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Highlights
� Variants in metal ion transporter and NAFLD genes are

associated with liver MRI-derived cT1, a steatohepatitis and
fibrosis proxy.

� cT1 is highly heritable, and is correlated with BMI, NAFLD and
VLDL, and inversely correlated with HDL.

� Insulin resistance, NAFLD and higher BMI are genetically
linked to higher liver cT1, whilst favourable adiposity is
linked to lower cT1.
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Lay summary
We estimated levels of liver inflammation
and scarring based on magnetic resonance
imaging of 14,440 UK Biobank partic-
ipants. We performed a genetic study and
identified variations in 6 genes associated
with levels of liver inflammation and
scarring. Participants with variations in 4
of these genes also had higher levels of
markers of liver cell injury in blood sam-
ples, further validating their role in liver
health. Two identified genes are involved
in the transport of metal ions in our body.
Further investigation of these variations
may lead to better detection, assessment,
and/or treatment of liver inflammation
and scarring.
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Genome-wide and Mendelian randomisation studies of liver MRI
yield insights into the pathogenesis of steatohepatitis
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Background & Aims: MRI-based corrected T1 (cT1) is a non- interventions targeting the identified transporters might prevent

invasive method to grade the severity of steatohepatitis and
liver fibrosis. We aimed to identify genetic variants influencing
liver cT1 and use genetics to understand mechanisms underlying
liver fibroinflammatory disease and its link with other metabolic
traits and diseases.
Methods: First, we performed a genome-wide association study
(GWAS) in 14,440 Europeans, with liver cT1 measures, from the
UK Biobank. Second, we explored the effects of the cT1 variants
on liver blood tests, and a range of metabolic traits and diseases.
Third, we used Mendelian randomisation to test the causal ef-
fects of 24 predominantly metabolic traits on liver cT1 measures.
Results: We identified 6 independent genetic variants associated
with liver cT1 that reached the GWAS significance threshold
(p <5×10-8). Four of the variants (rs759359281 in SLC30A10,
rs13107325 in SLC39A8, rs58542926 in TM6SF2, rs738409 in
PNPLA3) were also associated with elevated aminotransferases
and had variable effects on liver fat and other metabolic traits.
Insulin resistance, type 2 diabetes, non-alcoholic fatty liver and
body mass index were causally associated with elevated cT1,
whilst favourable adiposity (instrumented by variants associated
with higher adiposity but lower risk of cardiometabolic disease
and lower liver fat) was found to be protective.
Conclusion: The association between 2 metal ion transporters
and cT1 indicates an important new mechanism in steatohepa-
titis. Future studies are needed to determine whether
words: Magnetic resonance imaging; cT1; Fibrosis; Steatohepatitis; Metabolic
drome; Genome-wide association study; Transaminases.
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liver disease in at-risk individuals.
Lay summary: We estimated levels of liver inflammation and
scarring based on magnetic resonance imaging of 14,440 UK
Biobank participants. We performed a genetic study and iden-
tified variations in 6 genes associated with levels of liver
inflammation and scarring. Participants with variations in 4 of
these genes also had higher levels of markers of liver cell injury
in blood samples, further validating their role in liver health. Two
identified genes are involved in the transport of metal ions in our
body. Further investigation of these variations may lead to better
detection, assessment, and/or treatment of liver inflammation
and scarring.
© 2020 European Association for the Study of the Liver. Published by
Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction
Non-alcoholic and alcoholic fatty liver diseases are common in
an era of widespread obesity and concerning alcohol use.1,2 They
affect up to a third of the adult population worldwide and ac-
count for the vast majority of chronic liver diseases.3 However,
an important paradox in the history of liver fat accumulation
exists; despite the large proportion of adults affected by simple
steatosis (fatty liver), only a relatively small proportion
(2.4–12.8%) will experience significant liver disease or liver-
related death.4

It is important to identify which individuals are at risk of
developing the more inflammatory phenotype, steatohepatitis (a
condition characterised by lipotoxicity and histological necroin-
flammation), which is considered to be the main pathophysio-
logical driver of liver fibrosis and subsequent disease
progression.5 Steatohepatitis and fibrosis affect approximately 1
in 10 middle-aged adults, and can lead to cirrhosis, hepatocel-
lular carcinoma and death.6

A promising, non-invasive measure of steatohepatitis and
fibrosis severity is MRI-based corrected T1 (cT1) (Fig. 1A).7–9 T1
relaxation time reflects extracellular fluid, which is characteristic
of fibrosis and inflammation. The presence of iron, which can be
020 vol. 73 j 241–251
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Fig. 1. GWAS of liver cT1 in the UK Biobank. (A) Liver MRI scans of cT1. Three selected cases of liver MRI scans showing, from left to right, progressively elevated
cT1 values (671 ms, 777 ms, 917 ms), reproduced by kind permission of UK Biobank©. (B) Manhattan plot illustrating GWAS of liver cT1 measurements in 14,440
UK Biobank individuals (~12 million imputed variants). The x-axis is the chromosomal position and y-axis is the significance of association for each variant in
log10(p values). Grey line indicates genome-wide significance level. For the GWAS, a linear mixed model was used. Levels of significance: p <5×10−8. cT1, corrected
T1; GWAS, genome-wide association study. (This figure appears in color on the web.)
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determined from T2* maps, has an opposing effect. Combining
T2* and T1 values can correct for this opposing effect, from
which cT1 (in milliseconds) is derived. Higher cT1 values are
associated with both histological liver inflammation and fibrosis,
although their relative contributions to the score are still un-
known.9,10 cT1 has already been used as a non-invasive outcome
measure in randomised controlled trials for non-alcoholic stea-
tohepatitis (NASH)11 and is associated with liver disease
outcomes.8

