American Journal of Gastroenterology Association Between Non-vitamin K Antagonist Oral Anticoagulants or Warfarin and Liver Injury: A Cohort Study --Manuscript Draft--

Manuscript Number:	AJG-19-2621R1				
Full Title:	Association Between Non-vitamin K Antagonist Oral Anticoagulants or Warfarin and Liver Injury: A Cohort Study				
Article Type:	Article				
Section/Category:	Liver				
Abstract:	OBJECTIVES: The risk of liver injury in patients with atrial fibrillation (AF) using non- vitamin K antagonist oral anticoagulants (NOACs) has not been previously examined using liver function tests as the primary outcome in the real-world setting. This study assessed the association between NOACs (dabigatran, rivaroxaban, apixaban) and warfarin and the risk of liver injury, as defined by laboratory tests. METHODS: Patients newly diagnosed with AF and prescribed NOACs or warfarin between 2010-2016, identified using the Hong Kong Clinical Database and Reporting System, were matched on age, sex, health status scores, comorbidities and medications by propensity score at a 1:1 ratio. Risk of liver injury, defined as laboratory test values >3 times the upper limit of normal of alanine aminotransferase or aspartate aminotransferase and >2 times the upper limit of normal of total bilirubin, was compared between NOAC and warfarin users using Cox proportional hazards regression. RESULTS: After propensity score matching, 13,698 patients were included, of which 141 (2.1%) NOAC users and 232 (3.4%) warfarin users developed liver injury. The hazard ratio (HR) for NOAC vs warfarin users was 0.71 (95% CI: 0.58-0.89). When comparing individual NOACs, only dabigatran (HR: 0.63; 95% CI: 0.48-0.82) was associated with a lower risk of liver injury. DISCUSSION: Among patients with atrial fibrillation, NOACs as a group, as well as dabigatran alone, were associated with a significantly lower risk of laboratory-based liver injury when compared to warfarin. However, liver injury occurs more frequently in real-world practice than in NOAC randomized controlled trials.				
Response to Reviewers:	 Dear Drs. Lacy and Spiegel, RE: Manuscript ID AJG-19-2621 - "Association Between Non-vitamin K Antagonist Oral Anticoagulants or Warfarin and Liver Injury: A Cohort Study": response to the reviewers' comments for the manuscript Thank you very much for the comments in the recent decision letter dated 3 February 2020. We appreciate this opportunity to further revise our manuscript. Our responses to the reviewers' comments are given point-by-point below in red. Editor/Editorial Board: 1.Please indicate if any subjects had cholestatic liver injury defined by R value or ratio of serum ALT to serum alkaline phosphatase as a multiple of upper limit of normal R<2. Thank you for your comment. To address this point, and several other comments regarding the clinical details of patients who experienced our outcome definition of liver injury, we have added an additional table to the main text (Table 2, p. 31). As per the EASL Clinical Practice Guidelines: Drug-induced liver injury, we have described the number (%) of patients with the primary outcome by their ALT/ALP ratio (R) (i.e. R ≤2 cholestatic pattern, R >2 to <5 mixed pattern, and R ≥5 hepatocellular pattern) on the outcome date. In the complete cohort, a total of 332 (64.7%) of patients had a cholestatic pattern of liver injury (208 [66.5%] warfarin users and 124 [62.0%] NOAC users). Further details by drug are shown in Table 2 (p. 31). How many patients had imaging of the liver with either ultrasound, CT or MRI? As mentioned in comment #1, we have added Table 2 (p. 31) to provide additional clinical information about patients who meet our definition of liver injury. Of these, a 				

had a procedure date within 90 days after the outcome date for either ultrasound (liver, abdomen), CT (abdomen), or MRI (abdomen). This proportion may be lower than what is observed in US clinical practice, because of the extensive wait times for diagnostic imaging within the Hong Kong public healthcare system. We have also added the list of diagnostic imaging procedure codes to the Supplementary Appendix Table 2.

Reviewer #1:

1. The authors chose ALT 3XULN plus Bilirubin 2XULN as outcome parameter that reflects Hy's Law cases. International consensus criteria define DILI as ALT 5xULN or ALP 2xULN or Hy's Law (EASL Clinical Practice Guidelines: Drug-induced liver injury, Andrade, Raúl J.Aithal, Guruprasad P.Karlsen, Tom H. et al. Journal of Hepatology, Volume 70, Issue 6, 1222 - 1261), while Hy's Law (in the FDA-Definition also requiring a ratio of ALTxULN/APxULN>=5) is considered as an indicator of severe liver injury in the case that competing diagnoses have thoroughly been ruled out. By confining liver injury cases to the Hy's Law positive cases incidence of DILI with NOAC/warfarin might be underestimated. An important question that should be addressed is the exclusion of other possible causes in the investigated patients (Hyptension, Shock, viral Hepatitis, Biliary Obstruction) to corroborate the use of Hy's Law.

Thank you for your comment regarding the outcome definition. We agree with the reviewer that using a definition of Hy's Law cases may underestimate the true incidence of liver injury, which is why we used a broader definition of "liver injury" which appears to capture a greater number of patients and different patterns of liver injury. We selected our primary outcome (liver injury) in accordance with the laboratory test thresholds as defined in Hy's Law, specifically an ALT or AST > 3x the upper limit of normal (ULN) and a total bilirubin > 2x ULN. Our intention is not to suggest that each patient with the outcome satisfied all three components of Hy's Law (i.e. Hy's Law cases). As the reviewer has noted, a criteria of Hy's Law requires that other causes of liver injury be ruled out. It is very challenging to rule out or determine other potential causes for elevations in serum aminotransferase and bilirubin levels using electronic health record data, thus we have not defined the outcome as Hy's Law cases and describe the outcome as "liver injury". This outcome was selected because it is a common liver function safety endpoint reported in RCTs on NOAC effectiveness and safety. Thus, it allows us to compare the rate of liver injury in clinical practice to the rates observed in a more selective RCT population.

Furthermore, we have added descriptive results for the patients who experienced our outcome during follow-up (Table 2, p. 31). On the outcome date, of the 513 cases who met our outcome definition during follow-up, 144 (28%) had ALP > 2x ULN. When applying the definition of drug-induced liver injury (DILI) according to the guidelines (ALT \ge 5x ULN or ALP \ge 2xULN), 353 (69%) of patients met either criteria. As we were unable to perform a causality assessment, and with the challenges of ruling out other causes, we have not used this definition as the primary outcome in this study.

2.Causality is a big issue in DILI and especially in patients receiving multiple comedications. Was statistical testing performed concerning the occurrence of liver injury in the patients and the use of comedications with known DILI-liability (e.g. NSAR, Antiinfectives, antiTb, Antipelleptics etc)?

Due to the challenges in assessing liver injury using electronic health databases, we have not performed a causality assessment. No statistical testing was performed regarding co-medications prior to liver injury. However, as presented in Table 1, we identified baseline exposures to key classes of hepatotoxic medications, and these baseline exposures were well balanced after propensity score matching. Furthermore, we have included additional descriptive details for those patients who experienced our outcome definition of liver injury. Recent exposure to hepatotoxic medications are described in Table 2 (p. 31). For example, about half of the patients with liver injury were also dispensed prescriptions for antibacterial agents, lipid lowering drugs, and antiarrhythmic drugs, but at most 5% of patients were dispensed NSAIDs, antituberculosis agents, and antiepileptics. The distribution of drug exposure prior to liver injury appears to be similar for NOAC and warfarin users.

3. The cases with acute liver failure should be described in detail, since this is the worst possible outcome of DILI. The finding that NOAC-HR for acute liver failure is higher

than warfarin is especially interesting, since one would expect liver failure to occur more often with warfarin due to the effects of the drug on INR. It would be interesting to have these data discussed and more information in the supplement (especially on causality)

We have added Appendix Table 6, which provide additional details of patients with liver injury who were also diagnosed with acute liver failure using ICD-9-CM codes. In addition, we have expanded our results (p.11 lines 11-20) and our discussion (p. 14 lines 6-17) to further discuss the findings for patients with acute liver failure.

Reviewer #2:

1.It will be interesting to see a graphic distribution of latency between the drug start and the onset of liver injury, likewise for the dechallenge separated by drug.

Thank you for your comment. We have included additional clinical details about those patients who experienced our outcome definition of liver injury in Table 2 (p.31). We describe the time from drug initiation to the onset of liver injury in 6 categories (<1 month, \geq 1 to <3 months, \geq 3 to <6 months, \geq 6 to <12 months, \geq 12 to <24 months, \geq 24 months). Furthermore, we have changed our survival curve (Appendix Figure 2) to a cumulative incidence curve and have shortened the plot axes in order to better visualize the curve. The survival curves are shown for each oral anticoagulant group and by specific drug. Taken together, this additional data should give readers a clearer understanding of the temporal onset of liver injury in our cohort. Regarding dechallenge and resolution of elevations in liver function tests, we cannot determine the true date of discontinuation based on dispensing records. As with nearly all pharmacoepidemiology studies, we assume that patients who are dispensed a medication actually consume it as per the dispensing record.

2.How was causality assessed or is this just the description of elevation occurring, which would be ok too.

Thank you for the question. The objective of this study was to investigate the association between the use of NOACs vs warfarin and the risk of liver injury. We agree with the reviewer that a causality assessment is often required to determine whether cases can be classified as DILI. Because of the challenges in determining DILI from database studies, we have defined our outcome only as liver injury. Without a detailed review of each patient's medical records, we cannot determine what caused the outcome to occur. We have described laboratory tests at baseline and described the distribution of the relevant laboratory tests for the 513 patients who experienced the primary outcome of liver injury (Table 2, p. 31).

3.Please confirm, you truly observe a 2% Hy's law criteria, that is 3 ULN of ALT & Bilirubin >2ULN.

We selected our primary outcome (liver injury) in accordance with the laboratory test thresholds as defined in Hy's Law, specifically an ALT or AST > 3x the upper limit of normal (ULN) and a total bilirubin > 2x ULN. We can confirm that, as presented in Table 3 and Appendix Table 15, in the propensity score matched cohort, the risk of liver injury during follow-up was about 2%. As shown in Table 1 we included patients with a history of liver disease and gallbladder disease, which may contribute to the higher rate of liver injury in this study. Furthermore, as described in comment #4, changing the thresholds for the upper limits of normal (ALT and total bilirubin) reduced the number of cases with liver injury. With the modified ALT and total bilirubin thresholds as suggested in comment #4, a total of 221 patients in the matched cohort experienced the outcome (Appendix Table 10). The risk (number with event / total number in treatment group) of the revised outcome was as follows: warfarin 1.94% (133/6,849), dabigatran 1.23% (45/3,663), rivaroxaban 1.14% (23/2,016), and apixaban 1.71% (20/1.170). In conditions of actual use, the risk still appears to be modestly higher than observed in randomized controlled trials. This may be due to the fact that NOACs are prescribed to individuals who would have been excluded from randomized controlled trials and that our study has a somewhat longer duration of follow-up.

4. How does this change if you would use 2.5mg as threshold for Bilirubin, and ALT of

120 instead of 75 for ALT in women, and 150 instead of 105 for men. The later thresholds were more likely used in the clinical trials.

Thank you for your comment. We would like to first clarify our ALT thresholds in the main analysis were 75 for women and 99 for men (as shown in Appendix Table 1). We ran the main analysis with the same exclusion criteria, but changed the outcome definition as suggested (ALT > 75 U/L increased to > 120 U/L [women], ALT > 99 increased to >150 [men], bilirubin > 2 mg/L increased to > 2.5 mg/L [both sexes], and excluded AST from the outcome definition). A total of 221 patients (88 NOAC users and 133 warfarin users) in the propensity score matched cohort experienced the outcome with the increased ALT and total bilirubin thresholds. The results for the propensity matched cohort are similar to the main analysis, although not statistically significant because of the reduced number of events. In the main paper, they are shown in the results (p. 13 lines 2-3), Figure 2, and Appendix Table 10.

5.As a related question: Is the onset of liver injury usually occurring at time point not covered by randomized controlled trials?

As reported in the Caldeira et al systematic review of 29 NOAC randomized controlled trials, the weighted mean duration of follow-up was 16.4 months and ranged from 2 weeks to 2 years. Of the 513 patients who experienced the primary outcome, 158 (30.8%) experienced liver injury \geq 2 years after initiation of oral anticoagulants. The longer follow-up in this observational study adds to the safety evidence obtained in randomized controlled trials. It also helps explain why we have observed a higher risk of liver injury since about one third of cases occur in a follow-up period that is excluded from randomized controlled trials. As stated previously, we have included the distribution of patients with the outcome according to follow-up time in Table 2 (p. 31). In addition, we have revised the discussion regarding the onset of liver injury (p. 14 lines 18-21).

6.Can you further report on number of death/Liver Transplantation total and liver related, as you study may suggest that liver injury may be more frequent on Warfarin, relevant clinical outcome may be more frequent with NOAC.

Similar to comment #5, we have now described the number (%) of patients who experienced liver transplant, all-cause mortality, and liver failure related mortality, within 90 days after the outcome date in Table 2 (p. 31). No patients underwent liver transplant, and the small number of deaths makes it difficult to draw firm conclusions. However, the reviewer is correct in that there is a signal that NOAC users with our primary outcome experience more severe clinical outcomes such as all-cause mortality, death from liver causes, and a diagnosis of acute liver failure. Therefore, we have added this point to the results (p.11 lines 12-20).

7. How did you assess causality in the people with elevated ALT/AST and Bilirubin?

Please see our previous response to comment #2. We have not assessed causality for patients who experienced the outcome of liver injury. We feel that the new Table 2 (p. 31) better informs the reader about the patients who experienced liver injury. Unfortunately, we do not have the resources to perform causality assessment, which requires manual review of medical records for each of the 513 patients with liver injury. We want to emphasize that our outcome definition is liver injury and not DILI, since without a comprehensive review of the complete medical record, we cannot attribute causality to a specific drug exposure.

8.What were r-values at onset by drug?

We have included the R values on the outcome date, for warfarin and NOACs, and for each NOAC drug in Table 2 (p. 31).

9.Can you comment on phenprocoumon, albeit not used in Hong Kong, I suspect, it has frequently be implicated in DILI.

Thank you for your question. We confirm that phenprocoumon is not licensed for sale in Hong Kong (Hong Kong Drug Office Drug Database, available at

	www.drugoffice.gov.hk/eps/do/en/consumer/search_drug_database.html). Hence, we do not have first-hand experience to inform further on the frequency or magnitude of effects on DILI specifically on the Chinese population in Hong Kong. However, we agree with the comment that phenprocoumon may be implicated in DILI as reported in the international literature. Thank you for your time and reconsideration of our manuscript.
Order of Authors:	Jiaxi Zhao, MSc
	Joseph E Blais, BScPharm
	Celine S.L. Chui, PhD
	In-Hye Suh, PharmD
	Esa Y.H. Chen, BPharm
	Wai-Kay Seto, MD
	Michael T Mok, MBBS
	Vincent K.C. Yan, BPharm
	Wallis C.Y. Lau, PhD
	Ian C.K. Wong, PhD
	Esther W Chan, PhD
Manuscript Classifications:	ALT; Anticoagulation; AST; Bilirubin; Drug-Induced Liver Injury; Epidemiology; Warfarin
Suggested Reviewers:	
Opposed Reviewers:	

REVISED Clean Manuscript (All MS Text, Refs, Legends)

1 Association Between Non-vitamin K Antagonist Oral Anticoagulants or

2 Warfarin and Liver Injury: A Cohort Study

3	Jiaxi Zhao, MSc ^{1,8} , Joseph E Blais, BScPharm ¹ , Celine S.L. Chui, PhD ¹ , In-Hye Suh, PharmD ¹ ,
4	Esa Y.H. Chen, BPharm ² , Wai-Kay Seto, MD ^{3,4,5} , Michael T. Mok, MBBS ⁶ , Vincent K.C. Yan,
5	BPharm ¹ , Wallis C.Y. Lau, PhD ^{1,7} , Ian C.K. Wong, PhD ^{1,7} , Esther W. Chan, PhD ^{1,8}
6	¹ Centre for Safe Medication Practice and Research, Department of Pharmacology and
7	Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR,
8	China
9	² Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences,
10	Monash University, Victoria, Australia
11	³ Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
12	^{4.} State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR,
13	China
14	⁵ .Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
15	⁶ Department of Cardiology, University Hospital Geelong and Deakin University, Geelong,
16	Victoria, Australia
17	⁷ Research Department of Practice and Policy, UCL School of Pharmacy, London, United
18	Kingdom
19	^{8.} The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen, China

20 Corresponding author

- 1 Dr. Esther W Chan
- 2 General Office, L02-56 2/F, Laboratory Block LKS Faculty of Medicine, The University of
- 3 Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
- 4 Tel: +852-28315110; Email: <u>ewchan@hku.hk</u>

1 Abstract

OBJECTIVES: The risk of liver injury in patients with atrial fibrillation (AF) using nonvitamin K antagonist oral anticoagulants (NOACs) has not been previously examined using liver
function tests as the primary outcome in the real-world setting. This study assessed the
association between NOACs (dabigatran, rivaroxaban, apixaban) and warfarin and the risk of
liver injury, as defined by laboratory tests.
METHODS: Patients newly diagnosed with AF and prescribed NOACs or warfarin between

2010-2016, identified using the Hong Kong Clinical Database and Reporting System, were
matched on age, sex, health status scores, comorbidities and medications by propensity score on
a 1:1 ratio. Risk of liver injury, defined as laboratory test values >3 times the upper limit of
normal of alanine aminotransferase or aspartate aminotransferase and >2 times the upper limit of
normal of total bilirubin, was compared between NOAC and warfarin users using Cox
proportional hazards regression.

14 **RESULTS:** After propensity score matching, 13,698 patients were included, of which 141

15 (2.1%) NOAC users and 232 (3.4%) warfarin users developed liver injury. The hazard ratio (HR)

16 for NOAC vs warfarin users was 0.71 (95% CI: 0.58-0.89). When comparing individual NOACs,

17 only dabigatran (HR: 0.63; 95% CI: 0.48-0.82) was associated with a lower risk of liver injury.

DISCUSSION: Among patients with atrial fibrillation, NOACs as a group, as well as dabigatran
 alone, were associated with a significantly lower risk of laboratory-based liver injury when
 compared to warfarin. However, liver injury occurs more frequently in real-world practice than
 in NOAC randomized controlled trials.

22 Keywords: Oral anticoagulants, liver injury, liver function test, atrial fibrillation, safety

1 List of Abbreviations

- 2 AF = atrial fibrillation
- 3 ALT = alanine aminotransferase
- 4 ALP = alkaline phosphatase
- 5 AST = aspartate aminotransferase
- 6 CDARS = Clinical Data Analysis and Reporting System
- 7 ICD-9-CM = International Classification of Diseases, Ninth Revision, Clinical Modification
- 8 IPTW = inverse probability of treatment weighting
- 9 ITT = intention-to-treat
- 10 LFT = liver function test
- 11 NOAC = Non-vitamin K antagonist oral anticoagulant
- 12 Word count: 3554

1 INTRODUCTION

2 Safety signals from pharmacovigilance databases and case reports have emerged warning of 3 potential risk for liver injury associated with non-vitamin K antagonist oral anticoagulants 4 (NOACs)(1-4). These reports are particularly concerning considering the case of an earlier direct thrombin inhibitor, ximelagatran, which was withdrawn from the market due to 5 6 hepatotoxicity(5). In light of the heightened concern for hepatotoxicity, guidelines from the 7 American Heart Association and European Heart Rhythm Association recommend routine 8 monitoring of liver function among patients with atrial fibrillation (AF) using NOACs(6-8). 9 To date, one systematic review(9), and two population-based observational studies have been conducted to assess the risk of liver injury associated with NOACs(10, 11). However, the results 10 11 were not consistent among the three studies. NOACs were found to be significantly associated 12 with a lower risk of liver injury compared with warfarin in a US cohort study(10), but no such association was identified in the other two(9, 11). Notably the observational studies did not 13 include laboratory tests in the determination of liver injury. The use of diagnostic coding to 14 define the outcome of liver injury is also particularly challenging using electronic databases as 15 16 such data may be inaccurate or incomplete without thorough case validation. The validity of International Statistical Classification of Diseases, Ninth Revision, Clinical Modification (ICD-17 9-CM) and ICD-10-CM codes used to identify acute liver injury in three European data sources 18 19 found a wide range of positive predictive values using different outcome definitions (8%-84%)(12). Low positive predictive values using ICD codes alone, may bias the results due to 20 misclassification of outcomes. 21

The objective of this study was to compare the risk of laboratory-measured liver injury, betweenthe use of NOACs and warfarin in patients with AF.

1 METHODS

2 Data source

3 We accessed data from the Clinical Data Analysis and Reporting System (CDARS), an electronic health record database of the Hong Kong Hospital Authority. Since 1991, the Hospital 4 5 Authority is the statutory body responsible for managing public hospitals and institutions, 6 specialist and general out-patient clinics in Hong Kong, and serves over 7 million residents in the 7 region(13, 14). CDARS contains clinical information including demographics, date of hospital 8 admission and discharge, diagnoses (coded ICD-9-CM), medical and surgical procedures, 9 laboratory tests and prescription records. Various high-quality large population-based pharmacoepidemiological studies have used CDARS in the past(13-16). The validation of the 10 database was demonstrated by high coding accuracy for the diagnoses of AF, with PPV of 11 12 95%(13, 14). This study was approved by the Institutional Review Board of the University of Hong Kong/Hospital Authority Hong Kong West Cluster (reference number: UW13-468). 13 Informed consent was not required for the use of de-identified data in the absence of patient 14 15 contact.

16 Study design and selection of patients

A population-based, new-user, active-comparator, cohort study was conducted. Patients newly
diagnosed with AF (ICD-9-CM code 427.3) between January 1, 2010 and December 31, 2016
were identified from CDARS. Index date was defined as prescription start date of the first record
of oral anticoagulant following the first date of AF diagnosis (AF-date).

Patients with a history of valvular heart diseases, hyperthyroidism or a valve replacement surgery
on or before AF-date were excluded. Patients with records of cardiac surgery, myocarditis,

1 pericarditis and pulmonary embolism within 90 days prior to AF-date (potential transient cases of AF), were also excluded. Patients were removed if they were <18 years, had missing 2 information on sex or date of birth, died on or before AF-date, or were never exposed to any oral 3 anticoagulants including warfarin, dabigatran, rivaroxaban and apixaban since the AF-date. 4 Patients were considered as prior users, and hence excluded, if they had received any oral 5 6 anticoagulants within 180 days prior to index date. Patients, who had been exposed to multiple oral anticoagulants on the index date, or who had elevated liver enzymes (same definition as 7 outcome, Appendix Table 1 in the supplement) during a 90-day baseline window prior to the 8 9 index date, or who had specific liver disease diagnoses (Appendix Table 2 in the supplement) before the index date, were also removed (Figure 1). 10

The remaining patients were divided into two groups based on the initial oral anticoagulant they took since the AF-date (NOACs vs. warfarin). The groups were followed up from index date until the earliest occurrence of the outcome, death, switching or discontinuation of the index oral anticoagulant (>30 day gap between two consecutive prescriptions of the same oral anticoagulant), or end of study (December 31, 2017).

16 **Outcome**

The outcome of interest was liver injury, defined as the earliest occurrence of an alanine aminotransferase (ALT) or an aspartate aminotransferase (AST) serum level greater than 3 times the upper limit of normal, and a total bilirubin level greater than 2 times the upper limit of normal in accordance with Hy's law(17, 18) (Appendix Table 1 in the supplement). Hy's law is used by the FDA(19) to detect potential liver injury for new drug therapies. The same transaminase and bilirubin thresholds have also been widely used in NOAC randomized controlled trials (RCTs)(20-22). Applying the same criteria to that used in RCTS provides a

more valid and comparable outcome definition. Furthermore, for patients with liver injury, we
described the clinical characteristics and outcomes including mortality; liver transplant;
diagnosis of acute liver failure; diagnostic imaging; time to onset of liver injury; comorbidities;
medication use; distribution of serum concentrations of ALT, ALP, and total bilirubin on the
outcome date; and the ALT/ALP ratio (R value).

6 Confounding control

All covariates potentially associated with liver injury or suspected to influence oral anticoagulant 7 treatment selection were considered to be confounders. These covariates(10, 11, 23-25) were 8 9 baseline demographic characteristics on the index date including age and sex; health status scores including Charlson Comorbidity Index, CHA2DS2-VASc on the index date; 10 comorbidities identified on and before index date including viral hepatitis, non-viral liver 11 12 diseases, alcoholism, gallbladder diseases, kidney diseases, diabetes mellitus, myocardial infarction, congestive heart failure, hypertension, anemia, coagulopathy, gastrointestinal 13 bleeding, intracranial bleeding, other bleedings, ischemic stroke, peripheral vascular diseases, 14 cancer, as well as concomitant medications used within 90 days prior to index date including 15 antibacterial agents, antifungal agents, acetaminophen, proton pump inhibitors, H2-receptor 16 antagonists, and medications used within 365 days prior to index date as listed in Appendix 17 Tables 2-3 in the supplement. 18

Propensity score matching, was used to reduce the imbalance in baseline characteristics between the comparison groups. All aforementioned variables were used for propensity score estimation, regardless of its statistical significance or collinearity in logistic regression model(26). Patients prescribed either NOACs or warfarin were matched on a 1:1 ratio on the propensity score using a nearest-neighbor matching algorithm with a caliper of 0.1 (Appendix Figure 1 in the

supplement). To assess the balance in baseline characteristics after matching, the standardized
mean difference (SMD), calculated as the difference in means or proportions over the pooled
standard deviation (SD), was used. The negligible difference was defined as a SMD less than
0.1.

5 Statistical analysis

Patient characteristics were summarized as mean (SD) or median (interquartile range [IQR]) for
continuous variables and in frequencies (percentages) for categorical variables.

The incidence rate, calculated as the number of events divided by the duration of follow-up in
person-years, as well as 95% confidence interval (CI), were obtained via Poisson regression
model. We estimated hazard ratios (HR) and 95% CIs using a Cox proportional hazards model
for the risk of liver injury between NOACs and warfarin users. Subgroup analyses were
conducted to investigate the risk of liver injury in NOACs and warfarin users by sex and age
group (<65, 65-74, and ≥75 years).

Eight sensitivity analyses were performed to assess the robustness of our results. First, different 14 prescription gap lengths of 5 and 15 days were used to assess possible misclassification of 15 16 exposure due to drug discontinuation. Second, an intention-to-treat approach (ITT) was conducted to test the quality of our cohort with respect to compliance and deviation of allocation 17 of exposure(27). Third, in order to test the impact of missing values on the results, we excluded 18 19 patients who did not have any ALT, AST, total bilirubin, or alkaline phosphatase (ALP) test, during the 90-day baseline window. Fourth, we increased the upper limits of normal for serum 20 ALT and bilirubin (and excluded AST), with liver injury defined as an ALT greater than three 21 22 times the upper limit of normal (i.e. > 120 U/L [women] and > 150 U/L [men]) and total bilirubin

1	greater than 2 times the upper limit of normal (i.e. > 2.5 mg/L). Furthermore, we defined liver
2	injury and acute liver failure using ICD-9-CM codes to assess consistency with the primary
3	analysis. Finally, we controlled for potential confounders used in the primary analysis through a
4	multivariate regression model and inverse probability of treatment weighting (IPTW). Data
5	analyses were conducted by JZ with independent cross-checking conducted by JEB and EYC.
6	Statistical significance was defined as $P < 0.05$; all alternative hypotheses were 2-sided. All
7	analyses were performed using R software (version 3.6.0; R Foundation for Statistical
8	Computing, Vienna, Austria).

1 **RESULTS**

2 **Baseline characteristics**

Among the 71,630 patients newly diagnosed with AF identified in CDARS between 2010-2016,
18, 281 new users of NOACs and warfarin remained after applying the exclusion criteria. A total
of 13,698 patients were included in the main analysis after matching on a 1:1 ratio with good
balance in baseline characteristics (Figure 1, Table 1; Appendix Tables 4-5 in the supplement).
The mean (SD) age of the whole cohort was 73.9 (10.6) years, and 6,602 (48.2%) were women.
The median (IQR) follow-up period was 1.2 (2.1) years for NOAC users, and 1.1 (3.0) years for
warfarin users.

