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Device-Centric Distributed Antenna Transmission:
Secure Precoding and Antenna Selection with

Interference Exploitation
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Abstract—We address physical layer security in distributed an-
tenna (DA) systems, where eavesdroppers (Eves) can intercept the
information transmitted for the intended receiver (IR). To realize
a device-centric, power-efficient and physical layer security-aware
system, we aim at minimizing power consumption by jointly
designing DA selection and secure precoding. Different from
the conventional artificial noise (AN)-aided secure transmission,
where AN is treated as an undesired element for the IR, we
design AN such that it is constructive to the IR while keeping
destructive to the Eves. Importantly, we investigate two practical
scenarios, where the IR and Eves’ channel state information (CSI)
is imperfectly obtained or the Eves’ CSI is completely unknown.
To handle the CSI uncertainties, we solve the problems in
probabilistic and deterministic robust optimizations respectively,
both satisfying the IR’ signal-to-interference-and-ratio (SINR)
requirement by use of constructive AN and addressing security
against the Eves. Simulation results demonstrate our algorithms
consume much less power compared to the centralized antenna
(CA) systems with/without antenna selection, as well as the DA
systems with conventional AN processing. Last but not least, by
the proposed algorithms, the activation of DAs closely relates
to devices’ locations and quality-of-service (QoS) requirements,
featuring a device-centric and on-demand structure.

Index Terms—Distributed antenna, Antenna selection, Secure
precoding, Robust optimization, Constructive artificial noise

I. INTRODUCTION

Wireless Communications for the future Internet of Things
(IoT) and Industry 4.0 are required to provide power-efficient
transmission together with high security level. In the last
decade, centralized multiple-input multiple-output (MIMO)
has been considered as a potential technique due to its high
throughput and additional spatial diversity for enhancing phys-
ical layer security [1] [2] [3]. However, it requires extremely
high power consumption caused by the fully activated an-
tennas, and centralized MIMO often suffers from an equal
level of path loss (PL) from the antenna array to one device
(or user) caused by the co-located antenna (CA) deployment.
Besides, edge devices in CA deployment may not be well
served due to the severe propagation attenuation, otherwise
significant transmission power is required for compensating
the propagation loss. To create a device-centric and power
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efficient structure, distributed antenna (DA) systems have
attracted much attention [4].

By geographically distributing the antennas and hence
placing them closer to devices, DA systems can reduce the
PL impact and obtain blockage-free effect, helping extend
coverage and maintain connectivity of networks. Since the
contributions of each DA may vary practically due to the
location of the devices [5], system power consumption can be
significantly reduced by only activating those DAs contributing
the most, which also consequently facilitates an on-demand
and flexible network structure. The concepts of device-centric
DA are particularly suited for communications in industrial
environments, where antennas can be carefully planned and
distributed in the ceilings of large factories to effectively
extend network coverage without crucial increment of power
consumption, and are therefore a key contender for industry
IoT and industry 4.0 deployments [6]. Besides, DA systems
have been extensively deployed as an important part of the
landline infrastructure in the USA (e.g., Michigan and Ohio)
promulgated by the FCC Pole Attachment Order 11-50 [7].
DA systems have also been considered in 5G systems to form
user-centric manner virtual cells [8], where users can find DAs
in its vicinity to communicate with. In indoor environment,
DA systems can be applied to provide seamless coverage
[9], such as commercial use of WiFi. It was pointed out
in the FP7 EARTH project [10] that for a small-scale node
(such as DA, femto or pico node), the power consumption
is dominated by the power amplifier (PA) and circuit power.
Generally, PA power consumption is closely related to the
transmission power and drain efficiency at transmitters. On
the other hand, circuit power consumption contains multiple
power consuming components. The power consumption of an
active DA mainly comes from digital/analog converter, ana-
log/digital converter, optical/electrical converter, up-converter,
filter, synthesizer, etc., while the power consumption of one
DA can be significantly reduced by switching it off [11].

Nevertheless, it should be noticed that due to the proximity
to transmitting antennas, it is also easier for potential eaves-
droppers (Eves) to obtain the signal transmitted to the intended
device’ receiver (IR), and physical layer security issue in
DA systems becomes more challenging. In the past decade,
physical layer security has been extensively investigated as a
complement to secure wireless communications. For the non-
artificial noise (AN) aided scheme, physical layer security is
addressed by solely designing beamforming. One can provide
a maximized gain towards the IR’s channel with no regard
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for leakage into the Eve’s channel, or transmit signal towards
null space of the Eves with reduced gain into the IR’s
channel [12]. Besides, CVX or singular value decomposition
based precoding can be adopted to make a trade-off between
maximizing gain to the IR and steering a null at the Eves [13],
which is the secrecy capacity achieving scheme at the cost of
high computationally expensive. To further address secrecy
outage performance with low power consumption, the authors
in [14] [15] investigated the secrecy outage performance with
antenna selection while preserving the transmission diversity,
benefiting from multiple antennas configuration. Nevertheless,
the above approach do not address AN-aided secure trans-
mission, which is the focus of our work. Differently, for the
AN-aided secure transmission, AN is generated at transmitter
together with confidential message to jam potential Eves.
When the Eves channel state information (CSI) is unknown
at transmitter, the AN is produced such that it lies in the
null space of the IR channel [16] [17]. Since the potential
Eves channel is different from that of IRs, the isotropic AN
could degrade the potential Eves receiving performance while
imposing minimal effect on the IRs. Based on the principle,
optimal power allocation [18], delay minimization [19], and
PHY security with randomly distributed Eves [20] have been
investigated. When the Eves’ CSI is known at the transmitter,
AN could be injected to the direction of the Eves in a spatial
manner, which is more efficient than the isotropic manner [21]
[22]. Based on the AN-aided secure scheme, secrecy rate [23]
[24], outage probability [25] and power consumption [3] [22]
have been addressed recently. On the specific topic of secure
transmission in DA systems, the authors in [26] investigated
SINR maximization problem for DA systems, where AN is
generated by DAs to interfere the Eves. The authors in [27]
maximized the ergodic secrecy rate in DA systems, where
AN and signal are jointly designed and transmitted at each
DA. In [3], the power minimization problem was demonstrated
for DA systems, where the potential Eves are considered as
idle IRs and scavenge energy from AN. It is worth noting
that, regardless of isotropic or spatial AN transmission, AN
is treated as an undesired element at the IR and its leakage
effect needs to be minimized [28].