Understanding the underlying genetic susceptibility to stea-
tohepatitis and fibrosis may provide new insights into the main
pathophysiological mechanisms that contribute to chronic liver
disease, helping in the identification of new drug targets. Genetic
studies have so far been limited due to the phenotyping chal-
lenge. Liver biopsy is an invasive procedure with associated risks,
significant sampling error and marked interobserver variance,12

while routinely available liver blood tests such as aminotrans-
ferases, despite being useful in the identification of important
liver disease susceptibility loci, are overall poor predictors of
liver disease severity.13,14

Another challenging question is which metabolic traits cause
steatohepatitis since treating causal factors can help prevent
liver disease. Observational associations between steatohepatitis
and other features of the metabolic syndrome might occur
because they share common risk factors, rather than one causing
the other. Mendelian randomisation is an established epidemi-
ological approach that uses genetic studies to provide insight on
causality.15 Mendelian randomisation uses genetic variants
associated with an exposure (e.g. body mass index [BMI], LDL
cholesterol, insulin resistance) to assess their causal effect on an
242 Journal of Hepatology 2
outcome of interest (e.g. cT1, steatohepatitis). Genetic markers of
a risk factor are largely independent of confounders that may
otherwise cause bias since genetic variants are randomly allo-
cated before birth. Furthermore, the non-modifiable nature of
genetic variants provides an analogy to randomised trials, in
which exposure is allocated randomly and is non-modifiable by
subsequent disease.16

In this study, we aimed to (i) identify genetic variants influ-
encing liver cT1 (ii) identify the effect of liver cT1 variants on
other metabolic traits, (iii) investigate which metabolic traits are
genetically correlated with cT1 measures and (iv) use Mendelian
randomisation to investigate whether 24 metabolic traits and
conditions are causally associated with cT1. We performed the
first genome-wide association study (GWAS) on MRI liver cT1 in
14,440 European individuals from the UK Biobank. Finally, to
investigate whether there are shared variants between liver cT1
and liver fat, we carried out a GWAS on MRI determined liver
proton density fat fraction (PDFF) in the same cohort.
Materials and methods
UK Biobank participants
UK Biobank is a prospective cohort study that consists of over
500,000 individuals aged 37–73 years (99.5% were between 40
and 69 years of age) who were recruited between 2006 and 2010
from across the UK.17 This research has been conducted using the
data obtained via UK Biobank Access Application number 9914.
The UK Biobank has approval from the North West Multi-Centre
Research Ethics Committee (ref: 11/NW/0382) and obtained
written informed consent from all participants prior to the study.
020 vol. 73 j 241–251



Imaging protocol and analysis
Invitation to the UK Biobank imaging study is based only on
proximity to one of the main imaging sites. Participants were
invited and scanned at the UK Biobank Imaging Centre in
Cheadle (UK) using a Siemens 1.5T Magnetom Aera as previously
described.18,19 Medical conditions were not taken into account
except from those which would exclude the participant from
being able to have an MRI (e.g. if they had an implanted defi-
brillator or metal implant).

Characterisation of cT1 in the UK Biobank cohort, alongside
normal values and inter- and intra-reader variability have pre-
viously been published.18 Briefly, 2 sequences were used to
acquire data: a shortened modified look locker inversion
(ShMOLLI) to quantify liver T1, and a multiecho-spoiled gradient-
echo, to quantify liver iron and fat (PDFF). In both cases, data was
acquired as a single transverse slice captured through the centre
of the liver superior to the porta hepatis. Acquisition was per-
formed in end-expiration breath-hold and without the aid of any
contrast agent injection. The slice-based methodology has pre-
viously been shown to correlate well with histology and predict
liver-related outcomes.7,9

The MRI sequence is part of the LiverMultiScan© protocol
from Perspectum Diagnostics (UK) which forms part of the UK
Biobank abdominal imaging protocol.18,20,21 The data was ana-
lysed by a team of trained analysts blinded to any participant
variables, using LiverMultiScan© Discover 4.0 software. This
software creates T2*, cT1 and PDFF maps from the image data,
and produces an automated delineation of the liver excluding its
major vessels within the image slice, using a deep learning
approach which has previously been published;22 The median
value from this delineation on the T2* map is converted to an
iron value,23 which is used with the ShMOLLI data to derive the
cT1 map.24 All values reported in this work are the median, for
each metric, of all usable voxels in the liver within the image
slice. T1 relaxation time reflects extracellular fluid and is char-
acteristic of fibrosis and inflammation. The presence of iron,
which can be determined from T2* maps, has an opposing effect
on the T1, and algorithms have been formed to correct for the
resulting bias.9 All processed data are available through appli-
cation to the UK Biobank. Fig. 1A illustrates the 3 MRI scans with
different levels of cT1 in 3 participants.

From an initial collection of 20,386 imaging sessions (each of
a unique individual), 691 did not have all the necessary imaging
data, 1,354 were run with an early flawed protocol, 1,717 did not
correctly trigger the sequence, 126 had more than half of their
liver excluded due to poor model fitting and motion artefacts,
leaving 16,498 for human quality control.