10 **Risk of liver injury**

11 Characteristics of patients with liver injury

12 In the overall cohort, a total of 513 (2.8%) patients experienced liver injury during follow-up 13 (Table 2). None received a liver transplant within 90 days after the outcome date. The proportion of patients who underwent diagnostic imaging of the liver were diagnosed with acute 14 15 liver failure, died from any cause, or died from liver failure was consistently greater in NOAC 16 users compared to warfarin users. Similarly, NOAC users on average had greater elevations in serum ALT, ALP, and total bilirubin. For warfarin and NOAC users, most cases of liver injury 17 occurred within 2 years of initiating treatment. Nearly two-thirds of patients had a cholestatic 18 19 pattern of liver injury as indicated by ALT/ALP ratio ≤2. Characteristics of patients with liver injury and a diagnosis of acute liver failure are shown in Appendix Table 6. 20

21 **Primary analysis**

1	In the matched cohort, 373 of 13,698 patients (2.7%) developed liver injury: 141 NOAC users
T	In the matched conort, 575 of 15,098 patients (2.7%) developed liver injury. 141 NOAC users
2	(2.1%), of which 72 were dabigatran users (2.0%); 40 were rivaroxaban users (2.0%); 29 were
3	apixaban users (2.5%); and 232 warfarin users (3.4%). The use of NOACs was significantly
4	associated with a lower risk of liver injury compared with the use of warfarin. The adjusted HR
5	was 0.71 (95% CI: 0.58-0.89) (Table 3). When comparing individual NOAC agents to warfarin,
6	dabigatran was associated with a lower risk of liver injury (HR: 0.63; 95% CI: 0.48-0.82).
7	However, there was no statistically significant association between liver injury and use of
8	rivaroxaban (HR: 0.72; 95% CI: 0.51-1.01) or use of apixaban (HR: 1.13; 95% CI: 0.77-1.68).
9	Kaplan-Meier curves for liver injury are presented in Appendix Figure 2 in the supplement.
10	Subgroup analyses
11	When stratified by sex, a similar association between liver injury and use of NOACs compared
	When stratified by sex, a similar association between liver injury and use of NOACs compared with use of warfarin was only found to be statistically significant in men (NOACs vs warfarin:
11	
11 12	with use of warfarin was only found to be statistically significant in men (NOACs vs warfarin:
11 12 13	with use of warfarin was only found to be statistically significant in men (NOACs vs warfarin: HR: 0.69; 95% CI: 0.52-0.92; dabigatran vs warfarin: HR: 0.57; 95% CI: 0.40-0.83) (Table 4). In
11 12 13 14	with use of warfarin was only found to be statistically significant in men (NOACs vs warfarin: HR: 0.69; 95% CI: 0.52-0.92; dabigatran vs warfarin: HR: 0.57; 95% CI: 0.40-0.83) (Table 4). In contrast, no statistically significant associations were found in women. For subgroup analyses of
11 12 13 14 15	with use of warfarin was only found to be statistically significant in men (NOACs vs warfarin: HR: 0.69; 95% CI: 0.52-0.92; dabigatran vs warfarin: HR: 0.57; 95% CI: 0.40-0.83) (Table 4). In contrast, no statistically significant associations were found in women. For subgroup analyses of different age groups, NOACs (HR: 0.38; 95% CI: 0.22-0.69) as well as dabigatran (HR: 0.17;
11 12 13 14 15 16	with use of warfarin was only found to be statistically significant in men (NOACs vs warfarin: HR: 0.69; 95% CI: 0.52-0.92; dabigatran vs warfarin: HR: 0.57; 95% CI: 0.40-0.83) (Table 4). In contrast, no statistically significant associations were found in women. For subgroup analyses of different age groups, NOACs (HR: 0.38; 95% CI: 0.22-0.69) as well as dabigatran (HR: 0.17; 95% CI: 0.06-0.47) were significantly associated with lower risk of liver injury for patients aged
11 12 13 14 15 16 17	with use of warfarin was only found to be statistically significant in men (NOACs vs warfarin: HR: 0.69; 95% CI: 0.52-0.92; dabigatran vs warfarin: HR: 0.57; 95% CI: 0.40-0.83) (Table 4). In contrast, no statistically significant associations were found in women. For subgroup analyses of different age groups, NOACs (HR: 0.38; 95% CI: 0.22-0.69) as well as dabigatran (HR: 0.17; 95% CI: 0.06-0.47) were significantly associated with lower risk of liver injury for patients aged <65 years and in patients aged \geq 75 years (NOACs vs warfarin: HR: 0.73; 95% CI: 0.56-0.96;

Sensitivity analyses 20

21 The results of all sensitivity analyses were generally consistent with the primary analysis (Figure 2; Appendix Tables 7-14 in the supplement). Compared with warfarin, NOACs and dabigatran 22

1	were all statistically significantly associated with lower risk of liver injury, except in the
2	sensitivity analyses where the upper limits of normal for serum ALT and bilirubin were
3	increased (HR: 0.81; 95% CI: 0.61-1.06), and ICD-9-CM codes used to identify liver injury (HR:
4	0.82; 95% CI: 0.63-1.07) and acute liver failure (HR: 1.41; 95% CI: 0.58-3.38). Rivaroxaban
5	showed a statistically significant association with lower risk of liver injury compared with
6	warfarin in the sensitivity analyses which used a 5-day (HR: 0.60; 95% CI: 0.40-0.89) and 15-
7	day gap (HR: 0.61; 95% CI: 0.42-0.89) as discontinuation, and which used partial covariate
8	adjustment (HR: 0.75; 95% CI: 0.57-1.00) and IPTW with 1% truncation (HR: 0.76; 95% CI:
9	0.58-1.00).

1 **DISCUSSION**

In this population-based study, we investigated the risk of liver injury associated with the use of NOACs compared with warfarin in patients with AF, and found that NOACs were associated with a lower risk of liver injury. This decreased risk of liver injury relative to warfarin remained whether NOACs were evaluated as a class or by individual agent, with dabigatran associated with the lowest risk of liver injury among the three NOAC agents examined. Several sensitivity analyses, with the exception of acute liver failure, were consistent with the primary analysis.

8 Clinical outcomes and onset of liver injury

9 Despite being associated with a lower risk of liver injury, our results suggest that if a patient 10 experiences liver injury while using oral anticoagulants, the clinical outcomes may be more 11 severe with NOACs. Average serum concentrations of ALT, ALP, and total bilirubin appeared to be higher for NOAC users than warfarin users. While no significant difference between groups 12 was observed for the outcome of acute liver failure, the point estimate suggested potential harm 13 from NOAC use. Extreme elevations in ALT and an $R \ge 5$ indicate a predominantly 14 hepatocellular pattern of liver injury in patients also diagnosed with acute liver failure. Thus, it 15 16 appears that NOAC use is associated with a lower overall risk of liver injury but may result in more severe presentation if liver injury does occur. 17

A systematic review and meta-analysis of 29 NOAC RCTs did not identify an increased risk of liver injury for NOACs versus control(9). However, the maximum duration of follow-up for the included RCTs was 2 years, and our findings suggest that the time to onset among patients who developed liver injury was \geq 2 years in 35% of warfarin and 25% of NOAC users. The risk of liver injury (as per our study definition) in NOAC RCTs ranged from 0.1% to 0.5% (20, 28, 29),

which is much lower compared to our estimates of 2.0%-2.5% (Appendix Table 15-16 in the
supplement). Increasing the thresholds for ALT and bilirubin in a sensitivity analysis still
suggests a higher risk in clinical use versus RCTs (1.1%-1.9%). In contrast to RCTs, a longer
duration of follow-up and inclusion of patients with a history of liver disease and gallbladder
disease may account for our findings. Therefore, hepatic function should continue to be
monitored in patients taking oral anticoagulants for the management of atrial fibrillation.

7 Comparison to previous observational studies

Recently, two observational studies(10, 11) investigated the association between liver injury and 8 use of NOACs. Alonso *et al.*⁽¹⁰⁾ found that NOACs were associated with lower risk of liver 9 injury hospitalization compared with warfarin. However, this conclusion might be biased by the 10 investigators' use of the ITT approach, which could not eliminate the effect of differential 11 misclassification of exposure(30). On the other hand, while Douros *et al.*⁽¹¹⁾ improved their study 12 design by considering switching/discontinuation therapy, and found no association between use 13 of NOACs and increased risk of liver injury compared to warfarin, the estimates had reduced 14 precision likely due to very few identified events. Notably, neither of the two studies used liver 15 function tests (LFTs) to identify liver injury. 16

Consistent with the findings by Alonso *et al.*(10), dabigatran was associated with a lower risk of liver injury. However, in our study, neither the lower risk observed with rivaroxaban or the higher risk observed with apixaban was statistically significant. Ximelagatran induced hepatotoxicity was identified in long-term (up to 6 months) post-marketing surveillance studies(31-33). Ongoing surveillance with long-term follow-up will be important particularly for further assessment of the potential risk associated with apixaban as the number of exposed individuals in this study was small and the point estimate favored warfarin.

1 Effects of sex and age

2 A significant association between use of NOACs and lower risk of liver injury was only found in 3 men. Generally, women are more likely to present with drug-induced hepatotoxicity than 4 men(34, 35). In females, a relatively smaller plasma volume, higher proportion of body fat, lower basal metabolic rate and lower renal blood flow, may cause drugs to more readily 5 6 accumulate leading to potential liver injury(36). A pharmacokinetic study showed that both the 7 maximum serum concentration and the area under the curve of dabigatran and apixaban are 8 higher in women than men(37). Further studies are warranted considering the marginal 95% CI 9 for women from our results.

The strongest association of NOACs, especially dabigatran, on risk reduction of liver injury 10 compared to warfarin was seen in patients <65 years. This suggests that younger patients may 11 12 obtain more clinical hepatic safety benefit than older patients. Aging reduces the ability to maintain homeostasis due to structural alteration or dysfunction, and is noted to be a major risk 13 factor for liver diseases and injury(38). In Spain, 45% of cases of drug-induced liver injury 14 reported from 1994-2004 occurred in patients aged >60 years(39). Increased body fat paired with 15 decreased basal metabolic rate and renal blood flow could change the distribution and clearance 16 of drugs in older individuals, increasing their vulnerability to hepatotoxicity. In dabigatran users 17 \geq 65 years, the area under the curve is 1.7-2.0 fold higher than that in younger subjects(37, 40). 18 19 This may explain the increasing trends in liver injury in NOAC users, especially in patients taking dabigatran and rivaroxaban. The nonsignificant finding observed in the 65-75 age group 20 21 may be attributed to a drop in the incidence rate of warfarin users.

22

1 Possible biological basis for study findings

2 Different pharmacokinetic profiles of oral anticoagulants may help explain differences in hepatic safety profiles(37). High-energy reactions involving cytochrome-P450 enzymes causing decline 3 4 of adenosine triphosphate levels, loss of ionic gradients, cell swelling, and rupture could be one reason(17). Compared to warfarin, which is almost 100% hepatically eliminated(29), dabigatran 5 6 is not a substrate, inhibitor, nor an inducer of cytochrome-P450(37), and is hydrolyzed from 7 dabigatran etexilate into active form by an esterase(41). Only 20% of dabigatran is eliminated by 8 the liver(29). In addition, the hydrolyzed form of dabigatran is not a substrate of P-9 glycoprotein(37), which plays an important role in removing foreign substances from cells(42). Although, rivaroxaban does not induce or inhibit P-glycoprotein(37, 43), it is metabolized by 10 cytochrome-P450 and approximately 65% is eliminated by the liver(29, 37). This may relate to 11 the observation that the reduction on risk of liver injury is less pronounced than that of 12 dabigatran. In contrast, apixaban potentially poses the highest burden on the liver, as 75% of the 13 14 drug is metabolized in the liver via cytochrome-P450 which is also a substrate for Pglycoprotein(29, 37). 15

16 Strengths and limitations

Our study design has a number of strengths. To our knowledge, this is the first study to adopt a
laboratory test outcome as an objective measure for the definition of liver injury. We further used
ICD-9-CM codes to define outcome events and to confirm the robustness of our results.
Importantly, we accounted for therapy switching between warfarin and NOACs, drug
discontinuation to avoid misclassification of exposures. The profile of drug hepatotoxicity is
considerably different between western and Asian population(44) and as data on Asian cohorts

are limited, this study provides a unique insight into the liver safety of NOACs and may enable
 comparisons between ethnicities.

3 Considering the observational nature of this study, we cannot rule out the possibility of residual 4 confounding. It is possible that awareness of the potential risk of liver injury with NOACs may have resulted in channeling bias, with patients at risk of potential liver injury being preferentially 5 6 prescribed warfarin, particularly in patients with a history of chronic liver disease. However, 7 both NOACs and warfarin are not recommended for patients with severe hepatic impairment in 8 Hong Kong according to the pharmaceutical product regulator(45). To reduce the potential for 9 bias, we excluded patients with any ICD-9-CM codes or laboratory values indicative of liver injury before the index date, and also used propensity score matching on 40 covariates with good 10 balance in our matched cohort. The sample size for apixaban users is likely too small to draw a 11 12 conclusion about risk of liver injury. Another potential limitation is that although 99.9% of patients in this study had LFTs during the study period, approximately 15% did not have a LFT 13 at baseline. To test the impact of missing values on results, we removed those without baseline 14 LFTs in one of the sensitivity analyses. The results were still consistent with our primary 15 analysis. 16

17

In conclusion, among patients with atrial fibrillation, NOACs as a group, as well as dabigatran
alone, were associated with a significantly lower risk of laboratory-based liver injury when
compared to warfarin. However, the risk of liver injury appears to be higher than that observed in
landmark clinical trials of NOACs, and patients using NOACs who experience liver injury may
have more severe clinical outcomes.

1 Study Highlights

2 WHAT IS KNOWN

- Two cohort studies have investigated the association of NOACs and liver injury using claims
 databases in the United States and Canada.
- The association between NOACs and liver injury was inconsistent and the outcomes did not
 include liver function laboratory tests.
- Inclusion of Asian patients is limited in both randomized controlled trials (RCTs) and cohort
 studies.

9 WHAT IS NEW HERE

- This is the first population-based cohort study that used liver function tests to assess the
- 11 association between NOACs and the risk of liver injury in an Asian population.
- 12 NOACs were associated with improved hepatic safety compared to warfarin among adults
- 13 with atrial fibrillation.
- Liver injury appears to be more frequent in clinical practice than in NOAC RCTs.

1 REFERENCES

Liakoni E, Ratz Bravo AE, Krahenbuhl S. Hepatotoxicity of new oral anticoagulants (NOACs).
 Drug Saf 2015;38:711-720.

Rochwerg B, Xenodemetropoulos T, Crowther M, Spyropoulos A. Dabigatran-induced acute
 hepatitis. Clin Appl Thromb Hemost 2012;18:549-550.

6 3. Clarke SA, Alsaad AA, Mack A, Phillips MB. Apixaban-induced liver injury. BMJ Case Rep
7 2016;2016.

Liakoni E, Ratz Bravo AE, Terracciano L, Heim M, Krahenbuhl S. Symptomatic hepatocellular
 liver injury with hyperbilirubinemia in two patients treated with rivaroxaban. JAMA Intern Med
 2014;174:1683-1686.

Keisu M, Andersson TB. Drug-induced liver injury in humans: the case of ximelagatran. Handb
 Exp Pharmacol 2010:407-418.

13 6. Heidbuchel H, Verhamme P, Alings M, Antz M, Hacke W, Oldgren J, Sinnaeve P, et al.

14 European Heart Rhythm Association Practical Guide on the use of new oral anticoagulants in patients

15 with non-valvular atrial fibrillation. Europace 2013;15:625-651.

16 7. Steffel J, Verhamme P, Potpara TS, Albaladejo P, Antz M, Desteghe L, Haeusler KG, et al. The

17 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral

18 anticoagulants in patients with atrial fibrillation. Eur Heart J 2018;39:1330-1393.

19 8. January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC, Jr., Ellinor PT, et al.

20 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS Guideline for the management of

21 patients with atrial fibrillation: a report of the American College of Cardiology/American Heart

22 Association task force on clinical practice guidelines and the Heart Rhythm Society. J Am Coll Cardiol

23 2019;74:104-132.

Caldeira D, Barra M, Santos AT, de Abreu D, Pinto FJ, Ferreira JJ, Costa J. Risk of drug-induced
 liver injury with the new oral anticoagulants: systematic review and meta-analysis. Heart 2014;100:550-

26 556.

1	10.	0. Alonso A, MacLehose RF, Chen LY, Bengtson LG, Chamberlain AM, Norby FL, Lutsey PL.							
2	Prospective study of oral anticoagulants and risk of liver injury in patients with atrial fibrillation. Heart								
3	2017;103:834-839.								
4	11.	1. Douros A, Azoulay L, Yin H, Suissa S, Renoux C. Non-vitamin K antagonist oral anticoagulants							
5	and ris	k of serious liver injury. J Am Coll Cardiol 2018;71:1105-1113.							
6	12.	Forns J, Cainzos-Achirica M, Hellfritzsch M, Morros R, Poblador-Plou B, Hallas J, Giner-							
7	Soriano	M, et al. Validity of ICD-9 and ICD-10 codes used to identify acute liver injury: a study in three							
8	Europe	an data sources. Pharmacoepidemiol Drug Saf 2019;28:965-975.							
9	13.	Lau WC, Chan EW, Cheung CL, Sing CW, Man KK, Lip GY, Siu CW, et al. Association							
10	betwee	n dabigatran vs warfarin and risk of osteoporotic fractures among patients with nonvalvular atrial							
11	fibrillation. JAMA 2017;317:1151-1158.								
12	14.	Law SWY, Lau WCY, Wong ICK, Lip GYH, Mok MT, Siu CW, Chan EW. Sex-based							
13	differe	nces in outcomes of oral anticoagulation in patients with atrial fibrillation. J Am Coll Cardiol							
14	2018;7	2:271-282.							
15	15.	Cheung KS, Chan EW, Wong AYS, Chen L, Wong ICK, Leung WK. Long-term proton pump							
16	inhibitors and risk of gastric cancer development after treatment for helicobacter pylori: a population-								
17	based s	tudy. Gut 2018;67:28-35.							
18	16.	Wong AY, Wong IC, Chui CS, Lee EH, Chang WC, Chen EY, Leung WK, et al. Association							
19	betwee	n acute neuropsychiatric events and helicobacter pylori therapy containing clarithromycin. JAMA							
20	Intern	Med 2016;176:828-834.							
21	17.	Arora N, Goldhaber SZ. Anticoagulants and transaminase elevation. Circulation 2006;113:e698-							
22	702.								
23	18.	Kwo PY, Cohen SM, Lim JK. ACG Clinical Guideline: evaluation of abnormal liver chemistries.							
24	Am J Gastroenterol 2017;112:18-35.								
25	19.	Food and Drug Administration. Drug induced liver injury: premarketing clinical evaluation;							

26 2009.

1	20.	Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, Pogue J, et al.
2	Dabiga	atran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009;361:1139-1151.
3	21.	Lassen MR, Raskob GE, Gallus A, Pineo G, Chen D, Hornick P, investigators A Apixaban
4	versus	enoxaparin for thromboprophylaxis after knee replacement (ADVANCE-2): a randomised double-
5	blind t	rial. Lancet 2010;375:807-815.
6	22.	Hori M, Matsumoto M, Tanahashi N, Momomura S, Uchiyama S, Goto S, Izumi T, et al.
7	Rivaro	xaban vs. warfarin in Japanese patients with atrial fibrillation - the J-ROCKET AF study. Circ J
8	2012;7	6:2104-2111.
9	23.	Jinjuvadia K, Kwan W, Fontana RJ. Searching for a needle in a haystack: use of ICD-9-CM
10	codes i	in drug-induced liver injury. Am J Gastroenterol 2007;102:2437-2443.
11	24.	Chalasani N, Fontana RJ, Bonkovsky HL, Watkins PB, Davern T, Serrano J, Yang H, et al.
12	Causes	s, clinical features, and outcomes from a prospective study of drug-induced liver injury in the
13	United	States. Gastroenterology 2008;135:1924-1934, 1934 e1921-1924.
14	25.	Bjornsson ES. Drug-induced liver injury: an overview over the most critical compounds. Arch
15	Toxico	bl 2015;89:327-334.
16	26.	Elze MC, Gregson J, Baber U, Williamson E, Sartori S, Mehran R, Nichols M, et al. Comparison
17	of prop	pensity score methods and covariate adjustment: evaluation in 4 cardiovascular studies. J Am Coll
18	Cardio	1 2017;69:345-357.
19	27.	Hollis S, Campbell F. What is meant by intention to treat analysis? Survey of published
20	randon	nised controlled trials. BMJ 1999;319:670-674.
21	28.	Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, Al-Khalidi HR, et al.
22	Apixał	oan versus warfarin in patients with atrial fibrillation. N Engl J Med 2011;365:981-992.
23	29.	Qamar A, Vaduganathan M, Greenberger NJ, Giugliano RP. Oral anticoagulation in patients with
24	liver di	isease. J Am Coll Cardiol 2018;71:2162-2175.

25 30. Gupta SK. Intention-to-treat concept: a review. Perspect Clin Res 2011;2:109-112.

1	31.	Petersen P, Grind M, Adler J, Investigators SI. Ximelagatran versus warfarin for stroke						
2	prevention in patients with nonvalvular atrial fibrillation. SPORTIF II: a dose-guiding, tolerability, and							
3	safety study. J Am Coll Cardiol 2003;41:1445-1451.							
4	32.	32. Albers GW, Diener HC, Frison L, Grind M, Nevinson M, Partridge S, Halperin JL, et al.						
5	Ximelagatran vs warfarin for stroke prevention in patients with nonvalvular atrial fibrillation: a							
6	randor	nized trial. JAMA 2005;293:690-698.						
7	33.	3. Agnelli G, Eriksson BI, Cohen AT, Bergqvist D, Dahl OE, Lassen MR, Mouret P, et al. Safety						
8	assessi	ment of new antithrombotic agents: lessons from the EXTEND study on ximelagatran. Thromb Res						
9	2009;123:488-497.							
10	34.	Guy J, Peters MG. Liver disease in women: the influence of gender on epidemiology, natural						
11	history	v, and patient outcomes. Gastroenterol Hepatol (N Y) 2013;9:633-639.						
12	35.	Reuben A, Koch DG, Lee WM, Acute Liver Failure Study G. Drug-induced acute liver failure:						
13	results	of a U.S. multicenter, prospective study. Hepatology 2010;52:2065-2076.						
14	36.	Soldin OP, Mattison DR. Sex differences in pharmacokinetics and pharmacodynamics. Clin						
15	Pharm	acokinet 2009;48:143-157.						
16	37.	Gelosa P, Castiglioni L, Tenconi M, Baldessin L, Racagni G, Corsini A, Bellosta S.						
17	Pharm	acokinetic drug interactions of the non-vitamin K antagonist oral anticoagulants (NOACs).						
18	Pharm	acol Res 2018;135:60-79.						
19	38.	Kim IH, Kisseleva T, Brenner DA. Aging and liver disease. Curr Opin Gastroenterol						
20	2015;3	31:184-191.						
21	39.	Andrade RJ, Lucena MI, Fernandez MC, Pelaez G, Pachkoria K, Garcia-Ruiz E, Garcia-Munoz						

- 22 B, et al. Drug-induced liver injury: an analysis of 461 incidences submitted to the Spanish registry over a
- 23 10-year period. Gastroenterology 2005;129:512-521.
- 24 40. Stangier J, Clemens A. Pharmacology, pharmacokinetics, and pharmacodynamics of dabigatran
- etexilate, an oral direct thrombin inhibitor. Clin Appl Thromb Hemost 2009;15 Suppl 1:9S-16S.

1	41.	Blech S, Ebner T, Ludwig-Schwellinger E, Stangier J, Roth W. The metabolism and disposition
2	of the	oral direct thrombin inhibitor, dabigatran, in humans. Drug Metab Dispos 2008;36:386-399.
3	42.	Lin JH, Yamazaki M. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin
4	Pharm	acokinet 2003;42:59-98.
5	43.	Gnoth MJ, Buetehorn U, Muenster U, Schwarz T, Sandmann S. In vitro and in vivo P-
6	glycop	protein transport characteristics of rivaroxaban. J Pharmacol Exp Ther 2011;338:372-380.
7	44.	Suk KT, Kim DJ. Drug-induced liver injury: present and future. Clin Mol Hepatol 2012;18:249-
8	257.	
9	45.	Drug Office Department of Health The Government of the Hong Kong SAR. Oral anticoagulants
10	and an	tiplatelet drugs. In; 2014.
11		
12		
13		
14		
15		
16		
47		
17		
18		
19		
20		
21		

1 Acknowledgment

2 We thank Dr. Eric Y.F. Wan and Dr. Kenneth K.C. Man, who provided statistical consultation,

3 Ms. Pat Wong, who provided administrative support for this study, and Ms. Lisa Y.L. Lam for

4 proofreading the manuscript.

5 CONFLICT OF INTEREST

Guarantor of the article: First author Jiaxi Zhao, MSc, and corresponding author Esther W
Chan, PhD, take full responsibility for the conduct of the study and have had access to the data
and have control of the decision to publish.

9 Specific author contributions: All authors have contributed to and approved the final version of
10 the manuscript. The respective roles of each author are the following: concept and design by
11 Zhao, Blais, Suh, Wong and Chan; acquisition, analysis, or interpretation of data by all authors;
12 drafting of the manuscript by Zhao, Blais, Suh, Chan; critical revision of the manuscript for
13 important intellectual content by All authors; statistical analysis by Zhao, Blais, Chen.

14 **Financial support:** None.

Potential competing interests: All authors have completed and submitted the ICMJE Form for
Disclosure of Potential Conflicts of Interest. Mr. Joseph E Blais is supported by the Hong Kong
Research Grants Council as a recipient of the Hong Kong PhD Fellowship Scheme. Prof. Ian CK
Wong received grants from the Research Grants Council (RGC, Hong Kong), Innovative
Medicines Initiative (IMI), Shire, Janssen-Cilag, Eli-Lily, Pfizer, Bayer, European Union FP7
program, outside the submitted work. Ian Wong is a member of the National Institute for Health
and Clinical Excellence (NICE) ADHD Guideline Group, the British Association for

Psychopharmacology ADHD guideline group, and advisor to Shire. Dr. Esther W Chan has
 received honorarium from the Hospital Authority and research funding from The Hong Kong
 Research Grants Council, The Research Fund Secretariat of the Food and Health Bureau,
 Narcotics Division of the Security Bureau of HKSAR, Hong Kong; National Natural Science
 Fund of China, China; Wellcome Trust, United Kingdom; Bayer, Bristol-Myers Squibb, Pfizer,
 Janssen, Amgen and Takeda, for work unrelated to this study. No other disclosures were
 reported.

Figure Legends 1

2

3 Figure 1. Study Flow Chart of NOACs and Warfarin New Users Selection

Abbreviations: AF, atrial fibrillation; CDARS, Clinical Data Analysis and Reporting System (of the Hong Kong Hospital Authority); ICD-9-CM,

4 5 6 International Statistical Classification of Diseases, Ninth Revision, Clinical Modification; LFT, liver function test; NOACs, non-vitamin K antagonist oral anticoagulants; OAC, oral anticoagulant; PS, propensity score.

7

2 Figure 2. Forest Plots with the Primary Analyses and All Sensitivity Analyses

1

3 4 5 6 7 8 9 10 Abbreviations: HR, hazard ratio; ICD-9-CM, International Statistical Classification of Diseases, Ninth Revision, Clinical Modification; IPTW, inverse probability of treatment weighting; LFTs, liver function tests; NOACs, non -vitamin K antagonist oral anticoagulants; ULN, upper limit

of normal. Forest plot with HRs for use of NOACs compared with use of warfarin associated with liver injury. Full covariate adjustment indicates

that all covariates, which were in propensity score matching, were adjusted for in the Cox regression model. Partial covariate adjustment indicates that only selected covariates (age, sex, Charlson Comorbidity Index, kidney diseases, congestive heart failure, antibacterial agents, proton pump

inhibitors, lipid-lowering agents, angiotensin-converting-enzyme inhibitors, diuretics and digoxin) were adjusted for in the Cox regression model.

Inverse probability weighting with no truncation indicates that no changed in estimated weights. Inverse probability of treatment weighting with

1% truncation indicates that the individuals with weights below or above the 1st or 99th percentile respectively, were set to the truncation 11 threshold.