The aforementioned research, however, treated AN as a
catastrophic element and mitigated the effect of AN at the
IR as much as possible. If AN can be carefully designed at
the transmitter, it may be beneficial to the IR in terms of
improving signal-to-interference-plus-noise ratio (SINR) based
on the concept of constructive interference (CI). The concept
of CI was firstly introduced by [29] in code division multiple
access. Then a rotated zero-forcing (ZF) precoding scheme
was proposed in [30], and [31] further proposed that all
the interference can be constructive by designing precoding
in symbol level. Recently, the concept of CI was applied
into cognitive radio [32], large-scale multi-input multi-output
(MIMO) [33], multiuser multi-input single-output (MISO) [34]
[35] [36], and wireless power transfer [37]. Based on the afore-
mentioned work in CI, the authors in [38] proposed a scheme
to utilize AN in a CA system. However, the fully activated
antennas in [38] lead to enormous power consumption.

Motivated by the aforementioned issues, in this paper, we

present joint design of DA selection and secure precoding
to minimize total power consumption, subjected to physi-
cal layer security constraints. Importantly, we consider two
practical scenarios and solve the problems from two differ-
ent prospectives of robust optimizations, namely probabilistic
and deterministic robust optimizations. Our contributions are
summarized in the following:

1) We investigate the power minimization problems under
the IR’s QoS requirement and physical layer security
constraints against the Eves. DA selection and precod-
ing are jointly designed to fully utilize the additional
degrees of freedom in antennas’ activation/deactivation
and beneficial effect of AN, which significantly reduce
the total power consumption yet maintaining the IR’s
SINR and security constraints against the Eves.

2) We exploit joint DA selection and robust precoding in
two practical scenarios: first, when the IR and Eves’ CSI
is imperfectly obtained, and second, when the Eves’ CSI
is completely unknown. Then we investigate the total
power minimization problems for the two scenarios in
probabilistic and deterministic manners, respectively. In
the first scenario, the IR’s SINR constraint and security
against the Eves are issued by chance constrained for-
mulations from the prospective of probabilistic robust
optimization, while the IR’s SINR constraint and secu-
rity against the Eves are guaranteed with all the CSI
uncertainties from the prospective of deterministic robust
optimization. On the other hand, when the Eves’ CSI is
completely unknown at the transmitter side in the second
scenario, the IR’s SINR requirement is addressed by the
probabilistic or deterministic robust optimization, while
the security towards the Eves is addressed by confining
a minimum power level of AN.

3) Four corresponding low-complexity algorithms are pro-
posed to minimize total power consumption for the two
scenarios, in terms of probabilistic and deterministic
manners. At the same time, AN is kept constructive to
the IR whereas destructive to the Eves. Complexities of
the algorithms are analytically demonstrated.

4) A device-centric network structure is demonstrated by
the proposed schemes, compared to the CA counterpart.
Explicitly, the working status of each DA is flexibly
determined by the IR and Eves’ positions to provide
on-demand services: the DAs close to devices have
higher probabilities of activation, while the DAs far
from devices have higher probabilities of being idle
for saving power. Furthermore, the power consumption
of the DA deployment remains low regardless of the
devices’ positions and power-efficient transmission is
always featured, while the power consumption of the CA
deployment demonstrates a significant increment when
the devices move to edge area.

II. SYSTEM MODEL AND CONSTRUCTIVE INTERFERENCE

In this section, system model is introduced in II-A and the
concept of CI is briefly discussed in II-B.
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TABLE I. Some notations and symbols used in this paper.