From these, a further 959 were removed through a combi-
nation of fat/water swaps, erroneous overcorrection of iron,
misplacement of the image slice, segmentation failure, field ar-
tefacts, and cysts within the image slice that prevented reason-
able quantification of parenchyma, leaving 15,539 participants.

Genetic data
Protocols for the participant genotyping, data collection, and
quality control have previously been described in detail.17 Briefly,
participants were genotyped using 1 of 2 purpose-designed ar-
rays (UK BiLEVE Axiom Array [n = 50,520] and UK Biobank Axiom
Array [n = 438,692]) with 95% marker overlap. We excluded in-
dividuals who were identified by the UK Biobank as outliers
based on either genotyping missingness rate or heterogeneity, or
Journal of Hepatology 2
whose sex inferred from the genotypes did not match their self-
reported sex. We removed individuals with a missingness >5%
across variants which passed our quality control procedure. We
used the latest release which included imputed data using 2
reference panels: a combined UK10K and 1000 Genomes panel
and the Haplotype Reference Consortium panel. We limited our
analysis to genetic variants with a minimum minor allele fre-
quency (MAF) >1% and imputation quality score >0.3.

To define “white European” ancestry, we first used data from
1000 genomes samples to generate ancestry informative prin-
cipal components (PCs). We then used these PCs in UK Biobank
participants and employed K-means clustering to identify sam-
ples clustered with the 3 main 1000 genomes populations (Eu-
ropean, African, and South Asian). Those clustered with the 1000
genomes’ “European” cluster were classified as having European
ancestry.

In total, after image analysis and quality control steps, liver
cT1 and PDFF measures were available for 14,440 white Euro-
pean individuals who also had genetic data available and were
classified as white European.

Genome-wide association analysis
We used BOLT-LMM v2.3.4 to conduct a linear mixed model
GWAS which accounts for population structure and relatedness.
We increased our power by including all related individuals of
European descent (n = 14,440). The relatedness matrix was
computed using common (MAF >5%) genotyped variants that
passed quality control in all 106 batches and were present on
both genotyping arrays. Prior to association testing, liver cT1 and
PDFF were inverse-normal transformed. We used age, sex, centre
and genotyping arrays as covariates in the model.

Sensitivity analyses
We performed 6 sensitivity analyses (Table S1). We carried out
GWASs and adjusted for (i) BMI and (ii) alcohol units consumed.
We derived an alcohol units per day variable from the UK Bio-
bank as previously suggested.25 In summary, a 125 ml glass of
wine (red, white, or sparkling) was considered to be 1.5 units, a
pint of beer or cider was considered to be 2.8 units, other alco-
holic drinks (e.g. alcopops) were considered to be 1.5 units, and a
measure of spirit was considered to be 1 unit. We further
adjusted for (iii) MRI-determined liver fat and (iv) liver iron to
rule out the confounding effects of these 2 traits in our image
processing pipeline. Finally, we carried out GWASs in (v) males
and (vi) females separately to detect sex-specific associations.

Association of cT1 variants with liver biomarkers and
metabolic traits and diseases
To further understand the role of each cT1 variant in the path-
ophysiology of liver disease, and also as a positive control, we
tested the association between each variant and liver biomarkers
in white European participants from the UK Biobank. We
measured the following liver biomarkers: liver enzymes (alanine
aminotransferase [ALT], aspartate aminotransferase [AST],
gamma glutamyltransferase, alkaline phosphatase in up to
378,821 individuals), MRI-derived liver PDFF (n = 14,440), and
MRI-derived liver iron (to understand if the correction of T1
measures for liver iron content has caused any bias; n = 14,440).
The protocols for the derivation of MRI PDFF and liver iron have
previously been published.20,21 To validate the associations with
aminotransferases in a non-UK Biobank dataset, we looked up
020 vol. 73 j 241–251 243



Table 1. Characteristics of UK Biobank participants in the imaging subset and the subset of participants who were not part of the imaging study.

Characteristics

UK Biobank imaging subset UK Biobank non-imaging subset

Men Women Men Women

n (%) 7,142 8,396 229,134 273,402
Age, years (IQR) 57 (50–62) 55 (48–60) 58 (50–64) 57 (50–63)
Waist circumference, cm (IQR)* 94 (87–100) 79 (73–87) 96 (89–103) 83 (75–92)
Townsend deprivation index (IQR) −2.78 (−3.98 to 0.82) −2.66 (−3.90 to −0.69) −2.12 (−3.65 to 0.63) −2.14 (−3.63 to 0.49)
Self-reported diabetes (%)* 245 (3.43%) 116 (1.38%) 15,950 (7.0%) 9,794 (3.6%)
Liver cT1, ms (IQR) 694 (662–730) 676 (647–710) n.a. n.a.
BMI, kg/m2 (IQR)* 26.6 (24.5–28.8) 25 (22.9–28) 27.3 (25–30.1) 26.1 (23.5–30)

*BMI (Mann-Whitney U test, p = 1×10−80), waist circumference (Mann-Whitney U test, p = 1×10−100), diabetes prevalence (Pearson's chi squared test, p = 1×10−27) were lower in
the imaging subset compared to the rest of UK Biobank. Levels of significance for all tests: (p <0.05).

