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Abstract: Maintenance of the neural progenitor pool during embryonic development is essential to 
promote growth of the central nervous system (CNS). The CNS is initially formed by tightly 
compacted proliferative neuroepithelial cells that later acquire radial glial characteristics and 
continue to divide at the ventricular (apical) and pial (basal) surface of the neuroepithelium to 
generate neurons. While neural progenitors such as neuroepithelial cells and apical radial glia 
form strong connections with their neighbours at the apical and basal surfaces of the 
neuroepithelium, neurons usually form the mantle layer at the basal surface. This review will 
discuss the existing evidence that supports a role for neurons, from early stages of differentiation, 
in promoting progenitor cell fates in the vertebrates CNS, maintaining tissue homeostasis and 
regulating spatiotemporal patterning of neuronal differentiation through Delta-Notch signalling. 
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1. Introduction 

During the development of the central nervous system (CNS), neurons derive from neural 
progenitors and the Delta-Notch signaling pathway plays a major role in these cell fate decisions 
[1–4]. The traditional view is that the cell presenting the ligand Delta at the cell membrane activates 
the Notch receptor in the adjacent cells (Notch trans-activation), delaying them from differentiating. 
Newborn neurons express Delta and Mindbomb (a ubiquitin ligase and Notch signalling pathway 
modulator) and hence are believed to activate the Notch signaling pathway in the surrounding 
tissue and maintain their neighbouring cells in a proliferative state [5]. However, recent works 
challenge this simplistic view and suggest that Notch and Delta interactions can also occur at the 
cell membrane within the same cell to inhibit the Notch pathway (Notch cis-inhibition) [6], or in 
specialised endosomes to enhance Notch activation [7,8].  

The development of live-imaging approaches in the vertebrate nervous system has contributed 
to major breakthroughs in the field of neurogenesis and neuronal differentiation. This approach, 
which was initially developed in retina explants [9] and mammalian brain tissue, allows the 
visualization of biological processes such as neural progenitor divisions, in vivo generation of 
neurons, neuronal migration and axonal growth (for example [10–15]). Using this approach in 
mammalian embryonic brain tissue was critical to show that neurons can derive from neural 
progenitors through both asymmetric and symmetric divisions occurring at apical and non-apical 
locations of the neuroepithelium [10–14,16–22]. The neural progenitors that divide at the apical 
surface of the neuroepithelium are called apical progenitors and those that divide away from the 
ventricle are variously called non-apical [23], basal, or intermediate progenitors [24]. 

More recently, development of long-term live-imaging in the nervous system of zebrafish and 
chick embryos has been critical to elucidate the cellular and molecular mechanisms that regulate 
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symmetric and asymmetric modes of progenitor division and generation of neurons [7,25–30]. 
Recent studies highlight the influential role that the daughters of neural progenitors may play in 
neural progenitor pool maintenance and tissue patterning. This review discusses how recent 
findings obtained in the vertebrate CNS reveal that newborn and differentiating neurons regulate 
both progenitor renewal and neuronal patterning via Delta-Notch signalling. 

2. Neurons Derived from Asymmetric Divisions can Influence Sister Cell Fate through Notch 
Signaling Pathway Activation 

2.1. Neurons inherit the Apical Attachment during Asymmetric Divisions  

During asymmetrically fated divisions in chick and zebrafish, each daughter cell inherits either 
the apical or basal attachment, and this asymmetric inheritance correlates with the adoption of 
distinct daughter cell fates, neuron and progenitor respectively (Figure 1) [25,26]. The neuronal 
daughter cell retains the apical domain containing the apical polarity protein Pard3 (previously 
known as Par3), while the progenitor daughter transiently loses the Pard3 protein and apical 
contact. These live-imaging studies also showed that nascent neurons remain integrated in the 
apical junctional belt for several hours following division. Later, neurons detach from the apical 
surface and move to the mantle layer at the basal surface of the neuroepithelium. 

The correlation between inheritance of the apical domain and neuronal fate was unexpected 
considering that the majority of neural progenitors (which will continue to divide) contain an apical 
attachment and these observations directly contradicted the view at the time that a daughter cell 
that loses apical contact moves to the mantle layer and becomes a neuron.  

 

Figure 1. Recently born neurons may influence the fate of sister cells. Neural progenitors are 
polarised along the apico-basal axis of the neuroepithelium and localise apical polarity proteins 
such as Pard3 to the apical surface. Most neural progenitors divide at the apical surface of the 
neuroepithelium. A daughter that inherits the apical attachment (outlined by Pard3), inherits the 
Delta modulator Mindbomb and is likely to become a neuron. The daughter that transiently loses 
the apical attachment but retains the basal attachment is likely to remain a progenitor. Current 
evidence suggests that the neuronal daughter activates Notch signalling in its sister cell, promoting 
progenitor fate. However, exactly whether and when this occurs is not yet clear. 