Symbols Notations
| · | and ‖ · ‖p absolute value of a complex scalar and p-norm

of a vector or a matrix
AH AT , Tr(A),
Rank(A) and A � 0

Hermitian transpose, transpose, trace, rank of
matrix A, and positive semi-definite matrix

diag (A) and diag (a) returns a diagonal matrix with diagonal elements
from matrix A, and stacks the elements of vector
a into a diagonal matrix

In n-by-n identity matrix
< and = real part and imaginary parts
CN×M sets of all N ×M matrices
HN×M Hermitian matrices with complex entries
M , N and K constellation size, the number of DAs and Eves
ηd and ηk SINR outage probabilities of the IR and k-th

Eve for probabilistic robust optimization
poff , pon, pDA,
pAN and α

power consumption of sleeping DA and active
DA, maximum transmission power of each DA,
minimum power constraint of AN, and drain
efficiency at each DA

ϕ penalty factor
w ∈ CN×1 and wn precoding vector and precoding weight of the

n-th DA
z ∈ CN×1 and zn AN vector and AN weight of the n-th DA
u ∈ CN×1 equivalent transmission vector
t ∈ CN×1 and tn antenna selection vector and the n-th DA’s status
Γd and Γd Receive SINR and SINR requirement of the IR
Γk and Γk Receive SINR and SINR requirement of the k-th

Eve for addressing PHY security
nd, and nk ∼
CN (0, σ2

n)
Additive white Gaussian noises (AWGN) at the
IR and the k-th Eve with variance σ2

n

hd ∈ CN×1, ĥd ∈
CN×1

true channel, estimated channel between the
DAs and IR

ed ∈ CN×1,
[ed]n ∼ CN{0, σ2

d}
estimation error vectors, and normal distributed
channel estimation error between the n-th DA
and IR, with variance σ2

d

hk ∈ CN×1, ĥk ∈
CN×1

true channel and estimated channel between DAs
and the k-th Eve

ek ∈ CN×1,
[ek]n ∼ CN{0, σ2

k}
estimation error vectors between DAs and the
k-th Eve, and normal distributed channel esti-
mation error between the n-th DA and the k-th
DA, with variance σ2

k

DA DA

DA

DA

DA

DA

Eve

Eve

Eve

Eve

IR

Fig. 1. Illustration of system model, where DAs are geographically positioned.

A. System Model

We consider a DA system at downlink, which is depicted in
Fig. 1. All DA ports are connected to the central unit through
a noise-free wired front-haul for cooperative communications.
Central unit is equipped with N DAs transmitting confidential
message to the IR in the presence of K possible Eves. We
focus on secure precoding design with passive Eves, where the
Eves only intercept confidential message but do not actively
launch attack [14]-[28] 1. The IR and Eves are all equipped
with single antenna for simplicity. CSI is obtained by channel
estimation in the training phase, based on channel reciprocity
as in [4] [39]. Without loss of generality, we assume that
all the DAs share the same drain efficiency and their PAs
work in the linear region. Per-DA power constraint is applied,
which is essentially different from joint power constraint in
CA systems.

B. Constructive Interference

By the concept of CI, interference pushes the received
signals away from the detection threshold [31]. The increased
distance to the detection threshold can effectively improve the
receiving performance. Denote w ∈ CN×1 and z ∈ CN×1 as
precoding vector and AN at the transmitter side. Without loss
of generality, QPSK is employed as the constellation scheme
and the secure precoding design with generic constellation
schemes is discussed in section V. Denote xd = dejφd as
the information-bearing symbol transmitted for the IR. The
received signal at the IR and the k-th Eve can be calculated

1With active Eves, there has been extensive research focusing on device
authentication [40] [41], detecting active attacks [42] and offering coun-
termeasures to guarantee secret communications [43] [44]. Higher layer
authentication works as a digital signature to verify the validity of a legitimate
nodes identity from unauthorized nodes before establishing legitimate com-
munications links for data transmission [43] [45] [46]. In this paper we focus
on secure precoding design for already authenticated links to enhance security
against potential eavesdroppers [14]-[28]. In addition to MAC authentication,
there are other authentication schemes, including network-layer authentication
[47], transport-layer authentication [48] and application layer authentication
[46]. In particular, the key point of PHY-authentication is to recognize the
PHY identities of wireless devices for authentication purpose [49] [50],
such as CSI-based authentication (the propagation characteristics of wireless
channels) [51] [52] [53], RF recognition approaches (also known as device
fingerprints) [54], and wiretap code-based authentication [55]. Another line
of research is to model the transmitter and malicious jammer as players
in a game-theoretic formulation with the mutual information as the payoff
function, and to identify the optimal transmit strategies for both parties.
Taking ergodic MIMO secrecy rate as payoff function, [57] employed Nash
equilibria to optimize the payoff function. Based on the stochastic game
theory, the transmitter in [56] chooses among transmitting, remaining silent
or acting as a jammer for secure transmission. Based on mixed-strategy Nash
equilibria, the authors of [58] conducted relay selection at uplink transmission
to improve transmission rate. Besides, the security design with compromised
base station involves intrusion detection at higher layer [59], or distributed
storage coding (also known as regenerating codes) design [60]. The former
aims to detect the compromised nodes while the latter is normally employed
for distributed storage systems (DDS). That is, it is desired that legitimate
users be able to reconstruct the original files by retrieving data from a subset
of storage nodes, while protecting it from being reconstructed by Eves, even
with compromised storage nodes [60]. Please note that the essence of DA
systems is completely different from that of DDS. For DA systems, each DA
only serves as geographically positioned remote radio head without ability of
data storage, while the essence of distributed data systems is that chunks of
data files are stored across different storage sites based on cloud technology.
Hence, the motivation of DA is to extend network coverage and enable the
user-centric network structure, while distributed data systems are employed
for distributing data into different storage sites for load balancing.
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Fig. 2. Constructive and destructive AN for the IR and Eves with QPSK. (a)
Constructive AN pushes the IR’s received symbols towards the constructive
region, where αR = <(hd(w + ze−jφd )), αI = =(hd(w + ze−jφd )),
and γd = σn