Baseline characteristic [*]	Before propensity score matching			After propensity score matching		
	Warfarin (n=8,519)	NOACs (n=9,762)	SMD [†]	Warfarin (n=6,849)	NOACs (n=6,849)	SMD [†]
Age, mean (SD), y	72.6 (11.6)	75.1 (10.2)	0.231	73.9 (10.7)	73.9 (10.5)	0.004
Women	3,905	4,937	0.095	3,280	3,322	0.012
	(45.8)	(50.6)		(47.9)	(48.5)	
Health status score on index	date					
CCI, mean (SD) [‡]	1.7 (1.7)	1.4 (1.5)	0.197	1.5 (1.5)	1.5 (1.5)	0.031
CHADS ₂ , mean (SD) [§]	2.2 (1.5)	2.2 (1.5)	0.022	2.2 (1.5)	2.2 (1.5)	0.010
CHA ₂ DS ₂ -VASc, mean	3.7 (1.9)	3.7 (1.8)	0.024	3.7 (1.9)	3.7 (1.9)	0.013
(SD)						
Laboratory tests [¶] within 90 (days prior to i	ndex date				
ALT, median (IQR), U/L	21.1 (18.0)	20.0 (15.5)	0.116	21.0 (16.4)	21.0 (16.0)	0.049
AST, median (IQR), U/L	27.5 (19.0)	25.0 (15.1)	0.145	27.0 (17.6)	25.0 (15.0)	0.131
ALP, median (IQR), U/L	75.0 (29.4)	72.8 (28.7)	0.115	74.0 (28.9)	72.7 (28.5)	0.070
Total bilirubin, median	0.74 (0.50)	0.71 (0.45)	0.085	0.73 (0.47)	0.71 (0.47)	0.013
(IQR), mg/dL	× /	× /		``'	``'	
Comorbidities on or before i	ndex date					
Viral hepatitis	163 (1.9)	188 (1.9)	0.001	136 (2.0)	136 (2.0)	0
Non-viral liver diseases	2 (<0.1)	4 (<0.1)	0.010	2 (<0.1)	3 (<0.1)	0.008
Alcoholism	91 (1.1)	92 (0.9)	0.013	67 (1.0)	62 (0.9)	0.008
Gallbladder diseases	208 (2.4)	230 (2.4)	0.006	158 (2.3)	169 (2.5)	0.011
Kidney diseases	1,051	549 (5.6)	0.236	459 (6.7)	513 (7.5)	0.031
	(12.3)					
Diabetes mellitus	2,064	2,132	0.057	1,540	1,583	0.015
	(24.2)	(21.8)		(22.5)	(23.1)	
Myocardial infarction	756 (8.9)	610 (6.2)	0.099	485 (7.1)	501 (7.3)	0.009
Congestive heart failure	2,644	2,070	0.225	1,654	1,766	0.038
-	(31.0)	(21.2)		(24.1)	(25.8)	
Hypertension	4,481	5,041	0.019	3,564	3,582	0.005
	(52.6)	(51.6)		(52.0)	(52.3)	
Anemia	854 (10.0)	743 (7.6)	0.085	562 (8.2)	596 (8.7)	0.018
Coagulopathy	73 (0.9)	74 (0.8)	0.011	50 (0.7)	52 (0.8)	0.003
Gastrointestinal bleeding	727 (8.5)	740 (7.6)	0.035	535 (7.8)	548 (8.0)	0.007
Intracranial bleeding	265 (3.1)	300 (3.1)	0.002	210 (3.1)	210 (3.1)	0
Other bleedings	707 (8.3)	819 (8.4)	0.003	561 (8.2)	575 (8.4)	0.007
Ischemic stroke	2,705	3,204	0.023	2,216	2,184	0.010
	(31.8)	(32.8)		(32.4)	(31.9)	
Peripheral vascular diseases	247 (2.9)	152 (1.6)	0.091	117 (1.7)	136 (2.0)	0.021
Cancers	1,166	1,512	0.051	993 (14.5)	1,006	0.005
	(13.7)	(15.5)		` '	(14.7)	
Medications use within 90 da	· ,				- *	
Antibacterial agents	2,697	2,614	0.107	1,950	2,022	0.023
C	(31.7)	(26.8)		(28.5)	(29.5)	
Antifungal agents	24 (0.3)	23 (0.2)	0.009	15 (0.2)	13 (0.2)	0.006
Acetaminophen	3,179	3,539	0.022	2,487	2,497	0.003
-	(37.3)	(36.3)		(36.3)	(36.5)	
PPIs	2,118	2,865	0.101	1,732	1,748	0.005
	(24.9)	(29.3)		(25.3)	(25.5)	
H2-receptor antagonists	4,490	5,264	0.024	3,672	3,658	0.004
	(52.7)	(53.9)		(53.6)	(53.4)	

 Table 1. Baseline Characteristics of Warfarin and NOAC Users Before and After

 Propensity Score Matching

Medications use within 365 days prior to index date

6,597	7,709	0.037	5,313	5,319	0.002
· · ·	· ,	0.192	· ·	· /	0.002
(47.3)	(56.8)		(51.1)	(51.0)	
1,645	1,804	0.021	1,247	1,262	0.006
(19.3)	(18.5)		(18.2)	(18.4)	
960 (11.3)	1,061	0.013	775 (11.3)	766 (11.2)	0.004
	(10.9)				
3,634	3,621	0.114	2,717	2,771	0.016
(42.7)	(37.1)		(39.7)	(40.5)	
540 (6.3)	862 (8.8)	0.094	471 (6.9)	483 (7.1)	0.007
4,920	6,053	0.087	4,115	4,068	0.014
(57.8)	(62.0)		(60.1)	(59.4)	
5,133	6,207	0.069	4,220	4,273	0.016
(60.3)	(63.6)		(61.6)	(62.4)	
3,690	3,242	0.209	2,503	2,628	0.038
(43.3)	(33.2)		(36.5)	(38.4)	
2,278	2,035	0.139	1,591	1,601	0.003
(26.7)	(20.8)		(23.2)	(23.4)	
45 (0.5)	55 (0.6)	0.005	41 (0.6)	39 (0.6)	0.004
28 (0.3)	23 (0.2)	0.018	16 (0.2)	17 (0.2)	0.003
148 (1.7)	168 (1.7)	0.001	116 (1.7)	112 (1.6)	0.005
37 (0.4)	43 (0.4)	0.001	30 (0.4)	27 (0.4)	0.007
	(77.4) 4,030 (47.3) 1,645 (19.3) 960 (11.3) 3,634 (42.7) 540 (6.3) 4,920 (57.8) 5,133 (60.3) 3,690 (43.3) 2,278 (26.7) 45 (0.5) 28 (0.3) 148 (1.7) 37 (0.4) (47.3) (47.7) (47.8) (47.7) (47.8) ($\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Abbreviations: ACEIs, angiotensin-converting-enzyme inhibitors; ALP, alkaline phosphatase; ALT, alanine aminotransferase; ARBs, angiotensin II receptor blockers; AST, aspartate aminotransferase; CCBs, calcium channel blockers; CCI, Charlson Comorbidity Index; IQR, interquartile range; NOACs, non-vitamin K antagonist oral anticoagulants; NSAIDs, non-steroidal anti-inflammatory drugs; PPIs, proton pump inhibitors; SMD, standardized mean difference.

* Values are expressed as frequency (%) unless otherwise specified.

[†] SMD indicates difference in mean or proportion of covariates in NOAC group vs warfarin group divided by the pooled standard deviation. SMD of less than 0.1 indicates a negligible difference between groups. After matching, only AST showed a slightly higher value of 0.131.

⁺ CCI indicates patients with myocardial infarction, congestive heart failure, peripheral vascular disease, cerebrovascular accident or transient ischemic attack, dementia, chronic obstructive pulmonary disease, connective tissue disease, peptic ulcer disease, liver disease, diabetes mellitus, hemiplegia, moderate to severe chronic kidney disease, solid tumor, leukemia, lymphoma, acquired immune deficiency syndrome. The severity of comorbidity was categorized into three grades based on the score: mild with scores of 1-2; moderate with scores of 3-4; severe with scores of 5 or above (higher score indicates a higher risk of mortality).

CHADS₂ indicates patients with congestive heart failure, hypertension, age 75 years or older, diabetes mellitus, prior stroke or transient ischemic attack or systemic embolism. The score ranges from 0 to 6 (higher score indicates a higher risk of stroke).

|| CHA₂DS₂-VASc indicates patients with congestive heart failure, hypertension, age 75 years or older, diabetes mellitus, age 65 to 74, prior stroke or transient ischemic attack or systemic embolism, vascular disease, and sex category (women). The score ranges from 0 to 9 (higher score indicates a higher risk of stroke).

¶ There were 13684 (99.9%) patients who ever had a LFT during the whole study period. A total of 1842 (13.4%) patients did not have any hepatic function laboratory tests within 90 days prior to index date:1849 (13.5%) patients were missing ALT, 10 835 (79.1%) were missing AST, 1855 (13.5%) were missing total bilirubin, and 1852 (13.5%) were missing ALP. SI conversion factors: To convert ALT/AST to μ kat/L, multiply values by 0.0167; to convert total bilirubin to μ mol/L, multiply values by 17.104.

1

2

- 3
- 4

5

6

Propensity Score Matching (n=513)					
	Warfarin (n=313)	NOACs (n=200)	Dabigatran (n=93)	Rivaroxaban (n=63)	Apixaban (n=44)
Diagnostic imaging*					
Diagnostic imaging of the	65 (20.8)	49 (24.5)	27 (29.0)	12 (19.0)	10 (22.7)
liver within 90 days after the					
outcome date					
Acute liver failure, transplant and death					
Acute liver failure diagnosis	18 (5.8)	14 (7.0)	6 (6.5)	8 (12.7)	0 (0)
within 90 days after outcome					
date	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Liver transplant within 90	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
days after the outcome date Death from any cause within	102(22.6)	69 (34.5)	21 (22 2)	26(41.2)	12 (27.2)
90 days after the outcome	102 (32.6)	09 (34.3)	31 (33.3)	26 (41.3)	12 (27.3)
date					
Death from liver causes	1 (0.3)	3 (1.5)	2 (2.2)	1 (1.6)	0 (0)
within 90 days after the	1 (0.5)	5 (1.5)	2 (2:2)	1 (1.0)	0(0)
outcome date					
Time from oral anticoagulant initiation to liver injury					
<1 month	37 (11.8)	23 (11.5)	11 (11.8)	7 (11.1)	5 (11.4)
≥ 1 month to <3 months	33 (10.5)	19 (9.5)	6 (6.5)	9 (14.3)	4 (9.1)
\geq 3 month to <6 months	33 (10.5)	17 (8.5)	12 (12.9)	1 (1.6)	4 (9.1)
≥ 6 to < 12 months	40 (12.8)	36 (18.0)	13 (14.0)	13 (20.6)	10 (22.7)
≥ 12 to < 24 months	61 (19.5)	56 (28.0)	22 (23.7)	17 (27.0)	17 (38.6)
≥ 24 months	109 (34.8)	49 (24.5)	29 (31.2)	16 (25.4)	4 (9.1)
Laboratory tests on outcome					
ALT, median (IQR), U/L	177.3	184.2	210.0	204.0 (482.5)	146.5 (214.0)
> 5 times III N	(247.9)	(308.5)	(321.0)	27 (59 7)	22(50.0)
\geq 5 times ULN	182 (58.1)	119	60 (64.5)	37 (58.7)	22 (50.0)
≥10 times ULN	93 (29.7)	(59.5) 75 (37.5)	39 (41.9)	24 (38.1)	12 (27.2)
\geq 10 times ULN \geq 20 times ULN	52 (16.6)	40 (20.0)	18 (19.4)	17 (27.0)	12 (27.3) 5 (11.4)
ALP, median (IQR), U/L	129.0	139.5	149.0	120 (70)	183.5 (297.5)
	(116.0)	(132.5)	(176.0)	120 (70)	105.5 (277.5)
≥ 2 times ULN	82 (26.2)	62 (31.0)	32 (34.4)	9 (14.3)	21 (47.7)
≥ 4 times ULN	22 (7.0)	24 (12.0)	12 (12.9)	1 (1.6)	11 (25.0)
Total bilirubin, median	2.91 (1.80)	3.04	3.00 (2.67)	2.69 (1.65)	3.17 (1.46)
(IQR), mg/dL	. ,	(1.85)			. ,
≥3 times ULN	146 (46.6)	101	46 (49.5)	27 (42.9)	28 (63.6)
		(50.5)			
≥5 times ULN	44 (14.1)	46 (23.0)	25 (26.9)	9 (14.3)	12 (27.3)
ALT/ALP ratio (R)					
≤ 2 (cholestatic)	208 (66.5)	124	58 (62.4)	31 (49.2)	35 (79.5)
		(62.0)			
>2 to <5 (mixed)	54 (17.3)	39 (19.5)	15 (16.1)	17 (27.0)	7 (15.9)
\geq 5 (hepatocellular)	51 (16.3)	37 (18.5)	20 (21.5)	15 (23.8)	2 (4.5)
Comorbidities within 30 days			2(20)	0 (0)	O(0)
Viral hepatitis Non-viral liver diseases	7 (2.2)	3(1.5)	3(3.2)	0(0)	$ \begin{array}{c} 0 (0) \\ 0 (0) \end{array} $
Alcoholism	0 (0) 2 (0.6)	0 (0) 1 (0.5)	0 (0) 0 (0)	0 (0) 0 (0)	0 (0) 1 (2.3)
Gallbladder diseases	2 (0.0) 62 (19.8)	44 (22.0)	23 (24.7)	9 (14.3)	12 (27.3)
Summader diseases	02 (17.0)	++ (22.0)	23 (24.7)	> (17.3)	12 (21.3)

Table 2. Characteristics of Warfarin and NOAC Users with Liver Injury BeforePropensity Score Matching (n=513)

Myocardial infarction Congestive heart failure Hypertension Shock/hypotension	26 (8.3) 118 (37.7) 67 (21.4) 33 (10.5)	15 (7.5) 61 (30.5) 48 (24.0) 23 (11.5)	8 (8.6) 30 (32.3) 24 (25.8) 15 (16.1)	5 (7.9) 20 (31.7) 12 (19.0) 7 (11.1)	2 (4.5) 11 (25.0) 12 (27.3) 1 (2.3)
Medication use within 30 days	· ,	. ,	15 (10.1)	/(11.1)	1 (2.3)
Antibacterial agents	158 (50.5)	115 (57.5)	57 (61.3)	33 (52.4)	25 (56.8)
Antifungal agents	3 (1.0)	0 (0)	0 (0)	0 (0)	0 (0)
Acetaminophen	156 (49.8)	106 (53.0)	47 (50.5)	33 (52.4)	26 (59.1)
PPIs	168 (53.7)	(55.6) 113 (56.5)	47 (50.5)	34 (54.0)	32 (72.7)
H2-receptor antagonists	133 (42.5)	84 (42.0)	43 (46.2)	27 (42.9)	14 (31.8)
Antiplatelet agents	101 (32.3)	61 (30.5)	28 (30.1)	19 (30.2)	14 (31.8)
Lipid lowering drugs	160 (51.1)	122 (61.0)	45 (48.4)	44 (69.8)	33 (75.0)
Antiarrhythmics	74 (23.6)	(01.0) 47 (23.5)	20 (21.5)	23 (36.5)	4 (9.1)
NSAIDs	5 (1.6)	9 (4.5)	6 (6.5)	1 (1.6)	2 (4.5)
Nucleoside analogs	6 (1.9)	1 (0.5)	1 (1.1)	0 (0)	0 (0)
Antituberculosis agents	4 (1.3)	6 (3.0)	4 (4.3) †	0 (0)	2 (4.5)
Antiepileptics	6 (1.9)	6 (3.0)	2 (2.2)	2 (3.2)	2 (4.5)
Immunosuppressants	1 (0.3)	0 (0)	0 (0)	0 (0)	0 (0)

Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; IQR, interquartile range; NOACs, non-vitamin K antagonist oral anticoagulants; NSAIDs, non-steroidal anti-inflammatory drugs; PPIs, proton pump inhibitors; ULN, upper limit of normal. Values are expressed as frequency (%) unless otherwise specified.

* See supplementary appendix for ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) procedure codes. † Liver injury attributed to antituberculosis medications in diagnosis comment for one dabigatran user.

	Before propensity set	core matching		After propensity score matching		
Exposure	Total No. / No. of events/person- years / Incidence per 1000 person- years (95% CI)	Crude HR (95% CI)	P value	Total No. / No. of events / person-years / Incidence per 1000 person- years (95% CI)	Adjusted HR (95% CI)	<i>P</i> value
Warfarin	8,519 / 313 / 16,369 / 19.1 (17.1 to 21.3)	1.00 (reference)		6,849 / 232 / 13,179 / 17.6 (15.4 to 20.0)	1.00 (reference)	
NOACs	9,762 / 200 / 15,173 / 13.2 (11.4 to 15.1)	0.65 (0.55 to 0.78)	< 0.001	6,849 / 141 / 10,727 / 13.1 (11.1 to 15.4)	0.71 (0.58 to 0.89)	0.002
Dabigatran	5,125 / 93 / 8,861 / 10.5 (8.5 to 12.8)	0.53 (0.42 to 0.67)	< 0.001	3,663 / 72 / 6,391 / 11.3 (8.9 to 14.1)	0.63 (0.48 to 0.82)	<0.001
Rivaroxaban	2,924 / 63 / 4,312 / 14.6 (11.3 to 18.5)	0.71 (0.54 to 0.94)	0.02	2,016 / 40 / 3,014 / 13.3 (9.6 to 17.8)	0.72 (0.51 to 1.01)	0.05
Apixaban	1,713 / 44 / 2,000 / 22.0 (16.1 to 29.1)	1.04 (0.75 to 1.43)	0.83	1,170 / 29 / 1,321 / 22.0 (14.9 to 30.9)	1.13 (0.77 to 1.68)	0.53

Table 3. Crude and Adjusted Estimates of Liver Injury Before and After Propensity Score Matching

Abbreviations: CI, confidence interval; HR, hazard ratio; NOACs, non-vitamin K antagonist oral anticoagulants.

Stratified by sex	Men (n=7,096)			Women (n=6,602	2)		
Exposures	Total No. / No. o	f event / person- per 1000 person-	Adjusted HR (95% CI)	Total No. / No. of		Adjusted HR (95% CI)	<i>P</i> value for interaction
Warfarin	3,569 / 129 / 6,87	8 / 18.8	1.00 (reference)	3,280 / 103 / 6,30	2/16.3	1.00 (reference)	
	(15.7 to 22.2)			(13.4 to 19.7)			
NOACs	3,527 / 73 / 5,411	/ 13.5	0.69 (0.52 to	3,322 / 68 / 5,315	/ 12.8	0.75	0.68
	(10.6 to 16.8)		0.92)	(10.0 to 16.1)		(0.55 to 1.03)	
Dabigatran	1,893 / 36 / 3,276	/ 11.0	0.57 (0.40 to	1,770 / 36 / 3,115	/ 11.6	0.70	0.48
C	(7.8 to 15.0)		0.83)	(8.2 to 15.8)		(0.48 to 1.02)	
Rivaroxaban	1,041 / 24 / 1,495	/ 16.1	0.81 (0.52 to	975 / 16 / 1,519 /	10.5	0.62	0.43
	(10.5 to 23.4)		1.26)	(6.2 to 16.6)		(0.36 to 1.05)	
Apixaban	593 / 13 / 640 / 20).3	0.99 (0.56 to	577 / 16 / 681 / 23	3.5	1.30	0.46
1	(11.2 to 33.4)		1.77)	(13.8 to 37.0)		(0.76 to 2.23)	
Stratified on ag	e group					· · · ·	
	< 65 years (n=2,	767)	65-74 years (n=3,	775)	\geq 75 years (n=7,1)	156)	
Exposures	Total No. / No.	Adjusted HR	Total No. / No.	Adjusted HR	Total No. / No.	Adjusted HR	<i>P</i> value for
•	of event /	(95% CI)	of event /	(95% CI)	of event /	(95% CI)	interaction
	person-years /		person-years /		person-years /		
	Incidence per		Incidence per		Incidence per		
	1,000 person-		1000 person-		1000 person-		
	years (95% CI)		years (95% CI)		years (95% CI)		
Warfarin	1,451 / 51 /	1.00 (reference)	1,815 / 47 /	1.00 (reference)	3,583 / 134 /	1.00 (reference)	
	3,177 / 16.1		3,792 / 12.4 (9.2		6,210 / 21.6		
	(12.0 to 20.9)		to 16.3)		(18.1 to 25.4)		
NOACs	1,316 / 15 /	0.38	1,960 / 40 /	1.00	3,573 / 86 /	0.73	0.21
	2,038 / 7.4 (4.2	(0.22 to 0.69)	3,389 / 11.8 (8.5	(0.65 to 1.55)	5,299 / 16.2	(0.56 to 0.96)	
	to 11.7)		to 15.8)		(13.0 to 19.9)		
Dabigatran	751 / 4 / 1,307 /	0.17	1,097 / 24 /	0.97	1,815 / 44 /	0.67	0.07
	3.1 (0.9 to 7.1)	(0.06 to 0.47)	2,106 / 11.4 (7.4	(0.59 to 1.59)	2,979 / 14.8	(0.48 to 0.95)	
			to 16.6)		(10.8 to 19.6)		
Rivaroxaban	399 / 5 / 539 /	0.45	579 / 11 / 931 /	1.03	1,038 / 24 /	0.70	0.61
	9.3 (3.3 to 19.9)	(0.18 to 1.14)	11.8 (6.1 to 20.2)	(0.52 to 2.01)	1,544 / 15.5	(0.45 to 1.08)	
					(10.1 to 22.6)		
Apixaban	166 / 6 / 191 /	1.43	284 / 5 / 353 /	1.18	720 / 18 / 776 /	1.02	0.34
-	31.3 (12.5 to	(0.61 to 3.35)	14.2 (5.1 to 30.4)	(0.46 to 3.02)	23.2 (14.1 to	(0.62 to 1.68)	
					35.6)		

 Table 4. Estimates of Liver Injury Risk After Propensity Score Matching Stratified by Sex and by Age Group

 Stratified by sex

Abbreviations: CI, confidence interval; HR, hazard ratio; NOACs, non-vitamin K antagonist oral anticoagulant.

REVISED Highlighted Manuscript (All MS Text, Refs, Legends)

1 Association Between Non-vitamin K Antagonist Oral Anticoagulants or

2 Warfarin and Liver Injury: A Cohort Study

3	Jiaxi Zhao, MSc ^{1,8} , Joseph E Blais, BScPharm ¹ , Celine S.L. Chui, PhD ¹ , In-Hye Suh, PharmD ¹ ,
4	Esa Y.H. Chen, BPharm ² , Wai-Kay Seto, MD ^{3,4,5} , Michael T. Mok, MBBS ⁶ , Vincent K.C. Yan,
5	BPharm ¹ , Wallis C.Y. Lau, PhD ^{1,7} , Ian C.K. Wong, PhD ^{1,7} , Esther W. Chan, PhD ^{1,8}
6	¹ Centre for Safe Medication Practice and Research, Department of Pharmacology and
7	Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR,
8	China
9	² Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences,
10	Monash University, Victoria, Australia
11	³ . Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
12	^{4.} State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR,
12 13	^{4.} State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China
13	China
13 14	China ^{5.} Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
13 14 15	China ^{5.} Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China ^{6.} Department of Cardiology, University Hospital Geelong and Deakin University, Geelong,
13 14 15 16	China ^{5.} Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China ^{6.} Department of Cardiology, University Hospital Geelong and Deakin University, Geelong, Victoria, Australia

20 Corresponding author

- 1 Dr. Esther W Chan
- 2 General Office, L02-56 2/F, Laboratory Block LKS Faculty of Medicine, The University of
- 3 Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
- 4 Tel: +852-28315110; Email: <u>ewchan@hku.hk</u>

1 Abstract

OBJECTIVES: The risk of liver injury in patients with atrial fibrillation (AF) using nonvitamin K antagonist oral anticoagulants (NOACs) has not been previously examined using liver
function tests as the primary outcome in the real-world setting. This study assessed the
association between NOACs (dabigatran, rivaroxaban, apixaban) and warfarin and the risk of
liver injury, as defined by laboratory tests.
METHODS: Patients newly diagnosed with AF and prescribed NOACs or warfarin between

2010-2016, identified using the Hong Kong Clinical Database and Reporting System, were
matched on age, sex, health status scores, comorbidities and medications by propensity score on
a 1:1 ratio. Risk of liver injury, defined as laboratory test values >3 times the upper limit of
normal of alanine aminotransferase or aspartate aminotransferase and >2 times the upper limit of
normal of total bilirubin, was compared between NOAC and warfarin users using Cox
proportional hazards regression.

20 proportional mazards regression.

14 **RESULTS:** After propensity score matching, 13,698 patients were included, of which 141

15 (2.1%) NOAC users and 232 (3.4%) warfarin users developed liver injury. The hazard ratio (HR)

16 for NOAC vs warfarin users was 0.71 (95% CI: 0.58-0.89). When comparing individual NOACs,

17 only dabigatran (HR: 0.63; 95% CI: 0.48-0.82) was associated with a lower risk of liver injury.

DISCUSSION: Among patients with atrial fibrillation, NOACs as a group, as well as dabigatran
 alone, were associated with a significantly lower risk of laboratory-based liver injury when
 compared to warfarin. However, liver injury occurs more frequently in real-world practice than
 in NOAC randomized controlled trials.

22 Keywords: Oral anticoagulants, liver injury, liver function test, atrial fibrillation, safety

1 List of Abbreviations

- 2 AF = atrial fibrillation
- 3 ALT = alanine aminotransferase
- 4 ALP = alkaline phosphatase
- 5 AST = aspartate aminotransferase
- 6 CDARS = Clinical Data Analysis and Reporting System
- 7 ICD-9-CM = International Classification of Diseases, Ninth Revision, Clinical Modification
- 8 IPTW = inverse probability of treatment weighting
- 9 ITT = intention-to-treat
- 10 LFT = liver function test
- 11 NOAC = Non-vitamin K antagonist oral anticoagulant
- 12 Word count: 3554

1 INTRODUCTION

2 Safety signals from pharmacovigilance databases and case reports have emerged warning of 3 potential risk for liver injury associated with non-vitamin K antagonist oral anticoagulants 4 $(NOAC_s)(1-4)$. These reports are particularly concerning considering the case of an earlier direct thrombin inhibitor, ximelagatran, which was withdrawn from the market due to 5 6 hepatotoxicity(5). In light of the heightened concern for hepatotoxicity, guidelines from the 7 American Heart Association and European Heart Rhythm Association recommend routine 8 monitoring of liver function among patients with atrial fibrillation (AF) using NOACs(6-8). 9 To date, one systematic review(9), and two population-based observational studies have been conducted to assess the risk of liver injury associated with NOACs(10, 11). However, the results 10 11 were not consistent among the three studies. NOACs were found to be significantly associated 12 with a lower risk of liver injury compared with warfarin in a US cohort study(10), but no such association was identified in the other two(9, 11). Notably the observational studies did not 13 include laboratory tests in the determination of liver injury. The use of diagnostic coding to 14 define the outcome of liver injury is also particularly challenging using electronic databases as 15 such data may be inaccurate or incomplete without thorough case validation. The validity of 16 International Statistical Classification of Diseases, Ninth Revision, Clinical Modification (ICD-17 9-CM) and ICD-10-CM codes used to identify acute liver injury in three European data sources 18 19 found a wide range of positive predictive values using different outcome definitions (8%-84%)(12). Low positive predictive values using ICD codes alone, may bias the results due to 20 misclassification of outcomes. 21

The objective of this study was to compare the risk of laboratory-measured liver injury, betweenthe use of NOACs and warfarin in patients with AF.

1 METHODS

2 Data source

3 We accessed data from the Clinical Data Analysis and Reporting System (CDARS), an electronic health record database of the Hong Kong Hospital Authority. Since 1991, the Hospital 4 5 Authority is the statutory body responsible for managing public hospitals and institutions, 6 specialist and general out-patient clinics in Hong Kong, and serves over 7 million residents in the 7 region(13, 14). CDARS contains clinical information including demographics, date of hospital 8 admission and discharge, diagnoses (coded ICD-9-CM), medical and surgical procedures, 9 laboratory tests and prescription records. Various high-quality large population-based pharmacoepidemiological studies have used CDARS in the past(13-16). The validation of the 10 database was demonstrated by high coding accuracy for the diagnoses of AF, with PPV of 11 12 95%(13, 14). This study was approved by the Institutional Review Board of the University of Hong Kong/Hospital Authority Hong Kong West Cluster (reference number: UW13-468). 13 Informed consent was not required for the use of de-identified data in the absence of patient 14 15 contact.

16 Study design and selection of patients

A population-based, new-user, active-comparator, cohort study was conducted. Patients newly
diagnosed with AF (ICD-9-CM code 427.3) between January 1, 2010 and December 31, 2016
were identified from CDARS. Index date was defined as prescription start date of the first record
of oral anticoagulant following the first date of AF diagnosis (AF-date).

Patients with a history of valvular heart diseases, hyperthyroidism or a valve replacement surgery
on or before AF-date were excluded. Patients with records of cardiac surgery, myocarditis,

1 pericarditis and pulmonary embolism within 90 days prior to AF-date (potential transient cases of AF), were also excluded. Patients were removed if they were <18 years, had missing 2 information on sex or date of birth, died on or before AF-date, or were never exposed to any oral 3 anticoagulants including warfarin, dabigatran, rivaroxaban and apixaban since the AF-date. 4 Patients were considered as prior users, and hence excluded, if they had received any oral 5 6 anticoagulants within 180 days prior to index date. Patients, who had been exposed to multiple oral anticoagulants on the index date, or who had elevated liver enzymes (same definition as 7 outcome, Appendix Table 1 in the supplement) during a 90-day baseline window prior to the 8 9 index date, or who had specific liver disease diagnoses (Appendix Table 2 in the supplement) before the index date, were also removed (Figure 1). 10

The remaining patients were divided into two groups based on the initial oral anticoagulant they took since the AF-date (NOACs vs. warfarin). The groups were followed up from index date until the earliest occurrence of the outcome, death, switching or discontinuation of the index oral anticoagulant (>30 day gap between two consecutive prescriptions of the same oral anticoagulant), or end of study (December 31, 2017).

16 **Outcome**

17 The outcome of interest was liver injury, defined as the earliest occurrence of an alanine

18 aminotransferase (ALT) or an aspartate aminotransferase (AST) serum level greater than 3 times

- 19 the upper limit of normal, and a total bilirubin level greater than 2 times the upper limit of
- 20 normal in accordance with Hy's law(17, 18) (Appendix Table 1 in the supplement). Hy's law is
- used by the FDA(19) to detect potential liver injury for new drug therapies. The same
- 22 transaminase and bilirubin thresholds have also been widely used in NOAC randomized
- controlled trials (RCTs)(20-22). Applying the same criteria to that used in RCTS provides a

1 more valid and comparable outcome definition. Furthermore, for patients with liver injury, we

2 described the clinical characteristics and outcomes including mortality; liver transplant;

3 diagnosis of acute liver failure; diagnostic imaging; time to onset of liver injury; comorbidities;

4 medication use; distribution of serum concentrations of ALT, ALP, and total bilirubin on the

5 outcome date; and the ALT/ALP ratio (R value).

6 Confounding control

7 All covariates potentially associated with liver injury or suspected to influence oral anticoagulant treatment selection were considered to be confounders. These covariates(10, 11, 23-25) were 8 9 baseline demographic characteristics on the index date including age and sex; health status scores including Charlson Comorbidity Index, CHA2DS2-VASc on the index date; 10 comorbidities identified on and before index date including viral hepatitis, non-viral liver 11 12 diseases, alcoholism, gallbladder diseases, kidney diseases, diabetes mellitus, myocardial infarction, congestive heart failure, hypertension, anemia, coagulopathy, gastrointestinal 13 bleeding, intracranial bleeding, other bleedings, ischemic stroke, peripheral vascular diseases, 14 cancer, as well as concomitant medications used within 90 days prior to index date including 15 antibacterial agents, antifungal agents, acetaminophen, proton pump inhibitors, H2-receptor 16 antagonists, and medications used within 365 days prior to index date as listed in Appendix 17 Tables 2-3 in the supplement. 18

Propensity score matching, was used to reduce the imbalance in baseline characteristics between the comparison groups. All aforementioned variables were used for propensity score estimation, regardless of its statistical significance or collinearity in logistic regression model(26). Patients prescribed either NOACs or warfarin were matched on a 1:1 ratio on the propensity score using a nearest-neighbor matching algorithm with a caliper of 0.1 (Appendix Figure 1 in the

supplement). To assess the balance in baseline characteristics after matching, the standardized
mean difference (SMD), calculated as the difference in means or proportions over the pooled
standard deviation (SD), was used. The negligible difference was defined as a SMD less than
0.1.

5 Statistical analysis

Patient characteristics were summarized as mean (SD) or median (interquartile range [IQR]) for
continuous variables and in frequencies (percentages) for categorical variables.

8 The incidence rate, calculated as the number of events divided by the duration of follow-up in

9 person-years, as well as 95% confidence interval (CI), were obtained via Poisson regression

10 model. We estimated hazard ratios (HR) and 95% CIs using a Cox proportional hazards model

11 for the risk of liver injury between NOACs and warfarin users. Subgroup analyses were

12 conducted to investigate the risk of liver injury in NOACs and warfarin users by sex and age

13 group (<65, 65-74, and \geq 75 years).

