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Abstract: This paper presents a novel method for modelling the three-dimensional four-phase mesostructure 

of steel fibre reinforced concrete (SFRC) consisting of coarse aggregates, mortar, interfacial transition zone 

and fibres, which provides several advanced features. It enables constructing various types of short discrete 

fibre like straight, spiral and hooked-end fibres with one- or three-dimensional elements while configuring 

their sizes and orientations. A key aspect of the approach is the capability of generating realistic-shaped 

aggregates with size- and shape-adjustability among fibres in a stochastic domain based on the relation of 

Voronoi and Delaunay structures. The mesostructure model is a powerful simulation tool for characterisation 

of such heterogenous materials because of the strong structural controllability, the algorithm’s flexibility, the 

low computational cost and the productivity for many random samples in a statistical framework. To show the 

feasibility, the models were successfully implemented in a finite element case study to evaluate the elastic 

modulus of SFRC. 

Keywords: Irregularly shaped aggregate; Interfacial transition zone; Fibre reinforcement; RVE; Voronoi 

tessellation; Finite element analysis 

1. Introduction 

Concrete as a common construction material has a great variety of applications due to its good strength and 

durability. Material properties like mechanical strength and transport properties of concrete have been always 

interesting technical and scientific subject of study. However, a reliable prediction of such properties is still a 

significant challenge because concrete is an extremely complex heterogeneous material. The heterogeneity 

mainly depends on four phases detected in mesostructure of concrete, the size of which might vary from sub-

micro/micro- to macro-scale [1]. They are dominant structural features in local damage evolution and mass 

transport [2, 3] and each phase plays a key role in the macroscopic behaviour of concrete [4]. The first phase 

is irregular shaped aggregates which are randomly distributed within the second phase of mortar. The previous 

studies have proved that the shape and size of the coarse aggregates have significant influence on workability, 

mechanical performance and durability of concrete [5]. The interfacial layer between aggregate and mortar as 

the third phase is called interfacial transition zone (ITZ), which would substantially affect the properties of 

concrete [6, 7]. Fibres as the fourth phase can be added to unreinforced concrete in order to improve its 

excessive brittleness and weak behaviour in tension. Fibrous materials can also enhance shear strength and 

energy absorption capacity [8, 9]. All these characteristics make fibre a very important structural element 

beside the other three phases. So, it is critical to consider the interaction of all of them in the analysis of 

properties of fibre reinforced concrete (FRC). In terms of numerical method, a mesoscale model framework 

can provide a more realistic representation of the material compared to the homogenous model [10]. In an ideal 

mesostructure model, all geometric features such as aggregates and fibres with the actual structural 

characteristics should be explicitly simulated. However, covering all effective properties in an irregular system 
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causes some modelling difficulties. Typical problems can be resolved through keeping computational volume 

low and replicating geometry with more natural features. 

Regarding unreinforced concrete, one of the main simulation challenges is how to deal simultaneously 

with shape, size and distribution heterogeneity of aggregates. Furthermore, the ITZ structure is influenced by 

aggregate geometry in the sense of modelling complexity as it is a layer around aggregate. Generally, two 

computational approaches have been used to simulate the aggregate particles. The first is the image-based 

model that replicates a mesostructure by scanning a real sample, e.g. using X-ray computed tomography (CT). 

The approaches enable us to model a mesostructure with many realistic details [11-13]. However, they require 

expensive computations to produce a limited number of models which only correspond to features of a specific 

image [14, 15]. In contrast, the simplified geometries have been extensively employed as the second method 

to overcome the complexities [16-18]. For example, a regular geometry model (e.g. sphere or ellipsoid) was 

used for the aggregate regardless of its natural irregular shape [19, 20]. Most of these works suffered from 

resolving non-overlapping during the reconstructing process. The implementation of simplifications might 

decrease the complexities, but at the same time, it sacrifices accuracy. 

Regarding reinforced concrete, the modelling process becomes more difficult if fibrous materials like short 

discrete fibres are added to concrete with random orientation and distribution [21]. Heterogeneity and 

computational cost are intensified due to the composition of multiple stochastic systems created by fibres, 

aggregates and ITZs. Fibres should be placed among the irregular aggregates randomly distributed while 

examining intersections and size distribution of different components. As mentioned earlier, the simplification 

has been mostly used as a solution to the high complexity in the previous studies. In some cases, the model of 

FRC was simplified to two dimensions [22-23] and the mortar matrix and coarse aggregate were treated as the 

homogenous continuum [24-26]. Similarly, the elastic properties of the spherical aggregate and the ITZ 

surrounding each aggregate were homogenised [9, 27]. Or again, the X-ray CT was employed to reconstruct 

the mesostructure of FRC [23]. Due to the complications, there have been very limited studies to explicitly 

model fibres and ITZ in addition to other phases in FRC and a comprehensive method for simulating such 

multi-scale random behaviour of FRC is still lacking. It is even more essential for steel fibres as the most 

widely used in civil infrastructures amongst all types of fibre such as natural, carbon and glass fibres [28]. To 

the best of the authors’ knowledge, there has not been such integrated mesostructure model which possesses 

all the following features together: (1) full control shape, orientation and size of fibres; (2) generation of 

irregular aggregate based on arbitrary shape, size distribution; and (3) easy approach to model ITZ and mortar 

matrix. To address these characteristics, a new algorithm is required to model steel fibre reinforced concrete 

(SFRC) with high efficiency in terms of computational cost and accuracy. In this study, the primary objective 

is to develop such an advanced algorithm with the features mentioned. 

Regarding the virtual generation of fibrous media, some available approaches have been proposed to 

simulate the fibres based on the existing mesh. For instance, the fibres were modelled in the finite element 

(FE) analysis as two-nodded one-dimensional (1D) elements bonded to the matrix mesh [29]. In such models, 

the fibre geometry is normally constructed through a string of nodes, elements or predefined cells. It makes 

the configurations of orientation, number and size be restricted to the matrix mesh. Another difficulty may 
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raise when the fibres are initially generated using a set of points and the model is then meshed [25]. In this 

case, the mesh quality might be affected by a large number of randomly distributed short fibres. Moreover, 

additional phase like aggregates cannot be easily inserted in a matrix with the presence of the fibres prescribed. 

As a solution the Delaunay triangulation technique was implemented to improve the meshing process, which 

allowed the 1D fibres to be appropriately linked to the three-dimensional (3D) matrix elements [30]. In the 

current work, the Delaunay triangulation strategy will be employed to generate short fibres at the desired 

locations according to the model framework proposed. 

In the authors’ prior publication [31], an integrated modelling framework was presented for generating the 

3D virtual mesostructure of the particulate media using Voronoi and splining methods. The proposed approach 

could control the shape and size of the irregulate particles (coarse aggregates) in the random distribution 

system. The shape parameters (e.g. sphericity, roundness and convexity) and the sieve analysis as the inputs 

were used to configure the 3D concrete model based on the experimental data. The advantages of the 

simulation techniques implemented were fully discussed. In continuation of this work, the present paper aims 

to further develop the previous algorithm to add ITZ and fibres in the 3D particulate mesostructure model for 

FRC. The novel four-phase 3D mesoscale model of SFRC offers new opportunities, which enables us to 

investigate material behaviour influenced by steel fibres beside particles and ITZ embedded in mortar. These 

structural parameters can be quantitatively characterised concerning their shapes, sizes and distribution modes 

as well as fibre orientation. Three typical steel fibres including straight, hooked-end and spiral fibres are 

considered as examples for simulations, showing the ability of the framework to deal with different profiles 

commonly used in FRC. The geometries can be made by 1D and 3D elements to be compatible with different 

material models and simulation techniques. The dimensions of all the fibres are completely adjustable. The 

ITZ model is characterised by its thickness. The boundary of solid model geometry is first generated as 

triangulated surfaces and then the solid mesh is performed among the surfaces. Fig. 1 shows an overview of 

the modelling process and the main features of each step as a flow chart. First, the straight, spiral and hooked-

end fibres are modelled. Then, the coarse aggregates are generated using a technique based on the relationship 

between Delaunay triangulation and Voronoi tessellation. The shape and size of aggregates are adjusted by the 

approach presented in [32]. Afterwards, the ITZ are constructed relying on aggregate geometry. In the final 

step, mortar and SFRC model are produced by solid mesh through the triangulated surfaces of other 

components. It is worth mentioning that all the algorithms are coded in MATLAB. To trial the model feasibility 

and efficiency, the equivalent elastic moduli of some SFRC models are evaluated using FE method. 