√
Γd. (b) Destructive AN pushes the Eves’ received symbols

towards to destructive region, where αR = <(hk(w + ze−jφd )), αI =
=(hk(w + ze−jφd )), and γk = σn

√
Γk .

as yd = hTd (wxd + z) + nd, and yk = hTk (wxd + z) + nk,
where hd ∈ CN×1 denotes the channel conditions between the
DAs and the IR. hk ∈ CN×1 denotes the channel conditions
between the DAs and the k-th Eve. nd ∼ CN (0, σ2

n) and
nk ∼ CN (0, σ2

n) denote the Additive white Gaussian noises
(AWGN) at the IR and the k-th Eve, respectively. Convention-
ally, the received SINR at the IR and k-th Eve are denoted as

Γd =
|hTdw|2

σ2
n + |hTd z|2

, Γk =
|hTkw|2

σ2
n + |hTk z|2

, (1)

where Γd and Γk denote the IR and the k-th Eve’s SINR,
respectively. It can be seen from (1) that AN is treated as
an undesired element at the IR. By contrast, the principle of
constructive AN is to rotate the phase of the AN at transmitter
and to align it with the desired signal at the IR. Since the
transmitted signal can be also written as (w+ ze−jφd)xd, by
exploiting the geometrical interpretation in Fig. 2, generating
constructive AN at the IR is equivalent to satisfying the
following equation

|={hTdw + hTd ze
−jφd}| ≤

(<{hTdw + hTd ze
−jφd} − γd) · tanθ,

(2)

where θ = π/M , M is constellation size [38] and γd =
σn
√

Γd, as shown in Fig. 2. It can be seen from (2) that the AN
becomes a beneficial element to the IR and the IR’ SINR Γd
is also embedded, indicating that generating constructive AN
and satisfying the IR’s SINR requirement are both guaranteed.
Since the AN contributes to the useful signal power, the
received SINR of the IR becomes

Γd =
|hTd (w + ze−jφd)|2

σ2
n

, (3)

where transmission power can be efficiently reduced to achieve
a target SINR.

III. POWER EFFICIENT DA SELECTION AND SECURE
PRECODING WITH IMPERFECT CSI

In Section III, we investigate power efficient design with im-
perfect CSI, where the channels are given as hd = ĥd+ed and

hk = ĥk+ek,∀k ∈ K. ĥd ∈ CN×1 denotes the estimated CSI
between the DAs and the IR with estimation error ed ∈ CN×1.
ĥk ∈ CN×1 denotes the estimated CSI between the DAs and
the k-th Eve with estimation error ek ∈ CN×1. By classic
minimum mean square error (MMSE) channel estimation, the
channel estimation error can be modeled by a standard normal
distributed variable or an error-bounded variable. Explicitly, it
relates to the channel estimation setup, e.g., power of pilot
signal. To fully exploit the power efficient design with the
uncertainties (channel estimation error), we handle the opti-
mization problem in probabilistic and deterministic manners,
respectively.

A. Probabilistic Robust Optimization

In subsetion III-A, we present the precoding design with
the normal distributed CSI error. Without loss of generality,
the channel estimation error of the IR and the k-th Eve are
written as [ed]n ∼ CN{0, σ2

d} and [ek]n ∼ CN{0, σ2
k},∀k ∈

K,n ∈ N , respectively. In this subsection, a so-called DA-
imperfect-prob optimization problem is firstly formulated by
P1(a) (Eq. 4), and then is transformed into P1(b) (Eq. 15) by
transforming the probabilistic constraints (C3) and (C4) into
equivalent linear matrix inequality (LMI). Finally, the problem
is given by P1(d) (Eq. 20) after handling the binary variables
in antenna selection.

1) Problem Formulation: Define precoding vector w ∈
CN×1, whose n-th element wn represents the precoding
weight at the n-th DA. Define AN vector z ∈ CN×1, whose
element zn represents the AN generated at the n-th DA.
Define DA selection vector t, whose element tn = {0, 1}
means the n-th DA is deactivated or activated, respectively.
Taking advantage of CI, AN is properly rotated such that
it contributes to the received signal power at the IR while
remaining destructive to the Eves. To minimize the total power
consumption, we jointly optimize precoding w, AN z and DA
selection vector t. Accordingly, the problem is formulated as

P1(a) (DA− imperfect− prob) :

argmin
w,z,t

||w + ze−jφd ||2

α
+

N∑
n=1

(
tnpon + (1− tn)poff

)
,

s.t (C1) : 0 ≤ |wn + zne
−jφd |2 ≤ tnpDA,∀n ∈ N,

(C2) : tn = {0, 1}, ∀n ∈ N, (C3) : Pr{ Γd ≥ Γd} ≥ ηd,
(C4) : Pr{ Γk ≤ Γk} ≥ ηk,∀k ∈ K,