Research Article NAFLD and Alcohol-Related Liver Diseases
the effects of cT1 variants in an existing GWAS of ALT and AST
levels in up to 61,089 individuals.26

To understand the effect of cT1 variants on cardiometabolic
traits and diseases, we tested their associations with 15 pre-
dominantly metabolic traits including BMI, HDL-cholesterol,
LDL-cholesterol, triglycerides, systolic blood pressure, diastolic
blood pressure, type 2 diabetes, and coronary artery disease in
up to n = 379,308 white European UK Biobank participants.

LD score regression and cross-trait genetic correlation
analysis
We used LD Hub to conduct linkage disequilibrium (LD) score
regression and heritability analysis. LD Hub is a centralised
database of summary level GWAS for >500 diseases and traits
from publicly available resources/consortia and uses a web
interface that automates LD score regression, heritability and
cross-trait genetic correlation analysis.27 We ran heritability
analysis as well as genetic correlation analysis across 120
potentially relevant traits. Single-nucleotide polymorphism
(SNP)-based heritability (h2SNP) is the proportion of total varia-
tion in liver cT1 measures due to the additive genetic variation
between individuals in our study population.

Liver cirrhosis variants
To investigate the effect of liver cirrhosis variants on cT1 mea-
sures, and also as a positive control, we used variants associated
with all-cause cirrhosis including rs2642438 (in or near MARC1),
rs72613567 (HSD17B13), rs58542926 (TM6SF2), rs738409
(PNPLA3), rs1800562 (HFE), and rs28929474 (SERPINA).28

Mendelian randomisation
We investigated the potential causal associations between 24
predominantly metabolic traits on cT1 using 2-sample Mende-
lian randomisation analysis.29 We used the inverse variance
weighted approach (IVW) as our main analysis, and Mendelian
randomisation-Egger and penalised weighted median as
Table 2. The association between 6 independent genetic variants and liver
significance: p <5×10−8).

SNP CHR Base pairs EA OA EAF Gene V

rs759359281 1 220,100,497 C CA 0.06 SLC30A10
rs13107325 4 103,188,709 T C 0.07 SLC39A8
rs111723834 14 24,572,932 A G 0.02 PCK2, NRL
rs58542926 19 19,379,549 T C 0.07 TM6SF2 Miss
rs4820268 22 37,469,591 G A 0.46 TMPRSS6
rs738409 22 44,324,727 G C 0.21 PNPLA3

Effects are in SD.
CHR, chromosome; EA, effect allele; EAF, effect allele frequency; OA, other allele.
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sensitivity analyses in order to detect unidentified pleiotropy of
our genetic instruments. Genetic instruments were constructed
by using the independent genome-wide significant genetic var-
iants (R2 <0.1) of the exposure of interest from previous GWASs.
For more information on Mendelian randomisation and genetic
instrument selection please see the Supplementary Material.

Results
The characteristics of liver cT1 cohort
In our discovery cohort, median age was 57 years (interquartile
range (IQR) 50–62) for males and 55 years (IQR 48–60) for fe-
males. The median liver cT1 was 694 ms (IQR 662–730) in males
and 676 ms (IQR 647–710) in females (Fig. S1); 5.3% of males
(299/5,595) and 2.6% of females (169/6,455) had values above
800 ms, a threshold that has been set in current clinical trials as a
cut-off for steatohepatitis,30 and is under evaluation by the FDA
and EMA as a diagnostic enrichment biomarker for NASH.
Baseline characteristics were comparable to the rest of the UK
Biobank cohort who did not participate in the imaging study
except BMI, waist circumference and diabetes prevalence which
were lower in both males and females in the liver cT1 cohort
compared to the rest of the UK Biobank (Table 1). Although
invitation was not based on any medical information, MRI
exclusion criteria (e.g. metal or electrical implants, surgery 6
weeks prior to appointment, severe hearing or breathing prob-
lems) and the imaging site location (Cheadle, UK) may have
contributed to a slightly healthier cohort.21

Genetic variants in 6 loci show association with liver cT1
In our GWAS of liver cT1 in individuals of European ancestry,
variants in 6 independent loci (Table 2) reached genome-wide
significance. Genomic inflation was low (jGC = 1.006, Fig. S2).
We observed the strongest association with a missense variant,
rs13107325, located in an exon of SLC39A8 (Fig. 1B). The minor
allele (T; allele frequency 7%) of rs13107325 was associated with
0.54 SD increase in cT1 (p = 1.2×10−133). The mean cT1 was 692
cT1. A linear mixed model was used for genetic associations (levels of

ariant type Amino acid
change

BETA Standard
error

p value Variance
explained

Intron 0.137 0.026 2.8×10-8 0.23
Missense A391T 0.544 0.022 1.2×10-133 3.95
Missense A561G 0.291 0.046 3.0×10-11 0.27

ense, Intron I148M 0.124 0.022 1.4×10-8 0.22
Missense V736A 0.066 0.012 1.6×10-9 0.2
Missense E167K 0.095 0.014 9.6×10-13 0.9

020 vol. 73 j 241–251



ms in individuals with no risk allele, 727 ms in heterozygotes,
and 772 ms in risk allele homozygotes (Fig. S3).