2. Fibre generation 

Fibres are built using a set of coupled points which are systematically distributed. The system to distribute the 

points has a key role in the modelling process. It is designed based on the Delaunay triangulation strategy and 

the Voronoi tessellation method as the basis of generation of particles in the next steps. The systematic point 

distribution provides conditions for constructing different phases with no intersection. A geometric 

intersection problem is a typical issue in the simulation of a complex solid structure. Most of the algorithms 

existed suffer from either avoiding or fixing existed overlaps. The approach proposed significantly reduces 

simulation complications. In the following sections, the methodology will be described for simulating the 
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straight fibres with the circular cross-section made by 1D elements. Then, the models of hooked-end and spiral 

fibres will be presented with reference to the model approach of straight fibre. Finally, further development to 

create fibre with triangulated surfaces will be discussed which is useful in modelling fibre as a 3D solid object. 

2.1 Straight fibre 

2.1.1 Geometric essentials 

Firstly, it is essential to introduce the important geometric parameters and principles in the proposed model. 

Also, the constraints on the positions of fibres should be clearly stated. Some definitions like Delaunay 

triangulation and Voronoi diagram are well-known and have been frequently repeated in the literature. 

However, they are presented below for the paper completeness: 

• Circumcircle: the unique circle which passes all three vertices of a triangle (see Fig. 2). The centre of the 

circumcircle is called the circumcentre, and the radius of the circle is named the circumradius. 

• Circumsphere: with a similar definition as circumcircle but it is specified by a sphere and a tetrahedron 

instead of circle and triangle, respectively. 

• Delaunay criterion: for a two-dimensional (2D) set of points, a Delaunay triangulation of these points 

ensures the circumcircle associated with each triangle does not contain any other point in its inside. Fig. 

2a shows an example of Delaunay triangulations composed of four points, two triangles and the related 

circumcircles. The triangles share two vertices of 𝑉1 and 𝑉2 . The Delaunay triangulation satisfies the 

empty circumcircle criterion. On the contrary, Fig. 2b illustrates an example which is not considered as a 

Delaunay triangulation. By fulfilling the empty circumcircle property, well-shaped triangles with the large 

internal angles are preferred to ones with smaller angles. The triangles in the non-Delaunay triangulation 

have sharper at vertices 𝑉1 and 𝑉2. Moreover, among the points distributed, three closest points are the 

best candidates for making a triangle [32]. These two features, i.e. well-shaped triangles and the nearest-

neighbour relation, are important implications that can be effectively used in the fibre generation. The 

description mentioned above can be similarly extended to a 3D set of points composed of tetrahedra. 

• Relationship between Delaunay triangulation and Voronoi diagram: the fundamental properties of the 

Voronoi tessellation method have been reported many times in the literature. The reader is referred to [33] 

for a comprehensive review. Here, more focus is placed on the properties required. A Voronoi diagram 

can correspond to the Delaunay triangulation. The circumcentres of Delaunay triangles/tetrahedra are the 

vertices of the Voronoi cells as exemplified by Fig. 3a and b. In a 2D/3D case, the Voronoi vertices are 

connected via edges/faces, if two triangles/tetrahedrons share an edge/face in the Delaunay triangulation. 

If so, their circumcentres can be connected with an edge/face in the Voronoi tessellation [34]. In other 

words, the centres of two adjacent Voronoi cells are connected by an edge/face of a triangle/tetrahedron 

for classic Voronoi tessellation (Fig. 3c). The shared edge/plane is the perpendicular bisector of a line 

segment which connects the centres of two adjacent cells. 

• Shortest distance between two line segments: to find the distance, the geometric method presented in [35] 

is used. At first, the closest points on the lines should be detected. As shown in Fig. 4, these unique points 

can be located on the line either between endpoints or anywhere else outside the range of segments on the 

extended infinite lines (lines 1 and 2). The determination of the shortest distance can be implied by the 
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following method and with the assistance of Fig. 4. In 3D, the line segments 𝑆1 and 𝑆2 with endpoints 

{𝑃0, 𝑃1} and {𝑄0, 𝑄1} are represented by: 

𝑃(𝑠) = 𝑃0 + 𝑠(𝑃1 − 𝑃0) = 𝑃0 + 𝑠𝒖                    0 ≤ 𝑠 ≤ 1 

𝑄(𝑡) = 𝑄0 + 𝑡(𝑄1 − 𝑄0) = 𝑄0 + 𝑡𝒗                  0 ≤ 𝑡 ≤ 1 
(1) 

The vector 𝒘 with start points on line 1 and an endpoint on line 2 can be defined as: 

𝒘(𝑠, 𝑡) = 𝑃(𝑠) − 𝑄(𝑡) = (𝑃0 − 𝑄0) + 𝑠𝒖 − 𝑡𝒗 

𝑖𝑓 𝒘𝟎 = 𝑃0 − 𝑄0  ⟹ 𝒘(𝑠, 𝑡) = 𝒘𝟎 + 𝑠𝒖 − 𝑡𝒗 
(2) 

At the closest points 𝑃(𝑠𝑐) and 𝑄(𝑡𝑐) on the infinite lines, the vector 𝒘𝒄 is uniquely perpendicular to the 

vectors 𝒖 and 𝒗. So, it satisfies two linear equations at the same time: 

𝒖. 𝒘𝒄 = 0, 𝒗. 𝒘𝒄 = 0 (3) 

By substituting 𝒘𝒄 = 𝒘𝟎 + 𝑠𝑐𝒖 − 𝑡𝑐𝒗 into Eq. (3) it gives: 

{
(𝒖. 𝒖)𝑠𝑐 − (𝒖. 𝒗)𝑡𝑐 = −𝒖. 𝒘𝟎

(𝒗. 𝒖)𝑠𝑐 − (𝒗. 𝒗)𝑡𝑐 = −𝒗. 𝒘𝟎
 (4) 

If 𝑎 = 𝒖. 𝒖, 𝑏 = 𝒖. 𝒗, 𝑐 = 𝒗. 𝒗, 𝑑 = 𝒖. 𝒘 and 𝑒 = 𝒗. 𝒘, then 𝑠𝑐 and 𝑡𝑐 are obtained and expressed as: 

𝑠𝑐 =
𝑏𝑒 − 𝑐𝑑

𝑎𝑐 − 𝑏2
 

𝑡𝑐 =
𝑎𝑒 − 𝑏𝑑

𝑎𝑐 − 𝑏2
 

(5) 

If the dominator 𝑎𝑐 − 𝑏2 = 0, two lines are parallel and the distance between the lines is constant. In this 

case, the closest points can be selected based on any point on the line segments like the endpoints. For instance, 

at 𝑃0, 𝑠𝑐 is equal to zero and according to Eq. (4), 𝑡𝑐 = 𝑑
𝑏⁄ = 𝑒

𝑐⁄ . 

If the obtained 𝑠𝑐 and 𝑡𝑐 are both within the range of zero to one, they are accepted as the closest point for 

the line segments and the shortest distance is |𝒘(𝑠𝑐 , 𝑡𝑐)|. But if they are not, the new points are determined 

based on minimizing the length of 𝒘(𝑠, 𝑡) or in other words, |𝒘|2. Basically, |𝒘|2, which can be expanded as 

𝒘. 𝒘 = (𝒘𝟎 + 𝑠𝒖 − 𝑡𝒗). (𝒘𝟎 + 𝑠𝒖 − 𝑡𝒗), is a quadratic function of 𝑠 and 𝑡. It defines a paraboloid on the 

plane (𝑠, 𝑡) with a minimum at 𝐶 = (𝑠𝑐 , 𝑡𝑐), as shown in Fig. 4b. The minimum 𝐶 lies outside of the subregion 

𝔾, when 𝑠𝑐 and 𝑡𝑐 are out of the range (0,1). In these cases, it can be concluded that for the line segments, if 

𝑠𝑐 or 𝑡𝑐 is less than 0, then it is set 0; and, if 𝑠𝑐or 𝑡𝑐 is greater than 1, it is set 1. 