(4)

where α is the drain efficiency of the DAs. pDA denotes
the maximum available transmission power at each DA. pon
and poff represent the power consumption of each acti-
vated/deactivated DA, respectively. Γd and Γk are the SINR
requirement for the IR and physical layer security against the
k-th Eve. ηd and ηk denote the probabilistic thresholds for the
IR and the k-th Eve, respectively. Evidently, (C1) imposes
individual transmission power constraint at each DA, which is
different from the joint transmission power constraint in CA
systems. (C2) constrains the selection vector to binary (on/off)
elements. (C3) and (C4) guarantee the SINR constraint at the
IR and address security against the Eves with probabilities ηd
and ηk,∀k ∈ K.
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2) Solution to the Problem: We now handle the proba-
bilistic constraints (C3) and (C4). Define u = w + ze−jφd .
By exploiting trigonometry in Eq. (2), generating constructive
AN for the IR and satisfying the IRs SINR requirement are
both guaranteed. Under the provision of (2), the probabilistic
constraint (C3) is equivalent to

(C3) : Pr{|={hTd u}| ≤
(
<{(hTd u} − σn

√
Γd
)
tanθ} ≥ ηd. (5)

Considering the effect of imperfect channel estimation, we
have

(C3) : Pr{|={(ĥd + ed)
Tu}| ≤(

<{(ĥd + ed)
Tu} − σn

√
Γd
)
tanθ} ≥ ηd.

(6)

Decomposing the real part and imaginary parts, (6) is
equivalent to the two constraints in (7) 2{

Pr{aTd,1[uTR,u
T
I ]T ≤ −σn

√
Γdtanθ} ≥ ηd,

Pr{aTd,2[uTR,u
T
I ]T ≤ −σn

√
Γdtanθ} ≥ ηd,

(7)

where ad,1 = [(ĥI,d−ĥR,dtanθ+eI,d−eR,dtanθ)T , (ĥR,d+
ĥI,dtanθ + eR,d + eI,dtanθ)T ]T , and ad,2 = [(−ĥI,d −
ĥR,dtanθ− eI,d − eR,dtanθ)T , (−ĥR,d + ĥI,dtanθ− eR,d +
eI,dtanθ)T ]T . We now handle the first inequality in (7).
It is easy to obtain that the N -dimensional normal dis-
tributed vector ad,1’s expectation is ad,1 = [(ĥI,d −
ĥR,dtanθ)T , (ĥR,d + ĥI,dtanθ)T ]T with covariance matrix
Θd,1 = diag((1 + tanθ)2σ2

d, ..., (1 + tanθ)2σ2
d︸ ︷︷ ︸

2N

). Evidently,

the inequality can be interpreted as a cumulative probability
function (cdf) of a normal distributed variable. By normalizing
it into a standard normal distributed variable, we have

Φ(
−σn

√
Γdtanθ − aTd,1[uTR,u

T
I ]T

||Θ
1
2
d,1[uTR,u

T
I ]T ||2

) ≥ ηd, (8)

where Φ(x) = 1√
2π

∫ x
−∞ e

−t2
2 dt. Defining Φ−1(.) as the

inverse function, (8) is derived into

aTd,1[uTR,u
T
I ]T + Φ−1(ηd)||Θ

1
2
d,1[uTR,u

T
I ]T ||2 ≤ −σn

√
Γdtanθ,

(9)

Similarly, the second equation in (7) can be given as

aTd,2[uTR,u
T
I ]T + Φ−1(ηd)||Θ

1
2
2 [uTR,u

T
I ]T ||2 ≤ −σn

√
Γdtanθ,

(10)

where ad,2 = [(−ĥI,d− ĥR,dtanθ)T , (−ĥR,d+ ĥI,dtanθ)T ]T

and covariance matrix is calculated as Θd,2 =

2Pr{|X| ≤ c} ≥ η is equivalent to Pr{−X ≤ c,X ≤ c} ≥ η. However,
considering the complicated optimization problems, presenting the optimal
precoding design with the joint probability may be infeasible. Moreover,
the optimal precoding may not exist unless the joint probability satisfying
some strict conditions [32]. Hence, to strike a good trade-off between system
performance and complexity, we approximate Pr{|X| ≤ c} ≥ η to
Pr{X ≤ c} ≥ η and Pr{−X ≤ c} ≥ η. More important, given a high
value of η, i.e., η = 95%, the approximation is tight and has been widely
utilized in robust optimization design [32].

diag((1 + tanθ)2σ2
d, ..., (1 + tanθ)2σ2

d︸ ︷︷ ︸
2N

). Hence, (C3) is

equivalent to the two inequalities

 aTd,1[uTR,u
T
I ]T + Φ−1(ηd)||Θ

1
2
d,1[uTR,u

T
I ]T ||2 ≤ −σn

√
Γdtanθ,

aTd,2[uTR,u
T
I ]T + Φ−1(ηd)||Θ

1
2
d,2[uTR,u

T
I ]T ||2 ≤ −σn

√
Γdtanθ.

(11)
We now handle the security constraint in (C4) under the

provision of destructive interference. According to geometrical
interpretation, confining the k-th Eve in the destructive region
equals to satisfying |={hTk u}| ≥

(
<{hTk u} − σn

√
Γk
)
tanθ.

