂± . (16)

This implies that the QFI for the estimation of d̃1 reduces to
the expression

Id̃1
= 4 B2 |μc|2 + 4

cosh(2rT )

∑
s∈{+,−}

C2
s . (17)

We note that the term 4 B2 |μc|2 specifically encodes the
nonlinearity; that is, when g̃0 = 0 it follows that B = 0.

The F coefficients in (A10) can now be analytically derived
(E5). An explicit expression for Id̃1

for general �d1 is given
in (E6). For a constant linear displacement, �d1 = 0, the
F coefficients (E5) simplify, and the QFI takes the simpler
expression:

I (const)
d̃1

=16

[
g̃2

0|μc|2[τ − sin(τ )]2 + sin2(τ/2)

cosh(2 rT )

]
. (18)

The first contribution in this expression originates from the
cavity field and its interaction with the mechanical oscillator,
while the second contribution originates from the mechanical
oscillator only, which includes the dependence on the temper-
ature through rT . The origin of the terms can be inferred from
the following observation: When either the optical state is
the vacuum state (defined by |μc| = 0) or the optomechanical
coupling is zero (that is, g̃0 = 0), the contributions from the B
coefficients vanish, while the coefficients C± remain nonzero.
This situation corresponds to estimating the displacement of a
single mechanical element without the cavity. We note that, in
this setting, the enhancement from |μc|2 is lost, which means
that the QFI is reduced overall. We also note that the result
in Eq. (18) extends previous findings [25,26] from coherent
states to thermal states of the mechanical oscillator.

When D̃1(τ ) is time dependent (15), the expression be-
comes more convoluted (E6). We plot Id̃1

as a function of time
τ for different �d1 in Fig. 2(b). The QFI continues to increase
at large times τ for the constant (�d1 = 0) case and the
resonant (�d1 = 1) case. For all frequencies �d1 considered,
the QFI Id̃1

rises very rapidly within about half a period of the
mechanical oscillator (τ � π ). After the initial rapid increase,
the QFI either oscillates or keeps increasing depending on
the value of �d̃1

. Furthermore, in Fig. 3(b), we plot Id̃1
as

a function of the oscillation frequency �d1 . The QFI shows
a clear local maximum at resonance, where �d1 = 1, and
another one at �d1 = 0, i.e., when the displacement D̃1(τ ) ≡
d̃1 is constant.

At mechanical resonance �d1 = 1, the expression (E6)
simplifies to

I (res)
d̃1

= 4 g̃2
0 |μc|2[τ + sin(τ )(cos(τ ) − 2)]2

+ τ 2 + 2 τ sin(τ ) cos(τ ) + sin2(τ )

cosh (2rT )
. (19)

We note that {τ + sin(τ )[cos(τ ) − 2]}2 = {1 + sinc(τ )
[cos(τ ) − 2]}2

τ 2 and τ 2 + 2 τ sin(τ ) cos(τ ) + sin2(τ ) =
[1 + 2 sinc(τ ) cos(τ ) + sinc2(τ )] τ 2, where sinc(x) := sin x

x
and sinc(x) → 1 for x → 0. This highlights the appearance
of terms proportional to τ 2 in (19). Therefore, these terms
do not oscillate for τ 
 1 but grow polynomially, that is, the
resonant QFI scales as I (res)

d̃1
∼ 4 g̃2

0 |μc|2 τ 2, while the QFI

for a constant coupling scales as I (const)
d̃1

∼ 16 g̃2
0 |μc|2 τ 2. All

together, this implies that I (const)
d̃1

≈ 4 I (res)
d̃1

for τ 
 1.
At higher temperatures, the QFI decreases with larger

rT for both constant (18) and resonant (19) displacements.
However, the effect differs between the two cases in the τ 
 1
limit. For I (const)

d̃1
, the temperature-dependent term is bounded

and oscillates with τ , and therefore is completely negligible
for τ 
 1 compared to the term increasing quadratically with
τ . For I (res)

d̃1
, on the other hand, the temperature-dependent

term also scales with τ 2. Hence there is resonant buildup of
the information contained in the temperature-dependent term,
which leads to an advantage for the resonant case when both
rT and g̃2

0 |μc|2 are small. The difference between the constant
and resonant case is, however, relatively small if g̃0 
 1 and
|μc|2 
 1, for which the first terms in both (18) and (19)
dominate and lead to a factor of 4 in the QFI.

C. Example (iii): Estimating a parameter in the mechanical
squeezing D̃2(τ )

In this section, we consider a mechanical squeezing term
D̃2(τ ) of the form

D̃2(τ ) = d̃2 cos(�d2 τ ), (20)

where d̃2 is the oscillation amplitude and �d2 is the fre-
quency. A modulation of this form can arise from an external
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time-dependent shift of the mechanical frequency ωm
2, which

can be externally imposed employing an oscillating strong
optical field or by applying a pumping voltage in a cantilever
setup [55]. Furthermore, a term like this appears as the
second-order approximation to a periodic potential, meaning
that the inclusion of this term extends our metrology scheme
beyond first-order displacements considered in the previous
section. In addition, it has previously been shown that modu-
lating the squeezing enhances effects such as entanglement
and quantum discord [32]—properties that have previously
been found useful for sensing. Lastly, modulating the mechan-
ical squeezing at parametric resonance allows for the creation
of increasingly non-Gaussian states [36].

Our goal is to estimate the squeezing strength d̃2 for con-
stant or modulated couplings. For simplification we set D̃1 =
0 in this section, and keep G̃(τ ) ≡ g̃0 constant. A nonzero
mechanical squeezing term affects the full dynamics of the
system since it changes the function ξ (τ ) (A9), which, in
turn, enters into the F coefficients in (A10). The squeezing
parameter is also contained in the J coefficients, which may
be computed by using the relation (C34). When D̃1(τ ) = 0
we find that B = C± = 0, which means that the general QFI
expression (10) for estimation of d̃2 reduces to

Id̃2
= 4

[
(4 |μc|6 + 6 |μc|4 + |μc|2) A2

+ |μc|2 cosh(2 rT )

(
1 + |μc|2

cosh2(2 rT )

) ∑
s∈{+,−}

C2
N̂a,s

+ 4
cosh2(2rT )

cosh2(2rT ) + 1
(F 2 + G2)

]
. (21)

When the squeezing term is constant, that is, �d2 = 0, the
differential equations for the mechanical subsystem evolu-
tion (A5) are analytically solvable, as we demonstrate in
Appendix E3a. For a time-dependent coupling of the form
(20), however, the mechanical subsystem equations (A7) take
the form of the Mathieu equation. The Mathieu equation
is notoriously difficult to solve numerically, and only has
analytic solutions for specific cases. However, it has been
shown that perturbative solutions of the form (A11) can be
obtained at parametric resonance �d̃2

= 2 when d̃2 � 1, i.e.,
the squeezing strength is small [36]. These solutions lead to
the same time evolution that can be obtained from the Hamil-
tonian (1) by employing the rotating wave approximation.

When the squeezing is constant (i.e., �d2 = 0), the F
coefficients (A10) are given in (E11), and the J coefficients
are given in (E12). As a result, the only nonzero coefficient of
the QFI is

CN̂a,+ = 2 g̃0τ, (22)

which means that the QFI for estimating a constant squeezing
d̃2 is given by

I (const,app)
d̃2

= 16 g̃2
0 τ 2 |μc|2 |μc|2 + cosh2(2 rT )

cosh(2 rT )
, (23)

2This equivalence is demonstrated explicitly in Appendix D of [36].

where the superscript “app” refers to the fact that our solutions
to the dynamics are approximate.

When the squeezing term is time dependent, with D̃2(τ ) =
d̃2 cos(2 τ ), i.e., parametric resonance is assumed, the F
coefficients are given by (E14), and the J coefficients are given
by (E15). This leads to the following nonzero coefficients for
the QFI:

A = −g̃2
0τ, CN̂a,+ = g̃0τ, F = −τ/2. (24)

The QFI is then given by

I (res,app)
d̃2

= 4 τ 2

[
g̃4

0 (4 |μc|6 + 6 |μc|4 + |μc|2)

+ g̃2
0 |μc|2 |μc|2 + cosh2(2rT )

cosh(2rT )

+ cosh2(2rT )

cosh2(2rT ) + 1

]
. (25)

We note that for the resonant case I (res,app)
d̃2

scales quadratically
with τ and displays a strong dependence on μc through the
term |μc|6, while for the constant case I (const,app)

d̃2
only scales

with |μc|4. The QFI for the resonant case also scales with
g̃4

0, which indicates that the strength of the nonlinearity is
particularly important for sensing of resonantly modulated
squeezing. Just like in Example (i) in Sec. IV A, we find
that the very last term in (25) tends to 1 as rT → ∞, but
the second-to-last term diverges exponentially as rT increases,
which indicates that a higher temperature rT contributes posi-
tively to the QFI.