• Parent points: the unit fibre model is generated based on a straight line between a start and an endpoint 

(Fig. 5a). 

• Length of fibre: the distance between parent points are adjusted according to fibre length 𝐿𝑓  as the 

numerical input (Fig. 5a). 

• Child points: the points are produced on each line which divide the line into equal sub-lines (Fig. 5a). 

• Fibre generator points (FGP): a set of points include parent and child points. 

• 1D-element: in the presence of child points, a sub-line represents a 1D element (Fig. 5a). Otherwise, the 

line between the parent points is interpreted as the element. The nodes of elements are the points associated 

with the corresponding line/subline. 𝐿𝑒 denotes the length of element for the straight fibre. 
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• Distance between two fibres: the distance 𝐷𝑓 is the minimum distance allowed between two fibres (Fig. 

5a). To avoid intersecting, 𝐷𝑓 must be greater than the diameter of the unit fibre. 

• Number of fibres: this input parameter 𝑁𝑓 is obtained by the ratio of the total volume of fibres to the 

volume of one fibre. 

• Domain dimensions: the model domain is cube-shaped with a side length of 𝐷𝑚 (Fig. 5b). 

• Offset: 𝐷𝑜 is the minimum distance of all FGPs allowed from the free surfaces of the domain (Fig. 5b). 

• Rule of connectivity: the FGPs will be used as the generator points of Voronoi tessellation. To manage the 

positions of the Voronoi cells, fibres and the corresponding 1D elements should pass through the centre of 

the cells. In other words, they should be lined up with the sides of the Delaunay triangles (refer to Fig. 3b 

and c), which makes the positions of particles predictable to the positions of fibres in such a random 

structure, as the particle models are created depending on the geometry of the Voronoi cells. Fig. 6 is 

employed to clearly demonstrate the rule of connectivity among the FGPs according to the connectivity of 

the Delaunay triangles. Two possible states are shown in the figure for two sets of points which are 

connected based on the Delaunay criterion. In a Delaunay triangulation, three closest points are the best 

candidates for making a triangle or tetrahedron. Fig. 6a illustrates perfect links between the points because 

the distance between two adjacent points on fibre is not greater than 𝐷𝑓. Otherwise as shown in Fig. 6b, 

the points follow the criterion and get connected to a closer point which does not belong to the fibre 

structure. It causes discontinuity by making a wrong link through the fibre model in the structure of the 

Delaunay-based mesh. Thus, the rule of connectivity indicates that length of 𝐿𝑒 must be always less than 

𝐷𝑓. 

2.1.2 Computer algorithm 

According to the descriptions above, the general layout of the algorithm is described. It follows the steps 

outlined below: 

Step 1. The information related to the geometrical characteristics is set as the input parameters including 𝐷𝑚, 

𝐷𝑜, 𝐷𝑓, 𝐿𝑓 and 𝑁𝑓. 

Step 2. 𝐿𝑒 as input should be calculated in accordance with the rule of connectivity. If 𝐿𝑓 ≥ 𝐷𝑓, the minimum 

number of child points should be greater than 𝐿𝑓 ⁄ 𝐷𝑓. If 𝐿𝑓 < 𝐷𝑓, the number of child point can be set to 

zero. 

Step 3. The parent points are randomly generated using the MATLAB function rand in the region determined 

by the offset from the cube’s surfaces. The start point is produced and then endpoint with the distance 𝐿𝑓 

is generated. In this study, the specific fibre orientation is not considered, and the fibres are modelled in 

random directions. However, it is worth mentioning that the fibre orientation can be simply applied to the 

code at this step by considering in the generation of the endpoint. 

Step 4. The line made by parent points is checked to be consistent with the geometric condition of 𝐷𝑓. If the 

distance between fibres is less than 𝐷𝑓, the points are declined, and a new couple of points are generated 

as mentioned in Step 3.  

Step 5. If required, the child points are produced. 
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The outputs of the above algorithm are two matrices including nodal positions and element connectivity. 

Each node is identified by the related row number in the matrix. The element connectivity is defined by node 

IDs. Each element is recognised by the related row number in the array and the fibre’s ID. The fibres are 

labelled in order of generation. In terms of programming, the IDs help to recall an element or node for different 

purposes. 

As exemplified in Fig. 7, the fibres are embedded into the mesh structure generated based on the Delaunay 

criterion. The fibres are automatically aligned with the edges of the tetrahedrons through the mesh. The 

positions of fibre points dictated by this approach have provided the conditions to be consistent with the mesh. 

It should be noted that the Voronoi-based mesh presented here is only used to visualize the relationship 

between the generated fibre and Delaunay triangulation, and does not represent the final solid mesh. 

2.2 Spiral fibre 

2.2.1 Geometric essentials 

• Circular spiral (helix) curve: it is a 3D curve as a well-known geometric feature that turns around an axis 

at a constant distance while moving parallel to the axis [36]. In mathematics, a helix can be defined using 

circular helix of radius 𝑎 , and slope 𝑏/𝑎  (or pitch 2𝜋𝑏), as illustrated in Fig. 8, with the following 

parametrization: 

𝑥(𝑡) = a cos(𝑡) 

𝑦(𝑡) = a sin(𝑡) 

𝑧(𝑡) = 𝑏𝑡 

        (6) 

• Rotation matrix from axis and angle: it rotates points through angle 𝜃 counterclockwise about an axis in 

the direction of 𝒖 and the origin of the Cartesian coordinate system. Given a unit vector 𝒖 = (𝑢𝑥 , 𝑢𝑦, 𝑢𝑧), 

where 𝑢𝑥
2 + 𝑢𝑦

2 + 𝑢𝑧
2 = 1, the rotation matrix 𝑅 is [37]: 

[

𝑐𝑜𝑠𝜃 + 𝑢𝑥
2(1 − 𝑐𝑜𝑠𝜃) 𝑢𝑥𝑢𝑦(1 − 𝑐𝑜𝑠𝜃) − 𝑢𝑧 𝑠𝑖𝑛𝜃 𝑢𝑥𝑢𝑧(1 − 𝑐𝑜𝑠𝜃) + 𝑢𝑦 𝑠𝑖𝑛𝜃

𝑢𝑦𝑢𝑥(1 − 𝑐𝑜𝑠𝜃) + 𝑢𝑧 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 + 𝑢𝑦
2(1 − 𝑐𝑜𝑠𝜃) 𝑢𝑦𝑢𝑧(1 − 𝑐𝑜𝑠𝜃) − 𝑢𝑥 𝑠𝑖𝑛𝜃

𝑢𝑧𝑢𝑥(1 − 𝑐𝑜𝑠𝜃) − 𝑢𝑦 𝑠𝑖𝑛𝜃 𝑢𝑧𝑢𝑦(1 − 𝑐𝑜𝑠𝜃) + 𝑢𝑥 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 + 𝑢𝑧
2(1 − 𝑐𝑜𝑠𝜃)

]     (7) 

If it is multiplied by vector 𝒗 = (𝑥, 𝑦, 𝑧) representing a point, then the matrix multiplication yields the 

result of rotating the point, as follows: 

[

𝑢𝑥(𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧)(1 − 𝑐𝑜𝑠𝜃) + 𝑥𝑐𝑜𝑠𝜃 + (−𝑢𝑧𝑦 + 𝑢𝑦𝑧)𝑠𝑖𝑛𝜃

𝑢𝑦(𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧)(1 − 𝑐𝑜𝑠𝜃) + 𝑦𝑐𝑜𝑠𝜃 + (𝑢𝑧𝑥 − 𝑢𝑥𝑧)𝑠𝑖𝑛𝜃

𝑢𝑧(𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧)(1 − 𝑐𝑜𝑠𝜃) + 𝑧𝑐𝑜𝑠𝜃 + (−𝑢𝑦𝑥 + 𝑢𝑥𝑦)𝑠𝑖𝑛𝜃

]  (8) 

• Parent points: the start and endpoints as shown in Fig. 8a and b are interpreted as the parent points. The 

parent points produced by Eq. (6) are always on a line parallel to the axis. 