Taking into account of channel estimation error, (C4) can be
expanded as

(C4) : Pr{|={(ĥk + ek)Tu}| ≥(
<{(ĥk + ek)Tu} − σn

√
Γd
)
tanθ} ≥ ηk,

(12)

which can be transformed into a cdf of a standard normal
distributed variable as we did in manipulating (5)-(9). Finally,
constraint (C4) holds if the two constraints in (13) are simul-
taneously satisfied.

Pr{aTk,1[uTR,u
T
I ]T ≤ σn

√
Γktanθ} ≥ ηk,

Pr{aTk,2[uTR,u
T
I ]T ≤ σn

√
Γktanθ} ≥ ηk,

(13)

where ak,1 = [(ĥI,k+ĥR,ktanθ+eI,k+eR,ktanθ)T , (ĥR,k−
ĥI,ktanθ + eR,k − eI,ktanθ)T ]T and ak,2 = [(−ĥI,k +
ĥR,ktanθ− eI,k + eR,ktanθ)T , (−ĥR,k − ĥI,ktanθ− eR,k −
eI,ktanθ)T ]T . Again, by normalizing the two inequalities in
(13) into cdf of standard normal distributed variables, we have

 aTk,1[uTR,u
T
I ]T + Φ−1(ηk)||Θ

1
2
k,1[uTR,u

T
I ]T ||2 ≤ σn

√
Γktanθ,

aTk,2[uTR,u
T
I ]T + Φ−1(ηk)||Θ

1
2
k,2[uTR,u

T
I ]T ||2 ≤ σn

√
Γktanθ,

(14)
where ak,1 = [(ĥI,k + ĥR,ktanθ)T , (ĥR,k − ĥI,ktanθ)T ]T

and ak,2 = [(−ĥI,k + ĥR,ktanθ)T , (−ĥR,k − ĥI,ktanθ)T ]T

with covariance matrix Θk,1 = Θk,2 =
diag((1 + tanθ)2σ2

k, ..., (1 + tanθ)2σ2
k︸ ︷︷ ︸

2N

). After a series

of transformation, the probabilistic constraints (C3) and (C4)
in P1(a) are transformed into the corresponding quadratic
constraints in (11) and (14). Hence, P1(a) is re-formulated as

P1(b) (DA− imperfect− prob) :

argmin
u,tn,n∈N

||u||2

α
+

N∑
n=1

(
tnpon + (1− tn)poff

)
,

s.t (C1) : 0 ≤ |un|2 ≤ tnpDA,∀n ∈ N, (C3) : (11),

(C2) : tn = {0, 1}, ∀n ∈ N, (C4) : (14),∀k ∈ K.

(15)

According to Schur Complements, constraints (C3) and (C4)
can be further transformed into (16) and (17), respectively, as
shown at the top. Defining U = uHu, P1(b) (DA-imperfect-
prob) is further transformed to
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


(
−aTd,1[uTR,u

T
I ]T−σn

√
Γdtanθ

)
I

Φ−1(ηd)
Θ

1
2
d,1[uTR,u

T
I ]T

(Θ
1
2
d,1[uTR,u

T
I ]T )T

(
−aTd,1[uTR,u

T
I ]T−σn

√
Γdtanθ

)
Φ−1(ηd)

 � 0,


(
−aTd,2[uTR,u

T
I ]T−σn

√
Γdtanθ

)
I

Φ−1(ηd)
Θ

1
2
d,2[uTR,u

T
I ]T

(Θ
1
2
d,2[uTR,u

T
I ]T )T

(
−aTd,2[uTR,u

T
I ]T−σn

√
Γdtanθ

)
Φ−1(ηd)

 � 0.

(16)




(
−aTk,1[uTR,u

T
I ]T+σn

√
Γktanθ

)
I

Φ−1(ηk)
Θ

1
2
k,1[uTR,u

T
I ]T

(Θ
1
2
k,1[uTR,u

T
I ]T )T

(
−aTk,1[uTR,u

T
I ]T+σn

√
Γktanθ

)
Φ−1(ηk)

 � 0,


(
−aTk,2[uTR,u

T
I ]T+σn

√
Γktanθ

)
I

Φ−1(ηk)
Θ

1
2
k,2[uTR,u

T
I ]T

(Θ
1
2
k,2[uTR,u

T
I ]T )T

(
−aTk,2[uTR,u

T
I ]T+σn

√
Γktanθ

)
Φ−1(ηk)

 � 0.

(17)

P1(c) (DA− imperfect− prob) :

argmin
u,t

Tr(U)

α
+

N∑
n=1

(
tnpon + (1− tn)poff

)
,

s.t (C1) : Tr(UFn) ≤ tnpDA, ∀n ∈ N, (C2), (C3) : (16),

(C4) : (17),∀k ∈ K, (C5) :

[
U u

uT 1

]
� 0, (C6) : U � 0.