In the limit |μc| 
 1, and at zero temperature
rT = 0, we find that I (const,app)

d̃2
∼ 16 g̃2

0 τ 2 |μc|4 and

I (res,app)
d̃2

= 16 g̃4
0 τ 2 |μc|6, which implies that I (res,app)

d̃2
∼

g̃2
0 |μc|2 I (const,app)

d̃2
. It follows that the resonant sensing

scheme might be beneficial for strong light-matter couplings.

V. APPLICATIONS TO PHYSICAL METROLOGY
SETTINGS

We have derived a general expression for the QFI for an
optomechanical system operating in the nonlinear regime and
discussed three specific examples of parameter estimation
scenarios in order to demonstrate how our results can be
applied. Our expression can be used to infer the fundamental
sensitivity for estimation of any parameters that enter into the
Hamiltonian (1).

To further demonstrate the applicability of these methods,
we consider some physical examples of parameter values
for the following three cases at resonance: estimating the
coupling g̃0 with the exact expression (E4), estimating the
linear displacement d̃1 (19), and estimating the squeezing
parameter d̃2 (25), which is valid for d̃2 � 1. When we
compute the QFI for g̃0, we set D̃1(τ ) = D̃2(τ ) = 0, and
when we compute the QFI for d̃1 and d̃2, we keep the
optomechanical coupling constant G̃(τ ) ≡ g̃0. In addition, for
the estimation of d̃1 and d̃2, we set the other coefficient to
zero, respectively, such that D̃2(τ ) = 0 when estimating d̃1,
and D̃1 = 0 for estimation of d̃2.
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TABLE I. The single-shot QFI for estimating the optomechanical
coupling strength g̃0, a linear mechanical displacement strength d̃1,
and a mechanical squeezing strength d̃2 (all on resonance). In each
scheme, we set the other couplings to zero or, in the case of the
coupling g̃0, to a constant. Estimation of g̃0 and, in certain schemes,
d̃2 corresponds to an internal characterization of the system, while
estimation of d̃1 and d̃2 yields the sensitivity of the optomechanical
system to an external force and its changing amplitude, respectively.
The numbers shown here are dimensionless and can correspond to
a variety of physical settings. Dimensions can be restored when
necessary by considering the specific nature of the Hamiltonian
couplings, and we provide three such examples in Sec. V. For a
discussion of how these numbers compare to the Heisenberg limit,
see the Discussion section (Sec. VI).

Parameter Symbol Value

Time of measurement τ f = ωm t 2π

Optomechanical coupling g̃0 = g0/ωm 102

Coherent-state parameter |μc|2 106

Mechanical oscillation frequency ωm 2π × 102 rad s−1

Thermal state temperature T 200 nK
Thermal state parameter rT 2.56

Estimation of g̃0

Amplitude of coupling oscillation ε 0.5
QFI for estimation of g̃0 (E4) I (res)

g̃0
3.02 × 1025

Estimation of d̃1

Linear displacement d̃1 = d1/ωm 1
QFI for estimation of d̃1 (19) I (res)

d̃1
1.58 × 1012

Estimation of d̃2

Squeezing parameter d̃2 = d2/ωm 0.1
QFI for estimation of d̃2 (25) I (res,app)

d̃2
6.32 × 1028

The parameters used for all cases include the coupling
strength g̃0 = 102, which can be readily achieved with lev-
itated systems [56], a coherent-state parameter of |μc|2 =
106, a temperature of 200 nK, and a mechanical oscillation
frequency fm = 102 Hz (which implies the angular frequency
ωm = 2π × 102 rad s−1). These parameters result in a temper-
ature parameter rT = 2.56. We consider a single measurement
performed at the final time τ f = 2π . The results can be found
in Table I, where dimensions can be restored where required
by multiplication with the appropriate number of ωm.

We now discuss all three cases in detail, where we relate
the dimensionless values in Table I to three physical settings.
In all examples, we list our results with three significant digits,
however they should be seen as merely indicative of the order
of magnitude of the fundamental measurement limit.

(i) Estimation of the amplitude g̃0. The constant case has
already been thoroughly explored [27]. We therefore focus on
a time-dependent coupling at mechanical resonance. We set
the oscillation amplitude to ε = 0.5, and by using g̃0 = 102

and |μc|2 = 106 we find from (E4) that the dimensionless QFI
becomes I (res)

g̃0
= 3.02 × 1025. This implies a single-shot sen-

sitivity of �g̃0 = 1/(I (res)
g̃0

)
1
2 = 1.82 × 10−13 and a relative

sensitivity of �g̃0/g̃0 = 1.82 × 10−15.
(ii) Estimation of d̃1. The constant case has already been

previously considered [25,26]. For the resonant case, we find
from (19) that I (res)

g̃0
= 1.58 × 1012, which implies a single-

shot sensitivity of �d̃1 = 7.96 × 10−7. Since we set d̃1 = 1
in our example, the relative sensitivity �d̃1/d̃1 takes the same
value. This example can be made more concrete in the context
of force sensing. We consider detection of a spatially constant
force, which physically corresponds to the system subjected
to a linear potential with oscillating slope, which causes
the mechanical element to become displaced. Let D̃1(τ ) =
a(τ )

√
m/(2 h̄ ω3

m ), where m is the mass of the system, and
a(τ ) = a0 cos(�a τ ) is a time-dependent acceleration. We
then obtain d̃1 = a0

√
m/(2 h̄ ω3

m ), in analogy with Example
(ii) in Sec. IV B. Since we now are interested in estimating
a0 rather than d̃1, we note that ∂a0 = ∂a0 d̃1∂d̃1

, and hence the

(dimensionful) QFI, becomes I (res)
a0

= (∂a0 d̃1)2 I (res)
d̃1

. To com-
pute a value for the QFI, we consider a levitated object with
a mass m = 10−14 kg with an angular oscillation frequency of
ωm = 2π × 102 rad s−1. Given these values together with the
parameters g̃0 = 102, |μc|2 = 106, and T = 200 nK, which
implies rT = 2.56, we find the dimensionless QFI to be
I (res)

d̃1
= 1.58 × 1012, which after restoring dimensions yields

I (res)
a0

= 7.48 × 1023 m−2 s4. The sensitivity becomes �a0 =
1.16 × 10−13 m s−2, which in turn should allow for mea-
surements of resonant forces of amplitude m �a0 = 1.16 ×
10−27 N.

(iii) Estimation of a constant shift or parametric modu-
lation of the cavity frequency δωm. This measurement task
corresponds to Example (iii) considered in Sec. IV C with
D2(t ) = δωm(t ). We start by assuming a constant squeezing
with δωm(t ) ≡ δωm. This yields the following dimension-
less parameter d̃2 = δωm/ωm, where we chose small values
of δωm/ωm = 0.1 to ensure the validity of our approxi-
mation. Similarly to the above, we are here interested in
estimating δωm rather than d̃2, and we note that ∂δωm =
∂δωm d̃2 ∂d̃2

= (ωm )−1∂d̃2
. The dimensionful QFI therefore be-

comes I (const,app)
δωm

= (ωm )−2 I (const,app)
d̃2

. Then, we set g̃0 =
102, |μc|2 = 106, and ωm = 2π × 102 rad s−1, which implies
δωm = 2π × 10 rad s−1, and a temperature of 200 nK, which
yields rT = 2.56. We then find from (23) that I (const,app)

δωm
=

1.93 × 1011 s2 rad−2, which implies a sensitivity to static
shifts of the frequency of �(δωm ) = 2.27 × 10−6 rad s−1, and
a relative sensitivity of �(δωm )/δωm = 3.62 × 10−8. Next,
we consider the case where the frequency change is time
dependent with δωm(t ) = δωm cos(ω0 t ), where the driving is
resonant with ω0/ωm = 2. We use the same values as above
to find from (25) that the dimensionless QFI is I (res,app)

d̃2
=

6.32 × 1028, which yields I (res,app)
δωm

= 1.60 × 1023 s2 rad−2.
This implies a sensitivity to modulated frequency shifts of
�(δωm ) = 2.50 × 10−12 rad s−1 and a relative sensitivity of
�(δωm )/δωm = 3.98 × 10−14.