Other independent variants included an intronic variant
(rs759359281-CA >C) in SLC30A10 (p = 2.8×10−8), a missense
variant (rs111723834-G >A) in PCK2 (p = 3.0×10−11), a missense
variant (rs4820268-A >G) in TMPRSS6 (p = 1.6×10−9), and 2
known cirrhosis variants (rs58542926-A >G) in TM6SF2 (p = 1.4
×10−8) and (rs738409-C >G) in PNPLA3 (p = 9.6×10−13). The 6
variants together explained 5.38% of variation in cT1 measures in
white European UK Biobank participants with the SLC39A8
variant explaining most of this variation (3.95%) (Table 2). We
estimated the SNP-based heritability (h2SNP) of liver cT1 to be
20%. This is higher than the heritability estimated for conditions
and traits such as coronary artery disease (7%),31 eczema (7%),32

body fat % (10%)33 and transferrin (16%), but lower than non-
alcoholic fatty liver disease (NAFLD) (22–34%).34

We did not detect any sex-specific associations and the effects
were similar between men and women (Table S1). Sensitivity an-
alyses that further controlled for alcohol unit intake and BMI did
not identify any additional signals and did not significantly change
the effect size (Table S1). Sensitivity analyses that controlled for
liver PDFF removed the effects of rs58542926 in TM6SF2 and
rs738409 inPNPLA3, suggesting that theeffects of thesevariantson
cT1 measures are mediated through liver fat accumulation
(Table S1). The cT1 increasing allele (G) at TMPRSS6-rs4820268 is
associatedwith lowerplasma iron levels and lower liver iron.21 The
effect of this variant on cT1 may be due to its effect on liver iron
concentrations since iron has an opposing effect to T1 relaxation
time. However, sensitivity analyses that controlled for liver iron
only slightly attenuated its effect on cT1 (from beta = 0.066, p = 2
×10−9 to beta = 0.054, p = 7×10−7) suggesting that other mecha-
nisms are involved and that this is a true signal.
Genetic variants in 4 loci show association with liver MRI-
determined PDFF
In our GWAS of liver PDFF in 14,440 individuals of European
ancestry missense variants in 4 independent loci reached
genome-wide significance (rs1260326-C >T in GCKR, p = 3.9×10−8,
rs58542926-C >T in TM6SF2, p = 6.3×10−37, rs429358-C >T in APOE,
p = 5.6×10−11, rs738409-C >G in PNPLA3, p = 5.4×10−66 (Table S2,
Fig. S4). Genomic inflation was low (jGC = 1.04). Two of the 4
variants (rs738409 in PNPLA3, rs58542926 in TM6SF2) were
shared between PDFF and cT1 in our GWASs.
Four of the cT1 variants are associated with higher levels of
aminotransferases and demonstrate variable effects on
metabolic traits and diseases
To validate these variants and further understand their role in
other metabolic traits and diseases, we investigated their associ-
ation with liver blood tests, MRI-determined liver iron and liver
PDFF, lipids, blood pressure, BMI and cardiometabolic disease
outcomes (Fig. 2, Table S3). cT1-increasing alleles at 4 variants (in
SLC30A10, SLC39A8, TM6SF2, and PNPLA3) were associated with
higher ALT and AST (all with p values <2×10−5) and higher risk of
type 2 diabetes (all with p <0.002, except the SLC30A10 variant).
None of cT1 variants were associated with cardiovascular disease
risk, whilst their effects on other metabolic traits including lipids
and blood pressure were variable (Fig. 2). Among the novel
identified and replicated variants (rs759359281 in SLC30A10, and
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rs13107325 in SLC39A8), only the latter was available in a non-UK
Biobank cohortwith available liver blood tests. The cT1-increasing
allele in rs13107325 showed a similar direction of effect on ALT
(n = 46,316, beta = 0.01, p = 0.27) and AST (n = 39,015, beta = 0.014,
p = 0.0005) levels in an independent cohort (Table S4).26

Liver cT1 measures correlate genetically with components of
metabolic syndrome
We calculated genetic correlations using the GWAS summary
statistics (120 predominantly metabolic traits/diseases) in LD
score regression analysis (Fig. 3, Table S5). Measures of insulin
resistance, triglycerides, VLDL, type 2 diabetes, coronary artery
disease, body fat percentage, BMI and waist-to-hip ratio were
positively genetically correlated with liver cT1 measures after
correcting p values for multiple testing (false discovery rate
<0.05). The most genetically correlated traits were homeostatic
model for insulin resistance (HOMA-IR, rG = 0.53, p = 0.0004) and
mean diameter of VLDL particles (rG = 0.52, p = 0.0004), whereas
the strongest inverse correlation was seen with total cholesterol
in very large HDL (rG = -0.62, p = 0.04).

Association of liver cirrhosis variants with liver cT1
We investigated the effects of all-cause cirrhosis risk variants on
cT1 values. Among 6 variants associated with all-cause cirrhosis
in a recent GWAS of 5,770 cases and 572,850 controls,28 4 vari-
ants (those in or near MARC1, HSD17B13, TM6SF2 and PNPLA3)
demonstrated associations with cT1 (Table 3), where alleles
associated with higher risk of liver cirrhosis were also associated
with higher cT1. The HFE haemochromatosis risk allele (in
rs1800562) was inversely associated with cT1, however this is to
be expected since cT1 measures are corrected for liver iron
content. Consistently, this association became remarkably
attenuated (from beta = −0.11, p = 8×10−7 to beta = −0.055, p =
0.02) in our sensitivity analysis correcting for liver iron content.
In the GWAS of all-cause cirrhosis, the effect of a1-antitrypsin
risk variant (rs28929474 in SERPINA1) was very weak (p = 0.01)
and present only when a recessive model was used (Table 3).28

We did not have any risk allele homozygotes in our liver cT1
cohort and therefore could not perform a recessive model of
associations with cT1.