• Child points: they are some points expressed by Eq. (6) on the spiral curve which connects 1D elements 

with the same length of 𝐿𝑒  (Fig. 8b). This length should be small enough to properly represent the 

curvature of the helix structure. Against the straight fibres, the rule of connectivity is not applied on 𝐿𝑒 

because theses parent and child points will not be used for Voronoi tessellation. 

• Length of fibre: the length of the axis is interpreted as the length of fibre 𝐿𝑓 (Fig. 8b). The distance between 

parent points also equals to 𝐿𝑓. 
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• Number of fibres: to obtain 𝑁𝑓, the volume of unit fibre is calculated by the length of the spiral curve and 

the area of the cross-section. To ease computation, it can be estimated with the assistance of 1D elements. 

• Distance between two fibres: 𝐷𝑓 between two spiral fibres can be measured with reference to their axes. 

Therefore, 𝐷𝑓 should be greater than the sum of 2𝑎 and the diameter of fibre’s cross-section. 

• Offset: it is set up according to the position of the axis. If the offset value for the straight fibre model is 

𝐷𝑜, it is 𝐷𝑜 + 𝑎 for the spiral fibre. 

• Vector of fibre: it is defined as a vector with the length 𝐿𝑓. It is located on and aligned with the axis. As 

shown in Fig. 8b, it connects two planes perpendicular to the fibre axis at the ends of the fibre. 

2.2.2 Computer algorithm  

The algorithm proposed to generate the randomly distributed spiral fibres in the representative volume 

elements (RVEs) of FRC contains three modules: (1) Axes Generator, (2) Single-Fibre Maker, and (3) 

Assembler. Fig. 9a schematically illustrates how these three modules interact to create the final model. Axes 

Generator constructs the fibre vectors representing the axis of fibres based on the algorithm of the straight 

fibres. However, the input parameters 𝐷𝑚, 𝐷𝑜, 𝐷𝑓, 𝐿𝑓 and 𝑁𝑓 should be determined according to the geometric 

features of spiral fibre. The outputs of this module are the matrices including the position of the endpoints on 

the axes (or line segments) and the vectors which connect the endpoints. The module of Single-Fibre Maker 

builds one fibre aligned along 𝑍 − 𝑎𝑥𝑖𝑠 as shown in Fig. 9. For the fibre axis, one of the endpoints is at the 

origin (0,0,0) and the other one is located on the positive part of 𝑍 − 𝑎𝑥𝑖𝑠. The parameters 𝑎, 𝑏, 𝐿𝑓 and 𝐿𝑒 are 

used as the inputs. The module’s production is the matrix of the position of parent and child points in order of 

generation. The inputs to Assembler consist of the outputs two other modules. Assembler duplicates the fibre 

model generated by Single-Fibre maker, rotates it along a fibre vector created by Axes Generator and translate 

the rotated fibre to the position of the corresponding vector. This process is repeated for many times that equal 

to the number of vectors produced. Fig. 9 indicates that the rotation is performed based on the cross product 

of the fibre vector and the unit vector of 𝑍 − 𝑎𝑥𝑖𝑠 (𝒛̂ = (0,0,1)). The cross product as the unit vector 𝒖 and 

the angle 𝜃 are implemented into the rotation matrix according to Eq. (8). To translate, a vector between the 

origin and the start point of the related fibre vector is used. The final geometry model contains the data related 

to nodes and elements with a similar format to the straight fibre model. A sample of the final model generated 

using the algorithm is also presented in Fig. 9. 

2.3 Hooked-end fibre 

2.3.1 Geometric essentials 

• Dimensions of fibre: the unit fibre is modelled by five-line segments. The dimensions of a fibre can be 

introduced to the code as inputs by four parameters including 𝐿1, 𝐿2, 𝐿3 and 𝛼 as indicated in Fig. 10a. 

• Length of fibre: as shown in Fig. 10a, 𝐿𝑓 is equal to 2(𝐿1 + 𝐿2 cos(𝛼)) + 𝐿3. 

• Number of fibres: 𝑁𝑓 is obtained based on the volume of the unit fibre which is calculated by multiplying 

the cross-section area and the total length specified as 2(𝐿1 + 𝐿2) + 𝐿3 (Fig. 10a). 

• Coordinate system setup: as seen in Fig. 10a, for the unit fibre, one of the endpoints (point 1) is located at 

the origin of the Cartesian system and the other one (point 6) is relatively on the positive part of  𝑍 − 𝑎𝑥𝑖𝑠. 
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The points 3 is randomly generated around 𝑍 − 𝑎𝑥𝑖𝑠 with the radius of 𝐿2 sin(𝛼). All points produced are 

in the same plane (Fig. 10b). 

• Parent point: the couple points of {1,2}, {2,3}, {3,4}, {4,5} and {5,6} are the parent points which indicate 

five segments (Fig. 10a). 

• Child point: it is defined as previously stated but the number of points can change for each line segment. 

If required, they are produced between parent points. Therefore, the length of 𝐿𝑒 can vary for the lines 

with three different lengths. The rule of connectivity is also not applicable to 𝐿𝑒. 

• Vector of fibre: it connects two endpoints (point 1 to point 6) and is aligned with the fibre axis (Fig. 10b). 

• Distance between two fibres: due to the random positions of points 3 and 4 for each fibre, the distance 

between two fibre axes 𝐷𝑓 should be greater than the sum of 2𝐿2 sin(𝛼) and diameter of fibre’s cross-

section. For better understanding, Fig. 10b shows the transparent grey cylinder representing the critical 

surface, on which these points and the corresponding line segment are possibly produced. 

• Offset: in agreement with the assumption used for 𝐷𝑓 and similar to the spiral fibre model, the offset value 

can be sat as 𝐷𝑜 + 𝐿2 sin(𝛼). 

2.3.2 Computer algorithm  

Three modules introduced in the algorithm of the spiral fibre model are also used here. But they are modified 

in agreement with the geometry of hooked-end fibre. The modifications include the configurations of  𝐷𝑚, 𝐷𝑜, 

𝐷𝑓, 𝐿𝑓 and 𝑁𝑓 as the inputs to Axis Generator. According to the geometric features provided, Single-Fibre 

Maker generates a model where the positions of the points 1, 2, 5 and 6 are constant while the points 3 and 4 

are randomly produced for each fibre. So, the outputs comprise 𝑁𝑓 models in contrary to the spiral fibre where 

only one fibre is modelled. The fibres produced are exported to Assembler. As an example, Fig. 10c displays 

the final model produced with 50 fibres translated and rotated by Assembler based on the fibre vectors, and 

Fig. 11 shows an integrated algorithm to yield the nodes and element matrices for straight, spiral and hooked 

end fibres. The algorithm suggested gives an insight into the general procedures. Such an algorithm could be 

consistently modified or redesigned in different cases. 

3. Particle insertion 

Particles (coarse aggregates) are added to the fibrous model using a technique which deals with the Voronoi 

tessellation method. The technique is based on the generation of Voronoi cells using the FGPs as the seed 

points. It makes the cell be systematically positioned against the fibres. For the spiral and hooked-end fibres, 

the FGPs of the fibre axes are used. In the following, the method of particle insertion is only described 

concerning the straight fibres for avoiding complication. However, it can be accordingly broadened for the 

spiral and hooked-end fibres. Fig. 12a schematically shows how the particles are formed through four steps: 

Step 1. The domain is firstly tessellated and each Voronoi cell encloses one node of the fibres. The geometric 

relationship between the Voronoi cells, the 1D elements and the corresponding nodes produced under the 

rule of connectivity were discussed earlier and highlighted in Fig. 3c. 