VI. DISCUSSION

In the previous sections, we showed how to use solutions
of the time evolution induced by the Hamiltonian (1) to
obtain bounds on the sensitivity with which some relevant
experimental parameters contained in the Hamiltonian can be
measured. We gave three explicit examples, however we note
that our methods can be extended to a number of additional
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parameters. Here, we discuss our results and elaborate on a
number of properties of the QFI.

A. The Heisenberg limit

The Heisenberg limit is often associated with a scaling
of the sensitivity of a system as N−1 (as opposed to N−1/2

for classical systems), where N is the number of physical
probes in the system. However, it should be kept in mind that
this result is derived under rather specific conditions [57]: N
distinguishable noninteracting subsystems, finite-dimensional
Hilbert spaces, and parameter encoding via a unitary evolution
with a parameter-dependent Hamiltonian [2,58]. By coinci-
dence, the 1/N (respectively, 1/

√
N) scaling is also the scaling

of the sensitivity with the average number of photons with
which the phase shift in a Mach-Zehnder interferometer can
be measured. This scaling occurs when a NOON state (re-
spectively, the coherent state) is used, even though the photons
are indistinguishable bosons with infinite-dimensional Hilbert
space, and the photon number is in both cases only defined
on average. This result follows immediately from the general
expression of the pure state QFI in terms of the variance
of the generator Ĝ that generates the unitary transformation
Ûα which encodes the parameter α according to Ûα = eiαĜ,
together with the phase-shift Hamiltonian Ĥ = αâ†â. It is,
however, also well known that the scaling with N can be
faster than 1/N for the estimation of an interaction parameter
[59,60], and this advantage can extend in certain parameter
regimes to the estimation of other parameters of an interacting
system [61] if one has access to the full system. In light of
the 1/N scaling that is often associated with the Heisenberg
limit, our main result (10) appears to indicate scaling beyond
the Heisenberg limit due to the term |μc|6, which can be
written in terms of the initial average number Nph of photons
as |μc|6 = N3

ph. A similar scaling has been predicted for the
phase sensitivity of nonlinear optical systems [62]. The N3

term corresponds to a sensitivity that scales ∝ N−3/2
ph , i.e.,

decays faster than the “Heisenberg limit” 1/N . The origin
of the |μc|6 term is clearly the (â†â)2 term in ĤNa [see (9)].
If one restricts the maximum amount of energy available,
its contribution to the QFI is maximized when the light and
mechanics form the aforementioned NOON state [57], but Nph

is replaced by N2
ph, i.e., the true Heisenberg limit in the sense

of the smallest possible uncertainty is now a 1/N2
ph scaling

of the sensitivity, whereas the coherent state gives the 1/N3/2
ph

found above. Given that a NOON state is extremely difficult to
prepare, especially for highly excited Fock states, the scaling
obtained for the coherent state is quite favorable, given this
consideration. Since the corresponding parameter F 2

N̂a
depends

not only on the coupling constant G̃1 but also on the squeezing
parameter d̃2 relevant for force sensing, we have here the
remarkable situation that the nonlinear interaction between
the two oscillators not only allows enhanced sensitivity for
estimating the interaction (i.e., faster than 1/Nph scaling of
the sensitivity, but which cannot be compared to the nonin-
teracting case, as the parameter g̃0 does not exist there), but
also, significantly, enables enhanced sensitivity of a parameter
of the original noninteracting system. This is a fundamental
insight that was possible only through the exact decoupling

scheme used here, and it should be highly useful for metrol-
ogy. In principle one could envisage other systems leading to
even higher powers of Nph, if the Lie algebra of generators
in Ĥ closed after more iterations. We note, however, that the
sensitivity to linear displacements with this system scales as
1/N1/2

ph , i.e., up to a change of prefactor the same sensitivity
as for measuring a phase shift with a coherent state. However,
it should be kept in mind that it is the excitation of the optical
cavity that determines the sensitivity with which the shift of
the mechanical oscillator is measured, and which can be much
larger than the initial thermal excitation of the mechanical
oscillator.

B. Resonance

Here we discuss the implications of driving the system at
mechanical resonance. The resonance behavior differs for all
three examples considered in Sec. IV, which implies a rich
and complicated structure of the QFI. We here provide a brief
discussion of some of the main features observed in this paper.
For estimation of g̃0, it can be seen in Fig. 3(a), where we
plotted a frequency sweep of the QFI at various times τ f , that
the onset of the increase of QFI is due to the accumulation
of the resonant behavior. In fact, Fig. 3(a) demonstrates that
driving on resonance only provides a significant advantage as
τ 
 1.

For estimations of a linear drive d̃1, we found that a
constant coupling performs better than a time-dependent one.
This observation is most likely due to our choice to let
the weighting function D̃(τ ) = d̃1 cos(�d1τ ) oscillate around
zero rather than a fixed displacement.

For estimation of d̃2, our results are only valid close to
parametric resonance, which occurs when �d2 = 2. In all
cases considered here, in general, we demonstrated that res-
onances play an important, but not always beneficial, part in
enhancing the sensitivity of a system.

C. Time dependence

In all three examples we considered, the QFI was found
to increase essentially quadratically with dimensionless time
τ to leading order at resonance. Optomechanical systems are
among the most massive quantum systems that can be con-
trolled in the laboratory to date, and while impressively nar-
row linewidths have recently been demonstrated experimen-
tally with levitated nanoparticles [63] achieving long quantum
coherence times is still a challenging task. In the pioneering
experiments reported in [64] the fitted T2 dephasing time of a
nanomechanical oscillator with resonance frequency of 6 GHz
was about 20 ns, corresponding to a maximally achievable
τ � 754. Given a finite available measurement time limited by
the decoherence time, our results show that the precise timing
of the measurements and the choice of frequency ratios are
crucial for optimizing the overall sensitivity per square root of
hertz. It is a major benefit of our method that the precise time
dependence of the QFI can be obtained in such a nonlinear and
possibly driven or parametrically modulated optomechanical
system.
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VII. CONCLUSION

We have derived a general expression for the QFI for
a nonlinear optomechanical system with a time-dependent
light-matter coupling term, a time-dependent linear mechani-
cal displacement term, and a time-dependent single-mode me-
chanical squeezing term in the Hamiltonian. The expression
for the QFI can be used to compute the optimal sensitivity
bounds for the estimation of any parameter which enters into
any of the terms in the Hamiltonian. Most importantly, our
methods include the treatment of arbitrary time-dependent
effects, which offers significant advantages for experimental
schemes since time-varying signals can be more easily distin-
guished from a typical random noise floor than constant ones.

To demonstrate the applicability of the expression and our
methods, we computed the QFI for three specific examples:
(i) estimating the strength of an oscillating optomechanical
coupling, (ii) estimating the amplitude of an oscillating linear
mechanical displacement term, and (iii) estimating the ampli-
tude of a resonant time-dependent mechanical squeezing term.
We derived exact and asymptotic expressions for the QFI in
the first two cases, as well as an approximate expression based
on perturbative solutions for a squeezing term modulated at
resonance.

Our results include a number of interesting phenomena.
Most remarkable is the fact that the nonlinear interaction
leads, for large population of the cavity, to a drastically
increased sensitivity not only for the coupling but also the
frequency shift of the mechanical oscillator, and hence to the
measurement of spatially linearly varying forces. Secondly,
we find that resonances, where the oscillation frequency of
the driving matches the mechanical oscillation frequency
of the system, or in case of parametric driving twice the
oscillation frequency, can increase the QFI for measuring
the coupling or the linear shift (and hence spatially constant
forces) substantially. Thirdly, we find that the temperature of
the initial mechanical thermal state is not always detrimental
for the sensitivity, and might even sometimes aid estimation of
the parameter in question. More work is needed to establish
how this effect can be harnessed for settings that include
the potentially detrimental effects of decoherence due to the
coupling to a thermal environment, the influence of which on
the dynamics was neglected so far.