(18)

where Fn = diag(0...0︸︷︷︸
n−1

, 1, 0, ...0︸ ︷︷ ︸
N−n

) is an auxiliary diagonal

matrix whose elements are zero except the n-th element,
∀n ∈ N . The problem in (18) is still non-convex due to the
binary variables in (C2) : tn = {0, 1},∀n ∈ N , which can be
relaxed to the following two constraints [62]

(C2a) : tn = [0, 1], (C2b) :

N∑
n=1

tn −
N∑
n=1

t2n ≤ 0,∀n ∈ N, (19)

where (C2a) is the relaxed version of the original constraint
(C2), and (C2b) confines the value of tn,∀n ∈ N, close
to 0 or 1. Hence, satisfying both constraints (C2a) and
(C2b) equals to satisfying the original constraint (C2). The
introduced constraint (C2a) is simply a linear constraint, and
the difficulty lies in handling (C2b). Introducing a penalty
factor ϕ, typically of large value, and moving (C2b) into

the objective function, the objective becomes into
Tr(U)

α
+∑N

n=1

(
tnpon + (1 − tn)poff

)
+ ϕ

(∑N
n=1 tn −

∑N
n=1 t

2
n

)
.

The formulated objective function shares the same optimal
design policy and result with the original one [62]. It is
because with a large value of the penalty factor ϕ, the term
ϕ(
∑N
n=1 tn −

∑N
n=1 t

2
n) in the objective function naturally

pushes the value of tn,∀n ∈ N, close to 0 or 1, which exactly
equals to the original constraint (C2). The last difficulty
lies in the non-convex term ϕ(

∑N
n=1 tn −

∑N
n=1 t

2
n) in the

objective function. It is observed that
∑N
n=1 tn −

∑N
n=1 t

2
n is

the difference of two convex functions w.r.t the variable tn,
and thus can be handled by successive convex approximation
such that

∑N
n=1 tn −

∑N
n=1 t

2
n ≤

∑N
n=1 tn −

∑N
n=1(t

(i)
n )2 −

2
∑N
n=1 t

(i)
n (tn−t(i)n ), where t(i)n denotes the value of tn at the

i-th iteration [61] and is updated in an iterative way to tighten
the approximation. Therefore, the optimization becomes into

P1(d) (DA− imperfect− prob) :

argmin
u, t

Tr(U)

α
+

N∑
n=1

(
tnpon + (1− tn)poff

)
+

ϕ
( N∑
n=1

tn −
N∑
n=1

(t(i)n )2 − 2

N∑
n=1

t(i)n (tn − t(i)n )
)
,

s.t (C1), (C2a) : tn = [0, 1], ∀n ∈ N, (C3)− (C6).

(20)

Now P1(d) (DA-imperfect-prob) is a standard semi-definite
programming (SDP) problem, which can be readily solved by
CVX. The loss of optimality only comes from relaxing the
term ϕ(

∑N
n=1 tn −

∑N
n=1 t

2
n) by successive convex approxi-

mation. Since the term
∑N
n=1 tn −

∑N
n=1 t

2
n is the difference

of two convex functions w.r.t the variables tn,∀n ∈ N , it can
be relaxed into the difference of a convex function and a linear
function

∑N
n=1 tn −

∑N
n=1(t

(i)
n )2 − 2

∑N
n=1 t

(i)
n (tn − t

(i)
n ),

which serves as a strict upper bound of the original term. By
updating the value of t(i)n , ∀n ∈ N , in each iteration, near-
optimality is achieved benefiting from the convexity of the
re-formulated problem P1(d) (Eq. (20)). Moreover, since the
successive convex approximation serves as the upper bound
of the original problem, the optimization problem P1(d) is
iteratively minimized and also lower bounded by the IR’s
SINR and physical layer security constraints. Hence, the near-
optimality and convergence of the algorithm are confirmed
[62] [63]. Finally, the solver for P1(d) is summarized as
follows.

Remark 1: Now we revisit the inequalities in (11), and
observe that the first inequality in (11) actually contains two
inequalities (also applicable for the second inequality in (11))

− aTd,1[uTR,u
T
I ]T ≥ σn

√
Γdtanθ, and

||Θ
1
2
d,1[uTR,u

T
I ]T ||2 ≤

−aTd,1[uTR,u
T
I ]T − σn

√
Γdtanθ

Φ−1(ηd)
,

(21)
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Algorithm 1 DA system with imperfect CSI and probabilistic
optimization (DA-imperfect-prob)
Input: Probabilities thresholds ηd and ηk . SINR requirements Γd and Γk .

Estimated CSI ĥd, ĥk, ∀k ∈ K, and power consumption parameters
α, pon, poff , pDA.

Output: Optimal precoding u and DA selection t.
1: repeat
2: Solve optimization problem P1(d) (DA-imperfect-prob) in (20).
3: t

(i)
n = tn,∀ n ∈ N . i = i+ 1.