Nonetheless, in the mammalian brain, there is also evidence that inheritance of the basal 
process and loss of apical attachment correlates with progenitor fate [19,31]. At early stages of 
embryonic development, the neural progenitors that lose their apical attachment during division 
(10% of divisions) are able restore it in some cases [31]. There is also evidence that differentiating 
neurons are initially attached to the apical surface [32] suggesting that in mammals, like in zebrafish 



J. Dev. Biol. 2020, 8, x FOR PEER REVIEW 3 of 11 

 

and chick, daughter cells inheriting the apical and basal cellular compartments during asymmetric 
divisions correlate with neuronal and progenitor fates respectively. 

2.2. Recently Born Neurons Derived from Apical Progenitor Divisions may Activate the Notch Pathway in 
Sister Cells 

Although early work in dissociated cell culture systems and some in vivo studies had shown 
an association between Par3 function and progenitor fate [33], experimental reduction in apical 
polarity protein (aPKC and Pard3) function has subsequently been shown to lead to a significant 
decrease in neurogenic divisions [25] and an overactivation of the Notch pathway [27], supporting 
the potential role for apical proteins in neuronal cell fate decisions. Further studies in zebrafish 
showed that Mindbomb plays a role downstream Pard3 function [27,30]. Mindbomb function is 
essential for Delta endocytosis and its loss-of-function blocks Notch trans-activation and leads to an 
increase in neuronal differentiation at the expense of neural progenitor fates [34,35]. During 
asymmetric division in the zebrafish telencephalon and chick spinal cord, the daughter cell 
committed to becoming neuronal inherits Mindbomb [27,30], while its sister cell (that does not 
inherit Mindbomb) activates the Notch signaling pathway and follows a progenitor fate [26,27]. 
This raised the possibility that, during asymmetric divisions, the neuronal daughter, through the 
inheritance of Pard3 and Mindbomb, activates Notch signaling in the sister cell. In zebrafish, the 
reduction of Pard3 function leads to Mindbomb symmetric inheritance [26,27] and symmetric 
proliferative divisions [25]. The observation that pairs of sister cells with decreased Mindbomb or 
Delta function are unable to activate the Notch pathway when surrounded by wild type cells in 
zebrafish [7,27], further supports the hypothesis that Notch activation depends on signals 
specifically provided by cells from the same lineage. In the mammalian brain the Notch receptor is 
enriched at the basal surface of the dividing cells, although we do not know whether the Notch 
receptor is asymmetrically inherited [10]. However, Mindbomb-1 mutant clones are able to activate 
the Notch signaling pathway when surrounded by wild type cells [5], raising the possibilities that 
Notch pathway activation in the mammalian brain can result from interlineage cellular interactions 
as proposed by Yoon et al. [5], or from intralineage cellular interactions mediated by the 
Mindbomb-2 function. Other works suggest that asymmetric activation of the Notch pathway in 
asymmetric divisions can result from the asymmetric inheritance of Sara-expressing endosomes by 
the progenitor daughter. Sara endosomes in both vertebrate and non-vertebrate systems carry 
Delta, Mindbomb [7] and Notch receptor [8], and it has been suggested that the inheritance of these 
endosomes can enhance the cell-autonomous activation of Notch signaling pathway in the 
progenitor fated cell. 

2.3. Non-Apical Asymmetric Divisions – Do Newborn Neurons Influence Sister Cells Fates? 

Intermediate progenitors, also called basal or non-apical progenitors, divide away from the 
apical surface and do not form apical or basal attachments. These progenitors, which were initially 
thought to be exclusive to the mammalian telencephalon, have now been reported in other brain 
regions and organisms [23,36–40]. There is evidence that intermediate progenitors can divide 
symmetrically to produce two neurons or asymmetrically to generate two neurons of different 
subtypes [37] and/or a progenitor and a neuron [24]. In the zebrafish spinal cord, for example, V2a 
and V2b neurons derive from a single asymmetric division that depends on Notch function [4,37]. 
The V2a daughter expresses the Notch ligand Delta C and Notch loss-of-function leads to an 
increase in V2a neurons at the expense of V2b neurons. This suggests a potential mechanism by 
which V2a may influence its sister cell to adopt a V2b fate in a Notch-dependant manner.  

In mammals, the basal radial glia progenitor subtype is also capable of dividing 
asymmetrically to self-renew and to produce neurons. Basal radial glia progenitors seem to 
preferentially inherit the basal process during division and express Hes1 [15] whose expression 
likely depends on Notch signalling pathway activation [41]. However, the underlying mechanisms 
that regulate intermediate progenitor renewal remain largely unknown, and so far there is little 
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evidence that basal radial glia cell progenitor fate is influenced by signals provided by sister 
neurons.  