Finally, while we have analyzed three relevant examples
in detail, the methods can be applied to the measurement of
a large number of internal and external effects that act on
the optomechanical systems, as long as they can be modeled
via the coefficients in the Hamiltonian we consider. It should
be kept in mind, however, that our results are proofs of
existence: they show that a joint measurement of the cavity
and mechanical oscillator exists that allows one to reach the
described sensitivities in the limit of infinitely many mea-
surements. More work will be required to understand how
the different effects in the Hamiltonian interact to enhance or
decrease the sensitivity, and to find physically feasible mea-
surements that saturate the bounds. In addition the question
of the effect of decoherence needs to be addressed. Never-
theless, our results clearly demonstrate the potential of op-
tomechanical systems, and more generally of harmonic oscil-
lators coupled via the radiation-pressure coupling, for strongly

enhanced sensitivity in the measurement of very small
forces.
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APPENDIX A: DECOUPLING TIME-DEPENDENT
DYNAMICS

Here we discuss the basic elements that led to the de-
coupling of the form (5). All details of the techniques and
procedures can be found in [36]. The algebra basis operators
are

N̂a := â†â, N̂b := b̂†b̂, N̂2
a := (â†â)2,

B̂+ := b̂† + b̂, B̂− := i (b̂† − b̂),

B̂(2)
+ := b̂†2 + b̂2, B̂(2)

− := i (b̂†2 − b̂2),

N̂a B̂+ := N̂a (b̂† + b̂), N̂a B̂− := N̂a i (b̂† − b̂). (A1)

The time-evolution operator is

Û (τ ) := ˆ̃Usq(τ ) e−i(�c τ+F̂N̂a )N̂a e−i (FB̂+ +FN̂a B̂+ N̂a ) B̂+

× e−i (FB̂− +FN̂a B̂− N̂a ) B̂− , (A2)

where F̂N̂a
= FN̂a

+ FN̂2
a

N̂a, and the expression of ˆ̃Usq is

ˆ̃Usq = ←−
T exp

(
−i
∫ τ

0
dτ ′{[1 + 2 D̃2(τ ′)]N̂b + D̃2(τ ′)B̂(2)

+
})

.

(A3)

The action of ˆ̃Usq on the mode operator b̂ is given by
ˆ̃U †

sq b̂ ˆ̃Usq = α(τ ) b̂ + β(τ ) b̂†. The Bogoliubov α(τ ) and β(τ )
coefficients read

α(τ ) = 1

2

[
P11(τ ) + P22(τ ) − i

∫ τ

0
dτ ′ P22(τ ′)

−i
∫ τ

0
dτ ′ [1 + 4 D̃2(τ ′)] P11(τ ′)

]
,

β(τ ) = 1

2

[
P11(τ ) − P22(τ ) + i

∫ τ

0
dτ ′ P22(τ ′)

− i
∫ τ

0
dτ ′ [1 + 4 D̃2(τ ′)] P11(τ ′)

]
, (A4)
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and the functions P11 and P22 can be found by integrating [with
Ȧ ≡ dA(τ )/dτ ]

P̈11 + [1 + 4 D̃2(τ )] P11 = 0,

P̈22 − 4 ˙̃D2(τ )

1 + 4 D̃2(τ )
Ṗ22 + [1 + 4 D̃2(τ )] P22 = 0, (A5)

together with the initial conditions P11(0) = P22(0) = 1 and
Ṗ11(0) = Ṗ22(0) = 0.

Let us rewrite the above equations in terms of P11 and

IP22 :=
∫ τ

0
dτ ′P22(τ ′). (A6)

Then, the governing differential equations become equivalent,
i.e.,

P̈11 + [1 + 4 D̃2(τ )] P11 = 0,

ÏP22 + [1 + 4 D̃2(τ )] IP22 = 0, (A7)

which can be verified by dividing by 1 + 4 D̃2(τ ) and taking
the time derivative. The initial conditions for IP22 follow from
those for P22 as IP22 (0) = 0 and İP22 (0) = 1. Furthermore,
using the differential equation for P11, we find

α(τ ) =1

2

[
P11 − iIP22 + i

d

dτ
(P11 − iIP22 )

]
,

β(τ ) =1

2

[
P11 + iIP22 + i

d

dτ
(P11 + iIP22 )

]
. (A8)

Furthermore, we define

ξ := α + β∗ = P11 − iIP22 , (A9)

which implies α = (ξ + iξ̇ )/2 and β = (ξ ∗ + iξ̇ ∗)/2.
The functions for the decoupling of the time-evolution

operator (5) have been computed in [36] and we reprint them
here (Reξ and Imξ denote the real and imaginary part of ξ ,
respectively):

FN̂a
= − 2

∫ τ

0
dτ ′ D̃1(τ ′) Imξ (τ ′)

∫ τ ′

0
dτ ′′ G̃(τ ′′) Reξ (τ ′′)

− 2
∫ τ

0
dτ ′ G̃(τ ′) Imξ (τ ′)

∫ τ ′

0
dτ ′′ D̃1(τ ′′) Reξ (τ ′′),

FN̂2
a

= 2
∫ τ

0
dτ ′ G̃(τ ′) Imξ (t ′)

∫ τ ′

0
dτ ′′ G̃(τ ′′) Reξ (τ ′′),

FB̂+ =
∫ τ

0
dτ ′ D̃1(τ ′) Reξ (τ ′),

FB̂− = −
∫ τ

0
dτ ′ D̃1(τ ′) Imξ (τ ′),

FN̂a B̂+ = −
∫ τ

0
dτ ′ G̃(τ ′) Reξ (τ ′),

FN̂a B̂− =
∫ τ

0
dτ ′ G̃(τ ′) Imξ (τ ′). (A10)

Finally, two special scenarios give us the following analyt-
ical expressions for ξ .

(1) For D̃2(τ ) = 0, we obtain P11 = cos(τ ) and IP22 =
sin(τ ), which leads to ξ = e−iτ .

(2) When the squeezing term is modulated at frequency
�d2 with D̃2(τ ) = d̃2 cos(�d2 τ ), it follows that the solutions
to (A7) coincide with the solutions to the Mathieu equations.
This equation is notoriously difficult to solve, but a set of
perturbative solutions were given in Eq. (E.15) in [36]. The
solutions are valid for d̃2 � 1 and τ 
 1 and yield

ξ (τ ) = e−i τ cosh(d̃2 τ ) + i ei τ sinh(d̃2 τ ). (A11)

APPENDIX B: COMMUTATOR RELATIONS
AND EXPECTATION VALUES

In the appendices below, the following expressions must
be evaluated by commuting the exponentials through the
expression in the middle. We list them and their solutions here
for reference:

eixB̂(2)
− B̂(2)

+ e−ixB̂(2)
− = B̂(2)

+ cosh(4x) + (
2 N̂b + 1

)
sinh(4x),

eixB̂(2)
+ B̂(2)

− e−ixB̂(2)
+ = B̂(2)

− cosh(4x) − (
2 N̂b + 1

)
sinh(4x),

eixB̂(2)
− N̂b e−ixB̂(2)

− = N̂b cosh(4x) + B̂(2)
+

1
2 sinh(4x)+ sinh2(2x)1,

eixB̂(2)
+ N̂b e−ixB̂(2)

+ = N̂b cosh(4x) − B̂(2)
−

1
2 sinh(4x)+ sinh2(2x)1,

ei x B̂+ N̂b e−i x B̂+ = N̂b − B̂− x + x2 1,

ei x B̂− N̂b e−i x B̂− = N̂b + B̂+ x + x2 1,

ei x B̂+ B̂(2)
+ e−i x B̂+ = B̂(2)

+ + 2 B̂− x − 2 x2 1,

ei x B̂− B̂(2)
+ e−i x B̂− = B̂(2)

+ + 2 B̂+ x + 2 x2 1,

ei x B̂+ B̂(2)
− e−i x B̂+ = B̂(2)

− − 2 B̂+ x,

ei x B̂− B̂(2)
− e−i x B̂− = B̂(2)

− + 2 B̂− x,

ei x B̂+ B̂− e−i x B̂+ = B̂− − 2 x 1,

ei x B̂− B̂+ e−i x B̂− = B̂+ + 2 x 1. (B1)

Furthermore, we need a number of expectation values in order
to compute the QFI. They are

〈n|B̂2
+|n〉 = 2n + 1,

〈n|B̂2
−|n〉 = 2n + 1,

〈n|(B̂(2)
+ )2|n〉 = 2n2 + 2n + 2,

〈n|(B̂(2)
− )2|n〉 = 2n2 + 2n + 2,

〈n|B̂+B̂−|n〉 = i,

〈n|B̂−B̂+|n〉 = −i,

〈n|B̂(2)
+ B̂(2)

− |n〉 = 2i(2n + 1),

〈n|B̂(2)
− B̂(2)

+ |n〉 = −2i(2n + 1), (B2)

as well as〈
μc

∣∣N̂4
a

∣∣μc
〉 = |μc|8 + 6|μc|6 + 7|μc|4 + |μc|2,〈

μc

∣∣N̂3
a

∣∣μc
〉 = |μc|6 + 3|μc|4 + |μc|2,〈

μc

∣∣N̂2
a

∣∣μc
〉 = |μc|2(1 + |μc|2), (B3)
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and

〈n|B̂+|m〉 = √
m + 1δn,m+1 + √

mδn,m−1,

〈n|B̂−|m〉 = i(
√

m + 1δn,m+1 − √
mδn,m−1),

〈n|B̂(2)
+ |m〉 = √

m + 1
√

m + 2δn,m+2 + √
m

√
m − 1δn,m−2,

〈n|B̂(2)
− |m〉 = i(

√
m + 1

√
m + 2δn,m+2 − √

m
√

m − 1δn,m−2).
(B4)

APPENDIX C: TREATMENT OF THE MECHANICAL
SQUEEZING SUBSYSTEM

In this Appendix, we decouple the time evolution of the
mechanical subsystem and interpret the time-evolution op-
erator in terms of subsequent squeezing, displacement, and
rotation.