Mendelian randomisation analysis provides genetic evidence
that non-alcoholic fatty liver, insulin resistance and obesity
causally elevate liver cT1
Demonstrating causality using observational studies can be
challenging due to the presence of confounders such as other
features of metabolic syndrome and behaviours including
smoking and alcohol intake.35 In UK Biobank, we detected a
strong correlation between cT1 and BMI (r2 = 0.36, p = 5×10−324)
and also between cT1 and MRI-determined liver fat PDFF (r2 =
0.62, p = 5×10−324), and a weak but significant inverse correlation
with liver iron (r2 = -0.069, p = 6.6×10−18), which is to be ex-
pected since cT1 measures were corrected for liver iron (Fig. S5).
We used genetic methods (Mendelian randomisation, Fig. 4) that
are generally free of biases such as confounding and reverse
causation to examine the potential causal effect of metabolic
traits on liver cT1. We found evidence of a causal association
between insulin resistance (IVW p = 0.0001), non-alcoholic fatty
liver (IVW p = 0.01), type 2 diabetes (IVW p = 0.004), BMI (IVW
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Fig. 2. Forest plot of the associations of liver cT1 variants with liver and metabolic phenotypes. Effects are in SD for continuous traits and log(OR) for disease
outcomes per copy of the risk allele. A linear mixed model was used for genetic associations. Levels of significance: p <0.05. ALP, alkaline phosphatase; ALT,
alanine aminotransferase; AST, aspartate aminotransferase; CAD, coronary artery disease; cT1, corrected T1; GGT, gamma-glutamyltransferase; HDL-C, HDL-
cholesterol; LDL-C, LDL cholesterol; OR, odds ratio; T2DM, type 2 diabetes.
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p = 0.002) and higher cT1. We also found evidence for a pro-
tective role of favourable adiposity variants (variants associated
with higher adiposity but lower risk of cardiometabolic diseases
246 Journal of Hepatology 2
and lower ectopic fat)36 and cT1 (IVW p = 0.01) (Table S6). Our
analyses were robust across a range of sensitivity analyses
(Table S6).
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Discussion
We identified associations between 6 independent genetic var-
iants and MRI-based liver cT1, a non-invasive marker of liver
inflammation and fibrosis, in 14,440 participants from the UK
Biobank. These include 5 missense variants (in SLC39A8, PCK2,
TM6SF2, PNPLA3, and TMPRSS6) and 1 intronic variant (in
SLC30A10). The cT1-increasing alleles in 4 genes (SLC39A8,
Table 3. Effects of all-cause cirrhosis risk alleles on liver cT1.

SNP CHR EA OA EAF Beta cirrhosis†

rs2642438 1 G A 0.297 0.12
rs72613567 4 T TA 0.722 0.16
rs58542926 19 T C 0.927 0.35
rs738409 22 G C 0.211 0.38
rs1800562* 6 A G 0.925 1.16
rs28929474* 14 T C 0.0186 0.29

CHR, chromosome; cT1, corrected T1; EA, effect allele; EAF, effect allele frequency; G
nucleotide polymorphism.
*Indicates recessive models were run for the previously published all-cause cirrhosis GW
for the genetic associations with cirrhosis; a linear mixed model was used for the gene
†Beta cirrhosis is the effect on all-cause cirrhosis in log(OR) and Beta cT1 is the effect o
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SLC30A10, PNPLA3, and TM6SF2) were also associated with higher
AST (n = 360,731) and higher ALT (n = 361,940) in the UK Biobank
and also in an independent GWAS of liver enzymes (except for
SLC30A10 where data was not available).26 SLC30A10 and
SLC39A8 encode metal ion transporters and PNPLA3 and TM6SF2
are known genes associated with fatty liver and cirrhosis.

cT1 is a continuous trait, and was analysed as such in our
GWAS, in line with other continuous traits such as blood pres-
sure, BMI and height.37–39 In some earlier publications, cT1 was
reported using the LIF (liver inflammation and fibrosis) score
(Supplementary Material). The LIF score is a tri-linear mapping of
cT1 onto a continuous scale from 0 to 4 based on the association
of cT1 with histological fibrosis.9 LIF categories were defined as
having no (LIF <1), mild (LIF 1–1.99), moderate (LIF 2–2.99), or
severe (LIF 3–4) liver disease.8 The LIF cut-off of 1.4 had a
sensitivity of 91% and a specificity of 52% for the diagnosis of
NASH vs. steatosis (AUROC = 0.80), and corresponds to a cT1
value of 780 ms; a slightly higher cut-off of 800 ms is used in
clinical trials30 and is under evaluation by the FDA and EMA as a
diagnostic enrichment biomarker for NASH.9,40 The LIF score is
no longer used since the medical and MRI physics community is
more familiar with T1 for the assessment of inflammation and
fibrosis across all specialties including cardiology and
neurology.11,18,41–45 In this GWAS study, the cT1 values reported
are standardised across the MRI scanner model and field
strength, showing very high repeatability and reproducibility.46

The missense variant (rs13107325-C >T) in SLC39A8 is pre-
dicted to be deleterious in both Polyphen-2 and SIFT, and is
associated with lower expression of SLC39A8 in human liver.47