Eight sensitivity analyses were performed to assess the robustness of our results. First, different 14 prescription gap lengths of 5 and 15 days were used to assess possible misclassification of 15 16 exposure due to drug discontinuation. Second, an intention-to-treat approach (ITT) was conducted to test the quality of our cohort with respect to compliance and deviation of allocation 17 of exposure(27). Third, in order to test the impact of missing values on the results, we excluded 18 19 patients who did not have any ALT, AST, total bilirubin, or alkaline phosphatase (ALP) test, during the 90-day baseline window. Fourth, we increased the upper limits of normal for serum 20 ALT and bilirubin (and excluded AST), with liver injury defined as an ALT greater than three 21 times the upper limit of normal (i.e. > 120 U/L [women] and >150 U/L [men]) and total bilirubin 22

1	greater than 2 times the upper limit of normal (i.e. > 2.5 mg/L). Furthermore, we defined liver
2	injury and acute liver failure using ICD-9-CM codes to assess consistency with the primary
3	analysis. Finally, we controlled for potential confounders used in the primary analysis through a
4	multivariate regression model and inverse probability of treatment weighting (IPTW). Data
5	analyses were conducted by JZ with independent cross-checking conducted by JEB and EYC.
6	Statistical significance was defined as $P < 0.05$; all alternative hypotheses were 2-sided. All
7	analyses were performed using R software (version 3.6.0; R Foundation for Statistical
8	Computing, Vienna, Austria).

RESULTS

Baseline characteristics

3	Among the 71,630 patients newly diagnosed with AF identified in CDARS between 2010-2016,
4	18, 281 new users of NOACs and warfarin remained after applying the exclusion criteria. A total
5	of 13,698 patients were included in the main analysis after matching on a 1:1 ratio with good
6	balance in baseline characteristics (Figure 1, Table 1; Appendix Tables 4-5 in the supplement).
7	The mean (SD) age of the whole cohort was 73.9 (10.6) years, and 6,602 (48.2%) were women.
8	The median (IQR) follow-up period was 1.2 (2.1) years for NOAC users, and 1.1 (3.0) years for
9	warfarin users.
10	Risk of liver injury
11	Characteristics of patients with liver injury
12	In the overall cohort, a total of 513 (2.8%) patients experienced liver injury during follow-up
13	(Table 2). None received a liver transplant within 90 days after the outcome date. The
14	proportion of patients who underwent diagnostic imaging of the liver were diagnosed with acute
15	liver failure, died from any cause, or died from liver failure was consistently greater in NOAC
16	users compared to warfarin users. Similarly, NOAC users on average had greater elevations in
17	serum ALT, ALP, and total bilirubin. For warfarin and NOAC users, most cases of liver injury
18	occurred within 2 years of initiating treatment. Nearly two-thirds of patients had a cholestatic
19	pattern of liver injury as indicated by ALT/ALP ratio ≤ 2 . Characteristics of patients with liver
20	

Primary analysis

1	In the matched cohort, 373 of 13,698 patients (2.7%) developed liver injury: 141 NOAC users
2	(2.1%), of which 72 were dabigatran users (2.0%); 40 were rivaroxaban users (2.0%); 29 were
3	apixaban users (2.5%); and 232 warfarin users (3.4%). The use of NOACs was significantly
4	associated with a lower risk of liver injury compared with the use of warfarin. The adjusted HR
5	was 0.71 (95% CI: 0.58-0.89) (Table 3). When comparing individual NOAC agents to warfarin,
6	dabigatran was associated with a lower risk of liver injury (HR: 0.63; 95% CI: 0.48-0.82).
7	However, there was no statistically significant association between liver injury and use of
8	rivaroxaban (HR: 0.72; 95% CI: 0.51-1.01) or use of apixaban (HR: 1.13; 95% CI: 0.77-1.68).
9	Kaplan-Meier curves for liver injury are presented in Appendix Figure 2 in the supplement.
10	Subgroup analyses
11	When stratified by sex, a similar association between liver injury and use of NOACs compared
11	When stratified by sex, a similar association between liver injury and use of NOACs compared
11 12	When stratified by sex, a similar association between liver injury and use of NOACs compared with use of warfarin was only found to be statistically significant in men (NOACs vs warfarin:
11 12 13	When stratified by sex, a similar association between liver injury and use of NOACs compared with use of warfarin was only found to be statistically significant in men (NOACs vs warfarin: HR: 0.69; 95% CI: 0.52-0.92; dabigatran vs warfarin: HR: 0.57; 95% CI: 0.40-0.83) (Table 4). In
11 12 13 14	When stratified by sex, a similar association between liver injury and use of NOACs compared with use of warfarin was only found to be statistically significant in men (NOACs vs warfarin: HR: 0.69; 95% CI: 0.52-0.92; dabigatran vs warfarin: HR: 0.57; 95% CI: 0.40-0.83) (Table 4). In contrast, no statistically significant associations were found in women. For subgroup analyses of
11 12 13 14 15	When stratified by sex, a similar association between liver injury and use of NOACs compared with use of warfarin was only found to be statistically significant in men (NOACs vs warfarin: HR: 0.69; 95% CI: 0.52-0.92; dabigatran vs warfarin: HR: 0.57; 95% CI: 0.40-0.83) (Table 4). In contrast, no statistically significant associations were found in women. For subgroup analyses of different age groups, NOACs (HR: 0.38; 95% CI: 0.22-0.69) as well as dabigatran (HR: 0.17;
11 12 13 14 15 16	When stratified by sex, a similar association between liver injury and use of NOACs compared with use of warfarin was only found to be statistically significant in men (NOACs vs warfarin: HR: 0.69; 95% CI: 0.52-0.92; dabigatran vs warfarin: HR: 0.57; 95% CI: 0.40-0.83) (Table 4). In contrast, no statistically significant associations were found in women. For subgroup analyses of different age groups, NOACs (HR: 0.38; 95% CI: 0.22-0.69) as well as dabigatran (HR: 0.17; 95% CI: 0.06-0.47) were significantly associated with lower risk of liver injury for patients aged
11 12 13 14 15 16 17	When stratified by sex, a similar association between liver injury and use of NOACs compared with use of warfarin was only found to be statistically significant in men (NOACs vs warfarin: HR: 0.69; 95% CI: 0.52-0.92; dabigatran vs warfarin: HR: 0.57; 95% CI: 0.40-0.83) (Table 4). In contrast, no statistically significant associations were found in women. For subgroup analyses of different age groups, NOACs (HR: 0.38; 95% CI: 0.22-0.69) as well as dabigatran (HR: 0.17; 95% CI: 0.06-0.47) were significantly associated with lower risk of liver injury for patients aged <65 years and in patients aged ≥75 years (NOACs vs warfarin: HR: 0.73; 95% CI: 0.56-0.96;

Sensitivity analyses 20

21 The results of all sensitivity analyses were generally consistent with the primary analysis (Figure 2; Appendix Tables 7-14 in the supplement). Compared with warfarin, NOACs and dabigatran 22

1	were all statistically significantly associated with lower risk of liver injury, except in the
2	sensitivity analyses where the upper limits of normal for serum ALT and bilirubin were
3	increased (HR: 0.81; 95% CI: 0.61-1.06), and ICD-9-CM codes used to identify liver injury (HR:
4	0.82; 95% CI: 0.63-1.07) and acute liver failure (HR: 1.41; 95% CI: 0.58-3.38). Rivaroxaban
5	showed a statistically significant association with lower risk of liver injury compared with
6	warfarin in the sensitivity analyses which used a 5-day (HR: 0.60; 95% CI: 0.40-0.89) and 15-
7	day gap (HR: 0.61; 95% CI: 0.42-0.89) as discontinuation, and which used partial covariate
8	adjustment (HR: 0.75; 95% CI: 0.57-1.00) and IPTW with 1% truncation (HR: 0.76; 95% CI:
9	0.58-1.00).

1 **DISCUSSION**

2	In this population-based study, we investigated the risk of liver injury associated with the use of
3	NOACs compared with warfarin in patients with AF, and found that NOACs were associated
4	with a lower risk of liver injury. This decreased risk of liver injury relative to warfarin remained
5	whether NOACs were evaluated as a class or by individual agent, with dabigatran associated
6	with the lowest risk of liver injury among the three NOAC agents examined. Several sensitivity
7	analyses, with the exception of acute liver failure, were consistent with the primary analysis.
8	Clinical outcomes and onset of liver injury
9	Despite being associated with a lower risk of liver injury, our results suggest that if a patient
10	experiences liver injury while using oral anticoagulants, the clinical outcomes may be more
11	severe with NOACs. Average serum concentrations of ALT, ALP, and total bilirubin appeared to
12	be higher for NOAC users than warfarin users. While no significant difference between groups
13	was observed for the outcome of acute liver failure, the point estimate suggested potential harm
14	from NOAC use. Extreme elevations in ALT and an R \geq 5 indicate a predominantly
15	hepatocellular pattern of liver injury in patients also diagnosed with acute liver failure. Thus, it
16	appears that NOAC use is associated with a lower overall risk of liver injury but may result in
17	more severe presentation if liver injury does occur.
18	A systematic review and meta-analysis of 29 NOAC RCTs did not identify an increased risk of
19	liver injury for NOACs versus control(9). However, the maximum duration of follow-up for the
20	included RCTs was 2 years, and our findings suggest that the time to onset among patients who
21	developed liver injury was ≥ 2 years in 35% of warfarin and 25% of NOAC users. The risk of
22	liver injury (as per our study definition) in NOAC RCTs ranged from 0.1% to 0.5% (20, 28, 29),

1	which is much lower compared to our estimates of 2.0%-2.5% (Appendix Table 15-16 in the
2	supplement). Increasing the thresholds for ALT and bilirubin in a sensitivity analysis still
3	suggests a higher risk in clinical use versus RCTs (1.1%-1.9%). In contrast to RCTs, a longer
4	duration of follow-up and inclusion of patients with a history of liver disease and gallbladder
5	disease may account for our findings. Therefore, hepatic function should continue to be
6	monitored in patients taking oral anticoagulants for the management of atrial fibrillation.

7 **Comparison to previous observational studies**

Recently, two observational studies(10, 11) investigated the association between liver injury and 8 use of NOACs. Alonso *et al.*⁽¹⁰⁾ found that NOACs were associated with lower risk of liver 9 injury hospitalization compared with warfarin. However, this conclusion might be biased by the 10 investigators' use of the ITT approach, which could not eliminate the effect of differential 11 misclassification of exposure(30). On the other hand, while Douros *et al.*⁽¹¹⁾ improved their study 12 design by considering switching/discontinuation therapy, and found no association between use 13 of NOACs and increased risk of liver injury compared to warfarin, the estimates had reduced 14 precision likely due to very few identified events. Notably, neither of the two studies used liver 15 function tests (LFTs) to identify liver injury. 16

Consistent with the findings by Alonso *et al.*(10), dabigatran was associated with a lower risk of
liver injury. However, in our study, neither the lower risk observed with rivaroxaban or the
higher risk observed with apixaban was statistically significant. Ximelagatran induced
hepatotoxicity was identified in long-term (up to 6 months) post-marketing surveillance
studies(31-33). Ongoing surveillance with long-term follow-up will be important particularly for
further assessment of the potential risk associated with apixaban as the number of exposed
individuals in this study was small and the point estimate favored warfarin.

1 Effects of sex and age

2 A significant association between use of NOACs and lower risk of liver injury was only found in 3 men. Generally, women are more likely to present with drug-induced hepatotoxicity than 4 men(34, 35). In females, a relatively smaller plasma volume, higher proportion of body fat, lower basal metabolic rate and lower renal blood flow, may cause drugs to more readily 5 6 accumulate leading to potential liver injury(36). A pharmacokinetic study showed that both the 7 maximum serum concentration and the area under the curve of dabigatran and apixaban are 8 higher in women than men(37). Further studies are warranted considering the marginal 95% CI 9 for women from our results.

The strongest association of NOACs, especially dabigatran, on risk reduction of liver injury 10 compared to warfarin was seen in patients <65 years. This suggests that younger patients may 11 12 obtain more clinical hepatic safety benefit than older patients. Aging reduces the ability to maintain homeostasis due to structural alteration or dysfunction, and is noted to be a major risk 13 factor for liver diseases and injury(38). In Spain, 45% of cases of drug-induced liver injury 14 reported from 1994-2004 occurred in patients aged >60 years(39). Increased body fat paired with 15 decreased basal metabolic rate and renal blood flow could change the distribution and clearance 16 of drugs in older individuals, increasing their vulnerability to hepatotoxicity. In dabigatran users 17 \geq 65 years, the area under the curve is 1.7-2.0 fold higher than that in younger subjects(37, 40). 18 19 This may explain the increasing trends in liver injury in NOAC users, especially in patients taking dabigatran and rivaroxaban. The nonsignificant finding observed in the 65-75 age group 20 21 may be attributed to a drop in the incidence rate of warfarin users.

22

1 Possible biological basis for study findings

2 Different pharmacokinetic profiles of oral anticoagulants may help explain differences in hepatic safety profiles(37). High-energy reactions involving cytochrome-P450 enzymes causing decline 3 4 of adenosine triphosphate levels, loss of ionic gradients, cell swelling, and rupture could be one reason(17). Compared to warfarin, which is almost 100% hepatically eliminated(29), dabigatran 5 6 is not a substrate, inhibitor, nor an inducer of cytochrome-P450(37), and is hydrolyzed from 7 dabigatran etexilate into active form by an esterase(41). Only 20% of dabigatran is eliminated by 8 the liver(29). In addition, the hydrolyzed form of dabigatran is not a substrate of P-9 glycoprotein(37), which plays an important role in removing foreign substances from cells(42). Although, rivaroxaban does not induce or inhibit P-glycoprotein(37, 43), it is metabolized by 10 cytochrome-P450 and approximately 65% is eliminated by the liver(29, 37). This may relate to 11 the observation that the reduction on risk of liver injury is less pronounced than that of 12 dabigatran. In contrast, apixaban potentially poses the highest burden on the liver, as 75% of the 13 14 drug is metabolized in the liver via cytochrome-P450 which is also a substrate for Pglycoprotein(29, 37). 15

16 Strengths and limitations

Our study design has a number of strengths. To our knowledge, this is the first study to adopt a
laboratory test outcome as an objective measure for the definition of liver injury. We further used
ICD-9-CM codes to define outcome events and to confirm the robustness of our results.
Importantly, we accounted for therapy switching between warfarin and NOACs, drug
discontinuation to avoid misclassification of exposures. The profile of drug hepatotoxicity is
considerably different between western and Asian population(44) and as data on Asian cohorts

are limited, this study provides a unique insight into the liver safety of NOACs and may enable
 comparisons between ethnicities.

3 Considering the observational nature of this study, we cannot rule out the possibility of residual 4 confounding. It is possible that awareness of the potential risk of liver injury with NOACs may have resulted in channeling bias, with patients at risk of potential liver injury being preferentially 5 6 prescribed warfarin, particularly in patients with a history of chronic liver disease. However, 7 both NOACs and warfarin are not recommended for patients with severe hepatic impairment in 8 Hong Kong according to the pharmaceutical product regulator(45). To reduce the potential for 9 bias, we excluded patients with any ICD-9-CM codes or laboratory values indicative of liver injury before the index date, and also used propensity score matching on 40 covariates with good 10 balance in our matched cohort. The sample size for apixaban users is likely too small to draw a 11 12 conclusion about risk of liver injury. Another potential limitation is that although 99.9% of patients in this study had LFTs during the study period, approximately 15% did not have a LFT 13 at baseline. To test the impact of missing values on results, we removed those without baseline 14 LFTs in one of the sensitivity analyses. The results were still consistent with our primary 15 analysis. 16

17

In conclusion, among patients with atrial fibrillation, NOACs as a group, as well as dabigatran
alone, were associated with a significantly lower risk of laboratory-based liver injury when
compared to warfarin. However, the risk of liver injury appears to be higher than that observed in
landmark clinical trials of NOACs, and patients using NOACs who experience liver injury may
have more severe clinical outcomes.

1 Study Highlights

2 WHAT IS KNOWN

- Two cohort studies have investigated the association of NOACs and liver injury using claims
 databases in the United States and Canada.
- The association between NOACs and liver injury was inconsistent and the outcomes did not
 include liver function laboratory tests.
- Inclusion of Asian patients is limited in both randomized controlled trials (RCTs) and cohort
 studies.

9 WHAT IS NEW HERE

- This is the first population-based cohort study that used liver function tests to assess the
- 11 association between NOACs and the risk of liver injury in an Asian population.
- 12 NOACs were associated with improved hepatic safety compared to warfarin among adults
- 13 with atrial fibrillation.
- Liver injury appears to be more frequent in clinical practice than in NOAC RCTs.

1 REFERENCES

Liakoni E, Ratz Bravo AE, Krahenbuhl S. Hepatotoxicity of new oral anticoagulants (NOACs).
 Drug Saf 2015;38:711-720.

Rochwerg B, Xenodemetropoulos T, Crowther M, Spyropoulos A. Dabigatran-induced acute
 hepatitis. Clin Appl Thromb Hemost 2012;18:549-550.

6 3. Clarke SA, Alsaad AA, Mack A, Phillips MB. Apixaban-induced liver injury. BMJ Case Rep
7 2016;2016.

Liakoni E, Ratz Bravo AE, Terracciano L, Heim M, Krahenbuhl S. Symptomatic hepatocellular
 liver injury with hyperbilirubinemia in two patients treated with rivaroxaban. JAMA Intern Med
 2014;174:1683-1686.

Keisu M, Andersson TB. Drug-induced liver injury in humans: the case of ximelagatran. Handb
 Exp Pharmacol 2010:407-418.

13 6. Heidbuchel H, Verhamme P, Alings M, Antz M, Hacke W, Oldgren J, Sinnaeve P, et al.

14 European Heart Rhythm Association Practical Guide on the use of new oral anticoagulants in patients

15 with non-valvular atrial fibrillation. Europace 2013;15:625-651.

16 7. Steffel J, Verhamme P, Potpara TS, Albaladejo P, Antz M, Desteghe L, Haeusler KG, et al. The

17 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral

18 anticoagulants in patients with atrial fibrillation. Eur Heart J 2018;39:1330-1393.

19 8. January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC, Jr., Ellinor PT, et al.

20 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS Guideline for the management of

21 patients with atrial fibrillation: a report of the American College of Cardiology/American Heart

22 Association task force on clinical practice guidelines and the Heart Rhythm Society. J Am Coll Cardiol

23 2019;74:104-132.

Caldeira D, Barra M, Santos AT, de Abreu D, Pinto FJ, Ferreira JJ, Costa J. Risk of drug-induced
 liver injury with the new oral anticoagulants: systematic review and meta-analysis. Heart 2014;100:550-

26 556.

1	10.	Alonso A, MacLehose RF, Chen LY, Bengtson LG, Chamberlain AM, Norby FL, Lutsey PL.			
2	Prospective study of oral anticoagulants and risk of liver injury in patients with atrial fibrillation. Heart				
3	2017;1	03:834-839.			
4	11.	Douros A, Azoulay L, Yin H, Suissa S, Renoux C. Non-vitamin K antagonist oral anticoagulants			
5	and ris	k of serious liver injury. J Am Coll Cardiol 2018;71:1105-1113.			
6	12.	Forns J, Cainzos-Achirica M, Hellfritzsch M, Morros R, Poblador-Plou B, Hallas J, Giner-			
7	Soriano	M, et al. Validity of ICD-9 and ICD-10 codes used to identify acute liver injury: a study in three			
8	Europe	an data sources. Pharmacoepidemiol Drug Saf 2019;28:965-975.			
9	13.	Lau WC, Chan EW, Cheung CL, Sing CW, Man KK, Lip GY, Siu CW, et al. Association			
10	betwee	n dabigatran vs warfarin and risk of osteoporotic fractures among patients with nonvalvular atrial			
11	fibrilla	tion. JAMA 2017;317:1151-1158.			
12	14.	Law SWY, Lau WCY, Wong ICK, Lip GYH, Mok MT, Siu CW, Chan EW. Sex-based			
13	differences in outcomes of oral anticoagulation in patients with atrial fibrillation. J Am Coll Cardiol				
14	2018;7	2:271-282.			
15	15.	Cheung KS, Chan EW, Wong AYS, Chen L, Wong ICK, Leung WK. Long-term proton pump			
16	inhibito	ors and risk of gastric cancer development after treatment for helicobacter pylori: a population-			
17	based s	tudy. Gut 2018;67:28-35.			
18	16.	Wong AY, Wong IC, Chui CS, Lee EH, Chang WC, Chen EY, Leung WK, et al. Association			
19	betwee	n acute neuropsychiatric events and helicobacter pylori therapy containing clarithromycin. JAMA			
20	Intern	Med 2016;176:828-834.			
21	17.	Arora N, Goldhaber SZ. Anticoagulants and transaminase elevation. Circulation 2006;113:e698-			
22	702.				
23	18.	Kwo PY, Cohen SM, Lim JK. ACG Clinical Guideline: evaluation of abnormal liver chemistries.			
24	Am J Gastroenterol 2017;112:18-35.				
25	19.	Food and Drug Administration. Drug induced liver injury: premarketing clinical evaluation;			

26 2009.

1	20.	Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, Pogue J, et al.
2	Dabiga	atran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009;361:1139-1151.
3	21.	Lassen MR, Raskob GE, Gallus A, Pineo G, Chen D, Hornick P, investigators A Apixaban
4	versus	enoxaparin for thromboprophylaxis after knee replacement (ADVANCE-2): a randomised double-
5	blind t	rial. Lancet 2010;375:807-815.
6	22.	Hori M, Matsumoto M, Tanahashi N, Momomura S, Uchiyama S, Goto S, Izumi T, et al.
7	Rivaro	xaban vs. warfarin in Japanese patients with atrial fibrillation - the J-ROCKET AF study. Circ J
8	2012;7	6:2104-2111.
9	23.	Jinjuvadia K, Kwan W, Fontana RJ. Searching for a needle in a haystack: use of ICD-9-CM
10	codes i	in drug-induced liver injury. Am J Gastroenterol 2007;102:2437-2443.
11	24.	Chalasani N, Fontana RJ, Bonkovsky HL, Watkins PB, Davern T, Serrano J, Yang H, et al.
12	Causes	s, clinical features, and outcomes from a prospective study of drug-induced liver injury in the
13	United	States. Gastroenterology 2008;135:1924-1934, 1934 e1921-1924.
14	25.	Bjornsson ES. Drug-induced liver injury: an overview over the most critical compounds. Arch
15	Toxico	bl 2015;89:327-334.
16	26.	Elze MC, Gregson J, Baber U, Williamson E, Sartori S, Mehran R, Nichols M, et al. Comparison
17	of prop	pensity score methods and covariate adjustment: evaluation in 4 cardiovascular studies. J Am Coll
18	Cardio	1 2017;69:345-357.
19	27.	Hollis S, Campbell F. What is meant by intention to treat analysis? Survey of published
20	randon	nised controlled trials. BMJ 1999;319:670-674.
21	28.	Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, Al-Khalidi HR, et al.
22	Apixał	oan versus warfarin in patients with atrial fibrillation. N Engl J Med 2011;365:981-992.
23	29.	Qamar A, Vaduganathan M, Greenberger NJ, Giugliano RP. Oral anticoagulation in patients with
24	liver di	isease. J Am Coll Cardiol 2018;71:2162-2175.

25 30. Gupta SK. Intention-to-treat concept: a review. Perspect Clin Res 2011;2:109-112.

1	31.	Petersen P, Grind M, Adler J, Investigators SI. Ximelagatran versus warfarin for stroke
2	preven	tion in patients with nonvalvular atrial fibrillation. SPORTIF II: a dose-guiding, tolerability, and
3	safety	study. J Am Coll Cardiol 2003;41:1445-1451.
4	32.	Albers GW, Diener HC, Frison L, Grind M, Nevinson M, Partridge S, Halperin JL, et al.
5	Ximela	agatran vs warfarin for stroke prevention in patients with nonvalvular atrial fibrillation: a
6	randor	nized trial. JAMA 2005;293:690-698.
7	33.	Agnelli G, Eriksson BI, Cohen AT, Bergqvist D, Dahl OE, Lassen MR, Mouret P, et al. Safety
8	assessi	ment of new antithrombotic agents: lessons from the EXTEND study on ximelagatran. Thromb Res
9	2009;1	23:488-497.
10	34.	Guy J, Peters MG. Liver disease in women: the influence of gender on epidemiology, natural
11	history	v, and patient outcomes. Gastroenterol Hepatol (N Y) 2013;9:633-639.
12	35.	Reuben A, Koch DG, Lee WM, Acute Liver Failure Study G. Drug-induced acute liver failure:
13	results	of a U.S. multicenter, prospective study. Hepatology 2010;52:2065-2076.
14	36.	Soldin OP, Mattison DR. Sex differences in pharmacokinetics and pharmacodynamics. Clin
15	Pharm	acokinet 2009;48:143-157.
16	37.	Gelosa P, Castiglioni L, Tenconi M, Baldessin L, Racagni G, Corsini A, Bellosta S.
17	Pharm	acokinetic drug interactions of the non-vitamin K antagonist oral anticoagulants (NOACs).
18	Pharm	acol Res 2018;135:60-79.
19	38.	Kim IH, Kisseleva T, Brenner DA. Aging and liver disease. Curr Opin Gastroenterol
20	2015;3	31:184-191.
21	39.	Andrade RJ, Lucena MI, Fernandez MC, Pelaez G, Pachkoria K, Garcia-Ruiz E, Garcia-Munoz

- 22 B, et al. Drug-induced liver injury: an analysis of 461 incidences submitted to the Spanish registry over a
- 23 10-year period. Gastroenterology 2005;129:512-521.
- 24 40. Stangier J, Clemens A. Pharmacology, pharmacokinetics, and pharmacodynamics of dabigatran
- etexilate, an oral direct thrombin inhibitor. Clin Appl Thromb Hemost 2009;15 Suppl 1:9S-16S.

1	41.	Blech S, Ebner T, Ludwig-Schwellinger E, Stangier J, Roth W. The metabolism and disposition
2	of the	oral direct thrombin inhibitor, dabigatran, in humans. Drug Metab Dispos 2008;36:386-399.
3	42.	Lin JH, Yamazaki M. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin
4	Pharm	acokinet 2003;42:59-98.
5	43.	Gnoth MJ, Buetehorn U, Muenster U, Schwarz T, Sandmann S. In vitro and in vivo P-
6	glycop	protein transport characteristics of rivaroxaban. J Pharmacol Exp Ther 2011;338:372-380.
7	44.	Suk KT, Kim DJ. Drug-induced liver injury: present and future. Clin Mol Hepatol 2012;18:249-
8	257.	
9	45.	Drug Office Department of Health The Government of the Hong Kong SAR. Oral anticoagulants
10	and an	tiplatelet drugs. In; 2014.
11		
10		
12		
13		
14		
15		
16		
17		
17		
18		
19		
20		
21		

1 Acknowledgment

2 We thank Dr. Eric Y.F. Wan and Dr. Kenneth K.C. Man, who provided statistical consultation,

3 Ms. Pat Wong, who provided administrative support for this study, and Ms. Lisa Y.L. Lam for

4 proofreading the manuscript.

5 CONFLICT OF INTEREST

Guarantor of the article: First author Jiaxi Zhao, MSc, and corresponding author Esther W
Chan, PhD, take full responsibility for the conduct of the study and have had access to the data
and have control of the decision to publish.

9 Specific author contributions: All authors have contributed to and approved the final version of
10 the manuscript. The respective roles of each author are the following: concept and design by
11 Zhao, Blais, Suh, Wong and Chan; acquisition, analysis, or interpretation of data by all authors;
12 drafting of the manuscript by Zhao, Blais, Suh, Chan; critical revision of the manuscript for
13 important intellectual content by All authors; statistical analysis by Zhao, Blais, Chen.

14 **Financial support:** None.

Potential competing interests: All authors have completed and submitted the ICMJE Form for
Disclosure of Potential Conflicts of Interest. Mr. Joseph E Blais is supported by the Hong Kong
Research Grants Council as a recipient of the Hong Kong PhD Fellowship Scheme. Prof. Ian CK
Wong received grants from the Research Grants Council (RGC, Hong Kong), Innovative
Medicines Initiative (IMI), Shire, Janssen-Cilag, Eli-Lily, Pfizer, Bayer, European Union FP7
program, outside the submitted work. Ian Wong is a member of the National Institute for Health
and Clinical Excellence (NICE) ADHD Guideline Group, the British Association for

Psychopharmacology ADHD guideline group, and advisor to Shire. Dr. Esther W Chan has
 received honorarium from the Hospital Authority and research funding from The Hong Kong
 Research Grants Council, The Research Fund Secretariat of the Food and Health Bureau,
 Narcotics Division of the Security Bureau of HKSAR, Hong Kong; National Natural Science
 Fund of China, China; Wellcome Trust, United Kingdom; Bayer, Bristol-Myers Squibb, Pfizer,
 Janssen, Amgen and Takeda, for work unrelated to this study. No other disclosures were
 reported.

Figure Legends 1

Figure 1. Study Flow Chart of NOACs and Warfarin New Users Selection 2

Abbreviations: AF, atrial fibrillation; CDARS, Clinical Data Analysis and Reporting System (of the Hong Kong Hospital Authority); ICD-9-CM,

3 4 5 International Statistical Classification of Diseases, Ninth Revision, Clinical Modification; LFT, liver function test; NOACs, non-vitamin K antagonist oral anticoagulants; OAC, oral anticoagulant; PS, propensity score.

2 Figure 2. Forest Plots with the Primary Analyses and All Sensitivity Analyses

Abbreviations: HR, hazard ratio; ICD-9-CM, International Statistical Classification of Diseases, Ninth Revision, Clinical Modification; IPTW,

inverse probability of treatment weighting; LFTs, liver function tests; NOACs, non -vitamin K antagonist oral anticoagulants; ULN, upper limit of normal. Forest plot with HRs for use of NOACs compared with use of warfarin associated with liver injury. Full covariate adjustment indicates

that all covariates, which were in propensity score matching, were adjusted for in the Cox regression model. Partial covariate adjustment indicates

3 4 5 6 7 8 9 10 that only selected covariates (age, sex, Charlson Comorbidity Index, kidney diseases, congestive heart failure, antibacterial agents, proton pump

inhibitors, lipid-lowering agents, angiotensin-converting-enzyme inhibitors, diuretics and digoxin) were adjusted for in the Cox regression model.