1. Decoupling the mechanical subsystem

In order to compute the QFI for measurements of parame-
ters in D̃2(τ ), we must find an analytic expression for ˆ̃Usq(τ ).
To obtain the coefficients Jb and J±, we will follow methods
outlined in [35,36,65].

The operator ˜̂Usq is given by

ˆ̃Usq = ←−
T exp

(
−i
∫ τ

0
dτ ′{[1 + 2 D̃2(τ ′)]N̂b + D̃2(τ ′)B̂(2)

+
})

.

(C1)

We want to find an analytic expression in terms of operators
that we can treat individually. We make the following ansatz:

ˆ̃Usq = exp[−i Jb N̂b] exp[−i J+B̂(2)
+ ] exp[−i J− B̂(2)

− ]. (C2)

We then differentiate the ansatz with respect to time τ to
obtain

˙̃̂
Usq

ˆ̃U †
sq = −i J̇θ − i J̇+e−i Jb N̂b B̂(2)

+ ei Jb N̂b

− i J̇− e−i Jb N̂b e−iJ+B̂(2)
+ B̂(2)

− eiJ+ B̂(2)
+ ei Jb N̂b . (C3)

By using the commutator relations (B1), (C3) can be written
purely as terms proportional to the operators N̂b, B̂(2)

+ , and B̂(2)
− :

˙̃̂
Usq

ˆ̃U †
sq = −i J̇θ N̂b − iJ̇+

[
cos(2Jb)B̂(2)

+ − sin(2Jb)B̂(2)
−
]

− iJ̇−
{

cosh(4 J+)
[

cos(2Jb) B̂(2)
− + sin(2Jb)B̂(2)

+
]

+ 2 sinh(4 J+) N̂b − 4 J+
}
. (C4)

Now we set this equal to the expression under the integral
(C1):

[1 + 2 D̃2(τ )]N̂b + D̃2(τ )B̂(2)
+

= J̇θ N̂b + J̇+
[

cos(2Jb)B̂(2)
+ − sin(2Jb)B̂(2)

−
]

+ J̇−
{

cosh(4 J+)
[

cos(2Jb) B̂(2)
− + sin(2Jb)B̂(2)

+
]

+ 2 sinh(4 J+) N̂b − 4 J+
}
. (C5)

We then use the linear independence of the operators in order
to write down the following differential equations:

[1 + 2D̃2(τ )] = J̇b + 2 J̇− sinh(4 J+),

D̃2(τ ) = J̇+ cos(2Jb) + J̇− cosh(4 J+) sin(2Jb),

0 = −J̇+ sin(2Jb) + J̇− cosh(4J+) cos(2Jb), (C6)

which can be simplified into the following first-order coupled
differential equations:

J̇b = 1 + 2 D̃2(τ ) [1 − sin(2Jb) tanh(4J+)],

J̇+ = D̃2(τ ) cos(2Jb),

J̇− = D̃2(τ )
sin(2Jb)

cosh(4J+)
. (C7)

These equations do not in general allow for analytic solutions.
In the main text, we proceed with estimations of parameters
in D̃2(τ ) by evaluating these equations numerically.

2. The time evolution interpreted

Using a general composition law for squeezing operators
(see Appendix C3), we can write (6) as

ˆ̃Usq =̇ e−i(Jb+ϕJ )N̂b Ŝb[arctanh(|ζJ |)ei arg(ζJ )], (C8)

where =̇ indicates equivalence up to a global phase, and where

ϕJ = arctan[tanh(2J+) tanh(2J−)],

ζJ = i tanh(2J+) − tanh(2J−)

1 − i tanh(2J+) tanh(2J−)
. (C9)

With the commutation law for displacement and squeezing,
we obtain

Û (τ ) = e−i (�c τ+F̂N̂a )N̂a−iF̂+F̂− e−i(Jb+ϕJ )N̂bD̂b(γ̂ )Ŝb

× [arctanh(|ζJ |)ei arg(ζJ )], (C10)

where

γ̂ = (F̂− − iF̂+)√
1 − |ζJ |2

− ei arg(ζJ ) (F̂− + iF̂+)|ζJ |√
1 − |ζJ |2

. (C11)

By rewriting Û (τ ) in the form (C10), we can interpret the time
evolution as the following subsequently performed opera-
tions: a squeezing, a photon number dependent displacement,
and a photon number dependent rotation.

3. Derivation of the squeezing composition law

We start from the unitary representation of the squeezing
operator:

Ûsq = e− r
2 eiθ b̂†2+ r

2 e−iθ b̂2 = e− i
2 X̂

†HsqX̂, (C12)

which is sometimes also called Ŝ(z) where z is a complex
number such that z = r eiθ , and where we have defined

Hsq =
(

0 −ireiθ

ire−iθ 0

)
and X̂ =

(
b̂
b̂†

)
. (C13)

The corresponding symplectic representation is given by
Ssq = e�Hsq , where the symplectic form in this particular basis
is

� =
(−i 0

0 i

)
. (C14)

This leads to the symplectic form of the squeezing operation:

Ssq(r, θ ) =
(

cosh(r) −eiθ sinh(r)
−e−iθ sinh(r) cosh(r)

)
. (C15)
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Therefore, we can write two subsequent squeezing operations
as

Ssq(r1, θ1)Ssq(r2, θ2) =
(

S11 S12

S21 S22

)
, (C16)

where the matrix elements are given by

S11 = cosh(r1) cosh(r2) + ei(θ1−θ2 ) sinh(r1) sinh(r2),

S12 = S∗
21 = −[eiθ1 sinh(r1)cosh(r2) + eiθ2 cosh(r1) sinh(r2)],

S22 = cosh(r1) cosh(r2) + e−i(θ1−θ2 ) sinh(r1) sinh(r2).
(C17)

The unitary representation of a rotation is

ÛR = e− ia
2 (b̂†b̂+b̂b̂† ), (C18)

which corresponds to the symplectic matrix

SR(a) =
(

e−ia 0
0 eia

)
. (C19)

A consecutive application of a squeezing and a rotation gives

SR(a)Ssq(r3, θ3) =
(

e−ia cosh(r3) −ei(θ3−a) sinh(r3)
−e−i(θ3−a) sinh(r3) eia cosh(r3)

)
.

(C20)
Identification of the elements in (C16) and (C20) leads to

cosh(r3) =| cosh(r1) cosh(r2) + ei(θ1−θ2 ) sinh(r1) sinh(r2)|,
sinh(r3) =| cosh(r1) sinh(r2) + ei(θ1−θ2 ) sinh(r1) cosh(r2)|.

(C21)

Furthermore,

eiθ3 = cosh(r3)

sinh(r3)

eiθ1 sinh(r1) cosh(r2)+eiθ2 cosh(r1) sinh(r2)

cosh(r1) cosh(r2)+ei(θ1−θ2 ) sinh(r1) sinh(r2)
,

(C22)

and, dividing S11 by S22,

e−2ia = cosh(r1) cosh(r2) + ei(θ1−θ2 ) sinh(r1) sinh(r2)

cosh(r1) cosh(r2) + e−i(θ1−θ2 ) sinh(r1) sinh(r2)
.

(C23)
Defining t j = tanh(r j )eiθ j , we find

t3 = tanh(r3)eiθ3 = t1 + t2
1 + t1t∗

2

and e−2ia = 1 + t1t∗
2

1 + t∗
1 t2

,

(C24)
and the composition law for squeezing operators:

S(z1)S(z2) = e
1
4 ln(

1+t1t∗2
1+t∗1 t2

)(b̂†b̂+b̂b̂† )
S(z3), (C25)

where we recall that z j = r j eiθ j .