SLC39A8 encodes ZIP8, which has important roles in inflamma-
tion and immunity, and is a negative regulator of the NF-kB
pathway.48 ZIP8 is a divalent cation importer capable of trans-
porting zinc, manganese, iron, cadmium and selinate; the sub-
stitution of C for T allele impairs the cellular uptake of metals by
this protein.49 It is not known which metal is involved in liver
pathogenicity but there is evidence that hepatic ZIP8 regulates
manganese metabolism in the liver, a metal ion that is hepato-
toxic at high levels.50 Zinc and selenium also have important
roles in liver cellular injury, oxidative stress and dysregulated
inflammation; dietary supplementation of both has shown
benefit in animal models of liver disease.51,52

The pathogenic role of SLC39A8 in liver inflammation and
fibrosis is supported by studies in mice which provide mecha-
nistic evidence for the critical role of ZIP8 in liver disease. Liu
et al.53 used 2 mouse models to study the function of SLC39A8 in
the liver. In the first model, they studied the chronic effect of
SLC39A8 knockdown. The SLC39A8(neo/neo) homozygous mice
p cirrhosis Beta cT1† SE cT1 p cT1 Gene

8.7×10−7 0.036 0.0127 0.0049 MARC1
4.5×10−8 0.030 0.0129 0.02 HSD17B13
9.7×10−24 0.124 0.0221 1.4×10−8 TM6SF2
2.2×10−67 0.095 0.0141 9.6×10−13 PNPLA3
1.3×10−14 -0.111 0.0223 8×10−7 HFE

0.01 -0.037 0.0430 0.47 SERPINA1

WAS, genome-wide associated study; OA, other allele; OR, odds ratio; SNP, single-

AS; all other association analyses used additive models. Logistic regression was used
tic associations with cT1 (levels of significance: p <5x10−8, suggestive p <0.05).
n cT1 in SD.

020 vol. 73 j 241–251 247



Exposure
Insulin resistance

NAFLD
WHR BMI females

Fasting insulin
BMI

Body fat percentage
WHR BMI

WHR BMI males
Transferrin

Type 2 diabetes
2hGlu

Insulin secretion
Coronary artery disease
Systolic blood pressure

Diastolic blood pressure
Height

LDL cholesterol
HDL cholesterol

Triglycerides
Fasting glucose

Transferrin saturation
Iron

Favourable adiposity
Ferritin

p value
0.0001
0.01
3.76x10-5

0.57
0.002
0.36
0.04
0.61
0.10
0.004
0.72
0.89
0.94
0.26
0.06
0.25
0.53
0.51
0.21
0.12
0.002
0.005
0.01
0.02

-0.5 0.0 0.5
Effect on cT1 (SD)
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died before or immediately after birth. The SLC39A8(+/neo) het-
erozygous mice had moderate ZIP8 deficiency which led to
disruption of normal hepatocellular architecture, necrosis,
inflammation, fibrosis and development of liver tumours with
histopathological features consistent with hepatocellular neo-
plasms.53 In the second model, they studied liver-specific
SLC39A8 knockdown by adenovirus-delivered short-hairpin
RNA and demonstrated that liver damage in the chronic model is
not due to some extrahepatic process. Liver-specific ZIP8
downregulation for 7 days resulted in substantial hepatomegaly,
inflammation, proliferation, oxidative stress, liver injury and cell
death.53

The intronic variant in SLC30A10, a gene which codes a pre-
dominantly manganese metal ion transporter, was also associ-
ated with elevated cT1 measures in our study, as well as elevated
aminotransferases in the UK Biobank. Manganese is an essential
metal required for the adequate functioning of numerous en-
zymes, however it is toxic and induces cell death at elevated
cellular levels.54 Loss-of-function mutations in SLC30A10 have
previously been associated with cirrhosis, higher manganese
levels in liver biopsy samples and neurotoxicity including
parkinsonian-like movement disorders.54,55

The association between cT1 increasing alleles at the 2 novel
loci (SLC39A8 and SLC30A10) and higher ALT and AST adds sup-
portive evidence for their pathogenic role in the liver. The
missense variant in SLC39A8 has previously been shown to be
associated with multiple traits including alcohol intake, BMI,
248 Journal of Hepatology 2
schizophrenia, Crohn's disease, lower brain grey matter volume
and microbiome diversity;38,56–58 we show for the first time a
further novel association with higher diabetes and triglyceride
levels, whilst highlighting variable effects on cholesterol levels.
The associations of both variants with cT1 were independent of
BMI, alcohol intake, liver fat percentage and liver iron content in
our sensitivity models.

We identified a further 2 missense variants that were asso-
ciated with cT1 but not with elevated aminotransferases;
therefore, further research is required to validate these findings
and explore their potential role in liver inflammation and
fibrosis. The cT1-increasing allele in rs111723834 (missense
variant in PCK2, also an intronic variant in NRL) was associated
with lower aminotransferases, lower risk of type 2 diabetes, and
lower triglycerides. PCK2 encodes a mitochondrial enzyme that
catalyses the conversion of oxaloacetate to phosphoenolpyruvate
and has a key role in hepatic gluconeogenesis. Mitochondrial
phosphoenolpyruvate carboxykinase deficiency (M-PEPCKD) is a
rare autosomal recessive disorder resulting from impaired
gluconeogenesis, and clinical characteristics include hypotonia,
hepatomegaly, failure to thrive, lactic acidosis and hypo-
glycaemia.59 The missense variant in PCK2 is also an intronic
variant in NRL, and it is unclear which gene is associated with
elevated cT1 measures. NRL however encodes for neural retinal
leucine zipper transcription factor that is specifically expressed
in neuronal retina cells, making it an unlikely causal gene
candidate for liver cT1. The cT1-increasing allele (rs4820268-A
020 vol. 73 j 241–251