Inverse probability weighting with no truncation indicates that no changed in estimated weights. Inverse probability of treatment weighting with 1% truncation indicates that the individuals with weights below or above the 1st or 99th percentile respectively, were set to the truncation

11 threshold.

Baseline characteristic [*]	Before prop	ensity score n	After propensity score matching			
	Warfarin (n=8,519)	NOACs (n=9,762)	SMD [†]	Warfarin (n=6,849)	NOACs (n=6,849)	SMD [†]
Age, mean (SD), y	72.6 (11.6)	75.1 (10.2)	0.231	73.9 (10.7)	73.9 (10.5)	0.004
Women	3,905	4,937	0.095	3,280	3,322	0.012
	(45.8)	(50.6)		(47.9)	(48.5)	
Health status score on index	date					
CCI, mean (SD) [‡]	1.7 (1.7)	1.4 (1.5)	0.197	1.5 (1.5)	1.5 (1.5)	0.031
CHADS ₂ , mean (SD) [§]	2.2 (1.5)	2.2 (1.5)	0.022	2.2 (1.5)	2.2 (1.5)	0.010
CHA ₂ DS ₂ -VASc, mean	3.7 (1.9)	3.7 (1.8)	0.024	3.7 (1.9)	3.7 (1.9)	0.013
(SD)	· · ·					
Laboratory tests [¶] within 90 o	davs prior to i	ndex date				
ALT, median (IQR), U/L	21.1 (18.0)	20.0 (15.5)	0.116	21.0 (16.4)	21.0 (16.0)	0.049
AST, median (IQR), U/L	27.5 (19.0)	25.0 (15.1)	0.145	27.0 (17.6)	25.0 (15.0)	0.131
ALP, median (IQR), U/L	75.0 (29.4)	72.8 (28.7)	0.115	74.0 (28.9)	72.7 (28.5)	0.070
Total bilirubin, median	0.74 (0.50)	0.71 (0.45)	0.085	0.73 (0.47)	0.71 (0.47)	0.013
(IQR), mg/dL						
Comorbidities on or before in	ndex date					
Viral hepatitis	163 (1.9)	188 (1.9)	0.001	136 (2.0)	136 (2.0)	0
Non-viral liver diseases	2 (<0.1)	4 (<0.1)	0.010	2 (<0.1)	3 (<0.1)	0.008
Alcoholism	91 (1.1)	92 (0.9)	0.013	67 (1.0)	62 (0.9)	0.008
Gallbladder diseases	208 (2.4)	230 (2.4)	0.006	158 (2.3)	169 (2.5)	0.011
Kidney diseases	1,051	549 (5.6)	0.236	459 (6.7)	513 (7.5)	0.031
	(12.3)			(011)		
Diabetes mellitus	2,064	2,132	0.057	1,540	1,583	0.015
	(24.2)	(21.8)		(22.5)	(23.1)	
Myocardial infarction	756 (8.9)	610 (6.2)	0.099	485 (7.1)	501 (7.3)	0.009
Congestive heart failure	2,644	2,070	0.225	1,654	1,766	0.038
6	(31.0)	(21.2)		(24.1)	(25.8)	
Hypertension	4,481	5,041	0.019	3,564	3,582	0.005
51	(52.6)	(51.6)		(52.0)	(52.3)	
Anemia	854 (10.0)	743 (7.6)	0.085	562 (8.2)	596 (8.7)	0.018
Coagulopathy	73 (0.9)	74 (0.8)	0.011	50 (0.7)	52 (0.8)	0.003
Gastrointestinal bleeding	727 (8.5)	740 (7.6)	0.035	535 (7.8)	548 (8.0)	0.007
Intracranial bleeding	265 (3.1)	300 (3.1)	0.002	210 (3.1)	210 (3.1)	0
Other bleedings	707 (8.3)	819 (8.4)	0.002	561 (8.2)	575 (8.4)	0.007
Ischemic stroke	2,705	3,204	0.003	2,216	2,184	0.007
	(31.8)	(32.8)	0.020	(32.4)	(31.9)	0.010
Peripheral vascular diseases	247 (2.9)	152 (1.6)	0.091	117 (1.7)	136 (2.0)	0.021
Cancers	1,166	1,512	0.051	993 (14.5)	1,006	0.005
	(13.7)	(15.5)	0.001	>>= (1 (1))	(14.7)	0.000
Medications use within 90 da	· /				()	
Antibacterial agents	2,697	2,614	0.107	1,950	2,022	0.023
action agonts	(31.7)	(26.8)	0.207	(28.5)	(29.5)	0.020
Antifungal agents	24 (0.3)	23 (0.2)	0.009	15 (0.2)	13 (0.2)	0.006
Acetaminophen	3,179	3,539	0.002	2,487	2,497	0.003
	(37.3)	(36.3)	0.022	(36.3)	(36.5)	0.005
PPIs	2,118	2,865	0.101	1,732	1,748	0.005
	(24.9)	(29.3)	J.1 J 1	(25.3)	(25.5)	0.000
H2-receptor antagonists	4,490	5,264	0.024	3,672	3,658	0.004
receptor untugonists	(52.7)	(53.9)	0.0 <i>2</i> f	(53.6)	(53.4)	0.004

Table 1. Baseline Characteristics of Warfarin and NOAC Users Before and After Propensity Score Matching Image: Characteristic Score S

Medications use within 365 days prior to index date

Antiplatelet agents	6,597	7,709	0.037	5,313	5,319	0.002
Lipid lowering drugs	(77.4) 4,030	(79.0) 5,549	0.192	(77.6) 3,500	(77.7) 3,492	0.002
Antiarrhythmics	(47.3) 1,645	(56.8) 1,804	0.021	(51.1) 1,247	(51.0) 1,262	0.006
5	(19.3)	(18.5)		(18.2)	(18.4)	
NSAIDs	960 (11.3)	1,061	0.013	775 (11.3)	766 (11.2)	0.004
		(10.9)				
ACEIs	3,634	3,621	0.114	2,717	2,771	0.016
	(42.7)	(37.1)		(39.7)	(40.5)	
ARBs	540 (6.3)	862 (8.8)	0.094	471 (6.9)	483 (7.1)	0.007
Beta blockers	4,920	6,053	0.087	4,115	4,068	0.014
	(57.8)	(62.0)		(60.1)	(59.4)	
CCBs	5,133	6,207	0.069	4,220	4,273	0.016
	(60.3)	(63.6)		(61.6)	(62.4)	
Diuretics	3,690	3,242	0.209	2,503	2,628	0.038
	(43.3)	(33.2)		(36.5)	(38.4)	
Digoxin	. ,	· ,	0.139	· · ·	. ,	0.003
C	(26.7)	(20.8)			(23.4)	
Nucleoside analogs	45 (0.5)	55 (0.6)	0.005	41 (0.6)	39 (0.6)	0.004
Antituberculosis agents	28 (0.3)	23 (0.2)	0.018	16 (0.2)	17 (0.2)	0.003
Antiepileptics	148 (1.7)	168 (1.7)	0.001	116 (1.7)		0.005
1 1	. ,		0.001	. ,		0.007
Antituberculosis agents	2,278 (26.7) 45 (0.5) 28 (0.3) 148 (1.7) 37 (0.4)	2,035 (20.8) 55 (0.6) 23 (0.2) 168 (1.7) 43 (0.4)	0.005 0.018 0.001	1,591 (23.2) 41 (0.6) 16 (0.2) 116 (1.7) 30 (0.4)	1,601 (23.4) 39 (0.6) 17 (0.2) 112 (1.6) 27 (0.4)	0.004 0.003 0.005

Abbreviations: ACEIs, angiotensin-converting-enzyme inhibitors; ALP, alkaline phosphatase; ALT, alanine aminotransferase; ARBs, angiotensin II receptor blockers; AST, aspartate aminotransferase; CCBs, calcium channel blockers; CCI, Charlson Comorbidity Index; IQR, interquartile range; NOACs, non-vitamin K antagonist oral anticoagulants; NSAIDs, non-steroidal anti-inflammatory drugs; PPIs, proton pump inhibitors; SMD, standardized mean difference.

* Values are expressed as frequency (%) unless otherwise specified.

[†] SMD indicates difference in mean or proportion of covariates in NOAC group vs warfarin group divided by the pooled standard deviation. SMD of less than 0.1 indicates a negligible difference between groups. After matching, only AST showed a slightly higher value of 0.131.

⁺ CCI indicates patients with myocardial infarction, congestive heart failure, peripheral vascular disease, cerebrovascular accident or transient ischemic attack, dementia, chronic obstructive pulmonary disease, connective tissue disease, peptic ulcer disease, liver disease, diabetes mellitus, hemiplegia, moderate to severe chronic kidney disease, solid tumor, leukemia, lymphoma, acquired immune deficiency syndrome. The severity of comorbidity was categorized into three grades based on the score: mild with scores of 1-2; moderate with scores of 3-4; severe with scores of 5 or above (higher score indicates a higher risk of mortality).

CHADS₂ indicates patients with congestive heart failure, hypertension, age 75 years or older, diabetes mellitus, prior stroke or transient ischemic attack or systemic embolism. The score ranges from 0 to 6 (higher score indicates a higher risk of stroke).

|| CHA₂DS₂-VASc indicates patients with congestive heart failure, hypertension, age 75 years or older, diabetes mellitus, age 65 to 74, prior stroke or transient ischemic attack or systemic embolism, vascular disease, and sex category (women). The score ranges from 0 to 9 (higher score indicates a higher risk of stroke).

¶ There were 13684 (99.9%) patients who ever had a LFT during the whole study period. A total of 1842 (13.4%) patients did not have any hepatic function laboratory tests within 90 days prior to index date:1849 (13.5%) patients were missing ALT, 10 835 (79.1%) were missing AST, 1855 (13.5%) were missing total bilirubin, and 1852 (13.5%) were missing ALP. SI conversion factors: To convert ALT/AST to μ kat/L, multiply values by 0.0167; to convert total bilirubin to μ mol/L, multiply values by 17.104.

1

2

- 3
- 4

5

_

6

Propensity Score Matchi	ing (n=513)				
	Warfarin (n=313)	<mark>NOACs</mark> (n=200)	<mark>Dabigatran</mark> (n=93)	<mark>Rivaroxaban</mark> (n=63)	<mark>Apixaban</mark> (n=44)
Diagnostic imaging*					
Diagnostic imaging of the	<mark>65 (20.8)</mark>	<mark>49 (24.5)</mark>	<mark>27 (29.0)</mark>	12 (19.0)	10 (22.7)
liver within 90 days after the					
outcome date					
Acute liver failure, transplan	t and death				
Acute liver failure diagnosis	<mark>18 (5.8)</mark>	14 (7.0)	<mark>6 (6.5)</mark>	8 (12.7)	<mark>0 (0)</mark>
within 90 days after outcome					
date					
Liver transplant within 90	<mark>0 (0)</mark>	<mark>0 (0)</mark>	0(0)	<mark>0 (0)</mark>	<mark>0 (0)</mark>
days after the outcome date					
Death from any cause within	102 (32.6)	<mark>69 (34.5)</mark>	<mark>31 (33.3)</mark>	<mark>26 (41.3)</mark>	12 (27.3)
90 days after the outcome					
date					
Death from liver causes	1 (0.3)	<mark>3 (1.5)</mark>	2 (2.2)	<mark>1 (1.6)</mark>	<mark>0 (0)</mark>
within 90 days after the					
outcome date					
Time from oral anticoagulant	t initiation to l	<mark>iver injury</mark>			
<1 month	<mark>37 (11.8)</mark>	<mark>23 (11.5)</mark>	<mark>11 (11.8)</mark>	<mark>7 (11.1)</mark>	<mark>5 (11.4)</mark>
≥1 month to <3 months	<mark>33 (10.5)</mark>	<mark>19 (9.5)</mark>	<mark>6 (6.5)</mark>	<mark>9 (14.3)</mark>	<mark>4 (9.1)</mark>
<mark>≥3 month to <6 months</mark>	<mark>33 (10.5)</mark>	<mark>17 (8.5)</mark>	<mark>12 (12.9)</mark>	<mark>1 (1.6)</mark>	<mark>4 (9.1)</mark>
≥ 6 to ≤ 12 months	<mark>40 (12.8)</mark>	<mark>36 (18.0)</mark>	<mark>13 (14.0)</mark>	<mark>13 (20.6)</mark>	<mark>10 (22.7)</mark>
≥ 12 to ≤ 24 months	<mark>61 (19.5)</mark>	<mark>56 (28.0)</mark>	<mark>22 (23.7)</mark>	<mark>17 (27.0)</mark>	<mark>17 (38.6)</mark>
<mark>≥24 months</mark>	<mark>109 (34.8)</mark>	<mark>49 (24.5)</mark>	<mark>29 (31.2)</mark>	<mark>16 (25.4)</mark>	<mark>4 (9.1)</mark>
Laboratory tests on outcome					
ALT, median (IQR), U/L	<mark>177.3</mark>	<mark>184.2</mark>	<mark>210.0</mark>	204.0 (482.5)	<mark>146.5 (214.0)</mark>
	<mark>(247.9)</mark>	<mark>(308.5)</mark>	<mark>(321.0)</mark>		
≥5 times ULN	<mark>182 (58.1)</mark>	<mark>119</mark>	<mark>60 (64.5)</mark>	<mark>37 (58.7)</mark>	<mark>22 (50.0)</mark>
		<mark>(59.5)</mark>			
\geq 10 times ULN	<mark>93 (29.7)</mark>	<mark>75 (37.5)</mark>	<mark>39 (41.9)</mark>	<mark>24 (38.1)</mark>	<mark>12 (27.3)</mark>
\geq 20 times ULN	<mark>52 (16.6)</mark>	<u>40 (20.0)</u>	<mark>18 (19.4)</mark>	<mark>17 (27.0)</mark>	<mark>5 (11.4)</mark>
ALP, median (IQR), U/L	<mark>129.0</mark>	<mark>139.5</mark>	<mark>149.0</mark>	<mark>120 (70)</mark>	183.5 (297.5)
	(116.0)	(132.5)	(176.0)	0 (1 1 0)	
≥ 2 times ULN	82 (26.2)	62 (31.0)	32 (34.4)	<mark>9 (14.3)</mark>	21 (47.7)
≥4 times ULN	22 (7.0)	24 (12.0)	12 (12.9)	1 (1.6)	11 (25.0)
Total bilirubin, median	<mark>2.91 (1.80)</mark>	3.04	<mark>3.00 (2.67)</mark>	<mark>2.69 (1.65)</mark>	<u>3.17 (1.46)</u>
(IQR), mg/dL	$1 \wedge (\wedge $	(1.85)	AC (40 T)	07 (40 0)	$\frac{1}{2}$
≥3 times ULN	<mark>146 (46.6)</mark>	101	<mark>46 (49.5)</mark>	<mark>27 (42.9)</mark>	<mark>28 (63.6)</mark>
≥5 times ULN	44 (14 1)	(50.5)	25(200)	0(142)	10 (07 2)
	<mark>44 (14.1)</mark>	<mark>46 (23.0)</mark>	<mark>25 (26.9)</mark>	<mark>9 (14.3)</mark>	12 (27.3)
$\frac{\text{ALT/ALP ratio (R)}}{\leq 2 \text{ (cholestatic)}}$	209(665)	<mark>124</mark>	58 (62.4)	21(40.2)	25(70.5)
≤ 2 (choiestatic)	208 (66.5)		<mark>38 (02.4)</mark>	<mark>31 (49.2)</mark>	<mark>35 (79.5)</mark>
>2 to <5 (mixed)	<u>54 (17.3)</u>	<mark>(62.0)</mark> 39 (19.5)	15 (16.1)	17 (27.0)	7 (15.9)
≥ 5 (hepatocellular)	54 (17.3) 51 (16.3)	37 (19.5) 37 (18.5)	$\frac{15(10.1)}{20(21.5)}$	17 (27.0) 15 (23.8)	2(4.5)
Comorbidities within 30 days			20(21.3)	15 (23.6)	2 (+.J)
Viral hepatitis	7 (2.2)	$\frac{3}{3}(1.5)$	<mark>3 (3.2)</mark>	<mark>0 (0)</mark>	<mark>0 (0)</mark>
Non-viral liver diseases	$\frac{1}{0} \frac{(2.2)}{(0)}$	0 (0)	$\frac{0}{0}$	$\frac{0}{0}$ (0)	0(0)
Alcoholism	2 (0.6)	$\frac{0}{1}(0.5)$	0(0)	$\frac{0}{0}$ (0)	1 (2.3)
Gallbladder diseases	<u>62 (19.8)</u>	44 (22.0)	23 (24.7)	9 (14.3)	12 (27.3)
		(22.0)			

Table 2. Characteristics of Warfarin and NOAC Users with Liver Injury Before Propensity Score Matching (n=513)

Myocardial infarction	<mark>26 (8.3)</mark>	15 (7.5)	<mark>8 (8.6)</mark>	<mark>5 (7.9)</mark>	2 (4.5)
Congestive heart failure	118 (37.7)	<mark>61 (30.5)</mark>	<mark>30 (32.3)</mark>	<mark>20 (31.7)</mark>	<mark>11 (25.0)</mark>
Hypertension	<mark>67 (21.4)</mark>	<mark>48 (24.0)</mark>	<mark>24 (25.8)</mark>	<mark>12 (19.0)</mark>	<mark>12 (27.3)</mark>
Shock/hypotension	<mark>33 (10.5)</mark>	<mark>23 (11.5)</mark>	<mark>15 (16.1)</mark>	<mark>7 (11.1)</mark>	<mark>1 (2.3)</mark>
Medication use within 30 day	ys prior to outo	come date			
Antibacterial agents	<mark>158 (50.5)</mark>	<mark>115</mark>	<mark>57 (61.3)</mark>	<mark>33 (52.4)</mark>	<mark>25 (56.8)</mark>
		<mark>(57.5)</mark>			
Antifungal agents	<mark>3 (1.0)</mark>	<mark>0 (0)</mark>	<mark>0 (0)</mark>	<mark>0 (0)</mark>	<mark>0 (0)</mark>
Acetaminophen	<mark>156 (49.8)</mark>	<mark>106</mark>	<mark>47 (50.5)</mark>	<mark>33 (52.4)</mark>	<mark>26 (59.1)</mark>
		<mark>(53.0)</mark>			
PPIs	168 (53.7)	<mark>113</mark>	<mark>47 (50.5)</mark>	<mark>34 (54.0)</mark>	<mark>32 (72.7)</mark>
		<mark>(56.5)</mark>			
H2-receptor antagonists	133 (42.5)	<mark>84 (42.0)</mark>	<mark>43 (46.2)</mark>	<mark>27 (42.9)</mark>	<mark>14 (31.8)</mark>
Antiplatelet agents	<mark>101 (32.3)</mark>	<mark>61 (30.5)</mark>	<mark>28 (30.1)</mark>	<mark>19 (30.2)</mark>	<mark>14 (31.8)</mark>
Lipid lowering drugs	<mark>160 (51.1)</mark>	<mark>122</mark>	<mark>45 (48.4)</mark>	<mark>44 (69.8)</mark>	<mark>33 (75.0)</mark>
		<mark>(61.0)</mark>			
Antiarrhythmics	<mark>74 (23.6)</mark>	<mark>47 (23.5)</mark>	<mark>20 (21.5)</mark>	<mark>23 (36.5)</mark>	<mark>4 (9.1)</mark>
NSAIDs	<mark>5 (1.6)</mark>	<mark>9 (4.5)</mark>	<mark>6 (6.5)</mark>	<mark>1 (1.6)</mark>	<mark>2 (4.5)</mark>
Nucleoside analogs	<mark>6 (1.9)</mark>	<mark>1 (0.5)</mark>	<mark>1 (1.1)</mark>	<mark>0 (0)</mark>	<mark>0 (0)</mark>
Antituberculosis agents	<mark>4 (1.3)</mark>	<mark>6 (3.0)</mark>	<mark>4 (4.3) †</mark>	<mark>0 (0)</mark>	<mark>2 (4.5)</mark>
Antiepileptics	<mark>6 (1.9)</mark>	<mark>6 (3.0)</mark>	<mark>2 (2.2)</mark>	<mark>2 (3.2)</mark>	<mark>2 (4.5)</mark>
Immunosuppressants	<mark>1 (0.3)</mark>	<mark>0 (0)</mark>	<mark>0 (0)</mark>	<mark>0 (0)</mark>	<mark>0 (0)</mark>

 Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; IQR, interquartile range; NOACs, non-vitamin K antagonist oral anticoagulants; NSAIDs, non-steroidal anti-inflammatory drugs; PPIs, proton pump inhibitors; ULN, upper limit of normal.

 Values are expressed as frequency (%) unless otherwise specified.

 * See supplementary appendix for ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) procedure codes.

 † Liver injury attributed to antituberculosis medications in diagnosis comment for one dabigatran user.

	Before propensity set	core matching	After propensity score matching			
Exposure	Total No. / No. of events/person- years / Incidence per 1000 person- years (95% CI)	Crude HR (95% CI)	P value	Total No. / No. of events / person-years / Incidence per 1000 person- years (95% CI)	Adjusted HR (95% CI)	<i>P</i> value
Warfarin	8,519 / 313 / 16,369 / 19.1 (17.1 to 21.3)	1.00 (reference)		6,849 / 232 / 13,179 / 17.6 (15.4 to 20.0)	1.00 (reference)	
NOACs	9,762 / 200 / 15,173 / 13.2 (11.4 to 15.1)	0.65 (0.55 to 0.78)	< 0.001	6,849 / 141 / 10,727 / 13.1 (11.1 to 15.4)	0.71 (0.58 to 0.89)	0.002
Dabigatran	5,125 / 93 / 8,861 / 10.5 (8.5 to 12.8)	0.53 (0.42 to 0.67)	< 0.001	3,663 / 72 / 6,391 / 11.3 (8.9 to 14.1)	0.63 (0.48 to 0.82)	<0.001
Rivaroxaban	2,924 / 63 / 4,312 / 14.6 (11.3 to 18.5)	0.71 (0.54 to 0.94)	0.02	2,016 / 40 / 3,014 / 13.3 (9.6 to 17.8)	0.72 (0.51 to 1.01)	0.05
Apixaban	1,713 / 44 / 2,000 / 22.0 (16.1 to 29.1)	1.04 (0.75 to 1.43)	0.83	1,170 / 29 / 1,321 / 22.0 (14.9 to 30.9)	1.13 (0.77 to 1.68)	0.53

Table 3. Crude and Adjusted Estimates of Liver Injury Before and After Propensity Score Matching

Abbreviations: CI, confidence interval; HR, hazard ratio; NOACs, non-vitamin K antagonist oral anticoagulants.

Stratified by se							
Exposures	Men (n=7,096) Total No. / No. of years / Incidence years (95% CI)	f event / person- per 1000 person-	Adjusted HR (95% CI)	Women (n=6,602 Total No. / No. of years / Incidence years (95% CI)	,	Adjusted HR (95% CI)	<i>P</i> value for interaction
Warfarin	3,569 / 129 / 6,87	8 / 18.8	1.00 (reference)	3,280 / 103 / 6,30	2 / 16.3	1.00 (reference)	
	(15.7 to 22.2)			(13.4 to 19.7)			
NOACs	3,527 / 73 / 5,411	/ 13.5	0.69 (0.52 to	3,322 / 68 / 5,315	/ 12.8	0.75	0.68
	(10.6 to 16.8)		0.92)	(10.0 to 16.1)		(0.55 to 1.03)	
Dabigatran	1,893 / 36 / 3,276	/ 11.0	0.57 (0.40 to	1,770 / 36 / 3,115	/ 11.6	0.70	0.48
	(7.8 to 15.0)		0.83)	(8.2 to 15.8)		(0.48 to 1.02)	
Rivaroxaban	1,041 / 24 / 1,495	/ 16.1	0.81 (0.52 to	975 / 16 / 1,519 /	10.5	0.62	0.43
	(10.5 to 23.4)		1.26)	(6.2 to 16.6)		(0.36 to 1.05)	
Apixaban	593 / 13 / 640 / 20).3	0.99 (0.56 to	577 / 16 / 681 / 23	3.5	1.30	0.46
	(11.2 to 33.4)		1.77)	(13.8 to 37.0)		(0.76 to 2.23)	
Stratified on ag	e group						
	< 65 years (n=2,	, ,	65-74 years (n=3,		≥ 75 years (n=7,1		
Exposures	Total No. / No.	Adjusted HR	Total No. / No.	Adjusted HR	Total No. / No.	Adjusted HR	P value for
	of event /	(95% CI)	of event /	(95% CI)	of event /	(95% CI)	interaction
	person-years /		person-years /		person-years /		
	Incidence per		Incidence per		Incidence per		
	1,000 person-		1000 person-		1000 person-		
	years (95% CI)		years (95% CI)		years (95% CI)		
Warfarin	1,451 / 51 /	1.00 (reference)	1,815 / 47 /	1.00 (reference)	3,583 / 134 /	1.00 (reference)	
	3,177 / 16.1		3,792 / 12.4 (9.2		6,210 / 21.6		
	(12.0 to 20.9)		to 16.3)		(18.1 to 25.4)		
NOACs	1,316 / 15 /	0.38	1,960 / 40 /	1.00	3,573 / 86 /	0.73	0.21
	2,038 / 7.4 (4.2	(0.22 to 0.69)	3,389 / 11.8 (8.5	(0.65 to 1.55)	5,299 / 16.2	(0.56 to 0.96)	
	to 11.7)		to 15.8)		(13.0 to 19.9)		
Dabigatran	751 / 4 / 1,307 /	0.17	1,097 / 24 /	0.97	1,815 / 44 /	0.67	0.07
	3.1 (0.9 to 7.1)	(0.06 to 0.47)	2,106 / 11.4 (7.4	(0.59 to 1.59)	2,979 / 14.8	(0.48 to 0.95)	
			to 16.6)		(10.8 to 19.6)		
Rivaroxaban	399 / 5 / 539 /	0.45	579 / 11 / 931 /	1.03	1,038 / 24 /	0.70	0.61
	9.3 (3.3 to 19.9)	(0.18 to 1.14)	11.8 (6.1 to 20.2)	(0.52 to 2.01)	1,544 / 15.5	(0.45 to 1.08)	
					(10.1 to 22.6)		
Apixaban	166 / 6 / 191 /	1.43	284 / 5 / 353 /	1.18	720 / 18 / 776 /	1.02	0.34
	31.3 (12.5 to	(0.61 to 3.35)	14.2 (5.1 to 30.4)	(0.46 to 3.02)	23.2 (14.1 to	(0.62 to 1.68)	
	63.5)				35.6)		

Table 4. Estimates of Liver Injury Risk After Propensity Score Matching Stratified by Sex and by Age Group

Abbreviations: CI, confidence interval; HR, hazard ratio; NOACs, non-vitamin K antagonist oral anticoagulant.