4. Link to the J coefficients

To derive (C8) and (C9) we first note that, for the combi-
nation of exp[−i J+ B̂(2)

+ ] and exp[−i J− B̂(2)
− ], we have

r1 = 2 J+, θ1 = π/2,

r2 = 2J−, θ2 = π. (C26)

These values can now be used to derive the coefficients ϕJ and
ζJ . From (C24) it follows that

tanh(r3) eiθ3 = i tanh(2J+) − tanh(2J−)

1 − i tanh(2J+) tanh(2J−)
. (C27)

The phase factor, defined as e−i ϕJ N̂b above for the rotation can
be derived in a similar manner. We first note that

ln

(
1 + t1t∗

2

1 + t∗
1 t2

)
= iarg

(
1 + t1t∗

2

1 + t∗
1 t2

)

= iarg

(
1 − i tanh(2J+) tanh(2J−)

1 + i tanh(2J+) tanh(2J−)

)
, (C28)

which follows from the definition of the complex logarithm
and from the fact that (1 + t1t∗

2 )/(1 + t∗
1 t2) has complex norm

1. The expression can now be simplified to

i arg

(
[1 − i tanh(2J+) tanh(2J−)]2

1 + tanh2(J+) tanh2(J−)

)
= 2 i arg[1 − i tanh(2J+) tanh(2J−)], (C29)

where the last equality follows from the fact that the angle
in complex space matters, not the magnitude of the real
and imaginary parts. Furthermore, we have that arg(zn) =
n arg(z), which means that a factor of 2 can be pulled down in
front of the expression. Finally, we note that the arg function
is related to the atan2 function, a standard operation in many
numerical libraries by the relation arg(x + iy) = atan2(y, x).
However, if x > 0, we find the special case arg(x + iy) =
arctan(y/x). In our case, x = 1, and thus we find

ϕJ = arctan[tanh(2J+) tanh(2J−)], (C30)

where we have also accounted for a minus sign in the phase.
These expressions can now be used to interpret the evolution
induced by the mechanical single-mode squeezing term as a
combination of a rotation and a squeezing, as discussed in the
main text.

5. Link between the J coefficients and the Bogoliubov
coefficients

To obtain the relation between the functions Jb, J+, and J−
and the P11 and IP22 functions, we remember that

SsqX̂ =
(

α β

β∗ α∗

)
X̂, (C31)

and attempt to make it equivalent to

SR(Jb)Ssq(2J+, π/2)Ssq(2J−, π ) =
(

S11 S12

S21 S22

)
, (C32)

where we find analogously to our result in (C17) that the
matrix elements are given by

α = S11 = e−iJb[cosh(2J+) cosh(2J−)

− i sinh(2J+) sinh(2J−)],

β = S12 = −e−iJb[i sinh(2J+) cosh(2J−)

− cosh(2J+) sinh(2J−)]. (C33)
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A particular set of solutions to these equations is given as

J+ =arcosh(|α2 − β2|)
4

,

J− =1

4
arcosh

(
(2|α|2 − 1)

|α2 − β2|
)

,

Jb = − 1

2
Arg

(
α2 − β2

|α2 − β2|
)

. (C34)

We arrived at the expression for Jb since

e−2iJb =
(

α2 − β2

|α2 − β2|
)

. (C35)

Taking the logarithm of a complex number gives ln z =
ln |z| + iargz, with arg defined as in Sec. C, and where z ∈ C.
In this case, |e−2iJb | = 1, which means that we arrive at the
expression above.

It is then straightforward to relate the J coefficients to P11

and IP22 by using the expressions in (A8).

APPENDIX D: DERIVATION OF THE FISHER
INFORMATION

In this Appendix we derive the QFI for estimation of an
arbitrary parameter θ contained in the nonlinear Hamiltonian
(2). According to (8), the QFI is obtained as

Iθ = 4
∑

n

λn(〈λn| Ĥ2
θ |λn〉 − 〈λn| Ĥθ |λn〉2)

− 8
∑
n 
=m

λnλm

λn + λm
| 〈λn| Ĥθ |λm〉 |2, (D1)

where the operator Ĥθ is defined as Ĥθ = −iÛ †
θ ∂θÛθ . In order

to emphasize that the time-evolution operator depends on the
parameter θ , we added the subscript.

1. Derivation of the coefficients

Now we derive the expression for the QFI (10). The com-
mutators which appear in the calculation are listed in (B1).
The operator Ĥθ has the form

Ĥθ = A N̂2
a + B N̂a + C+ B̂+ + CN̂a,+N̂a B̂+ + C− B̂−

+CN̂a,− N̂a B̂− + E N̂b + F B̂(2)
+ + G B̂(2)

− + K. (D2)

This is a consequence of the fact that the Lie algebra of the
whole Hamiltonian is closed and finite.

Let us proceed to determine the coefficients in (D2). To
do so, we first differentiate the time-evolution operator Ûθ

with respect to the parameter θ . The operator Ûθ can be
decomposed into the form Ûθ = ÛN̂a

ˆ̃UsqÛB̂+ÛB̂− , where we
have introduced

ÛN̂a
= e−i(�c τ+F̂N̂a )N̂a ,

ÛB̂+ = e−i F̂+ B̂+ , (D3)

ÛB̂− = e−i F̂− B̂− ,

and where we recall that F̂N̂a
= FN̂a

+ FN̂2
a
N̂a, F̂+ = FB̂+ +

FN̂a B̂+ N̂a, and F̂− = FB̂− + FN̂a B̂− N̂a. To simplify notation, the
differential operator ∂θ is understood in this section to act on
the first symbol on its right only. Then, we can write Ĥθ as

Ĥθ = −i(Û †
N̂a

∂θÛN̂a
+ Û †

B̂−
Û †

B̂+
ˆ̃U

†

sq∂θ
ˆ̃U sqÛB̂+ÛB̂−

+Û †
B̂−

Û †
B̂+

∂θÛB̂+ÛB̂− + Û †
B̂−

∂θÛB̂− ). (D4)

In order to proceed we need to compute the deriva-
tive ∂θ

ˆ̃Usq, which requires us to decompose the oper-

ator ˆ̃Usq as in (C2), which we reprint here as ˆ̃Usq =
exp[−iJbN̂b] exp[−iJ+B̂(2)

+ ] exp[−iJ−B̂(2)
− ], where Jb and J±

are time-dependent real functions. We present the exact form
of these coefficients in (C7) in Appendix C as a solution to
a coupled set of differential equations. If we now assume all
three coefficients Jb, J+, and J− to depend on the estimation
parameter θ , we differentiate ˆ̃Usq to find

∂θ
ˆ̃Usq = − i ∂θJb N̂b e−i Jb N̂b e−i J+ B̂(2)

+ e−i J− B̂(2)
− − i ∂θJ+ e−i Jb N̂b B̂(2)

+ e−i J+ B̂(2)
+ e−i J− B̂(2)

− − i ∂θJ− e−i Jb N̂b e−i J+ B̂(2)
+ B̂(2)

− e−i J−B̂(2)
− . (D5)

We then obtain Û †
B̂−

Û †
B̂+

ˆ̃U †
sq∂θ

ˆ̃UsqÛB̂+ÛB̂− = Ĉ1 + Ĉ2 + Ĉ3 with

Ĉ1 = − i∂θJb Û †
B̂−

Û †
B̂+

ei J− B̂(2)
− ei J+ B̂(2)

+ N̂b e−i J+ B̂(2)
+ e−i J− B̂(2)

− ÛB̂+ÛB̂−

= − i∂θJb

[
cosh(4J+) cosh(4J−)(N̂b + B̂+ F̂− + F̂2

− − B̂− F̂+ + F̂2
+ )

+ 1

2
cosh(4J+) sinh(4J−)

(
B̂(2)

+ + 2 B̂+ F̂− + 2 F̂2
− + 2 B̂− F̂+ − 2 F̂2

+
)

+ cosh(4J+) sinh2(2J−) + sinh2(2J+) − 1

2
sinh(4J+)(B̂(2)

− + 2 B̂− F̂− − 2 B̂+F̂+ − 4 F̂− F̂+)

]
,

Ĉ2 = − i∂θJ+Û †
B̂−

Û †
B̂+

eiJ−B̂(2)
− B̂(2)

+ e−iJ−B̂(2)
− ÛB̂+ÛB̂−

= − i∂θJ+
[

cosh(4J−)
(
B̂(2)

+ + 2 B̂+ F̂− + 2 F̂2
− + 2 B̂− F̂+ − 2 F̂2

+
)