These studies overall provide indirect evidence that differentiating daughters derived from 
asymmetric divisions occurring at the apical or basal surface of the neuroepithelium have the 
potential to influence sister cell fates by activating the Notch signalling pathway in its sibblings. 

3. Differentiating Neurons can Influence the Fate of Surrounding Cells during Apical 
Detachment 

3.1. During Apical Detachment, Differentiating Neurons Influence Surrounding Cells to Maintain 
Progenitor Fates and Tissue Integrity  

Newborn neurons, across vertebrates and in different regions of the nervous system, have been 
shown to transiently retain the cellular process that attaches them to the apical surface of the neural 
tube (Figure 2) [25,26,32,42–44]. During differentiation, neurons detach from the apical surface of 
the neuroepithelium without disrupting the apical surface and compromising neuroepithelial tissue 
integrity. This is potentially achieved by neurons reducing the area of the apical end-foot prior to 
delamination [6] and neurons detaching from the apical surface through abscission of the apical 
end-foot [44]. 

Differentiating neurons are initially connected to their neuroepithelial neighbours at their 
apical processes through adherens junctions that include N-cadherin [6,32] and Notch signalling 
pathway regulates the neuronal apical detachment [6]. Initially the activation of Notch signalling is 
required (or maintained) in differentiating neuron to reduce the size of its apical area [6]. Notch 
signalling is then inhibited cell-autonomously (through cis-inhibition), which increases the 
expression of neuronal differentiation markers (such as Deltas and neurogenins) and reduces the 
localisation of N-cadherin to the neuronal apical end-foot [6]. The differentiating neuron expressing 
Delta-like 1 (Dll1) promotes progenitor fates in adjacent tissue by activating the Notch signalling 
pathway revealed by the expression of the Notch reporter gene Hes5 [6]. In the cortex, maintenance 
of Notch signaling in neurons following apical detachment also appears to be required for correct 
neuronal migration [45,46]. 

Notch1 signalling is required for the development and maintenance of radial glial cells [46], 
while reduction of Notch activity was previously shown to disrupt neuroepithelium integrity and 
increase neurogenesis [47,48]. There is also evidence that N-cadherin-based adherens junctions are 
critical to maintain tissue integrity and ensure correct rates of proliferation and differentiation [49]. 
However, the study reported by Baek and colleagues [6] supports a new hypothesis in which 
disruption of the neuroepithelial integrity due to Notch pathway inhibition results from the loss of 
N-cadherin without the reduction of neuronal apical end-foot area. It remains unknown whether 
Notch inhibition and an enlarged apical area would interfere with neuronal apical abscission, 
which has previously been suggested to potentially cause disruption of neuroepithelial tissue 
integrity [44,50].  
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Figure 2. Delta-Notch signalling occurs at multiple steps during neuronal differentiation. (A) 
Recently born neurons (yellow) initially retain their attachment to the apical surface and are 
connected to their neighbours through adherens junctions that include N-cadherin (green circles). 
Prospective neurons require Notch activity (indicated by blue stripes) to reduce the size of the apical 
end-foot. There is evidence that at this point of differentiating neurons are capable of activating 
Notch signalling (blue) in the adjacent cells (Notch trans-activation). (B) Following reduction of the 
apical end-foot area, Notch signaling in the differentiating neuron is inhibited cell-autonomously, 
leading to reduction of N-cadherin localization at the apical end-foot (light green circle) and 
allowing apical process retraction. Meanwhile, differentiating neurons in the zebrafish spinal cord 
extend two long, transient processes along the basal surface of the neuroepithelium. Delta ligand 
(yellow diamonds) is enriched in the basal processes and Notch signalling (blue) is activated in the 
adjacent cells to prevent neuronal differentiation. Importantly, the basal processes can span several 
cell diameters and therefore contact cells that are not direct neighbours, activating Notch at a long 
distance. (C) Differentiating neurons finally retract the apical process and move to the basal surface 
of the neuroepithelium. The retraction of basal process and apical attachment precedes axon 
extension. 