Step 2. Some Voronoi cells become candidate for simulating particles based on any selection criteria. The rest 

of them are removed from the model. For example, one or both cells, which enclose the endpoints, can be 

selected for each fibre (Fig. 12a). 
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Step 3. The fibres can be trimmed by either two approaches as indicated in Fig. 12b. Firstly, the endpoint 

enclosed is moved through the element axis to the out (or on the surface) of cells with the minimum 

displacement of 𝐿𝑒/2. Secondly, the 1D element attached to the node is deleted. In Fig. 12a, the endpoints 

are moved to the surface of the cells as highlighted in the magnified visualizations. 

Step 4. This step can be extended into another module such as splining, shape/size configurations [31] and 

ITZ generation which will be explained in the next step. 

Some key points should be considered through the modelling process: (1) Referring to Fig. 12b, the fibres 

and the related Voronoi cells do not intersect after trimming in Step 3. Because the distance between the new 

closest endpoint on the trimmed fibre to the face of the polyhedral cell selected is within the range from zero 

to 𝐿𝑒/2. (2) The cells containing the child points are not selected in Step 2 as it will cause discontinuity through 

the fibre structure in Step 3. (3) Due to trimming process, the length of the fibre is reduced. Therefore, the 

length of the original fibre needs to be set up with attention to the deducted length for the fibre generation. For 

this, the original fibre should be equal to 𝐿𝑓 + 𝐿𝑑𝑒𝑑𝑢𝑐𝑡𝑒𝑑. (4) In Step 3, if the element is supposed to be deleted, 

the original total number of elements on a fibre should be at least one more than the number of deleted ones. 

Otherwise, the fibre is completely removed from the model. After Step 4, the output of is the matrices of nodes 

and triangle elements of particle labelled by ID numbers. 

4. Modelling the ITZ 

4.1. Boundary of ITZ 

The method to simulate the ITZ that surrounds each coarse aggregate (particle) uses the particle structures 

previously generated. It is mainly based on the scaling technique [31] but with modification. The modelling 

process includes two steps: (1) The triangulated surface of a particle is duplicated by reproducing the matrix 

of vertices (or nodes). (2) The duplicated particle is expanded with reference to the centroid position 𝐶, which 

is obtained by averaging the positions of all vertices. The new positions of vertices 𝑉𝑖
𝑆𝑐𝑎𝑙𝑒𝑑 are calculated in 

the Cartesian coordinate system using the following equation: 

𝑉𝑖,𝑗
𝑆𝑐𝑎𝑙𝑒𝑑 = 𝐶𝑗 + 𝑞𝑖(𝑉𝑖,𝑗

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
− 𝐶𝑗),     𝑖 = 1: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑗 = 𝑥, 𝑦, 𝑧 (9) 

where the expansion factor 𝑞𝑖 is specified relative to the thickness of ITZ for each vertex as: 

𝑞𝑖 = 1 +
𝑟𝑖

𝑑𝐼𝑇𝑍
     (10) 

where 𝑑𝐼𝑇𝑍 denotes the thickness of ITZ which is constant and 𝑟𝑖 is the original distance between the vertex 

and the centre. 

In contrast with the shrunk factor in the scaling system presented in [31], the expansion factor is not 

uniformly applied for all vertices in order to keep the thickness consistent among two surfaces. Fig. 13a 

exemplifies how a particle is schematically scaled up respect to its original model. All vertices are translated 

along a vector that connects each the centroid to the vertex with the displacement equal to the ITZ thickness. 

ITZ is basically simulated as an interlayer between the surfaces of the original particle and the scaled one with 

the same centre. 

The method is efficient since the value of ITZ thickness relative to 𝑟𝑖 is practically large enough and/or the 

particle can be mainly depicted as a convex shape. Since local concavity can cause a problem in modelling 
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thin ITZ. Fig. 13b exemplifies a geometry with the concave feature. It is potential to create the self-intersecting 

of the ITZ boundary and overlapping with itself. To overcome this issue, the MATLAB function of ‘convhulln’ 

is employed to create a convex layer around the particle. The function computes the convex hull of the vertices. 

The solution presented is computationally reasonable and consistent with this model, although it can be 

replaced by other approaches to approximate the offset surfaces with higher accuracy. In a FE model, if ITZ 

thickness is extremely low in comparison with the particle size, ITZ might be better to be simulated using zero-

thickness interface elements instead of solid elements. 

4.2. Modification on particle generation 

The boundary of particles is expanded to create the ITZ model, which may overlap with other adjacent 

components like other particles or fibres. To avoid intersecting, the algorithm presented in Fig. 12a needs to 

be modified by shrinking the original Voronoi cells after Step 3 and before Step 4. Fig. 14 clarifies the 

modification proposed with attention to the presence of ITZ. The initial Voronoi cells are scaled down using 

the similar method for expanding the particles to pre-set a margin equal to 𝑑𝐼𝑇𝑍 for the model. The margin 

ensures the extended particles in the stage of ITZ simulation are remained enclosed in the original Voronoi 

cells with no intersection. In general, the sum of the expansion and shrunk factors through the modelling 

process is not allowed to be greater than one. 

5. Mortar 

So far, three main phases in FRC including the fibre, particle (coarse aggregate) and ITZ have been replicated. 

The output produced by each module comprises a set of matrices related to the nodes position, the elemental 

connectivity and the phase IDs. The data can be exported from MATLAB with a format consistent with the 

common FE packages for computational modelling of different properties of FRC. The mesh boundaries of 

the cubic domain, particle and ITZ are exported as STL file which is one of the most accepted formats. It is 

used for the triangular representation of 3D surface geometry. The file regarding fibre is simply written with 

text-based DAT file. By the aid of the auto-mesh module available in software, e.g. ABAQUS or ANSYS, 

solid elements are fabricated among the surfaces. Also, the mesh is in good agreement with the connectivity 

of the 1D elements. So, the fibres are properly embedded into the mesh structure. Although, it should be noted 

that the geometry and mesh generation are not fully dependent. Since the triangle or 1D elements can be 

modified for a better mesh with the desired size after the mesostructure generation. For example, the coarse 

elements can be divided into smaller ones, if a finer mesh is required. Thus, the mesh quality can be always 

improved by choosing an adequate technique compatible with the modelling requirements. Fig. 15a and b 

illustrate an example of the solid model of four-phase FRC consisting of the tetrahedral elements and the 1D 

elements. The mortar as the matrix is created by meshing between the external surfaces of the ITZ models and 

the sides of the cube. For visual comparison, the X-ray CT images of typical structures for irregular aggregates, 

mortar [38] and fibres with random orientation [23] in the unreinforced and the reinforced concrete are shown 

in Fig. 15c and d. A close morphological similarity can be observed in terms of irregularity feature and the 

random distribution between simulation and experiments. In the models shown, the number of aggregates and 

fibres were intentionally set to be small for better visualisation of the structural features. Thus, the actual 

samples cannot be quantitively compared with the models. 
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6. Solid version of fibre model 

In some cases, solid fibre models might be required to, for example, investigate damage through the fibre 

structure in three dimensions. So, a technique is proposed to consistently develop the fibre made by 1D 

elements by considering a circular cross-section. To build a solid model, the triangulated surfaces representing 

the fibre boundaries are first generated. As shown in Fig. 16a, two connected 1D elements with the ID numbers 

of 1 and 2 are used to imply the method which can be likewise employed for all types of fibre. Each node is 

the centre of a circle with the axis parallel to the axis of the element number one. Some points are uniformly 

produced on the circle’s perimeter and they divide the circumference into an equal number of segments. The 

number of points on the circle and the radius of the circle are input parameters to the code. These points are 

labelled sequentially in order of generations through a fibre structure. The ordered attributes facilitate 

definition of element connectivity for the model as continuous geometry. The function of ‘convhulln’ is used 

to generate a closed cylinder with the triangulated surfaces around each 1D element through the points on the 

circles. The triangle elements produced on the end faces of the cylinder need to be deleted because: (1) the 

elements related to the child points’ circle do not belong to the surface of the body; (2) the triangle elements 

on the parent points’ circle have low quality. After performing this procedure for all the elements for fibre, an 

open-ended surface is created. In contrast to what has been done to open the cylinders, it now needs to close 

the geometry. In this regard, the parent points and the points on the corresponding circles are only used for the 

triangulation process at each side. All the triangle elements must have one mutual vertex at the centre and two 

other vertices are the closest adjacent points on the circumference. This triangulation method is planned to 

provide a set of elements with higher quality. In general, the quality of the mesh surface depends on the length 

of 1D elements set earlier and the number of points on the circle. Fig. 16b depicts the solid models of the spiral 

and hooked-end fibres. In the next stages of modelling, the triangulated surfaces of fibres are treated as same 

as the particle and the ITZ models. 