+ 2 sinh(4J−)(N̂b + B̂+ F̂− + F̂2
− − B̂− F̂+ + F̂2

+ ) + sinh(4J−)
]
,
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Ĉ3 = − i ∂θJ−Û †
B̂−

Û †
B̂+

B̂(2)
− ÛB̂+ÛB̂−

= − i ∂θJ−
[
B̂(2)

− + 2 B̂− F̂− − 2 B̂+F̂+ − 4 F̂− F̂+
]
. (D6)

For the remaining terms in Ĥ, we obtain

Û †
N̂a

∂θÛN̂a
= −i(τ∂θ�c + ∂θ F̂Na )N̂a,

Û †
B̂−

∂θÛB̂− = −i∂θ F̂−B̂−,

Û †
B̂−

Û †
B̂+

∂θÛB̂+ÛB̂− = −i∂θ F̂+(B̂+ + 2 F̂−). (D7)

By comparing the obtained expression for Ĥθ with the form (D2), we find for the coefficients

A = − ∂θFN̂2
a
− 2FN̂a B̂−∂θFN̂a B̂+ + 2FN̂a B̂−FN̂a B̂+R∂θ ,0 +

∑
s∈{+,−}

s e−s4J−F 2
N̂a B̂s

R∂θ ,s,

B = − τ∂θ�c − ∂θFN̂a
− 2 FB̂−∂θFN̂a B̂+ − 2 FN̂a B̂−∂θFB̂+ + 2(FB̂+FN̂a B̂− + FB̂−FN̂a B̂+ )R∂θ ,0 +

∑
s∈{+,−}

2se−s4J−FB̂s
FN̂a B̂s

R∂θ ,s,

C± = − ∂θFB̂± ± FB̂±R∂θ ,0 − e±4J− FB̂∓ R∂θ ,∓,

CN̂a,± = − ∂θ FN̂a B̂± ± FN̂a B̂± R∂θ ,0 − e±4J− FN̂a B̂∓ R∂θ ,∓,

E = − (e4J−R∂θ ,− − e−4J−R∂θ ,+)/2,

F = − (e4J−R∂θ ,− + e−4J−R∂θ ,+)/4,

G = − R∂θ ,0/2,

K = − 2FB̂− ∂θFB̂+ + 2FB̂−FB̂+R∂θ ,0 +
∑

s∈{+,−}
s e−s4J−F 2

B̂s
R∂θ ,s + ∂θJb/2 + E/2, (D8)

where

R∂θ ,0 = 2 ∂θJ− − sinh(4J+) ∂θJb,

R∂θ ,± = 2 ∂θJ+ ∓ cosh(4J+) ∂θJb. (D9)

The coefficients E and K will cancel out in the expression for Iθ , but we include them here for completeness.
It is clear from the expressions above that the expressions simplify dramatically when the parameter θ to estimate is not

contained in the coefficients J± and Jb, such that ∂θJb = ∂θJ± = 0. For that case, we have E = F = G = 0.

2. Derivation of the QFI expression

The next step in the derivation of (10) is to take the expectation values of Ĥθ according to (8). In order to do so, we will need
the expectation values listed in Appendix B. Noticing that the coefficients E and K will not contribute to the QFI, we drop them.
Then we obtain

〈λn|Ĥ2
θ |λn〉 − 〈λn|Ĥθ |λn〉2 = A2(4|μc|6 + 6|μc|4 + |μc|2) + 2AB(2|μc|4 + |μc|2) + B2|μc|2

+ (2n + 1)
∑

s∈{+,−}

[
C2

s + 2CsCN̂a,s|μc|2 + C2
N̂a,s

(|μc|4 + |μc|2)
]

+ 2(F 2 + G2)(n2 + n + 1), (D10)

and

|〈λn|Ĥθ |λm〉|2|n 
=m = [(C+ + CN̂a,+|μc|2)2 + (C− + CN̂a,−|μc|2)2][(m + 1)δn,m+1 + mδn,m−1]

+ (F 2 + G2)[(m + 1)(m + 2)δn,m+2 + m(m − 1)δn,m−2], (D11)

which can be written as

|〈λn|Ĥθ |λm〉|2|n 
=m = [(C+ + CN̂a,+|μc|2)2 + (C− + CN̂a,−|μc|2)2][(m + 1)δn,m+1 + (n + 1)δm,n+1]

+ (F 2 + G2)[(m + 1)(m + 2)δn,m+2 + (n + 1)(n + 2)δm,n+2]. (D12)
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where we changed the summation index in the last term. We obtain that∑
n 
=m

λnλm

λn + λm
|〈λn|Ĥθ |λm〉|2 = 2

∑
n

(
λnλn+1

λn + λn+1
C1H + λnλn+2

λn + λn+2
C2H

)
, (D13)

where

C1H = [(C− + CNa,−|μc|2)2 + (C− + CNa,−|μc|2)2](n + 1),

C2H = (F 2 + G2)(n + 1)(n + 2). (D14)

Using that λn = tanh2n(rT )
cosh2(rT )

and evaluating the sum in (D1), we obtain the result (10).

APPENDIX E: COEFFICIENTS AND QUANTUM FISHER INFORMATION EXPRESSIONS

Our paper is based on general techniques for decoupling the Hamiltonian [34,37]. These techniques can be applied for any
functional time-dependent behavior of the parameters of the Hamiltonians; however, explicit results can be obtained only in the
case that a specific form of the time dependence is specified.

In the main text, we argued that we are interested in the following forms of the couplings: G̃(τ ) = g̃0[1 + ε sin(�g τ )],
D̃1(τ ) = d̃1 cos(�d1 τ ), and D̃2(τ ) = d̃2 cos(�d2 ). Here we will compute the F functions (A10) for the coupling expressions
we have chosen. Whenever D̃2(τ ) = 0, we find that ξ = exp[−i τ ].

1. Coefficients for a time-dependent nonlinear coupling

Here we list the coefficients for the dynamics when G̃(τ ) = g̃0[1 + ε sin(�gτ )] and D̃1(τ ) = D̃2(τ ) = 0:

FN̂2
a

= −g̃2
0[τ − sin(τ ) cos(τ )] + 2 ε

g̃2
0

�g

[
sin2(τ ) cos(�gτ ) − 2 sin2

(τ

2

)]
− ε

g̃2
0

�g(1 + �g)
sin(2τ ) sin(�g τ )

− ε
4g̃2

0

�g
(
1 − �2

g

) cos(τ ) sin2

(
(1 − �g)τ

2

)
+ ε2 g̃2

0

4 �g(1 + �g)

{
2 τ − 4 sin(τ ) cos(�g τ )[cos(τ ) cos(�g τ ) − 2]

}

+ ε2 g̃2
0

4 �g
(
1 − �2

g

) {4 sin(τ ) cos(�g τ )[cos(τ ) cos(�g τ ) − 2] + 8 cos(τ ) sin(�g τ )

+ [1 − 2 cos(2 τ )] sin(2 �g τ ) − 2 τ } + ε2 g̃2
0

2 �g
(
1 − �2

g

)2 [4 �g sin(τ ) cos(�g τ ) − �g sin(2 τ ) cos(2 �g τ )

− 4 cos(τ ) sin(�g τ ) + cos(2 τ ) sin(2 �g τ )],

FN̂a B̂+ = − g̃0

1 + �g
ε sin(τ ) sin(�g τ ) + 2 �g g̃0

1 − �2
g

ε sin2

(
(1 − �g)τ

2

)
− g̃0 sin(τ ),

FN̂a B̂− = − g̃0

1 − �g
ε sin(τ ) cos(�g τ ) + g̃0

1 − �2
g

ε sin[(1 + �g)τ ] − 2 g̃0 sin2
(τ

2

)
. (E1)

At resonance with �g = 1, these coefficients are given by

FN̂2
a

= − 1

16
g̃2

0 {16 τ − 8 sin(2 τ ) + ε [32 − 36 cos(τ ) + 4 cos(3 τ )] + ε2 [6 τ − 4 sin(2 τ ) + sin(2 τ ) cos(2 τ )]},

FN̂a B̂+ = −g̃0 sin(τ )
[
1 + ε

2
sin(τ )

]
,

FN̂a B̂− = g̃0

4
ε [sin(2 τ ) − 2 τ ] − 2 g̃0 sin2

(τ

2

)
. (E2)

Given these coefficients, the QFI for a general frequency �g is given by

Ig̃0 = 4 g̃2
0

�2
g

(
�2

g − 1
)4 |μc|2(4 |μc|4 + 6 |μc|2 + 1)