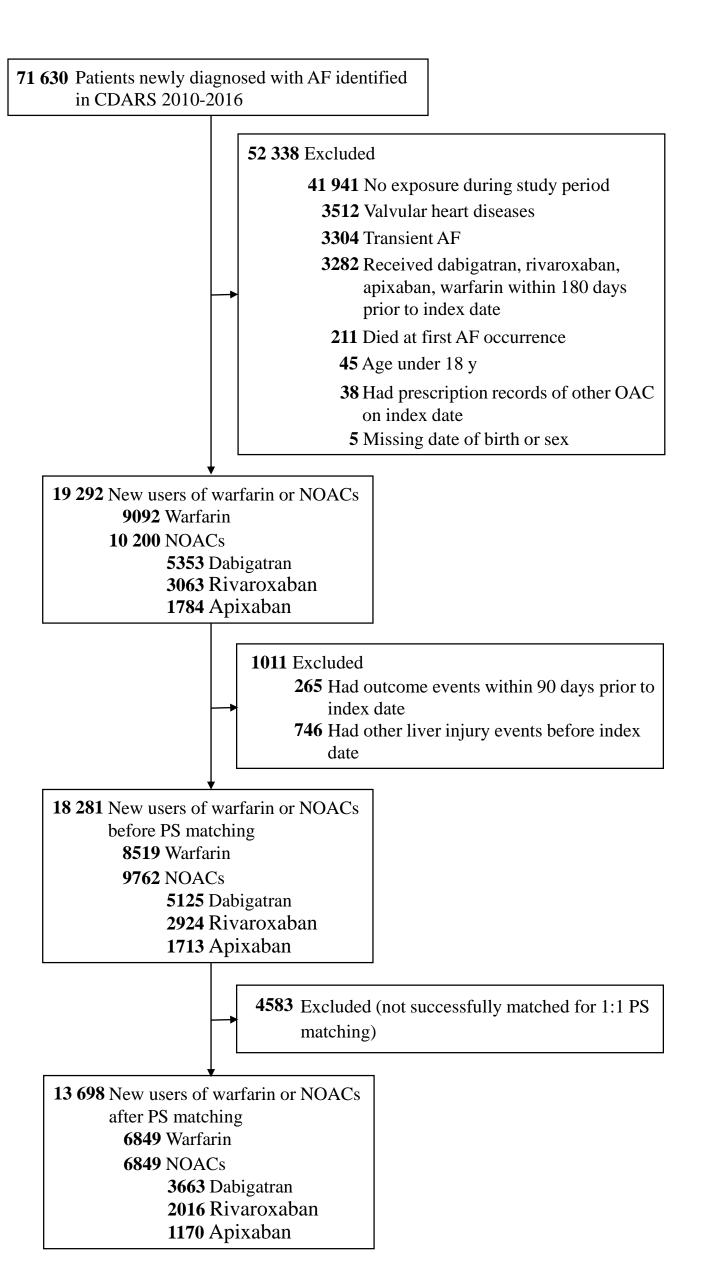


Figure2

Analysis		HR (95% CI)	<i>P</i> value
Primary analysis	-	0.71 (0.58–0.89)	0.002
Varied discontinuation gap			
5–day gap		0.67 (0.53–0.85)	<0.001
15–day gap		0.69 (0.55–0.86)	<0.001
Intention-to-treat approach		0.83 (0.71–0.97)	0.02
Increased ALT and Bilirubin ULN		0.81 (0.61–1.06)	0.13
ICD-9-CM defined outcome			
Liver injury		0.82 (0.63–1.07)	0.15
Acute liver failure		1.41 (0.58–3.38)	0.45
With baseline LFTs		0.72 (0.58–0.90)	0.004
Covariate adjustment			
Full adjustment		0.71 (0.58–0.85)	<0.001
Partial adjustment	-	0.70 (0.58–0.83)	<0.001
IPTW			
No truncation		0.72 (0.60–0.86)	<0.001
1% truncation		0.71 (0.59–0.85)	<0.001
Favo	0.50 1.0 2.0 ors NOACs Favors V	Varfarin	

Supplementary Content

Appendix Table 1. Upper Limits of Normal for Laboratory Tests Used in the Study

Appendix Table 2. International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) Codes Used in the Study

Appendix Table 3. Drugs for Propensity Score Matching Used in the Study

Appendix Table 4. Sex Specified Comparison of Warfarin and NOAC Users Baseline Characteristics Before and After Propensity Score Matching

Appendix Table 5. Age Group Specified Comparison of Warfarin and NOAC Users Baseline Characteristics Before and After Propensity Score Matching

Appendix Table 6. Characteristics of Warfarin and NOAC Users with a Diagnosis of Acute Liver Failure Within 90 Days After Liver Injury

Appendix Table 7. Adjusted Estimates of Liver Injury Risk after Propensity Score Matching Using 5-Day as the Gap of Discontinuation Therapy

Appendix Table 8. Adjusted Estimates of Liver Injury Risk after Propensity Score Matching Using 15-Day as the Gap of Discontinuation Therapy

Appendix Table 9. Adjusted Estimates of Liver Injury Risk after Propensity Score Matching Using Intention-to-Treat Approach

Appendix Table 10. Adjusted Estimates of Liver Injury Risk after Propensity Score Matching Using Increased ALT and Bilirubin ULN* to Define Liver Injury Outcome Events

Appendix Table 11. Adjusted Estimates of Liver Injury Risk after Propensity Score Matching Using ICD-9-CM Codes to Define Liver Injury Outcome Events

Appendix Table 12. Adjusted Estimates of Liver Injury Risk after Propensity Score Matching among the Patients with Baseline Liver Function Laboratory Tests

Appendix Table 13. Adjusted Estimates of Liver Injury Risk Using Covariate Adjustment Approach

Appendix Table 14. Adjusted Estimates of Liver Injury Risk Using Inverse Probability of Treatment Weighting Approach

Appendix Table 15. Follow-up Period of the Cohort after Propensity Score Matching

Appendix Table 16. Occurrence of Elevated ALT/AST and Total Bilirubin in the Current Study Compared to Randomized Controlled Trials of Dabigatran, Rivaroxaban, and Apixaban

Appendix Figure 1. Distribution of Propensity Score Before and After Matching for NOAC and Warfarin Users

Appendix Figure 2. Kaplan-Meier Curves for Liver Injury after PS Matching for NOAC and Warfarin Users

Test*	Sex	Upper Limit of Normal (ULN)
Alanine aminotransferase (ALT)	Female	25 U/L
	Male	33 U/L
Aspartate aminotransferase (AST)	Female	25 U/L
	Male	40 U/L
Total bilirubin	Female	1.0 mg/dL
	Male	1.0 mg/dL
Alkaline phosphatase (ALP)	Female	<mark>93 U/L</mark>
	Male	110 U/L

Appendix Table 1. Upper Limits of Normal for Laboratory Tests Used in the Study

SI conversion factors: To convert ALT, AST, or ALP to μkat/L, multiply values by 0.0167; to convert total bilirubin to μmol/L, multiply values by 17.104.

ICD-9-CM	Description
Atrial	
fibrillation	Atrial Chaillation and Clutter
427.3	Atrial fibrillation and flutter
Valvular atrial	fibrillation
Valvular heart d	lisease
394.0	Mitral stenosis
Hyperthyroidisi	n
242	Thyrotoxicosis with or without goitre
Valve replacem	ent (procedure codes)
35.20	Open and other replacement of unspecified heart valve
35.20	Open and other replacement of aortic valve
35.24	Open and other replacement of mitral valve
35.26	Open and other replacement of pulmonary valve
35.28	Open and other replacement of tricuspid valve
Transient atria	lfibrillation
	(procedure codes)
00.5	Other cardiovascular procedures
35	Operations on valves and septa of heart
36	Operations on versels of heart
37	Other operations on heart and pericardium
57	Other operations on neart and perfeaturation
Myocarditis	
130.3	Myocarditis due to toxoplasmosis
391.2	Acute rheumatic myocarditis
398.0	Rheumatic myocarditis
422	Acute myocarditis
429.0	Myocarditis, unspecified
032.82	Diphtheritic myocarditis
036.43	Meningococcal myocarditis
074.23	Coxsackie myocarditis
093.82	Syphilitic myocarditis
Pericarditis	
391	Rheumatic fever with heart involvement
393	Chronic rheumatic pericarditis
420	Acute pericarditis
423.2	Constrictive pericarditis
036.41	Meningococcal pericarditis
074.21	Coxsackie pericarditis
093.81	Syphilitic pericarditis
098.83	Gonococcal pericarditis
Pulmonary emb 415.1	
413.1	Pulmonary embolism and infarction

Appendix Table 2. International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) Codes Used in the Study

ICD-9-CM	Description
Charlson Con	morbidity Index
Myocardial in	Ifarction
410	Acute myocardial infarction
412	Old myocardial infarction
Congestive he	eart failure
398.91	Rheumatic heart failure (congestive)
402.01	Malignant hypertensive heart disease with heart failure
402.11	Benign hypertensive heart disease with heart failure
402.91	Unspecified hypertensive heart disease with heart failure
404.01	Hypertensive heart and chronic kidney disease, malignant, with heart failure and with chronic
101.01	kidney disease stage I through stage IV, or unspecified
404.03	Hypertensive heart and chronic kidney disease, malignant, with heart failure and with chronic
101.05	kidney disease stage V or end stage renal disease
404.11	Hypertensive heart and chronic kidney disease, benign, with heart failure and with chronic
404.11	
404.12	kidney disease stage I through stage IV, or unspecified
404.13	Hypertensive heart and chronic kidney disease, benign, with heart failure and chronic kidney
10101	disease stage V or end stage renal disease
404.91	Hypertensive heart and chronic kidney disease, unspecified, with heart failure and with
	chronic kidney disease stage I through stage IV, or unspecified
404.93	Hypertensive heart and chronic kidney disease, unspecified, with heart failure and chronic
	kidney disease stage V or end stage renal disease
425.4	Other primary cardiomyopathies
425.5	Alcoholic cardiomyopathy
425.7	Nutritional and metabolic cardiomyopathy
425.8	Cardiomyopathy in other diseases classified elsewhere
425.9	Secondary cardiomyopathy, unspecified
428	Heart failure
D 1 1	
Peripheral vas	
093.0	Aneurysm of aorta, specified as syphilitic
437.3	Cerebral aneurysm, non-ruptured
440	Atherosclerosis
441	Aortic aneurysm and dissection
443.1	Thromboangiitis obliterans [Buerger's disease]
443.2	Other arterial dissection
443.8	Other specified peripheral vascular diseases
443.9	Peripheral vascular disease, unspecified
447.1	Stricture of artery
557.1	Chronic vascular insufficiency of intestine
557.9	Unspecified vascular insufficiency of intestine
V43.4	Blood vessel replaced by other means
0 1	1 1
Cerebrovascu	
362.34	Transient retinal arterial occlusion
430-438	Cerebrovascular disease

Appendix Table 2. International Classification of Diseases, Ninth Revision, Clinical	ļ
<i>Modification (ICD-9-CM)</i> Codes Used in the Study (continued)	

ICD-9-CM	(ICD-9-CM) Codes Used in the Study (continued) Description
	orbidity Index (continued)
	ctive pulmonary disease
416.8	Other chronic pulmonary heart diseases
416.9	Chronic pulmonary heart disease, unspecified
490-496	Chronic Obstructive Pulmonary Disease and Allied Conditions
500	Coal workers' pneumoconiosis
501	Asbestosis
502	Pneumoconiosis due to other silica or silicates
503	Pneumoconiosis due to other inorganic dust
504	Pneumonopathy due to inhalation of other dust
505	Pneumoconiosis, unspecified
506.4	Respiratory conditions due to chemical fumes and vapors
508.1	Fibrosis of lungs
508.8	Respiratory conditions due to other specified external agents
Dementia	
290	Dementias
294.1	Dementia in conditions classified elsewhere
331.2	Senile degeneration of brain
Hemiplegia or	paraplegia
334.1	Hereditary spastic paraplegia
342	Hemiplegia and hemiparesis
343	Infantile cerebral palsy
344.0	Quadriplegia and quadraparesis
344.1	Paraplegia
344.2	Diplegia of upper limbs
344.3	Monoplegia of lower limb
344.4	Monoplegia of upper limb
344.5	Unspecified monoplegia
344.6	Cauda equina syndrome
344.9	Paralysis, unspecified
Diabetes without	ut chronic complication
250.0	Diabetes mellitus without mention of complication
250.1	Diabetes with ketoacidosis
250.2	Diabetes with hyperosmolarity
250.3	Diabetes with other coma
250.8	Diabetes with other specified manifestations
250.9	Diabetes with unspecified complication
Diabetes with c	hronic complication
250.4	Diabetes with renal manifestations
250.5	Diabetes with ophthalmic manifestations
250.6	Diabetes with neurological manifestations
250.7	Diabetes with peripheral circulatory disorders

Appendix Table 2. International Classification of Diseases, Ninth Revision, Clinical
<i>Modification (ICD-9-CM)</i> Codes Used in the Study (continued)

ICD-9-CM	Description
	orbidity Index (continued)
Renal disease	
403.01	Hypertensive chronic kidney disease, malignant, with chronic kidney disease stage V or end
	stage renal disease
403.11	Hypertensive chronic kidney disease, benign, with chronic kidney disease stage V or end
	stage renal disease
403.91	Hypertensive chronic kidney disease, unspecified, with chronic kidney disease stage V or end
	stage renal disease
404.02	Hypertensive heart and chronic kidney disease, malignant, without heart failure and with
	chronic kidney disease stage V or end stage renal disease
404.03	Hypertensive heart and chronic kidney disease, malignant, with heart failure and with chronic
	kidney disease stage V or end stage renal disease
404.12	Hypertensive heart and chronic kidney disease, benign, without heart failure and with chronic
	kidney disease stage V or end stage renal disease
404.13	Hypertensive heart and chronic kidney disease, benign, with heart failure and chronic kidney
	disease stage V or end stage renal disease
404.92	Hypertensive heart and chronic kidney disease, unspecified, without heart failure and with
	chronic kidney disease stage V or end stage renal disease
404.93	Hypertensive heart and chronic kidney disease, unspecified, with heart failure and chronic
	kidney disease stage V or end stage renal disease
582	Chronic glomerulonephritis
583.0	Nephritis and nephropathy, not specified as acute or chronic, with lesion of proliferative
	glomerulonephritis
583.1	Nephritis and nephropathy, not specified as acute or chronic, with lesion of membranous
	glomerulonephritis
583.2	Nephritis and nephropathy, not specified as acute or chronic, with lesion of
	membranoproliferative glomerulonephritis
583.4	Nephritis and nephropathy, not specified as acute or chronic, with lesion of rapidly
	progressive glomerulonephritis
583.6	Nephritis and nephropathy, not specified as acute or chronic, with lesion of renal cortical
	necrosis
583.7	Nephritis and nephropathy, not specified as acute or chronic, with lesion of renal medullary
	necrosis
585	Chronic kidney disease
586	Renal failure, unspecified
588.0	Renal osteodystrophy

Appendix Table 2. International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) Codes Used in the Study (continued)

Appendix Table 2. International Classification of Diseases, Ninth Revision, Clinical	
<i>Modification (ICD-9-CM)</i> Codes Used in the Study (continued)	

Modification (IC	CD-9-CM) Codes Used in the Study (continued)
ICD-9-CM	Description
Charlson Comorl	bidity Index (continued)
Mild liver disease	• • • •
070.22	Chronic viral hepatitis B with hepatic coma without hepatitis delta
070.23	Chronic viral hepatitis B with hepatic coma with hepatitis delta
070.32	Chronic viral hepatitis B without mention of hepatic coma without mention of hepatitis delta
070.33	Chronic viral hepatitis B without mention of hepatic coma with hepatitis delta
070.44	Chronic hepatitis C with hepatic coma
070.54	Chronic hepatitis C without mention of hepatic coma
070.6	Unspecified viral hepatitis with hepatic coma
070.9	Unspecified viral hepatitis without mention of hepatic coma
570	Acute and subacute necrosis of liver
571	Chronic liver disease and cirrhosis
573.3	Hepatitis, unspecified
573.4	Hepatic infarction
573.8	Other specified disorders of liver
573.9	Unspecified disorder of liver
V42.7	Liver replaced by transplant
Moderate-severe li	iver disease
456.0	Esophageal varices with bleeding
456.1	Esophageal varices without bleeding
456.2	Esophageal varices in diseases classified elsewhere
572.2	Hepatic encephalopathy
572.3	Portal hypertension
572.4	Hepatorenal syndrome
572.8	Other sequelae of chronic liver disease
Peptic ulcer diseas	e
531	Gastric ulcer
532	Duodenal ulcer
533	Peptic ulcer site unspecified
534	Gastrojejunal ulcer
Rheumatic disease	
446.5	Giant cell arteritis
710.0	Systemic lupus erythematosus
710.1	Systemic sclerosis
710.2	Sicca syndrome
710.3	Dermatomyositis
710.4	Polymyositis
714.0	Rheumatoid arthritis
714.1	Felty's syndrome
714.2	Other rheumatoid arthritis with visceral or systemic involvement
714.8	Other specified inflammatory polyarthropathies
725	Polymyalgia rheumatica

ICD-9-CM	(ICD-9-CM) Codes Used in the Study (continued) Description	
Charlson Comorbidity Index (continued)		
	ine Deficiency Syndrome	
042	Human immunodeficiency virus [HIV] disease	
Malignancy		
140-149	Malignant neoplasm of lip, oral cavity, and pharynx	
150-159	Malignant neoplasm of digestive organs and peritoneum	
160-165	Malignant neoplasm of respiratory and intrathoracic organs	
170-172,	Malignant neoplasm of bone, connective tissue, and breast	
174-176		
179-189	Malignant neoplasm of genitourinary organs	
190-195	Malignant neoplasm of other sites	
200-208	Malignant neoplasm of lymphatic and hematopoietic tissue	
238.6	Neoplasm of uncertain behavior of plasma cells	
Metastatic solid	l tumor	
196	Secondary and unspecified malignant neoplasm of lymph nodes	
197	Secondary malignant neoplasm of respiratory and digestive systems	
198	Secondary malignant neoplasm of other specified sites	
199	Malignant neoplasm without specification of site	

Appendix Table 2. International Classification of Diseases, Ninth Revision, Clinical	
<i>Modification (ICD-9-CM)</i> Codes Used in the Study (continued)	

ICD-9-CM	Description					
	CHADS ₂ / CHA ₂ DS ₂ -VASc					
Congestive heart	failure (the same as that in Charlson Comorbidity Index)					
Hypertension						
401	Essential hypertension					
402	Hypertensive heart disease					
403	Hypertensive chronic kidney disease					
404	Hypertensive heart and chronic kidney disease					
405	Secondary hypertension					
Diabetes mellitus						
250	Diabetes mellitus					
Ischemic stroke						
433	Occlusion and stenosis of precerebral arteries					
434	Occlusion of cerebral arteries					
436	Acute, but ill-defined, cerebrovascular disease					
437	Other and ill-defined cerebrovascular disease					
438	Late effects of cerebrovascular disease					
Transient ischemi	ransient ischemic attack					
435	Transient cerebral ischemia					
Vascular disease						
410	Acute myocardial infarction					
411	Other acute and subacute forms of ischemic heart disease					
412	Old myocardial infarction					
413	Angina pectoris					
414	Other forms of chronic ischemic heart disease					
443.8	Other specified peripheral vascular diseases					
443.9	Peripheral vascular disease, unspecified					
Thromboembolis	m					
444	Arterial embolism and thrombosis					
444	Atheroembolism					
773	Autochionish					

Appendix Table 2. International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) Codes Used in the Study (continued)

ICD-9-CM	Description
	e comorbidities
Viral hepatitis	
070	Viral hepatitis
V02.61	Hepatitis B carrier
V02.62	Hepatitis C carrier
Non-viral live	r disease
456.1	Esophageal varices without mention of bleeding
456.21	Esophageal varices in diseases classified elsewhere, without mention of bleeding
573.4	Hepatic infarction
Alcoholism	
265.2	Pellagra
291.1	Alcohol-induced persisting amnestic disorder
291.2	Alcohol-induced persisting dementia
291.3	Alcohol-induced psychotic disorder with hallucinations
291.5	Alcohol-induced psychotic disorder with delusions
291.8	Other specified alcohol-induced mental disorders
291.9	Unspecified alcohol-induced mental disorders
303.0	Acute alcoholic intoxication
303.9	Other and unspecified alcohol dependence
305.0	Nondependent alcohol abuse
357.5	Alcoholic polyneuropathy
425.5	Alcoholic cardiomyopathy
535.3	Alcoholic gastritis
571.1	Acute alcoholic hepatitis
571.2	Alcoholic cirrhosis of liver
571.3	Alcoholic liver damage, unspecified
980	Toxic effect of alcohol
V11.3	Personal history of neurosis
Transient isch	emic attack
435	Transient cerebral ischemia
Gallbladder di	sease
575	Other disorders of gallbladder
576	Other disorders of biliary tract

Appendix Table 2. International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) Codes Used in the Study (continued)

ICD-9-CM	
	Description
	comorbidities (continued)
Kidney disease	
403	Hypertensive chronic kidney disease
404	Hypertensive heart and chronic kidney disease
580	Acute glomerulonephritis
581	Nephrotic syndrome
582	Chronic glomerulonephritis
583	Nephritis and nephropathy not specified as acute or chronic
584	Acute kidney failure
585	Chronic kidney disease
586	Renal failure, unspecified
588	Disorders resulting from impaired renal function
590.0	Chronic pyelonephritis
593.3	Stricture or kinking of ureter
753.1	Cystic kidney disease
V42.0	Kidney replaced by transplant
V45.1	Postsurgical renal dialysis status
V56	Encounter for dialysis and dialysis catheter care
Anemia	
280	Iron deficiency anemias
281	Other deficiency anemias
282	Hereditary hemolytic anemias
283	Acquired hemolytic anemias
284	Aplastic anemia and other bone marrow failure syndromes
285	Other and unspecified anemias
Coagulopathy	
286	Coagulation defects
287.1	Qualitative platelet defects
287.3	Primary thrombocytopenia
287.4	Secondary thrombocytopenia
287.5	Thrombocytopenia, unspecified

Appendix Table 2. International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) Codes Used in the Study (continued)

ICD-9-CM	Description
	ne comorbidities (continued)
Gastrointestin	
455.2	Internal hemorrhoids with other complication
455.5	External hemorrhoids with other complication
456.0	Esophageal varices with bleeding
456.20	Esophageal varices in diseases classified elsewhere, with bleeding
530.7	Gastroesophageal laceration-hemorrhage syndrome
530.82	Esophageal hemorrhage
531.0	Acute gastric ulcer with hemorrhage
531.2	Acute gastric ulcer with hemorrhage and perforation
531.4	Chronic or unspecified gastric ulcer with hemorrhage
531.6	Chronic or unspecified gastric ulcer with hemorrhage and perforation
532.0	Acute duodenal ulcer with hemorrhage
532.2	Acute duodenal ulcer with hemorrhage and perforation
532.4	Chronic or unspecified duodenal ulcer with hemorrhage
532.6	Chronic or unspecified duodenal ulcer with hemorrhage and perforation
533.0	Acute peptic ulcer of unspecified site with hemorrhage
533.2	Acute peptic ulcer of unspecified site with hemorrhage and perforation
533.4	Chronic or unspecified peptic ulcer of unspecified site with hemorrhage
533.6	Chronic or unspecified peptic ulcer of unspecified site with hemorrhage and perforation
534.0	Acute gastrojejunal ulcer with hemorrhage
534.2	Acute gastrojejunal ulcer with hemorrhage and perforation
534.4	Chronic or unspecified gastrojejunal ulcer with hemorrhage
534.6	Chronic or unspecified gastrojejunal ulcer with hemorrhage and perforation
535.01	Acute gastritis, with hemorrhage
535.11	Atrophic gastritis, with hemorrhage
535.21	Gastric mucosal hypertrophy, with hemorrhage
535.31	Alcoholic gastritis, with hemorrhage
535.41	Other specified gastritis, with hemorrhage
535.51	Unspecified gastritis and gastroduodenitis, with hemorrhage
535.61	Duodenitis, with hemorrhage
562.02	Diverticulosis of small intestine with hemorrhage
562.03	Diverticulitis of small intestine with hemorrhage
562.12	Diverticulosis of colon with hemorrhage
562.13	Diverticulitis of colon with hemorrhage
568.81	Hemoperitoneum (nontraumatic)
569.3	Hemorrhage of rectum and anus
569.85	Angiodysplasia of intestine with hemorrhage
569.86	Dieulafoy lesion (hemorrhagic) of intestine
578	Gastrointestinal hemorrhage
579.1	Tropical sprue

Appendix Table 2. International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) Codes Used in the Study (continued)

ICD-9-CM	Description
Other baseline	comorbidities (continued)
Intracranial blee	
430	Subarachnoid hemorrhage
431	Intracerebral hemorrhage
432	Other and unspecified intracranial hemorrhage
852	Subarachnoid subdural and extradural hemorrhage following injury
Other bleeding	
423.0	Hemopericardium
459.0	Hemorrhage, unspecified
593.81	Vascular disorders of kidney
599.7	Hematuria
623.8	Other specified noninflammatory disorders of vagina
626.2	Excessive or frequent menstruation
626.6	Metrorrhagia
719.1	Hemarthrosis
784.7	Epistaxis
784.8	Hemorrhage from throat
786.3	Hemoptysis
Liver injury (fo	or baseline exclusion and sensitivity analysis)
277.4	Disorders of bilirubin excretion
570	Acute and subacute necrosis of liver
571.4	Chronic hepatitis
571.5	Cirrhosis of liver without mention of alcohol
571.6	Biliary cirrhosis
571.9	Unspecified chronic liver disease without mention of alcohol
572.2	Hepatic encephalopathy
572.3	Portal hypertension
572.4	Hepatorenal syndrome
572.8	Other sequelae of chronic liver disease
573.3	Hepatitis, unspecified
573.8	Other specified disorders of liver
573.9	Unspecified disorder of liver
576.8	Other specified disorders of biliary tract
782.4	Jaundice, unspecified, not of newborn
V42.7	Liver replaced by transplant
<mark>50.59</mark>	Liver transplant, not elsewhere classified
	iables of patients with liver injury (in addition to previously listed comorbidities
Diagnostic imag	ring of liver
<mark>88.01</mark>	C.A.T. scan of abdomen
<mark>88.74</mark>	Dx ultrasound-digestive
<mark>88.76</mark>	Dx ultrasound-abdomen
<mark>88.97</mark>	MRI - abdomen
Acute liver failu	
570	Acute and subacute necrosis of liver
Liver transplant	

Appendix Table 2. International Classification of Diseases, Ninth Revision, Clinical	
<i>Modification (ICD-9-CM)</i> Codes Used in the Study (continued)	

	88.01	C.A.I. scan of abdomen
	<mark>88.74</mark>	Dx ultrasound-digestive
	<mark>88.76</mark>	Dx ultrasound-abdomen
	<mark>88.97</mark>	MRI - abdomen
	Acute liver failure	
	<mark>570</mark>	Acute and subacute necrosis of liver
	Liver transplant	
	<mark>V42.7</mark>	Liver replaced by transplant
	<mark>50.59</mark>	Liver transplant, not elsewhere classified
	Death from liver fai	ilure (ICD-10)
_	<mark>K71</mark>	Toxic liver disease

<mark>K72</mark>	Hepatic failure, not elsewhere classified			
Shock and hypotension				
<mark>458</mark>	Hypotension			
<mark>785.5</mark>	Shock without mention of trauma			

Drug category	Drug name
Short term use Antibacterial agents	Amoxicillin, Azithromycin, Clarithromycin, Cloxacillin, Dapsone, Doxycycline, Erythromycin, Minocycline, Nitrofurantoin, Trimethoprim
Antifungal agents	Fluconazole, Itraconazole, Ketoconazole
H2-receptor antagonist	Cimetidine, Nizatidine, Ranitidine
Acetaminophen	Acetaminophen
Proton pump inhibitors (PPIs)	Dexlansoprazole, Esomeprazole, Omeprazole, Pantoprazole, Rabeprazole
Long term use Antiarrhythmics	Amiodarone, Disopyramide, Dofetilide, Dronedarone, Flecainide, Propafenone, Rythmodan, Sotalol
Antiepileptics	Carbamazepine, Phenytoin, Valproate
Antihypertension agents Angiotensin- converting enzyme inhibitors (ACEI)	Benazepril, Captopril, Cilazapril, Enalapril, Fosinopril, Imidapril, Lisinopril, Perindopril, Quinapril, Ramipril, Trandolapril
Angiotensin II Receptor Blockers (ARBs)	Azilsartan, Candesartan, Eprosartan, Irbesartan, Losartan, Olmesartan, Telmisartan, Valsartan
Beta blockers	Acebutolol, Atenolol, Betaxolol, Bisoprolol, Carvedilol, Celiprolol, Labetalol, Metoprolol, Nadolol, Nebivolol, Oxprenolol, Pindolol, Propranolol, Sotalol
Calcium channel blockers (CCBs)	Amlodipine, Diltiazem, Felodipine, Lacidipine, Lercanidipine, Nicardipine, Nifedipine, Nimodipine, Verapamil
Diuretics	Amiloride, Bumetanide, Chlorthalidone, Eplerenone, Furosemide, Hydrochlorothiazide, Indapamide, Metolazone, Spironolactone, Torsemide, Triamterene
Antiplatelet agents	Abciximab, Aspirin, Clopidogrel, Dipyridamole, Eptifibatide, Prasugrel, Ticagrelor, Ticlopidine, Tirofiban
Antituberculosis agents	Ethambutol, Isoniazid, Pyrazinamide, Rifampicin, Rifabutin
Digoxin	Digoxin
Immunosuppressants	Azathioprine, Cyclosporine, Methotrexate

Appendix Table 3. Drugs for Propensity Score Matching Used in the Study

Appendix Table 3. Drugs for Propensity Score Matching Used in the Study (continued)			
Drug category	Drug name		
Long term use (continued)			
Lipid lowering drugs	Atorvastatin, Benfluorex, Ezetimibe, Fluvastatin, Lovastatin, Pravastatin, Rosuvastatin, Simvastatin		
Nonsteroidal anti- inflammatory drugs (NSAIDs)	Celecoxib, Diclofenac, Etodolac, Etoricoxib, Ibuprofen, Indomethacin, Meloxicam, Nabumetone, Sulindac		
Nucleoside analogs	Abacavir, Adefovir, Entecavir, Lamivudine, Telbivudine, Tenofovir, Zidovudine		

Appendix Table 3. Drugs for Propensity Score Matching Used in the Study (continued)

Men (n=7,096) Women (n=6,602)						
Baseline	Warfarin	NOACs	SMD [†]	Warfarin	NOACs	SMD [†]
Characteristics*	(n=3,569)	(n=3,527)		(n=3,280)	(n=3,322)	
Age, mean (SD), y	72.1 (10.6)	71.8 (10.8)	0.026	76.0 (10.4)	76.1 (9.7)	0.017
Women	N/A	N/A	N/A	N/A	N/A	N/A
Health status score	on index date	4	•			
CCI, mean (SD) [‡]	1.5 (1.5)	1.5 (1.5)	0.024	1.5 (1.5)	1.6 (1.5)	0.038
CHADS ₂ , mean	2.0 (1.4)	2.0 (1.4)	0.013	2.3 (1.5)	2.3 (1.5)	0.031
(SD)§					()	
CHA ₂ DS ₂ -VASc,	3.0 (1.7)	3.0 (1.7)	0.015	4.4 (1.8)	4.4 (1.8)	0.035
mean (SD) [∥]	~ /	()		x , ,		
Laboratory tests ¹ v	vithin 90 days r	orior to index d	ate	l		
ALT, median	22.0 (16.5)	22.3 (17.0)	0.004	20.0 (17.0)	19.1 (15.7)	0.089
(IQR), U/L						
AST, median	27.0 (16.0)	25.5 (14.1)	0.070	28.0 (20.9)	25.0 (16.9)	0.180
(IQR), U/L						
ALP, median	72.0 (28.5)	70.0 (26.2)	0.085	76.7 (28.5)	75.7 (29.0)	0.057
(IQR), U/L		/ **** (_ **=_)			()	
Total bilirubin,	0.78 (0.52)	0.78 (0.50)	0.008	0.68 (0.43)	0.65 (0.43)	0.017
median (IQR),	0.70 (0.02)	0.70 (0.00)	0.000	0.00 (0.12)	0.00 (0.15)	0.017
mg/dL						
Comorbidities on o	r before index	date				
Viral hepatitis	90 (2.5)	76 (2.2)	0.024	46 (1.4)	60 (1.8)	0.032
Non-viral liver	0 (0)	1 (<0.1)	0.024	2 (<0.1)	2 (<0.1)	0
diseases	0 (0)	1 (0.1)	0.02.	- (0.1)	- (0.1)	0
Alcoholism	61 (1.7)	59 (1.7)	0.003	6 (0.2)	3 (0.1)	0.025
Gallbladder	77 (2.2)	90 (2.6)	0.026	81 (2.5)	79 (2.4)	0.006
diseases	// (=:=)	, (1.0)	0.020	01 (1.0)	() (=)	0.000
Kidney diseases	249 (7.0)	281 (8.0)	0.038	210 (6.4)	232 (7.0)	0.023
Diabetes mellitus	775 (21.7)	771 (21.9)	0.004	765 (23.3)	812 (24.4)	0.026
Myocardial	276 (7.7)	274 (7.8)	0.001	209 (6.4)	227 (6.8)	0.019
infarction	2/0 (/./)	271(7.0)	0.001	209 (0.1)	227 (0.0)	0.019
Congestive heart	813 (22.8)	848 (24.0)	0.030	841 (25.6)	918 (27.6)	0.045
failure	015 (22.0)	0.10 (2.1.0)	0.020	011 (20.0)	<i>y</i> 10 (27.0)	0.012
Hypertension	1744 (48.9)	1713 (48.6)	0.006	1820 (55.5)	1869 (56.3)	0.016
Anemia	239 (6.7)	250 (7.1)	0.015	323 (9.8)	346 (10.4)	0.019
Coagulopathy	31 (0.9)	30 (0.9)	0.013	19 (0.6)	22 (0.7)	0.015
Gastrointestinal	270 (7.6)	304 (8.6)	0.039	265 (8.1)	244 (7.3)	0.011
bleeding	2/0 (7.0)	501 (0.0)	0.057	200 (0.1)	211(7.5)	0.020
Intracranial	121 (3.4)	115 (3.3)	0.007	89 (2.7)	95 (2.9)	0.009
bleeding	121 (3.7)	110 (5.5)	0.007	07 (2.7)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.009
Other bleedings	321 (9.0)	321 (9.1)	0.004	240 (7.3)	254 (7.6)	0.013
Ischemic stroke	1151 (32.2)	1096 (31.1)	0.004	1065 (32.5)	1088 (32.8)	0.013
Peripheral	66 (1.8)	76 (2.2)	0.023	51 (1.6)	60 (1.8)	0.000
vascular diseases	00(1.0)	10 (2.2)	0.022	51 (1.0)	00 (1.0)	0.020
	476 (12.2)	470 (12.2)	0	517 (15 0)	526 (16.1)	0.010
Cancers	476 (13.3)	470 (13.3)	0	517 (15.8)	536 (16.1)	0.010