7. An example of model implementation 

To show how the model is configured and works, as a case study, the effect of fibre volume fraction on the 

elastic modulus of concrete is investigated using the FE method. All phases are assumed to be linearly elastic 

and isotropic. Based on common idea, the side length of RVE should be at least three to five times larger than 

the maximum aggregate size [39]. Thus, the RVEs are proposed with the dimensions of 𝐷𝑚 = 50 mm and 

𝐷𝑜 = 0.5 mm to guarantee the length required. To configure a model, all the inputs should be consistent with 

each other and the RVE size. For instance, it is not possible to generate fibres with the length of 30 mm 

randomly distributed while the minimum distance between them is 6 mm and 30% of RVE is occupied by the 

coarse aggregates. Another example is about the total number of aggregates, which can vary in a range for a 

specific sieve aperture in the structure of an unreinforced concrete [40, 41]. But here, this number should be 

proportionally adjusted based on the sieve-size data and the number of fibres, which itself depends on the size 

and volume of the fibres. An unnecessary large number of aggregates would generate undesired short fibres, 

while an insufficient small number of aggregates would lead to a smaller number of fibres than required. 

In the previous work [31], it was discussed how the initial size of Voronoi cells can be controlled by the 

number of seed points and their distribution mode. It was stated that a large enough number and size of cells 
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should be produced as a requirement prior to the size adjustment step. In the current modelling approach, the 

seed points generation are coupled with the fibre generation as stated within Section 2. FGPs play the role of 

the seed points in the Voronoi tessellation. The number and distribution of FGPs can be controlled by different 

parameters such as 𝑁𝑓, 𝐷𝑜, 𝐷𝑓 and 𝐿𝑓. Hence, the tessellation can be set up using a wide range of combination 

of these modelling parameters. Depending on what parameters are fixed, a model can be configured by the rest 

of parameters. If, for example, a model is constrained with fixed values of 𝐿𝑓, 𝐷𝑓 and the fibre volume fraction, 

the initial Voronoi cell size can be regulated by 𝐷𝑚  and number of child points. In the following, the 

specifications of four phases including fibres, coarse aggregates, mortar and ITZ, FE configurations and results 

are presented. 

7.1 Phase specifications 

• Fibre: straight and hooked-end fibres are distributed with the random orientations. The fibre volume 

fractions are set to 0.5%, 1% and 1.5%. For the straight fibres, the original length of the fibre axis and 𝐿𝑒 

are adjusted to 15 mm and 5 mm, respectively. So, after trimming fibre from the parent points, 𝐿𝑓 becomes 

10 mm as the deducted length from each endpoint is 𝐿𝑒/2. The diameter of the circular cross-section is 2 

mm. The aspect ratio is therefore equal to 5, but it has a minor influence on the elastic modulus of SFRC 

within this range of fibre volume [42]. For the hooked-end fibres, the similar settings as the straight fibre 

models are used to generate the fibre axes. The lengths of 𝐿1, 𝐿2, 𝐿3 and the angle of 𝛼 are 1.5, 2.24, 5 

mm and 63.44o, respectively. Each line segment of the hooked-end element is used as 1D element. Under 

the rule of connectivity for both types of fibre, 𝐷𝑓 is set to 6.1 mm. A summary of model configurations 

including material and geometric properties are listed in Table 1. It should be highlighted that 𝑁𝑓 is an 

important input parameter in the modelling process since it indicates the number of Voronoi cells. There 

should be enough number of large cells for the generation and the size configuration of aggregates in the 

next steps. Thus, the fibre number is initially set up to 62 for the whole models with different fibre volume 

fractions. Then, the extra fibres are removed for each volume fraction. 62 fibres produce the total number 

of 248 Voronoi cells with a proper size distribution. Overproduction of fibre might cause the generation 

of small cells. 

• Coarse aggregate: in this study, the coarse aggregates occupy 30% of RVE volume. A typical size 

distribution [43] and the elastic constants [44] used for coarse aggregates are listed in Table 2. As 

mentioned earlier, the method to spline the Voronoi cells and calibrate them based on the sieve analysis 

was presented in [31]. In this regard, the Voronoi cells splined with two levels of iteration are firstly sorted 

in descending order of their volume. Then, they are adjusted within three size segments including small 

(6.8-57 mm3), medium (57-449 mm3) and large (449-1072.5 mm3). Fig. 17a and b exemplify the obtained 

particle size distribution and the generated geometry models of aggregates respectively after the size 

configuration. The total number of aggregates adjusted varies between 117 to 123. 

• Mortar and ITZ: mortar is composed of fine aggregates (sands) smaller than 2.36 mm and cement paste. 

The values of the elastic properties of mortar and ITZ have been variously analysed and differently 

reported. Based on some previous studies, the elastic modulus of mortar is in a range of 12 to 35 MPa [14, 

45, 46]. Regarding ITZ, it is difficult to characterise its local mechanical properties due to the complexity 
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of the microstructure [47]. In spite of this, ITZ can be assumed as a homogenous material across its 

thickness similar to mortar but with weaker mechanical properties [48]. The thickness of ITZ varies from 

10 to 50 µm for normal concrete [49]. Here, the elastic properties of mortar and ITZ are selected within 

the range previously reported and the ITZ is simulated with the thickness of 50 µm as given in Table 3. 

The assigned values enable the efficiency of the simulations to be generally evaluated in respect to the 

numerical and experimental results in the literature. However, the results are not directly compared to prior 

research because a specific SFRC is not considered. 

For reference, the simulation time is measured for generating such models with the settings mentioned 

consisting of the triangulated surfaces and 1D element. The times are below 1 min using a laptop Dell (Latitude 

7490) configured with Intel Core i7-8650U 1.90 GHz processor and 16.0 GB RAM. 

7.2 Finite element analysis 

• Setup: the static analysis is performed in ABAQUS. To refine the mesh, each 1D element is split into two 

elements. Two-node linear beam elements (B21) are assigned for the fibre models. Four-node linear 

tetrahedron elements (C3D4) are used for meshing of the mortar, aggregates and ITZ phases. The cubic 

RVEs are aligned with Cartesian coordinate axes 𝑥, 𝑦 and 𝑧. The unidirectional tensile stress of 1 MPa is 

uniformly applied on one side and the opposite side is fixed. For both types of fibre, 10 of the REVs are 

generated for each volume fraction of fibre with different random settings. The tensile test is simulated in 

three directions per RVE. An energy-based method is proposed to obtain equivalent elastic modulus. A 

heterogeneous RVE model composed of four phases is equal to an isotropic homogeneous RVE of SFRC 

if the external energies of two systems are equivalent under similar loading conditions. Therefore, the 

equivalent elastic modulus 𝐸𝑒𝑞 can be calculated as follows: 

{

𝜎 = 𝐸𝑒𝑞𝜀

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 =
1

2
𝜎𝜀

 (11) 

where the external energy can be obtained as an output of the software package. Eq. (11) governs a linear 

elastic, homogenous and isotropic system. 𝜎 is calculated by the sum of the nodal reaction forces on the loaded 

face dividing by the initial surface area of that face (50×50 mm2). The nominal engineering strain (𝜀) is 

computed by dividing the nodal displacement prescribed to the initial side length of the RVEs (50 mm). 