3.2. Cellular Protrusions Developed by Differentiating Neurons Influence Neuronal Patterning in the 
Adjacent Tissue 

Although it conventionally occurs between immediate neighbours, in Drosophila, Notch-Delta 
signalling has been shown to operate over larger distances to pattern mechanosensory bristles [51–
56]. We recently showed that this can occur in the vertebrate neural tube [54]. All recently born 
neurons in the zebrafish spinal cord extend two long protrusions along the basal surface of the 
spinal cord that span several neural progenitors (Figure 2). These basal protrusions express high 
levels of Delta protein and Notch reporter activation occurs in the cells within their reach, 
suggesting that basal protrusions regulate Delta-Notch signalling pathway activation over long 
distances [54]. Spinal neurons initially differentiate with a sparse, periodic pattern [37,57–60] and 
never differentiate close in space and time [54]. We provided evidence that basal protrusions 
developed by differentiating neurons may spatially and temporally regulate the pattern of neuronal 
differentiation through long-range Delta-Notch-mediated lateral inhibition. This was further 
confirmed by mathematical modelling that showed the positioning and timing of neuronal 
differentiation cannot be explained by Delta-Notch signalling occurring between immediate 
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neighbours but can be explained by the basal protrusions delivery of long-range 
Delta-Notch-mediated lateral inhibition [54].  

Live imaging shows recently born chick spinal neurons extending highly dynamic, transient 
protrusions during apical detachment [61]. Similar processes have been described in the mouse 
neocortex, where basal progenitors (which are neurogenically committed) project transient, 
dynamic filopodia-like protrusions that contact radial glia processes [62]. As both radial glia cells 
and basal progenitors are molecularly heterogeneous and can be divided into subpopulations based 
on their Notch signalling pattern (Hes1 and/or Hes5 expression, for example) and expression of 
Delta (Dll1 and/or Dll3, for example) respectively, it suggests that basal progenitors may have the 
potential to activate Notch signalling pathway in radial glia cells through filopodia like protrusions 
[62]. However, this is yet to be proved.  

3.3. Where do Delta-Notch Interactions Occur? 

The subcellular localisation of Delta-Notch signalling in the majority of the contexts remains 
poorly characterised at the cellular and subcellular level. Depending on the vertebrate system and 
the moment of the cell cycle, Delta-Notch interactions have been suggested to occur closer to the 
apical surface [32], at the cell body and at the basal surface of the neuroepithelium [54]. 

In the mammalian brain for example, Notch receptor and a Notch cleaving protein, 
Presenilin1, are found overall apically and there is evidence that the Notch intracellular domain is 
cleaved at the apical surface of neural progenitors to be later translocated to the nuclei [32,63]. Delta 
antibody is also internalised at the apical surface of neuroepithelial cells [32], supporting the 
hypothesis that Delta-Notch interactions may take place at the apical surface at the adherens 
junctions. However, in zebrafish spinal cord, Delta D can be found in differentiating neurons in 
aggregates at the cell body and in the long cellular protrusions they develop at the basal surface of 
the neuroepithelium (see description in Section 3.2). A mathematical model developed by 
Hadjivasiliou and Moore et al. [54] to describe the long distance influence of basal protrusions on 
the spatiotemporal patterning of neuronal differentiation shows that Delta-Notch signalling 
mediated by basal protrusions is significantly more important than soma-soma signalling, 
suggesting that in this context at least, Delta-Notch signalling occurs predominantly basally. 
However, it remains unknown where Delta-Notch interactions occur, whether these locations are 
conserved across species, or whether they operate at different phases of the cell cycle and neuronal 
differentiation.  

In the developing retinal neuroepithelium, there is evidence that both Notch receptor and 
Delta ligands set up opposing spatial gradients of expression [64,65] and Notch activation correlates 
with the size of apical area and cell fates [66]. However, these observations need to be explored in 
greater detail. The development of better tools to visualise the in vivo dynamics and formation of 
gradients of Notch and Delta proteins will greatly assist in this area. 

4. Conclusions 

These works suggest that, from the moment of division, neuronal daughter cells are initially 
primed to activate the Notch signalling pathway in their sister cells and later, during apical 
detachment, in the surrounding tissue. While the location and timing of Delta-Notch interactions 
are better defined in Drosophila systems [56,67–72], less is known about the location and 
mechanisms of Delta-Notch interactions during neurogenesis and neuronal differentiation in the 
vertebrate neuroepithelium [32,54,63,66]. Delta is observed in basal protrusions [54] and at the 
apical surface [32], while Notch receptor is cleaved at the apical surface of neuroepithelial cells [32]. 
Thus, Notch activation appears to occur at multiple steps and for different purposes. Indeed, 
decreased proliferation of hippocampal progenitor cells is observed in conditional Notch mutants 
in adult mice, suggesting that the importance of Notch signaling may continue into adulthood [73]. 
Together, these studies illustrate the importance of refining signalling to certain areas of the cell 
body, but also suggest adaptation between different regions of the CNS. Understanding how this 
signalling changes over time during the initial period of neuronal differentiation remains a key 
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question. We suggest that future work focussing on the mechanisms and subcellular locations of 
Delta-Notch interactions and how these change over the lifetime of both the organism and of an 
individual cell will give us a clearer understanding of signalling dynamics and how they influence 
cell fates. 
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