{
2 τ �5

g − 4 τ �3
g + 2 τ �g − τ �3

gε
2 + 1

2
�2

g ε2 sin(2 �g τ )

+ 2 �2
g ε2 cos(τ ) sin(�g τ ) + τ �g ε2 − 4 �4

g ε cos(τ ) sin2(�g τ/2) − 2
(
�2

g − 1
)
�g sin(τ )

[
�2

g − ε sin(�g τ ) − 1
]

+ 4 �2
g ε cos(τ ) sin2(�g τ/2) − ε cos(�g τ )

[
2 �3

g ε sin(τ ) + ε sin(�g τ ) + 2 �4
g − 6 �2

g + 4
]+ 2 �4

g ε−6 �2
g ε + 4 ε

}2

033834-16



OPTIMAL ESTIMATION WITH QUANTUM … PHYSICAL REVIEW A 101, 033834 (2020)

+ 4 |μc|2 cosh(2 rT )

(
1 + |μc|2

cosh2(2 rT )

)⎡⎣(1 − cos(τ ) − ε
�g cos(�gτ ) sin(τ ) − cos(τ ) sin(�g τ )

�2
g − 1

)2

+
(

sin(τ ) + ε
�g[1 − cos(τ ) cos(�g τ )] − sin(τ ) sin(�g τ )

�2
g − 1

)2
⎤
⎦. (E3)

At resonance, the QFI becomes

I (res)
g̃0

= 1

16
|μc|2

[
g̃2

0

(
4|μc|4 + 6|μc|2 + 1

)
[4τε2 − 3ε2 sin(2 τ ) − 8 τ ε sin(τ ) − 32 ε cos(τ ) + 2ε(τ ε + 2) cos(2 τ )

+ 16 τ − 16 sin(τ ) + 28ε]2 + 16 cosh(2rT )

(
|μc|2 1

cosh2(2rT )
+ 1

)
( sin2(τ )[ε sin(τ ) + 2]2

+ {τε − cos(τ )[ε sin(τ ) + 2] + 2}2)
]
. (E4)

2. Coefficients for a time-dependent linear displacement

We here print the F coefficients for a time-dependent linear displacement term D̃1(τ ) = d̃1 cos(�d1 τ ) and a constant light-
matter coupling G̃(τ ) ≡ g̃0:

FN̂a
= −g̃0 d̃1

2�2
d1

cos2(τ ) sin(�d1 τ ) + sin(�d1 τ )
[
�2

d1
cos(2 τ ) − 3 �2

d1
+ 4

]− 4�d1 sin(τ ) cos(τ ) cos(�d1τ )

2�d1

(
�2

d1
− 1

) ,

FN̂2
a

= 1

2
g̃2

0[sin(2 τ ) − 2 τ ],

FB̂+ = −d̃1
�d1 cos(τ ) sin(�d1 τ ) − sin(τ ) cos(�d1 τ )

1 − �2
d1

,

FB̂− = −d̃1
�d1 sin(τ ) sin(�d1 τ ) + cos(τ ) cos(�d1 τ ) − 1

1 − �2
d1

,

FN̂a B̂+ = −g̃0 sin(τ ),

FN̂a B̂− = g̃0 (cos(τ ) − 1). (E5)

This yields the following expression for the QFI:

Id̃1
= 4

�2
d1

(
1 − �2

d1

)2

{
4 g̃2

0 |μc|2 ( sin(�d1 τ )
{
�2

d1
[1 − cos(τ )] − 1

}+ �d1 sin(τ ) cos(�d1 τ ))2

+ �2
d1

cosh(2 rT )

[
2 + (

�2
d1

− 1
)

sin2(�d1 τ ) − 2 �d1 sin(τ ) sin(�d1 τ ) − 2 cos(τ ) cos(�d1 τ )
]}

. (E6)

For the constant case �d1 = 0, we find

I (con)
d̃1

=16

(
g̃2

0|μc|2[τ − sin(τ )]2 + sin2 (τ/2)

cosh(2 rT )

)
. (E7)

At resonance with �d1 = 1, the coefficients become

FN̂a
= − 1

4 g̃0 d̃1[sin(3 τ ) − 7 sin(τ ) + 4 τ cos(τ )],

FN̂2
a

= − 1
2 g̃2

0[2τ − sin(2τ )],

FB̂+ = 1
2 d̃1 [τ + sin(τ ) cos(τ )],

FB̂− = 1
2 d̃1 sin2(τ ),

FN̂aB̂+ = −g̃0 sin(τ ),

FN̂aB̂− = g̃0[cos(τ ) − 1], (E8)

and the Fisher information becomes

I (res)
d̃1

= 4 g̃2
0 |μc|2{τ + sin(τ )[cos(τ ) − 2]}2

+ 1

cosh (2rT )
[τ 2 + 2τ sin(τ ) cos(τ ) + sin2(τ )]. (E9)

3. Approximate coefficients for a constant
and resonant squeezing

In this section, we consider constant and time-dependent
squeezing. The perturbative solutions to the time-dependent
squeezing dynamics are only valid for d̃2 � 1. For consis-
tency, we will assume d̃2 � 1 throughout this Appendix,
even for estimation of a constant squeezing strength. This
assumption will also significantly simplify the expressions
that follow.
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a. Constant squeezing

When we consider constant squeezing, i.e., �d2 = 0

with D̃2(τ ) ≡ d̃2, we find ξ = cos(
√

1 + 4d̃2τ ) +
sin(

√
1 + 4d̃2τ )/

√
1 + 4d̃2. For d̃2 � 1 and d̃2τ ∼ 1,

this expression approximates to ξ = e−i(1+2d̃2 )τ . With the
addition of a constant light-matter coupling G̃(τ ) ≡ g̃0, the
nonvanishing F coefficients are (with D̃1 = 0)

FN̂2
a

= −g̃2
0

2(1 + 2d̃2)τ − sin[2(1 + 2d̃2)τ ]

2(1 + 2d̃2)2
,

FN̂aB̂+ = −g̃0
sin[(1 + 2d̃2)τ ]

1 + 2d̃2
,

FN̂aB̂− = −g̃0
1 − cos[(1 + 2d̃2)τ ]

1 + 2d̃2
. (E10)

To simplify the expressions further we assume 0 � d̃2 �
d̃2τ � 1 and discard terms proportional to d̃2, while keeping
only terms proportional to d̃2τ . We obtain

FN̂2
a

= −g̃2
0

2(1 + 2d̃2)τ − sin[2(1 + 2d̃2)τ ]

2
,

FN̂aB̂+ = −g̃0 sin[(1 + 2d̃2)τ ],

FN̂aB̂− = −g̃0 {1 − cos[(1 + 2d̃2)τ ]}. (E11)

With the same approximations, and by using the relations
(C34), we obtain

J+ = 0, J− = 0, and Jb = (1 + 2d̃2)τ. (E12)

For this special case, many of the terms in the QFI coefficients
(C34) are zero, A = B = C±CN̂a,− = G = F = 0. The only

nonzero coefficient is CN̂a,+ = 2g̃0τ . We then find the QFI:

I (const,app)
d̃2

= 8g̃2
0τ

2|μc|2 1

cosh(2 rT )
[1+2|μc|2+ cosh(4 rT )].

(E13)

b. Resonant time-dependent squeezing

In the next step, we will consider the resonant case. Using
the approximate solution for �d2 = 2, which gives the expres-
sion of ξ (τ ) (A11) and small d̃2 given in (A11) and neglecting
all terms proportional to d̃2 but keeping expressions propor-
tional to d̃2τ , we obtain for the nonvanishing F coefficients

FN̂2
a

= g̃2
0

cosh(2d̃2τ ) sin(2τ ) + sinh(2d̃2τ ) − 2τ

2
,

FN̂aB̂+ = −g̃0[cosh(d̃2τ ) sin(τ ) + sinh(d̃2τ ) cos(τ )],

FN̂aB̂− = g̃0[cosh(d̃2τ ) cos(τ ) + sinh(d̃2τ ) sin(τ ) − 1].
(E14)

Furthermore, using the relations between α and β and the J
coefficients in (C34), we find under the same approximations
as above

J+ = 1
2 d̃2τ, J− = 0, and Jb = τ. (E15)

We obtain for the QFI

I (res,app)
d̃2

= 4τ 2

[
g̃4

0(4|μc|6 + 6|μc|4 + |μc|2)

+ g̃2
0|μc|2 |μc|2+ cosh(2rT )2

cosh(2rT )
+ cosh2(2rT )

cosh2(2rT )+1

]
.

(E16)
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