Appendix Table 4. Sex Specified Comparison of Warfarin and NOAC Users Baseline Characteristics Before and After Propensity Score Matching

	Men (n=7,09	6)		Women (n=6	,602)	
Baseline	Warfarin	NOACs	SMD [†]	Warfarin	NOACs	SMD [†]
Characteristics*	(n=3,569)	(n=3,527)		(n=3,280)	(n=3,322)	
Medications use withi	n 90 days prior	• to index date		• • • •	• 3 • 7	
Antibacterial agents	947 (26.5)	990 (28.1)	0.034	1003 (30.6)	1032 (31.1)	0.011
Antifungal agents	9 (0.3)	9 (0.3)	0.001	6 (0.2)	4 (0.1)	0.016
Acetaminophen	1132 (31.7)	1124 (31.9)	0.003	1355 (41.3)	1373 (41.3)	0
PPIs	875 (24.5)	910 (25.8)	0.030	857 (26.1)	838 (25.2)	0.021
H2-receptor	1845 (51.7)	1800 (51.0)	0.013	1827 (55.7)	1858 (55.9)	0.005
antagonists						
Medications use withi	n 365 days prio	or to index date	9			
Antiplatelet agents	2788 (78.1)	2741 (77.7)	0.010	2525 (77.0)	2578 (77.6)	0.015
Lipid lowering drugs	1872 (52.5)	1843 (52.3)	0.004	1628 (49.6)	1649 (49.6)	0
Antiarrhythmics	574 (16.1)	615 (17.4)	0.036	673 (20.5)	647 (19.5)	0.026
ACEIs	1483 (41.6)	1513 (42.9)	0.027	1234 (37.6)	1258 (37.9)	0.005
NSAIDs	401 (11.2)	384 (10.9)	0.011	374 (11.4)	382 (11.5)	0.003
ARBs	198 (5.5)	198 (5.6)	0.003	273 (8.3)	285 (8.6)	0.009
Beta blockers	2074 (58.1)	1974 (56.0)	0.043	2041 (62.2)	2094 (63.0)	0.017
CCBs	2095 (58.7)	2066 (58.6)	0.003	2125 (64.8)	2207 (66.4)	0.035
Diuretics	1177 (33.0)	1211 (34.3)	0.029	1326 (40.4)	1417 (42.7)	0.045
Digoxin	686 (19.5)	712 (20.2)	0.017	895 (27.3)	889 (26.8)	0.012
Nucleoside analogs	31 (0.9)	24 (0.7)	0.021	10 (0.3)	15 (0.5)	0.024
Antituberculosis	13 (0.4)	15 (0.4)	0.010	3 (<0.1)	2 (<0.1)	0.011
agents						
Antiepileptics	55 (1.5)	64 (1.8)	0.021	61 (1.9)	48 (1.4)	0.033
Immunosuppressants	8 (0.2)	8 (0.2)	0.001	22 (0.7)	19 (0.6)	0.013

Appendix Table 4. Sex Specified Comparison of Warfarin and NOAC Users Baseline Characteristics Before and After Propensity Score Matching (continued)

Abbreviations: ACEIs, angiotensin-converting-enzyme inhibitors; ALP, alkaline phosphatase; ALT, alanine aminotransferase; ARBs, angiotensin II receptor blockers; AST, aspartate aminotransferase; CCBs, calcium channel blockers; CCI, Charlson Comorbidity Index; NOACs, non-vitamin K antagonist oral anticoagulants; NSAIDs, non-steroidal anti-inflammatory drugs; PPIs, proton pump inhibitors; SMD, standardized mean difference.

* Values are expressed as frequency (%) unless otherwise specified.

† SMD indicates difference in mean or proportion of covariates in NOAC group vs warfarin group divided by the pooled standard deviation. SMD of less than 0.1 indicates a negligible difference between groups.

[‡] CCI indicates patients with myocardial infarction, congestive heart failure, peripheral vascular disease, cerebrovascular accident or transient ischemic attack, dementia, chronic obstructive pulmonary disease, connective tissue disease, peptic ulcer disease, liver disease, diabetes mellitus, hemiplegia, moderate to severe chronic kidney disease, solid tumor, leukemia, lymphoma, acquired immune deficiency syndrome. The severity of comorbidity was categorized into three grades based on the score: mild with scores of 1-2; moderate with scores of 3-4; severe with scores of 5 or above (higher score indicates a higher risk of mortality).

§ CHADS2 indicates patients with congestive heart failure, hypertension, age 75 years or older, diabetes mellitus, prior stroke or transient ischemic attack or systemic embolism. The score ranges from 0 to 6 (higher score indicates a higher risk of stroke)

|| CHA2DS2-VASc indicates patients with congestive heart failure, hypertension, age 75 years or older, diabetes mellitus, age 65 to 74, prior stroke or transient ischemic attack or systemic embolism, vascular disease, and sex category (women). The score ranges from 0 to 9 (higher score indicates a higher risk of stroke)

¶ There were 13684 (99.9%) patients who ever had a LFT during the whole study period. A total of 1842 (13.4%) patients did not have any hepatic function laboratory tests within 90 days prior to index date:1849 (13.5%) patients were missing ALT, 10 835 (79.1%) were missing AST, 1855 (13.5%) were missing total bilirubin, and 1852 (13.5%) were missing ALP. SI conversion factors: To convert ALT/AST to μ kat/L, multiply values by 0.0167; to convert total bilirubin to μ mol/L, multiply values by 17.104.

Dasenne Chara	1					tening.		Baschile Characteristics Delore and After Fropensity Score Matching							
	<65 years	(n=2,767)	-	65-74 year	s (n=3,775)	-	≥75 years ((n=7,156)							
Baseline	Warfarin	NOACs	SMD [†]	Warfarin	NOACs	SMD [†]	Warfarin	NOACs	SMD [†]						
Characteristics*	(n=1,451)	(n=1,316)		(n=1,815)	(n=1,960)		(n=3,583)	(n=3,573)							
Age, mean (SD),	58.1 (6.0)	57.6 (6.3)	0.087	70.3 (2.9)	70.0 (3.0)	0.078	82.2 (4.9)	82.0 (4.6)	0.037						
у															
Women	524	432	0.069	762	863	0.041	1994	2027	0.022						
	(36.1)	(32.8)		(42.0)	(44.0)		(55.7)	(56.7)							
Health status sco	re on index o	date													
CCI, mean(SD) [‡]	1.1 (0.4)	1.1 (0.4)	0.001	1.4 (0.4)	1.4 (0.4)	0.022	1.7 (0.5)	1.8 (0.5)	0.041						
CHADS ₂ , mean	1.3 (0.4)	1.3 (0.4)	0.027	1.5 (0.4)	1.5 (0.4)	0.004	2.8 (0.5)	2.8 (0.5)	0.010						
(SD) [§]															
CHA ₂ DS ₂ -	1.8 (0.4)	1.8 (0.4)	0.001	3.2 (0.4)	3.1 (0.5)	0.004	4.7 (0.5)	4.7 (0.5)	0.004						
VASc, mean															
(SD) [∥]															
Laboratory tests	within 90 d	ays prior to	index dat	te											
ALT, median	26.5	26.4	0.058	21.0	21.5	0.035	19.0	19.0	0.047						
(IQR), U/L	(20.7)	(21.0)		(16.5)	(15.1)		(15.0)	(14.6)							
AST, median	29.1	26.0	0.175	26.0	25.9	0.053	27.0	25.0	0.144						
(IQR), U/L	(21.4)	(16.0)		(16.7)	(16.0)		(17.6)	(14.9)							
ALP, median	72.1	71.5	0.070	74.1	72.0	0.132	75.0	73.6	0.039						
(IQR), U/L	(29.9)	(29.0)		(28.5)	(27.5)		(29.0)	(28.5)							
Total bilirubin,	0.78	0.71	0.114	0.70	0.71	0.055	0.72	0.72	0.002						
median (IQR),	(0.52)	(0.49)		(0.47)	(0.47)		(0.46)	(0.45)							
mg/dL															

Appendix Table 5. Age Group Specified Comparison of Warfarin and NOAC Users Baseline Characteristics Before and After Propensity Score Matching

Baseline Chara	<65 years				s (n=3,775)	0	≥75 years (/	
Baseline	Warfarin	NOACs	SMD [†]	Warfarin	NOACs	SMD [†]	<u>Varfarin</u>	NOACs	SMD [†]
Characteristics [*]	(n=1,451)	(n=1,316)	SIVID	(n=1,815)		SNID		(n=3,573)	SNID
				(11-1,815)	(n=1,960)		(n=3,583)	(11-3,575)	
Comorbidities on		1	0.040			0.046			0.011
Viral hepatitis	60 (4.1)	39 (3.0)	0.063	38 (2.1)	55 (2.8)	0.046	38 (1.1)	42 (1.2)	0.011
Non-viral liver	0 (0)	0 (0)	N/A	1 (<0.1)	2 (0.1)	0.017	1 (<0.1)	1 (<0.1)	0
diseases									
Alcoholism	28 (1.9)	19 (1.4)	0.038	24 (1.3)	24 (1.2)	0.009	15 (0.4)	19 (0.5)	0.016
Gallbladder	16 (1.1)	15 (1.1)	0.004	37 (2.0)	34 (1.7)	0.022	105 (2.9)	120 (3.4)	0.025
diseases									
Kidney diseases	51 (3.5)	64 (4.9)	0.067	106 (5.8)	121 (6.2)	0.014	302 (8.4)	328 (9.2)	0.027
Diabetes	281	254	0.002	438	456	0.020	821	873	0.036
mellitus	(19.4)	(19.3)		(24.1)	(23.3)		(22.9)	(24.4)	
Myocardial	57 (3.9)	67 (5.1)	0.056	94 (5.2)	115 (5.9)	0.030	334 (9.3)	319 (8.9)	0.014
infarction		~ /		~ /	~ /		× ź	, ,	
Congestive heart	326	282	0.025	331	347	0.014	997	1137	0.087
failure	(22.5)	(21.4)		(18.2)	(17.7)		(27.8)	(31.8)	
Hypertension	526	493	0.025	889	948	0.012	2149	2141	0.001
51	(36.3)	(37.5)		(49.0)	(48.4)		(60.0)	(60.0)	
Anemia	73 (5.0)	62 (4.7)	0.015	100 (5.5)	127 (6.5)	0.041	389	407	0.017
	~ /			× ,			(10.9)	(11.4)	
Coagulopathy	6 (0.4)	2 (0.2)	0.049	12 (0.7)	10 (0.5)	0.020	32 (0.9)	40 (1.1)	0.023
Gastrointestinal	59 (4.1)	46 (3.5)	0.030	108 (6.0)	135 (6.9)	0.038	368	367	0
bleeding				()	()		(10.3)	(10.3)	-
Intracranial	48 (3.3)	35 (2.7)	0.038	53 (2.9)	68 (3.5)	0.031	109 (3.0)	107 (3.0)	0.003
bleeding		20 (2.7)	0.020	00 (1.5)	00 (0.0)	0.001	10) (0.0)	107 (0.0)	0.002
Other bleedings	97 (6.7)	81 (6.2)	0.022	150 (8.3)	152 (7.8)	0.019	314 (8.8)	342 (9.6)	0.028
Ischemic stroke	363	350	0.036	548	606	0.015	1305	1228	0.043
isenenne suone	(25.0)	(26.6)	0.020	(30.2)	(30.9)	0.010	(36.4)	(34.4)	0.015
Peripheral	12 (0.8)	13 (1.0)	0.017	29 (1.6)	30 (1.5)	0.005	76 (2.1)	93 (2.6)	0.032
vascular	12 (0.0)	15 (1.0)	0.017	29 (1.0)	55 (1.5)	0.005	, 0 (2.1)	2.0)	0.052
diseases									
Cancers	166	136	0.036	266	293	0.008	561	577	0.013
Culletis	(11.4)	(10.3)	0.050	(14.7)	(14.9)	0.000	(15.7)	(16.1)	0.015

Appendix Table 5. Age Group Specified Comparison of Warfarin and NOAC Users Baseline Characteristics Before and After Propensity Score Matching (continued)

	<65 years	(n=2,767)		65-74 year	s (n=3,775)		≥75 years	(n=7,156)	
Baseline	Warfarin	NOACs	SMD [†]	Warfarin	NOACs	SMD [†]	Warfarin	NOACs	SMD [†]
Characteristics*	(n=1,451)	(n=1,316)		(n=1,815)	(n=1,960)		(n=3,583)	(n=3,573)	
Medications use wit	hin 90 days	prior to inde	ex date	<u> </u>	•••••		• • •		
Antibacterial agents	285	258	0.001	417	461	0.013	1248	1303	0.034
-	(19.6)	(19.6)		(23.0)	(23.5)		(34.8)	(36.5)	
Antifungal agents	0 (0)	2 (0.2)	0.055	6 (0.3)	6 (0.3)	0.004	9 (0.3)	5 (0.1)	0.025
Acetaminophen	410	339	0.056	621	660	0.011	1456	1498	0.026
-	(28.3)	(25.8)		(34.2)	(33.7)		(40.6)	(41.9)	
PPIs	282	282	0.049	418	445	0.008	1032	1021	0.005
	(19.4)	(21.4)		(23.0)	(22.7)		(28.8)	(28.6)	
H2-receptor	751	692	0.017	1006	1046	0.041	1915	1920	0.006
antagonists	(51.8)	(52.6)		(55.4)	(53.4)		(53.4)	(53.7)	
Medications use wit	hin 365 days	s prior to inc	lex date						
Antiplatelet agents	1068	978	0.016	1432	1523	0.029	2813	2818	0.009
	(73.6)	(74.3)		(78.9)	(77.7)		(78.5)	(78.9)	
Lipid lowering	680	663	0.070	990	1056	0.013	1830	1773	0.029
drugs	(46.9)	(50.4)		(54.5)	(53.9)		(51.1)	(49.6)	
Antiarrhythmics	313	344	0.107	321	363	0.022	613	555	0.043
	(21.6)	(26.1)		(17.7)	(18.5)		(17.1)	(15.5)	
ACEIs	530	493	0.019	694	758	0.009	1493	1520	0.018
	(36.5)	(37.5)		(38.2)	(38.7)		(41.7)	(42.5)	
NSAIDs	188	165	0.013	216	262	0.044	371	339 (9.5)	0.029
	(13.0)	(12.5)		(11.9)	(13.4)		(10.4)		
ARBs	73 (5.0)	68 (5.2)	0.006	142 (7.8)	136 (6.9)	0.034	256 (7.1)	279 (7.8)	0.025
Beta blockers	910	868	0.068	1124	1239	0.027	2081	1961	0.064
	(62.7)	(66.0)		(61.9)	(63.2)		(58.1)	(54.9)	
CCBs	691	674	0.072	1105	1161	0.034	2424	2438	0.012
	(47.6)	(51.2)		(60.9)	(59.2)		(67.7)	(68.2)	
Diuretics	415	352	0.041	586	595	0.042	1502	1681	0.103
	(28.6)	(26.7)		(32.3)	(30.4)		(41.9)	(47.0)	
Digoxin	369	318	0.029	397	438	0.011	825	845	0.015
	(25.4)	(24.2)		(21.9)	(22.3)		(23.0)	(23.6)	
Nucleoside analogs	18 (1.2)	14 (1.1)	0.017	12 (0.7)	15 (0.8)	0.012	11 (0.3)	10 (0.3)	0.005
Antituberculosis	3 (0.2)	0 (0)	0.064	6 (0.3)	7 (0.4)	0.005	7 (0.2)	10 (0.3)	0.017
agents									
Antiepileptics	23 (1.6)	23 (1.7)	0.013	40 (2.2)	33 (1.7)	0.038	53 (1.5)	56 (1.6)	0.007
Immunosuppresants	9 (0.6)	2 (0.2)	0.076	12 (0.7)	13 (0.7)	0	9 (0.3)	12 (0.3)	0.016

Appendix Table 5. Age Group Specified Comparison of Warfarin and NOAC Users Baseline Characteristics Before and After Propensity Score Matching (continued)

Abbreviations: ACEIs, angiotensin-converting-enzyme inhibitors; ALP, alkaline phosphatase; ALT, alanine aminotransferase; ARBs, angiotensin II receptor blockers; AST, aspartate aminotransferase; CCBs, calcium channel blockers; CCI, Charlson Comorbidity Index; NOACs, non-vitamin K antagonist oral anticoagulants; NSAIDs, non-steroidal anti-inflammatory drugs; PPIs, proton pump inhibitors; SMD, standardized mean difference.

* Values are expressed as frequency (%) unless otherwise specified.

[†] SMD indicates difference in mean or proportion of covariates in NOAC group vs warfarin group divided by the pooled standard deviation.

SMD of less than 0.1 indicates a negligible difference between groups.

‡ CCI indicates patients with myocardial infarction, congestive heart failure, peripheral vascular disease, cerebrovascular accident or transient ischemic attack, dementia, chronic obstructive pulmonary disease, connective tissue disease, peptic ulcer disease, liver disease, diabetes mellitus, hemiplegia, moderate to severe chronic kidney disease, solid tumor, leukemia, lymphoma, acquired immune deficiency syndrome. The severity of comorbidity was categorized into three grades based on the score: mild with scores of 1-2; moderate with scores of 3-4; severe with scores of 5 or above (higher score indicates a higher risk of mortality).

§ CHADS2 indicates patients with congestive heart failure, hypertension, age 75 years or older, diabetes mellitus, prior stroke or transient ischemic attack or systemic embolism. The score ranges from 0 to 6 (higher score indicates a higher risk of stroke).

|| CHA2DS2-VASc indicates patients with congestive heart failure, hypertension, age 75 years or older, diabetes mellitus, age 65 to 74, prior

stroke or transient ischemic attack or systemic embolism, vascular disease, and sex category (women). The score ranges from 0 to 9 (higher score indicates a higher risk of stroke).

¶ There were 13684 (99.9%) patients who ever had a LFT during the whole study period. A total of 1842 (13.4%) patients did not have any hepatic function laboratory tests within 90 days prior to index date:1849 (13.5%) patients were missing ALT, 10 835 (79.1%) were missing AST, 1855 (13.5%) were missing total bilirubin, and 1852 (13.5%) were missing ALP. SI conversion factors: To convert ALT/AST to μ kat/L, multiply values by 0.0167; to convert total bilirubin to μ mol/L, multiply values by 17.104.

Acute Liver Failure Within 90 Days After Liver Injury								
	Warfarin	NOACs	Dabigatran	<mark>Rivaroxaban (n=8)</mark>				
	<mark>(n=18)</mark>	<mark>(n=14)</mark>	(n=6)					
Diagnostic imaging [†]								
Diagnostic imaging of the	<mark>8 (44.4)</mark>	<mark>4 (28.6)</mark>	<mark>3 (50.0)</mark>	1 (12.5)				
liver within 90 days after the								
outcome date								
Death								
Death from any cause within	<mark>7 (38.9)</mark>	<mark>8 (57.1)</mark>	<mark>3 (50.0)</mark>	<mark>5 (62.5)</mark>				
90 days after the outcome date								
Death from liver causes within	1 (5.6)	2(14.3)	1 (16.7)	1 (12.5)				
90 days after the outcome date								
Time from oral anticoagulant	initiation to l	iver injury						
<6 months	<mark>8 (44.4)</mark>	<mark>6 (42.9)</mark>	3 (50.0)	<mark>3 (37.5)</mark>				
≥ 6 to < 12 months	3 (16.7)	3(21.4)	0(0.0)	<mark>3 (37.5)</mark>				
≥ 12 to <24 months	3 (16.7)	1 (7.1)	1 (16.7)	0 (0.0)				
\geq 24 months	4 (22.2)	4 (28.6)	2(33.3)	2 (25.0)				
Laboratory tests [‡] on outcome		. (20.0)	- (00.0)	_ ()				
ALT, median (IQR), U/L	360.5	1,799.5	1,288.5	1,799.5 (1,275.3)				
	(409.8)	(2,646.7)	(3,121.3)	1,79.5 (1,275.5)				
≥5 times ULN	13 (72.2)	12 (85.7)	5 (83.3)	7 (87.5)				
\geq 10 times ULN	13 (72.2) 11 (61.1)	12 (85.7)	5 (83.3) 5 (83.3)	7 (87.5)				
\geq 20 times ULN \geq 20 times ULN								
	5 (27.8)	10 (71.4)	$\frac{3(50.0)}{111.5(25.5)}$	7 (87.5)				
ALP, median (IQR), U/L	114.5	117.0 (35.3)	111.5 (35.5)	117.0 (33.5)				
>2 times LU N	(46.5)	2(142)	1(1(7))	1 (12.5)				
$\geq 2 \text{ times ULN}$	$\frac{2(11.1)}{1(5.6)}$	$\frac{2(14.3)}{(7.1)}$	$\frac{1(16.7)}{1(16.7)}$	1 (12.5)				
≥4 times ULN	1 (5.6)	1 (7.1)	1 (16.7)	0 (0.0)				
Total bilirubin, median (IQR),	3.46 (1.49)	2.91 (3.37)	<mark>4.17 (10.54)</mark>	2.51 (2.16)				
mg/dL	12 (72.2)							
\geq 3 times ULN	13 (72.2)	7 (50.0)	<mark>4 (66.7)</mark>	3 (37.5)				
\geq 5 times ULN	3 (16.7)	<mark>5 (35.7)</mark>	<mark>3 (50.0)</mark>	2 (25.0)				
ALT/ALP ratio (R)	0 (11 1)	a (1 4 a)						
≤ 2 (cholestatic)	<mark>8 (44.4)</mark>	2 (14.3)	<mark>1 (16.7)</mark>	1 (12.5)				
>2 to <5 (mixed)	3 (16.7)	2 (14.3)	2 (33.3)	0 (0.0)				
\geq 5 (hepatocellular)	<mark>7 (38.9)</mark>	<mark>10 (71.4)</mark>	<mark>3 (50.0)</mark>	<mark>7 (87.5)</mark>				
Comorbidities within 30 days								
Viral hepatitis			<mark>0 (0.0)</mark>	0 (0.0)				
Non-viral liver diseases	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>				
Alcoholism	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>				
Gallbladder diseases	<mark>0 (0.0)</mark>	<mark>1 (7.1)</mark>	<mark>1 (16.7)</mark>	<mark>0 (0.0)</mark>				
Myocardial infarction	<mark>2 (11.1)</mark>	<mark>3 (21.4)</mark>	<mark>0 (0.0)</mark>	<mark>3 (37.5)</mark>				
Congestive heart failure	<mark>11 (61.1)</mark>	<mark>6 (42.9)</mark>	<mark>2 (33.3)</mark>	<mark>4 (50.0)</mark>				
Hypertension	<mark>4 (22.2)</mark>	<mark>3 (21.4)</mark>	<mark>1 (16.7)</mark>	<mark>2 (25.0)</mark>				
Shock/hypotension	<mark>3 (16.7)</mark>	<mark>3 (21.4)</mark>	<mark>1 (16.7)</mark>	<mark>2 (25.0)</mark>				
Medication use within 30 days	<mark>s prior to outc</mark>	<mark>come date</mark>						
Antibacterial agents	<mark>9 (50.0)</mark>	<mark>7 (50.0)</mark>	<mark>3 (50.0)</mark>	<mark>4 (50.0)</mark>				
Antifungal agents	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>	0 (0.0)				
Acetaminophen	10 (55.6)	<mark>4 (28.6)</mark>	1 (16.7)	<mark>3 (37.5)</mark>				
PPIs	9 (50.0)	8 (57.1)	2(33.3)	6 (75.0)				
H2-receptor antagonists	9 (50.0)	<mark>6 (42.9)</mark>	$\frac{2}{2}(33.3)$	4 (50.0)				
Antiplatelet agents	<mark>6 (33.3)</mark>	5 (35.7)	$\frac{0}{0}(0.0)$	5 (62.5)				
Lipid lowering drugs	10 (55.6)	11 (78.6)	4 (66.7)	7 (87.5)				
Zipia ionoring drugo	10 (00.0)		. (00.7)					

Appendix Table 6. Characteristics of Warfarin and NOAC^{*} Users with a Diagnosis of Acute Liver Failure Within 90 Days After Liver Injury

Antiarrhythmics	<mark>7 (38.9)</mark>	<mark>6 (42.9)</mark>	1 (16.7)	<mark>5 (62.5)</mark>
NSAIDs	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>
Nucleoside analogs	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>
Antituberculosis agents	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>
Antiepileptics	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>
Immunosuppressants	0(0.0)	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>	<mark>0 (0.0)</mark>

 Infinitiosuppressants
 0 (0.0)
 0 (0.0)
 0 (0.0)
 0 (0.0)
 0 (0.0)

 Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; IQR, interquartile range; NOACs, non-vitamin K antagonist oral anticoagulants; NSAIDs, non-steroidal anti-inflammatory drugs; PPIs, proton pump inhibitors; ULN, upper limit of normal.

 Values are expressed as frequency (%) unless otherwise specified.

 * No apixaban users were diagnosed with acute liver failure.

 † See Appendix Table 2 for ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) procedure codes.

 ‡ See Appendix Table 1 for ULN. To convert ALT/ALP to µkat/L, multiply values by 0.0167; to convert total bilirubin to µmol/L, multiply values by 17.104.

Exposure	Total No.	No. of events /	Incidence per	Adjusted HR	P value
		person-years	1000 person-	(95% CI)	
			years (95% CI)		
Warfarin	6,849	186 / 11,085	16.8 (14.5 to	1.00 (reference)	
			19.3)		
NOACs	6,849	111 / 9,289	11.9 (9.9 to	0.67 (0.53 to	< 0.001
			14.3)	0.85)	
Dabigatran	3,663	58 / 5,442	10.7 (8.1 to	0.61 (0.46 to	0.001
			13.6)	0.82)	
Rivaroxaban	2,016	29 / 2,701	10.7 (7.3 to	0.60 (0.40 to	0.01
			15.1)	0.89)	
Apixaban	1,170	24 / 1,147	20.9 (13.6 to	1.10 (0.71 to	0.67
-			30.4)	1.69)	

Appendix Table 7. Adjusted Estimates of Liver Injury Risk after Propensity Score Matching Using 5-Day as the Gap of Discontinuation Therapy

 Abbreviations: HR, hazard ratio; CI, confidence interval; NOACs, non-vitamin K antagonist oral anticoagulants.

Exposure	Total No.	No. of events / person-years	Incidence per 1000 person- years (95% CI)	Adjusted HR (95% CI)	<i>P</i> value
Warfarin	6,849	218 / 12,584	17.3 (15.1 to 19.7)	1.00 (reference)	
NOACs	6,849	128 / 10,195	12.6 (10.5 to 14.9)	0.69 (0.55 to 0.86)	< 0.001
Dabigatran	3,663	68 / 6,027	11.3 (8.8 to 14.2)	0.63 (0.48 to 0.83)	< 0.001
Rivaroxaban	2,016	33 / 2,911	10.7 (7.9 to 15.7)	0.61 (0.42 to 0.89)	0.001
Apixaban	1,170	27 / 1,256	21.5 (14.4 to 30.6)	1.11 (0.74 to 1.67)	0.61

Appendix Table 8. Adjusted Estimates of Liver Injury Risk after Propensity Score Matching Using 15-Day as the Gap of Discontinuation Therapy

 Abbreviations: HR, hazard ratio; CI, confidence interval; NOACs, non-vitamin K antagonist oral anticoagulants.