• The convergence test: it is performed on one of the RVEs containing 1.5% volume fraction of straight 

fibre. In this regard, the element number changes from about 2 million to 2.5 million. Each sample is tested 

in three directions and the standard deviations of 𝐸𝑒𝑞 varies within the range of 0.058-0.083 GPa. The 

results shown in Table 4 reveal that the model is not very sensitive to mesh density for the model which 

has more than 2,348,450 elements. 

• Model validation: to validate numerical results, a summary of elastic modulus against the previous 

experimental study [50] is provided in Table 5. The values of 𝐸𝑒𝑞 are given as the average of 30 samples 

for each fibre volume fraction in the current research. The simulation results using the purposed method 

agree reasonably with the experimental data. The models with fibre volume fractions of 0.5% and 1% 

more accurate than the others. The deviation from the experimental data increases for the RVEs without 
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fibre. Better approximations could have been achieved, if the models were regulated in accordance with 

the specific SFRC and more accurate input parameters. 

• Results and discussion: as expected and shown in Fig. 18,  𝐸𝑒𝑞 increases with the increase of fibre volume 

fraction. It can be found that the elastic modulus of the models containing hooked-end fibres is about 100 

MPa less than the models containing the straight ones. It can be interpreted as the effect of the fibre 

geometry on the elastic behaviour of SFRC in such random mesostructure. The hooked-end fibres induce 

different stress regime through the model compared to the straight fibres. One of the differences can be 

highlighted by the analysis of local stress concentrations on the fibre structures. Fig. 19 shows the typical 

Von Mises stress distribution patterns in different phases for the RVEs with the fibre volume fraction of 

1.5% subjected to the tensile loading in 𝑦-direction. For these RVEs, the values of maximum stress 

concentrations in the fibre structures are 5.10±0.43 and 6.96±0.75 for the straight and hooked-end fibres, 

respectively. According to the simulation results obtained in this study, the stress distribution styles of 

mortar, ITZ and aggregate are almost similar even with different types of fibre. Probably, the significant 

higher elastic modulus of fibres would magnify their structural effects on the whole model. Therefore, this 

effect can be only recognized for the fibre while the mortar, ITZ and aggregate phases do not have such 

characteristic. The main properties of stress distribution in these phases can be analysed as follows. The 

maximum values of stress concentrations can be found in the mortar, which seems excessively high. In a 

physical view, it may be correlated to the interaction of the aggregates, the ITZs and the fibres through the 

narrow tortuous paths created in the mortar. This effect would be magnified at the nodes around the sharp 

points and edges of the aggregate’s surfaces and fibres while the fibres are perfectly bonded to the mortar. 

In the simulation view, it would be due to the computational errors induced by the very small size and low-

quality of some elements. If so, and if the number of the nodes with wrong values is large, the model yields 

unreliable results, especially in damage analysis based on stress concentration. Although, its impact might 

be less on the numerical results if a less mesh sensitive approach like the fracture-based energy method is 

used. As seen in Fig. 19b, the stress distribution pattern in the ITZ phase with the lowest elastic modulus 

is mainly affected by the load direction. The stress level on the surfaces perpendicular to the loading 

direction is greater than the parallel ones. No specific pattern can be distinguished for the coarse 

aggregates. For all RVEs, the maximum stress changes in a range about 15-27, 5.5-7 and 6.5-8.5 MPa for 

mortar, aggregate and ITZ, respectively. 

8. Conclusions 

In this study, an advanced model is presented for the complex 3D mesostructure of steel fibre reinforced 

concrete (SFRC) composed of four phases including fibre, coarse aggregates, mortar and interfacial transition 

zone (ITZ) between aggregates and mortar. Each phase has a significant influence on the properties of SFRC. 

The relationship of the Delaunay triangulation and Voronoi tessellation as the simulation key is prescribed to 

resolve the intersection problem, which has been always an obstacle in the developing such stochastic models. 

Despite the randomness, the systematic distribution allows simulating fibres even with complex geometries 

like spiral and hooked-end beside the irregular shaped aggregates. The programmability of the framework and 
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controllability of different features enable to generate an ideal mesostructure model, by achieving the following 

objectives: 

• Developing a platform to model steel fibres with different profile shapes; 

• Controlling size distribution and orientation through fibrous structure; 

• Constructing fibres with different types of elements to be compatible with various case studies; 

• Generating irregular aggregates with natural geometric characteristics; 

• Configuring aggregates size distribution based on experimental data; 

• Easy simulation of ITZ with less model complexity; 

• Maintaining computational cost low while increasing simulation fidelity in a fully random system. 

Moreover, another important feature is revealed based on the morphological analogy between aggregate 

and voids in concrete. The similar approach used for irregular aggregates can be employed for simulation of 

irregular voids in the mesostructure. Thus, voids can be either added as the fifth phase or modelled in a two-

phase mesostructure where fibres and voids have a longer length-scale feature than aggregates and ITZs. It 

makes this framework even more comprehensive, flexible and effective in modelling fibre reinforced concrete. 

To show the performance of the approach proposed, the geometry models were successfully applied to the 

FE analysis of the elastic modulus of SFRC in the comparative case study between the straight and hooked-

end fibres with various volume fractions. The advantages of the mesostructure model can be seen through 

numerical stress analysis. Although, the model capability could have been more highlighted in some cases like 

damage evaluation. Failure mechanism can be analysed by incorporation of the mesostructure model and a 

simplified approach such as discrete element method (DEM) too. DEM is an effective tool to study the 

deformation mechanisms and the contact interaction of granular media [51-53]. In the ongoing project, the 

fracture behaviour of SFRC under impact and fatigue loading is being studied using the developed models, 

which will be presented in a future publication. It should be mentioned that the nonlinear behaviour was not 

considered here to avoid making this article unduly lengthy. Also, a simple linear case allowed focusing on 

the mesostructure model as the main aim of this study without the need for any additional effort for 

interpretation of a nonlinear problem. 

In practice, the SFRC model can be employed in fibre mix and concrete reinforcement design as an 

effective computer-aided tool, since it ensures the actual effects of the structural features. Thanks to the 

capabilities of the approach proposed, the real size distribution and irregular shape of aggregates are taken into 

account with the presence of the fibres, which provides a good estimation on the packing density of SFRC. In 

the point of view of structural reinforcement, the model can provide reliable data about fracture like crack 

propagation process, which might be very difficult to capture by the experiments. In addition to the mechanical 

behaviour, thermal and transport properties can be accurately predicted. 

In summary, the variations of the simulation tools presented open many possibilities in the modelling of 

composites with cementitious matrix. The model is extendable for generating other types of fibres like braided 

fibre. The future work will be focused on the textile reinforcements by a combination of the current 

computational approach and the function-based method. The model will be proposed for textile reinforced 

concrete.  
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Figures 

 

 

 

Fig. 1. An overview of the modelling process with the main features in each step. 
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Fig. 2. Delaunay criterion described by two 2D sets of points. (a) The circumcircle associated with the 

triangle {𝑉1, 𝑉2, 𝑉3} does not contain 𝑉4 or any other vertices and similarly, the circumcircle related to the 

triangle {𝑉1, 𝑉2, 𝑉4} does not comprise 𝑉3 or any other vertices. thus, the triangulation is a Delaunay 

triangulation. (b) The circumcircles are not empty and therefore it does not represent a Delaunay 

triangulation. 
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Fig. 3. Relationship between the Delaunay triangulation and the corresponding Voronoi 

tessellation. (a) The Delaunay triangles associated with the circumcircles and their centres are 

used for the Voronoi tessellation. (b) The circumcentres are the vertices of the Voronoi cells. (c) 