>G) in TMPRSS6 has previously been reported to be associated
with lower plasma iron levels and lower liver iron content.21,60 It
is also associated with a dysmetabolic profile including higher
LDL cholesterol, higher cardiovascular disease risk and hyper-
tension (Fig. 2). Its effect on cT1 however remained significant
even after correcting for liver iron content in sensitivity analyses,
making it unlikely that the association was secondary to bias
resulting from iron correction when calculating cT1. Previous
Mendelian randomisation studies have shown that higher
circulating iron may be cardioprotective,61 possibly through
reduced circulating LDL-cholesterol and lower blood pressure.62

The same mechanisms may explain why the allele associated
with lower circulating iron levels is associated with higher cT1.

Known NAFLD and cirrhosis risk alleles in PNPLA3 and TM6SF2
were also associated with both elevated cT1 and MRI-derived
PDFF in our cohort. These associations provide strong positive
controls for our study and validate for the first time the associ-
ation with MRI-determined liver PDFF. The risk alleles in these 2
genes were further associated with higher risk of type 2 diabetes,
but with lower serum triglycerides, LDL cholesterol, and lower
risk for cardiovascular disease, as previously described.63,64 In
our GWAS on PDFF, alongside PNPLA3 and TM6SF2, we further
identified variants in GCKR (another known NAFLD variant which
we have replicated) and APOE (apolipoprotein E, a gene which
encodes a major cholesterol carrier).63,65 The APOE risk allele (T)
for PDFF is associated with a higher risk of diabetes, and lower
risk of cardiovascular disease and elevated LDL cholesterol in
independent GWASs.66 This data provide evidence that cT1 and
PDFF phenotypes share some but not all aetiopathogenic
mechanisms.

We demonstrated that 4 of 5 variants associated with all-
cause liver cirrhosis (in PNPLA3, TM6SF2, HSD17B13, and
MARC1)28 were also associated with liver cT1 with the first 2
reaching genome-wide significance. The paradoxical inverse
association between the liver iron-increasing allele in HFE
may be due to overcorrection since cT1 measures are cor-
rected for liver iron content and were inversely correlated in
our cohort. Adjustment for liver iron content in our sensitivity
analysis remarkably attenuated the association with cT1. The
SERPINA1 variant was only associated with all-cause cirrhosis
in a recessive model.28 We did not have any homozygotes in
our liver cT1 cohort to detect a recessive model of association
with cT1.

Identifying causal mechanisms to steatohepatitis is crucial
since interventions targeting these modifiable exposures may
prevent liver disease progression. Our Mendelian randomisation
study investigated 24 possible metabolic traits that may cause
steatohepatitis. We provide genetic evidence that insulin resis-
tance, non-alcoholic fatty liver and higher BMI causally increase
cT1. Recent genetic studies have further identified variants asso-
ciated with higher BMI but lower risk of type 2 diabetes, hyper-
tension and heart disease.67 These “favourable adiposity” variants
are also associated with higher subcutaneous-to-visceral adipose
tissue ratio and may protect from disease through higher adipose
storage capacity, by promoting lipid deposition in subcutaneous
tissue rather than within the circulation and ectopic places. The
inverse link between favourable adiposity and steatohepatitis
provides supportive evidence for the protective effects of this
phenotype on a variety of cardiometabolic diseases, underlying
mechanismswhich can be further explored and pointing to future
preventive and therapeutic strategies.
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Our study had several limitations. We did not have any inde-
pendent cohort to replicate our findings. To overcome this limita-
tion, we investigated associations between cT1 variants and ALT
and AST levels both in the UK Biobank and an independent GWAS
of liver enzymes.68 While MRI-derived cT1 is clinically available
and is used to assess the severity of steatohepatitis, thismeasure is
still novel, and further research is needed to determine the relative
contributions of inflammation andfibrosis to cT1.10Whilst itwould
be useful to have histological reference data for cT1, pathologist-
interpreted liver biopsies do not lend themselves to large studies
of this nature because of the risk to patients and inter-rater vari-
ance in assessment of histology. This may be improved with ad-
vances indigitally processed histologyand centralised collectionof
pathological data for large consortia like the European LITMUS
study.While cT1 has demonstrated excellent repeatability42,46 and
good correlationwith fibro-inflammation and clinical outcomes,7,9

other histological phenomena such as simple steatosis and
ballooning have been shown to contribute to an increased T1
signal.7 Only 2 of the 6 cT1 variants were associated with liver
steatosis,whichhighlights the complementarityof cT1and liver fat
PDFF as biomarkers of liver status, and their potential to recognise
different mechanisms predisposing individuals to liver disease.

Conclusion
cT1 and PDFF phenotypes share some but not all aetiopathogenic
mechanisms. We identified novel associations between an MRI-
derived measure of fibroinflammatory liver disease and variants
in SLC30A10 and SLC39A8 that replicated with blood biomarkers of
hepatocyte injury. These genes have a critical role in transporting
heavy metal cofactors for a multitude of biological processes.
Future studies may determine whether targeting SLC30A10 and
SLC39A8 are possible therapeutic options to prevent liver disease in
at-risk individuals. Our Mendelian randomisation study provides
genetic evidence that addressing weight gain and insulin resis-
tance are useful strategies in the prevention of steatohepatitis.
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