Exposure	Total No.	No. of events / person-years	Incidence per 1000 person- years (95% CI)	Adjusted HR (95% CI)	<i>P</i> value
Warfarin	6,849	424 / 24,126	17.6 (16.0 to 19.3)	1.00 (reference)	
NOACs	6,849	271 / 17,486	15.5 (13.7 to 17.4)	0.83 (0.71 to 0.97)	0.02
Dabigatran	3,663	159 / 10,962	14.5 (12.3 to 16.9)	0.80 (0.67 to 0.97)	0.02
Rivaroxaban	2,016	70 / 4,655	15.0 (11.8 to 18.8)	0.79 (0.61 to 1.02)	0.07
Apixaban	1,170	42 / 1,869	22.5 (16.3 to 30.0)	1.12 (0.81 to 1.55)	0.49

Appendix Table 9. Adjusted Estimates of Liver Injury Risk after Propensity Score Matching Using Intention-to-Treat Approach

 Abbreviations: HR, hazard ratio; CI, confidence interval; NOACs, non-vitamin K antagonist oral anticoagulants.

Appendix Table 10. Adjusted Estimates of Liver Injury Risk after Propensity Score Matching Using Increased ALT and Bilirubin ULN* to Define Liver Injury Outcome **Events**

Exposure	Total No.	No. of events / person-years	Incidence per 1000 person- years (95% CI)	Adjusted HR (95% CI)	P value
Warfarin	<mark>6,849</mark>	133 / 13,306	10.0 (8.4 to 11.8)	1.00 (reference)	
NOACs	<mark>6,849</mark>	88 / 10,761	8.2 (6.6 to 10.0)	0.81 (0.61 to 1.06)	<mark>0.13</mark>
Dabigatran	<mark>3,663</mark>	<mark>45 / 6,409</mark>	7.0 (5.2 to 9.3)	<mark>0.70 (0.50 to</mark> 0.99)	<mark>0.04</mark>
Rivaroxaban	2,016	23 / 3,028	7.6 (4.9 to 11.1)	0.75 (0.48 to 1.17)	<mark>0.20</mark>
Apixaban	<mark>1,170</mark>	20 / 1,324	15.1 (9.4 to 22.7)	1.45 (0.90 to 2.35)	<mark>0.13</mark>

Abbreviations: ALT, , alanine aminotransferase; ULN, upper limit of normal; HR, hazard ratio; CI, confidence interval; NOACs, non-vitamin K antagonist oral anticoagulants. * ULN for ALT in female is 40U/L, in male is 50U/L; ULN for total bilirubin in both female and male is 1.25mg/dL. To convert ALT to µkat/L,

multiply values by 0.0167; to convert total bilirubin to µmol/L, multiply values by 17.104.

Exposure	Total No.	No. of events / person-years	Incidence per 1000 person- years (95% CI)	Adjusted HR (95% CI)	P value
Liver injury [†]	•			4	•
Warfarin	6,849	134 / 13,266	10.1 (8.5 to 11.9)	1.00 (reference)	
NOACs	6,849	93 / 10,738	8.7 (7.0 to 10.5)	0.82 (0.63 to 1.07)	0.15
Dabigatran	3,663	45 / 6,389	7.0 (5.2 to 9.3)	0.68 (0.48 to 0.96)	0.03
Rivaroxaban	2,016	27 / 3,025	8.9 (6.0 to 12.7)	0.85 (0.56 to 1.29)	0.44
Apixaban	1,170	21 / 1,324	15.9 (10.0 to 23.6)	1.43 (0.89 to 2.28)	0.14
Acute liver failu	ire [‡]		· .	•	•
Warfarin	6,849	10 / 13,426	0.7 (0.4 to 1.3)	1.00 (reference)	
NOACs	6,849	11 / 10,802	1.0 (0.5 to 1.7)	1.41 (0.58 to 3.38)	0.45
Dabigatran	3,663	2 / 6,433	0.3 (0.1 to 1.0)	0.45 (0.10 to 2.05)	0.30
Rivaroxaban	2,016	6 / 3,036	2.0 (0.8 to 4.0)	2.91 (1.00 to 8.40)	0.05
Apixaban	1,170	3 / 1,333	2.3 (0.6 to 5.8)	3.09 (0.80 to 11.87)	0.10

Appendix Table 11. Adjusted Estimates of Liver Injury Risk after Propensity Score Matching Using ICD-9-CM Codes to Define Liver Injury Outcome Events^{*}

Abbreviations: ICD-9-CM, International Classification of Diseases, Ninth Revision, Clinical Modification; HR, hazard ratio; CI, confidence interval; NOACs, non-vitamin K antagonist oral anticoagulants.

* ICD-9-CM codes for liver injury outcome events are presented in Appendix Table 2.

[†] General liver injury indicates the liver injury outcome as identified by ICD-9-CM codes as presented in Appendix Table 2.

‡ Acute liver failure indicates the liver injury outcome as identified by ICD-9-CM code 570.

viatening and	ong the ratients	with Dasenne	Liver Function	Laboratory res	1.5
Exposure	Total No.	No. of events /	Incidence per	Adjusted HR	P value
		person-years	1000 person-	(95% CI)	
			years (95% CI)		
Warfarin	5,944	214 / 11,285	19.0 (16.5 to	1.00 (reference)	
			21.6)		
NOACs	5,944	132 / 9,244	14.3 (12.0 to	0.72 (0.58 to	0.004
			16.9)	0.90)	
Dabigatran	3,159	64 / 5,449	11.7 (9.1 to	0.61 (0.46 to	< 0.001
			14.9)	0.81)	
Rivaroxaban	1,763	40 / 2,601	15.7 (11.1 to	0.77 (0.55 to	0.14
			20.7)	1.09)	
Apixaban	1,022	28 / 1,194	23.4 (15.8 to	1.14 (0.76 to	0.53
-			33.2)	1.70)	

Appendix Table 12. Adjusted Estimates of Liver Injury Risk after Propensity Score Matching among the Patients^{*} with Baseline Liver Function Laboratory Tests

Abbreviations: HR, hazard ratio; CI, confidence interval; NOACs, non-vitamin K antagonist oral anticoagulants; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase.

* Patients who do not have any result for ALT, AST, ALP or total bilirubin during the period of index date – 90 to index date – 1 were removed.

Exposure	Total No.	No. of events / person- years	Incidence per 1000 person- years (95% CI)	Full [*] adjusted HR (95% CI; <i>P</i> value)	Partial [†] adjusted HR (95% CI; <i>P</i> value)
Warfarin	8,519	313 / 16,370	19.1 (17.1 to 21.3)	1.00 (reference)	1.00 (reference)
NOACs	9,762	200 / 15,173	13.2 (11.4 to 15.1)	0.71 (0.58 to 0.85; <i>P</i> <0.001)	0.70 (0.58 to 0.84; <i>P</i> <0.001)
Dabigatran	5,125	93 / 8,861	10.5 (8.5 to 12.8)	0.60 (0.47 to 0.76; <i>P</i> <0.001)	0.59 (0.46 to 0.74; <i>P</i> <0.001)
Rivaroxaban	2,924	63 / 4,312	14.6 (11.3 to 18.5)	0.76 (0.57 to 1.00; P=0.05)	0.75 (0.57 to 1.00; <i>P</i> =0.05)
Apixaban	1,713	44 / 2,000	22.0 (16.1 to 29.1)	1.01 (0.72 to 1.40; <i>P</i> =0.96)	1.01 (0.73 to 1.40; <i>P</i> =0.97)

Appendix Table 13. Adjusted Estimates of Liver Injury Risk Using Covariate Adjustment Approach

Abbreviations: HR, hazard ratio; CI, confidence interval; NOACs, non-vitamin K antagonist oral anticoagulants; CCI, Charlson Comorbidity Index; SMD, standardized mean difference; PPIs, proton pump inhibitors; ACEI, angiotensin-converting-enzyme inhibitor;

* Full adjusted HR indicates that all variables for propensity score matching were used for covariate adjustment.

[†] Partial adjusted HR indicates that variables including age, sex, CCI, as well as the comorbidities and medications with SMD greater than 0.1 before propensity score matching which are congestive heart failure, kidney diseases, antibacterial agents, PPIs, lipid lowering agents, ACEI, diuretics, digoxin, were used for covariate adjustment.

Appendix Table <mark>14</mark> . Adju	usted Estimates of Liver	Injury Risk Using I	Inverse Probability of
Treatment Weighting Ap	pproach		

Exposure	Total No.	No. of events / person- years	Incidence per 1000 person- years (95% CI)	IPTW adjusted HR (95% CI; <i>P</i> value)	IPTW with 1% truncation [*] adjusted HR (95% CI; <i>P</i> value)
Warfarin	8,519	313 / 16,370	19.1 (17.1 to 21.3)	1.00 (reference)	1.00 (reference)
NOACs	9,762	200 / 15,173	13.2 (11.4 to 15.1)	0.72 (0.60 to 0.86; <i>P</i> <0.001)	0.71 (0.59 to 0.85; <i>P</i> <0.001)
Dabigatran	5,125	93 / 8,861	10.5 (8.5 to 12.8)	0.60 (0.48 to 0.76; <i>P</i> <0.001)	0.59 (0.47 to 0.75; <i>P</i> <0.001)
Rivaroxaban	2,924	63 / 4,312	14.6 (11.3 to 18.5)	0.77 (0.59 to 1.01; <i>P</i> =0.06)	0.76 (0.58 to 1.00; P=0.05)
Apixaban	1,713	44 / 2,000	22.0 (16.1 to 29.1)	1.13 (0.81 to 1.56; <i>P</i> =0.47)	1.11 (0.80 to 1.54; P=0.52)

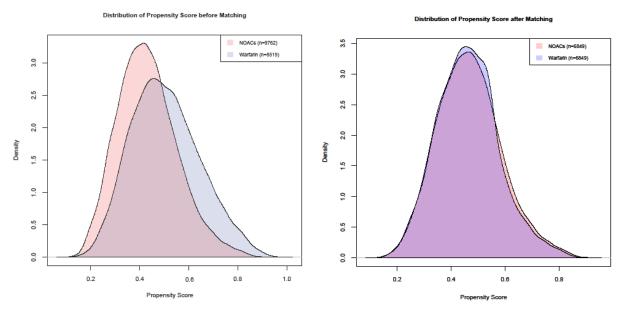
Abbreviations: HR, hazard ratio; CI, confidence interval; NOACs, non-vitamin K antagonist oral anticoagulants; IPTW, inverse probability of treatment weighting. * Inverse probability of treatment weighting with 1% truncation indicates that the individuals with weights below or above the 1st or 99th

percentile respectively, were set to the truncation threshold.

Exposure	Total No.	No. of events (%)	Median (IQR) of overall follow-up period, years	Median (IQR) of follow- up period of patients who developed outcome events, years
Warfarin	6,849	232 (3.4)	1.12 (3.04)	1.19 (2.45)
NOACs	6,849	141 (2.1)	1.16 (2.09)	1.05 (1.48)
Dabigatran	3,663	72 (2.0)	1.20 (2.46)	1.11 (1.84)
Rivaroxaban	2,016	40 (2.0)	1.27 (2.07)	0.84 (1.65)
Apixaban	1,170	29 (2.5)	0.97 (1.38)	1.02 (1.15)

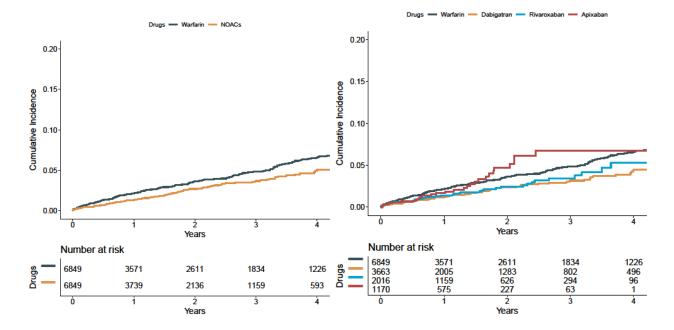
Appendix Table 15. Follow-up Period of the Cohort after Propensity Score Matching

Abbreviations: IQR, interquartile range; NOACs, non-vitamin K antagonist oral anticoagulants.


Appendix Table 16. Occurrence of Elevated^{*} ALT/AST and Total Bilirubin in the Current Study Compared to Randomized Controlled Trials of Dabigatran, Rivaroxaban, and Apixaban

Study [†]	NOA	AC group	Control group		Hazard Ratio or
_	Subjects	Number of outcome events (%)	Subjects	Number of outcome events (%)	. Risk Ratio (95% CI)
Dabigatran					
Current study	3,663	72 (2.0)	6,849	232 (3.4)	0.63 (0.48 to 0.82
RE-COVER	1,055	2 (0.2)	1,106	4 (0.4)	0.52 (0.10 to 2.86
RE-LY	12,091	26 (0.2)	6,022	21 (0.3)	0.62 (0.35 to 1.09
RE-MEDY	1,430	2 (0.1)	1,426	1 (<0.1)	1.99 (0.18 to 21.97)
RE- MOBILIZE	1,728	2 (0.1)	868	2 (0.2)	0.50 (0.07 to 3.56
RE-NOVATE II	1,010	2 (0.2)	1,003	0 (0)	4.97 (0.24 to 103.30)
RE-SONATE	681	0 (0)	682	0 (0)	Not estimable
Rivaroxaban					
Current study	2,016	40 (2.0)	6,849	232 (3.4)	0.72 (0.51 to 1.01
ATLAS ACS2- TIMI 51	10,350	21 (0.2)	5,176	10 (0.2)	1.05 (0.49 to 2.23
EINSTEIN Acute DVT	1,682	2 (0.1)	1,648	4 (0.2)	0.49 (0.09 to 2.67
EINSTEIN DVT Continued	591	0 (0)	586	0 (0)	Not estimable
EINSTEIN-PE	2,412	5 (0.2)	2,405	4 (0.2)	1.25 (0.34 to 4.64
J-ROCKET	639	3 (0.5)	639	3 (0.5)	1.00 (0.20 to 4.94
MAGGELLAN	3,364	7 (0.2)	3,382	7 (0.2)	1.01 (0.35 to 2.86
RECORD1	2,128	1 (<0.1)	2,129	1 (<0.1)	1.00 (0.06 to 15.98)
RECORD3	1,220	2 (0.2)	1,239	0 (0)	5.08 (0.24 to 105.66)
RECORD4	1,150	1 (<0.1)	1,156	3 (0.3)	0.34 (0.03 to 3.22
ROCKET-AF	7,111	33 (0.5)	7,125	35 (0.5)	0.94 (0.59 to 1.52
Apixaban					
Current study	1,170	29 (2.5)	6,849	232 (3.4)	1.13 (0.77 to 1.68

1,596	0 (0)	1,588	2 (0.1)	0.20 (0.01 to 4.14)
1,501	3 (0.2)	1,508	1 (<0.1)	3.01 (0.31 to 28.94)
2,673	7 (0.3)	2,659	3 (0.1)	2.32 (0.60 to 8.97)
1,653	1 (<0.1)	829	3 (0.4)	0.17 (0.02 to 1.60)
3,673	2 (<0.1)	3,642	2 (<0.1)	0.99 (0.14 to 7.04)
9,088	30 (0.3)	9,052	31 (0.3)	0.96 (0.58 to 1.59)
2,808	6 (0.2)	2,791	10 (0.4)	0.60 (0.22 to 1.64)
	1,501 2,673 1,653 3,673 9,088	1,501 $3 (0.2)$ $2,673$ $7 (0.3)$ $1,653$ $1 (< 0.1)$ $3,673$ $2 (< 0.1)$ $9,088$ $30 (0.3)$	1,501 $3 (0.2)$ $1,508$ $2,673$ $7 (0.3)$ $2,659$ $1,653$ $1 (<0.1)$ 829 $3,673$ $2 (<0.1)$ $3,642$ $9,088$ $30 (0.3)$ $9,052$	1,501 $3 (0.2)$ $1,508$ $1 (<0.1)$ $2,673$ $7 (0.3)$ $2,659$ $3 (0.1)$ $1,653$ $1 (<0.1)$ 829 $3 (0.4)$ $3,673$ $2 (<0.1)$ $3,642$ $2 (<0.1)$ $9,088$ $30 (0.3)$ $9,052$ $31 (0.3)$


Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase. * The elevated ALT/AST was defined as > 3 times the upper limit of normal; elevated total bilirubin was defined as > 2 times the upper limit of normal.

⁺ Individual clinical trial data as reported in Caldeira D, Barra M, Santos AT, et al. Risk of drug-induced liver injury with the new oral anticoagulants: systematic review and meta-analysis. Heart. 2014;100(7):550-556.

Appendix Figure 1. Distribution of Propensity Score Before and After Matching for NOAC and Warfarin Users

Abbreviations; NOAC, non-vitamin K antagonist oral anticoagulants. The curves indicate the distribution of the probability of a patient receiving NOACs given the observed patient characteristics. The probability was calculated using logistic regression in which NOAC treatment (yes/no) was the dependent variable and observed patient characteristics were independent variables.

Appendix Figure 2. Kaplan-Meier Curves for Liver Injury after PS Matching for NOAC and Warfarin Users

Abbreviations; NOACs, non-vitamin K antagonist oral anticoagulants.

25 February 2020

Brian E. Lacy, MD, PhD, FACG and Brennan Spiegel, MD, MSHS, FACG Editors-in-Chief, *American Journal of Gastroenterology*

Dear Drs. Lacy and Spiegel,

RE: Manuscript ID AJG-19-2621 - "Association Between Non-vitamin K Antagonist Oral Anticoagulants or Warfarin and Liver Injury: A Cohort Study": response to the reviewers' comments for the manuscript

Thank you very much for the comments in the recent decision letter dated 3 February 2020. We appreciate this opportunity to further revise our manuscript. Our responses to the reviewers' comments are given point-by-point below in red.

Editor/Editorial Board:

1. Please indicate if any subjects had cholestatic liver injury defined by R value or ratio of serum ALT to serum alkaline phosphatase as a multiple of upper limit of normal R<2.

Thank you for your comment. To address this point, and several other comments regarding the clinical details of patients who experienced our outcome definition of liver injury, we have added an additional table to the main text (Table 2, p. 31). As per the EASL Clinical Practice Guidelines: Drug-induced liver injury, we have described the number (%) of patients with the primary outcome by their ALT/ALP ratio (R) (i.e. $R \le 2$ cholestatic pattern, R > 2 to <5 mixed pattern, and $R \ge 5$ hepatocellular pattern) on the outcome date. In the complete cohort, a total of 332 (64.7%) of patients had a cholestatic pattern of liver injury (208 [66.5%] warfarin users and 124 [62.0%] NOAC users). Further details by drug are shown in Table 2 (p. 31).

2. How many patients had imaging of the liver with either ultrasound, CT or MRI?

As mentioned in comment #1, we have added Table 2 (p. 31) to provide additional clinical information about patients who meet our definition of liver injury. Of these, a total of 114 (22.2%) patients (65 [20.8%] warfarin users and 49 [24.5%] NOAC users) had a procedure date within 90 days after the outcome date for either ultrasound (liver, abdomen), CT (abdomen), or MRI (abdomen). This proportion may be lower than what is observed in US clinical practice, because of the extensive wait times for diagnostic imaging within the Hong Kong public healthcare system. We have also added the list of diagnostic imaging procedure codes to the Supplementary Appendix Table 2.

Reviewer #1:

1. The authors chose ALT 3XULN plus Bilirubin 2XULN as outcome parameter that reflects Hy's Law cases. International consensus criteria define DILI as ALT 5xULN or ALP 2xULN or Hy's Law (EASL Clinical Practice Guidelines: Drug-induced liver injury, Andrade, Raúl J.Aithal, Guruprasad P.Karlsen, Tom H. et al. Journal of Hepatology, Volume 70, Issue 6, 1222 - 1261), while Hy's Law (in the FDA-Definition also requiring a ratio of ALTxULN/APxULN>=5) is

considered as an indicator of severe liver injury in the case that competing diagnoses have thoroughly been ruled out. By confining liver injury cases to the Hy's Law positive cases incidence of DILI with NOAC/warfarin might be underestimated. An important question that should be addressed is the exclusion of other possible causes in the investigated patients (Hyptension, Shock, viral Hepatitis, Biliary Obstruction) to corroborate the use of Hy's Law.

Thank you for your comment regarding the outcome definition. We agree with the reviewer that using a definition of Hy's Law cases may underestimate the true incidence of liver injury, which is why we used a broader definition of "liver injury" which appears to capture a greater number of patients and different patterns of liver injury.

We selected our primary outcome (liver injury) in accordance with the laboratory test thresholds as defined in Hy's Law, specifically an ALT or AST > 3x the upper limit of normal (ULN) and a total bilirubin > 2x ULN. Our intention is not to suggest that each patient with the outcome satisfied all three components of Hy's Law (i.e. Hy's Law cases). As the reviewer has noted, a criteria of Hy's Law requires that other causes of liver injury be ruled out. It is very challenging to rule out or determine other potential causes for elevations in serum aminotransferase and bilirubin levels using electronic health record data, thus we have not defined the outcome as Hy's Law cases and describe the outcome as "liver injury". This outcome was selected because it is a common liver function safety endpoint reported in RCTs on NOAC effectiveness and safety. Thus, it allows us to compare the rate of liver injury in clinical practice to the rates observed in a more selective RCT population.

Furthermore, we have added descriptive results for the patients who experienced our outcome during follow-up (Table 2, p. 31). On the outcome date, of the 513 cases who met our outcome definition during follow-up, 144 (28%) had ALP > 2x ULN. When applying the definition of drug-induced liver injury (DILI) according to the guidelines (ALT \ge 5x ULN or ALP \ge 2xULN), 353 (69%) of patients met either criteria. As we were unable to perform a causality assessment, and with the challenges of ruling out other causes, we have not used this definition as the primary outcome in this study.

2. Causality is a big issue in DILI and especially in patients receiving multiple comedications. Was statistical testing performed concerning the occurrence of liver injury in the patients and the use of comedications with known DILI-liability (e.g. NSAR, Antiinfectives, antiTb, Antipeileptics etc)?

Due to the challenges in assessing liver injury using electronic health databases, we have not performed a causality assessment. No statistical testing was performed regarding co-medications prior to liver injury. However, as presented in Table 1, we identified baseline exposures to key classes of hepatotoxic medications, and these baseline exposures were well balanced after propensity score matching. Furthermore, we have included additional descriptive details for those patients who experienced our outcome definition of liver injury. Recent exposure to hepatotoxic medications are described in Table 2 (p. 31). For example, about half of the patients with liver injury were also dispensed prescriptions for antibacterial agents, lipid lowering drugs, and antiarrhythmic drugs, but at most 5% of patients were dispensed NSAIDs, antituberculosis agents, and antiepileptics. The distribution of drug exposure prior to liver injury appears to be similar for NOAC and warfarin users.

3. The cases with acute liver failure should be described in detail, since this is the worst possible outcome of DILI. The finding that NOAC-HR for acute liver failure is higher than warfarin is especially interesting, since one would expect liver failure to occur more often with warfarin due to the effects of the drug on INR. It would be interesting to have these data discussed and more information in the supplement (especially on causality)

We have added Appendix Table 6, which provide additional details of patients with liver injury who were also diagnosed with acute liver failure using ICD-9-CM codes. In addition, we have expanded our results (p.11 lines 11-20) and our discussion (p. 14 lines 6-17) to further discuss the findings for patients with acute liver failure.

Reviewer #2:

1. It will be interesting to see a graphic distribution of latency between the drug start and the onset of liver injury, likewise for the dechallenge separated by drug.

Thank you for your comment. We have included additional clinical details about those patients who experienced our outcome definition of liver injury in Table 2 (p.31). We describe the time from drug initiation to the onset of liver injury in 6 categories (<1 month, \geq 1 to <3 months, \geq 3 to <6 months, \geq 6 to <12 months, \geq 12 to <24 months, \geq 24 months). Furthermore, we have changed our survival curve (Appendix Figure 2) to a cumulative incidence curve and have shortened the plot axes in order to better visualize the curve. The survival curves are shown for each oral anticoagulant group and by specific drug. Taken together, this additional data should give readers a clearer understanding of the temporal onset of liver injury in our cohort.

Regarding dechallenge and resolution of elevations in liver function tests, we cannot determine the true date of discontinuation based on dispensing records. As with nearly all pharmacoepidemiology studies, we assume that patients who are dispensed a medication actually consume it as per the dispensing record.

2. How was causality assessed or is this just the description of elevation occurring, which would be ok too.

Thank you for the question. The objective of this study was to investigate the association between the use of NOACs vs warfarin and the risk of liver injury. We agree with the reviewer that a causality assessment is often required to determine whether cases can be classified as DILI. Because of the challenges in determining DILI from database studies, we have defined our outcome only as liver injury. Without a detailed review of each patient's medical records, we cannot determine what caused the outcome to occur. We have described laboratory tests at baseline and described the distribution of the relevant laboratory tests for the 513 patients who experienced the primary outcome of liver injury (Table 2, p. 31).

3. Please confirm, you truly observe a 2% Hy's law criteria, that is 3 ULN of ALT & Bilirubin >2ULN.

We selected our primary outcome (liver injury) in accordance with the laboratory test thresholds as defined in Hy's Law, specifically an ALT or AST > 3x the upper limit of normal (ULN) and a total

bilirubin > 2x ULN. We can confirm that, as presented in Table 3 and Appendix Table 15, in the propensity score matched cohort, the risk of liver injury during follow-up was about 2%. As shown in Table 1 we included patients with a history of liver disease and gallbladder disease, which may contribute to the higher rate of liver injury in this study. Furthermore, as described in comment #4, changing the thresholds for the upper limits of normal (ALT and total bilirubin) reduced the number of cases with liver injury. With the modified ALT and total bilirubin thresholds as suggested in comment #4, a total of 221 patients in the matched cohort experienced the outcome (Appendix Table 10). The risk (number with event / total number in treatment group) of the revised outcome was as follows: warfarin 1.94% (133/6,849), dabigatran 1.23% (45/3,663), rivaroxaban 1.14% (23/2,016), and apixaban 1.71% (20/1,170). In conditions of actual use, the risk still appears to be modestly higher than observed in randomized controlled trials. This may be due to the fact that NOACs are prescribed to individuals who would have been excluded from randomized controlled trials and that our study has a somewhat longer duration of follow-up.

4. How does this change if you would use 2.5mg as threshold for Bilirubin, and ALT of 120 instead of 75 for ALT in women, and 150 instead of 105 for men. The later thresholds were more likely used in the clinical trials.

Thank you for your comment. We would like to first clarify our ALT thresholds in the main analysis were 75 for women and 99 for men (as shown in Appendix Table 1). We ran the main analysis with the same exclusion criteria, but changed the outcome definition as suggested (ALT > 75 U/L increased to > 120 U/L [women], ALT > 99 increased to >150 [men], bilirubin > 2 mg/L increased to > 2.5 mg/L [both sexes], and excluded AST from the outcome definition). A total of 221 patients (88 NOAC users and 133 warfarin users) in the propensity score matched cohort experienced the outcome with the increased ALT and total bilirubin thresholds. The results for the propensity matched cohort are similar to the main analysis, although not statistically significant because of the reduced number of events. In the main paper, they are shown in the results (p. 13 lines 2-3), Figure 2, and Appendix Table 10.

5. As a related question: Is the onset of liver injury usually occurring at time point not covered by randomized controlled trials?

As reported in the Caldeira et al systematic review of 29 NOAC randomized controlled trials, the weighted mean duration of follow-up was 16.4 months and ranged from 2 weeks to 2 years. Of the 513 patients who experienced the primary outcome, 158 (30.8%) experienced liver injury \geq 2 years after initiation of oral anticoagulants. The longer follow-up in this observational study adds to the safety evidence obtained in randomized controlled trials. It also helps explain why we have observed a higher risk of liver injury since about one third of cases occur in a follow-up period that is excluded from randomized controlled trials. As stated previously, we have included the distribution of patients with the outcome according to follow-up time in Table 2 (p. 31). In addition, we have revised the discussion regarding the onset of liver injury (p. 14 lines 18-21).

6. Can you further report on number of death/Liver Transplantation total and liver related, as you study may suggest that liver injury may be more frequent on Warfarin, relevant clinical outcome may be more frequent with NOAC.

Similar to comment #5, we have now described the number (%) of patients who experienced liver transplant, all-cause mortality, and liver failure related mortality, within 90 days after the outcome date in Table 2 (p. 31). No patients underwent liver transplant, and the small number of deaths makes it difficult to draw firm conclusions. However, the reviewer is correct in that there is a signal that NOAC users with our primary outcome experience more severe clinical outcomes such as all-cause mortality, death from liver causes, and a diagnosis of acute liver failure. Therefore, we have added this point to the results (p.11 lines 12-20).

7. How did you assess causality in the people with elevated ALT/AST and Bilirubin?

Please see our previous response to comment #2. We have not assessed causality for patients who experienced the outcome of liver injury. We feel that the new Table 2 (p. 31) better informs the reader about the patients who experienced liver injury. Unfortunately, we do not have the resources to perform causality assessment, which requires manual review of medical records for each of the 513 patients with liver injury. We want to emphasize that our outcome definition is liver injury and not DILI, since without a comprehensive review of the complete medical record, we cannot attribute causality to a specific drug exposure.

8. What were r-values at onset by drug?

We have included the R values on the outcome date, for warfarin and NOACs, and for each NOAC drug in Table 2 (p. 31).

9. Can you comment on phenprocoumon, albeit not used in Hong Kong, I suspect, it has frequently be implicated in DILI.

Thank you for your question. We confirm that phenprocoumon is not licensed for sale in Hong Kong (Hong Kong Drug Office Drug Database, available at

www.drugoffice.gov.hk/eps/do/en/consumer/search_drug_database.html). Hence, we do not have first-hand experience to inform further on the frequency or magnitude of effects on DILI specifically on the Chinese population in Hong Kong. However, we agree with the comment that phenprocoumon may be implicated in DILI as reported in the international literature.

Thank you for your time and reconsideration of our manuscript.

Yours sincerely,

Dr. Esther W. Chan

Associate Professor and Research Lead, Centre for Safe Medication Practice and Research Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong Associate Research Fellow, The University of Hong Kong Shenzhen Institute of Research and Innovation General Office, L02-56 2/F, Laboratory Block LKS Faculty of Medicine, The University of Hong Kong 21 Sassoon Road, Pokfulam, Hong Kong SAR, China Tel: +852-28315110 Email: <u>ewchan@hku.hk</u>