The vertices of the Delaunay triangles are the centre of Voronoi cells. The shared edge of two 

adjacent Voronoi cells is the perpendicular bisector of the line which connects their centres. 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Fig. 4. (a) Schematic of the determination of the shortest distance between two-line segments based on 

finding the closest points 𝑄𝑐 and 𝑃𝑐. (b) The region 𝔾 is defined regarding the quadratic function of |𝒘|2 

and the range of 𝑠 and 𝑡. 
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Fig. 5. Geometric parameters used in the generation of the straight fibres. (a) A fibre with length 𝐿𝑓 is 

defined between the parent points and it can be divided by the child points into equal sublines as a 1D 

element with length 𝐿𝑒. The minimum distance between fibres is 𝐷𝑓. (b) 𝐷𝑚 is the domain side length. 𝐷𝑜 

specifies the minimum distance between fibres and the free surface boundaries. In other words, no fibre is 

generated within the grey zone as schematically displayed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Two states possibly observed through connecting the points based on the Delaunay 

criterion. (a) The rule of connectivity implies that the condition of 𝐿𝑒 <  𝐷𝑓 must be always 

satisfied to perfectly connect the corresponding points on each fibre. (b) Otherwise, the wrong link 

and discontinuity are constructed. 
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Fig. 7. Fibres aligned with the edges of the tetrahedron elements through the structure of the 

Delaunay-based mesh. For better visualisation, only a few fibres produced, and they are shown 

with the magnification of the region of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. (a) Circular spiral (helix) curve can be parameterized by radius, pitch and Eq. (6). (b) The 

spiral fibre model is made by 1D elements with length 𝐿𝑒 through the parent and child points. The 

parent points are on a line parallel to the axis. The length of the line represents the fibre length of 

𝐿𝑓. The fibre vector is defined between two end planes as displayed. 
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Fig. 9. Algorithm for generating the spiral fibre model based on three interlinked modules including 

(1) Axis Generator, (2) Single-Fibre Maker, and (3) Assembler. Assembler uses the fibre vectors 

besides the matrices of nodes and elements. It duplicates the original model, rotates along the axis 

vector and translates to the position of the corresponding axes. The final model comprised of 50 

spiral fibres is illustrated as an example. 

 

 

 

 

 

 

 

 

 

 

Fig. 10. (a) The geometry of hooked-end fibre model is defined by five-line segments among parent 

points with three characteristics lengths 𝐿1, 𝐿2, 𝐿3 and the angle 𝛼. The axis of fibre is aligned 

with 𝑍 − 𝑎𝑥𝑖𝑠 and point 1 is located at the origin of the coordinate system. (b) The fibre vector 

connects the endpoints of 1 and 6. The grey surface of cylinder shows the possible random 

positions of the line segment between the points 3 and 4 with the radius 𝐿2 𝑠𝑖𝑛(𝛼) about 𝑍 − 𝑎𝑥𝑖𝑠. 
(c) A sample of the final model includes 50 hooked-end fibres enclosed in a cubic box. 
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Fig. 11. The integrated algorithm is provided as an example to generate straight, spiral and hooked-end 

fibres. 
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(a) 

 
(b) 

Fig. 12. (a) The technique to add particles in the fibrous model is mainly based on the generation 

Voronoi cells by the FGPs as the seed points. For better visualization, one fibre is highlighted in the 

magnified circle. (b) In agreement with Fig. 3c, a fibre can be trimmed by either moving endpoint or 

deleting fibre. The endpoint can be displaced to the surface or out of the cell. 

 

 

 

 

 

  
(a) (b) 

Fig. 13. (a) ITZ is modelled as an interlayer between the surfaces of the original and the scaled particles. 

(b) The local concavity can be problematic in the modelling process of the ITZ. In this case, the ITZ 

boundary can be approximated by the convex hull (grey). 
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Fig. 14. To modify the algorithm of particle generation, the original Voronoi cells are scaled down 

to create a margin equal to 𝑑𝐼𝑇𝑍. The margin guarantees that the expanded surface of particles will 

be remained enclosed in the domain of the original Voronoi cell. 
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(a) (b) 

 

(c) (d) 

 

Fig. 15. The mesostructure model explicitly comprises mortar, aggregate, ITZ and fibre. (a) The cross-

sectional view associated with the magnified image shows the positions of different components relative to 

each other. (b) To better visualise, the cross-section of the mortar and the ITZ phase are illustrated in the 

absence of the fibres and the aggregates. The X-ray computed tomography images from the literature are 

presented to visually compare the model and an actual structure. (c) The typical irregular aggregates in 

the mortar matrix are shown in the unreinforced concrete [39]. (d) Another image depicts the random 

distribution of straight steel fibres in the reinforced concrete [40]. The actual samples presented can be 

only qualitatively compared with the models in terms of shape and distribution attribute, but not regarding 

size or the number of aggregates and fibres.  
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(b) 

Fig. 16. (a) A 1D-element-based fibre model is transformed to a model with a triangulated surface 

through the procedure which is schematically shown. (b) Two models illustrate the triangular 

representation of the 3D surface geometries of the spiral and the hooked-end fibre. 

 

 

 

 

 

 

 

 

 

 

  
(a) (b) 

Fig. 17. (a) The typical aggregate size distribution as the number of aggregates in three volume ranges is 

illustrated. (b) The geometry model includes the aggregates which are coloured in red, grey and blue 

according to the size segments shown. 

 

 

 

 

 

 



30 

 

 

 

 

 

Fig. 18. Evolution of 𝐸𝑒𝑞 with respect to the elastic modulus of the concrete model without fibre. 

 

 

 

 

 

 

 

 

 

 
(a)  

 
(b) 

Fig. 19. Von Mises stress distribution patterns for the models with the volume fraction of 1.5% for 

(a) two types of fibre, and (b) other phases. The stress load is applied in 𝑦-direction. All the 

contours show stress in MPa. The stress contour plot is non-uniformly customized for the phase of 

mortar to better visualize the stress distribution on the surfaces. 
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Tables 

 

 

Table 1. Model configurations of fibres. 

Type Geometric properties Length of 1D 

elements [mm] 

𝑵𝒇 related to each vol. 

percentage 

𝑫𝒇 Elastic 

properties Length [mm] Angle 

[deg] 

Vol. of single 

fibre [mm3] 0.5% 1% 1.5% 

Straight 𝑳𝒇 
- 31.42 

𝑳𝒆 
19 39 60 

6 

Modulus 

[GPa] 

10 5 200 

Hooked-

end 

𝑳𝟏 𝑳𝟐 𝑳𝟑 𝜶 
39.18 

𝑳𝒆𝟏 𝑳𝒆𝟐 𝑳𝒆𝟑 
11 26 39 

𝝂 

1.5 2.24 5 63.44 1.5 2.24 5 0.30 

 

 

Table 2. Particle size distribution [40] and material properties of coarse aggregate [44] in concrete. 

Particle size distribution 

Elastic properties 
Sieve size [mm] 

Total percentage 

retained [%] 

Total percentage 

passing [%] 

12.70 0 100 Modulus [GPa] 

9.50 39 61 70 

4.75 90 10 𝝂 

2.36 98.60 1.40 0.20 

 

 

Table 3. Material properties of ITZ and mortar. 

Phase Young’s modulus 

[GPa] 

Poisson’s 

ratio 

Thickness 

[mm] 

ITZ 7.2 0.35 0.05 

Mortar 14 0.20 - 

 

 

Table 4. Equivalent elastic modulus obtained for the RVEs comprising 1.5% volume fraction of straight fibre 

with the different number of elements. Each sample is tested under unidirectional tensile stress applied in 

three Cartesian directions. 

Stress 

direction 

𝑬𝒆𝒒 [GPa] related to each element no. Standard deviation 

[GPa] 
1997902 2109880 2348450 2455556 

𝒙 21.72 21.67 21.55 21.56 0.083 

𝒚 21.66 21.63 21.51 21.52 0.076 

𝒛 21.22 21.17 21.10 21.10 0.058 

 

 

Table 5. Elastic modulus of SFRC obtained from the current simulation and reported in [50].  

Fibre Vol. 

Percentage [%] 

Current Work [GPa] Williamson  

[GPa] 

Discrepancy [%] 

Straight Hooked-end Straight Hooked-end 

0.5 21.33±0.24 21.23±0.20 21.20 0.61 0.16 

1.0 21.42±0.20 21.31±0.15 21.47 0.24 0.74 

1.5 21.61±0.13 21.50±0.11 21.75 0.62 1.17 

0 21.19±0.15 20.80 1.89 

 