4: until Convergence

where the first inequality of (21) suggests that the magnitude
of u should be large enough while the second inequality
of (21) suggests that the magnitude of u should be smaller
enough to make (21) holds. Hence, given a high channel
estimation error (the norm of matrix Θ

1
2

d,1 is large), the value of
ηd or Γd needs to be properly reduced to make the optimization
feasible. Revisiting the constraint for the k-th Eve in (14),

we get ||Θ
1
2

k,1[uTR,u
T
I ]T ||2 ≤

σn
√

Γktanθ−aTk,1[uTR,u
T
I ]T

Φ−1(ηk) , and

aTk,1[uTR,u
T
I ]T ≤ σn

√
Γktanθ, where only upper bounds on

the magnitude of u are imposed. As a result, the constraint
itself always confines a feasible region. �

B. Deterministic Robust Optimization

In the previous subsection, we have solved the problem
in a probabilistic manner, where the IR’s QoS requirement
and the physical layer security against the Eves are issued
by the chance constrained formulations. In this subsection,
we handle the CSI uncertainties from a deterministic manner,
where the IR’s QoS requirement and the physical layer security
towards the Eves are always guaranteed with the infinite
CSI uncertainties. A so-called DA-imperfect-det optimization
problem is firstly formulated by P2(a) (Eq. 22), and then the
subsequent optimization form P2(b) (Eq. 28) is obtained by
applying S-procedure to handle non-convex constraints (C9)
and (C10). At last, the final version in P2(c) (Eq. 29) is
obtained by relaxing the binary variables in antenna selection.

1) Problem Formulation: Define ∆ as the channel esti-
mation uncertainties set, which contains all the possible CSI
uncertainties and specifies an ellipsoidal uncertainty region for
the estimated CSI [65]. To process the power minimization
problem in terms of deterministic robust optimization, the
formulation is given as

P2(a) (DA− imperfect− det) :

argmin
w,z,t

||w + ze−jφd ||2

α
+

N∑
n=1

(
tnpon + (1− tn)poff

)
,

s.t (C7) : 0 ≤ |wn + zne
−jφd |2 ≤ tnpDA,∀n ∈ N,

(C8) : tn = {0, 1}, ∀n ∈ N, (C9) : min
ed∈∆

Γd ≥ Γd,

(C10) : max
ek∈∆

Γk ≤ Γk, k ∈ K,

(22)

where (C9) and (C10) indicate deterministic SINR require-
ment for the IR and physical layer security constraints against
Eves, such that the IR’s worst-case SINR and Eves’ best-case
SINR as per the CSI error distribution obey the respective
thresholds Γd and Γk, ∀k ∈ K.

2) Optimization Solution: In line with the analysis in
previous subsection and defining w+ ze−jφd = u, constraint
(C9) is equivalent to the following two inequalities in (23), as
shown on the top of next page, where %d,1 = σn

√
Γdtanθ +

ĥTI,duR + ĥTR,duI − ĥTR,duRtanθ + ĥTI,duItanθ, %d,2 =

σn
√

Γdtanθ−ĥTI,duR−ĥTR,duI−ĥTR,duRtanθ+ĥTI,duItanθ.
We now handle the first inequality of (23). To handle the

infinite CSI uncertainties, we transform it into a LMI using
the following Lemma 1:

Lemma 1 (S-Procedure [64]): Let a function fm(x), m ∈
{1, 2}, be defined as fm(x) = xHAmx + 2<{bHmx} + cm,
where Am ∈ HN×N , bm ∈ CN×1 and cm ∈ R. The
implication f1(x) ≤ 0⇒ f2(x) ≤ 0 holds if and only if there

exists an λ ≥ 0 such that λ

[
A1, b1

bH1 , c1

]
−

[
A2, b2

bH2 , c2

]
� 0.�

By exploiting the structure of the first inequality in
(23), we need to construct an inequality such that
[
√

(eI,d − eR,dtanθ)T ,
√

(eR,d + eI,dtanθ)T ] I2N

[
√

(eI,d − eR,dtanθ)T ,
√

(eR,d + eI,dtanθ)T ]T −σUBd ≤ 0
to guarantee the first inequality in (23) always hold. We note
that expanding the term yields a linear combination of the
elements of ed. Since the 2-norm of the channel estimation
error vector ed is bounded by the uncertainty-bounded
channel estimation error model, the linear combination of the
elements of ed is also bounded [65]. Hence, without loss of
generality, σUBd is assumed to serve as the upper bound of the
constructed term. By applying S-procedure, the constructed
inequality guarantees the first inequality in (23) hold if and
only if there exists λd,1 ≥ 0 such that the LMI constraint in
(24) holds

[
λd,1I2N − diag(uTR,u

T
I ), 0

0, −λd,1σUBd − %d,1

]
� 0, (24)

by which the uncertainties have been omitted. Now the first
constraint in (23) containing infinite possibilities is trans-
formed into a solvable LMI constraint in (24). Accordingly,
the second inequality in (23) can be transformed into

[
λd,2I2N − diag(uTR,u

T
I ), 0

0, −λd,2σUBd − %d,2

]
� 0. (25)

Now the constraint (C9) containing infinite possibilities is
transformed into two deterministic LMIs in (24) and (25),
respectively. Now we handle the k-th Eve’s constraint in
(C10). According to the geometrical interpretation in Fig. 2,
(C10) can be equivalently written by (26), as shown on the
top of next page, where %k,1 = ĥTI,kuR + ĥTR,kuRtanθ +

ĥTR,kuI−ĥTI,kuItanθ−σn
√

Γktanθ, and %k,2 = −ĥTI,kuR+

ĥTR,kuRtanθ − ĥTR,kuI − ĥTI,kuItanθ − σn
√

Γktanθ. Based
on S-procedure introduced above, (26) can be transformed into



[
λk,1I2N − diag(uTR,u

T
I ), 0

0T −λk,1σUBk − %k,1

]
� 0,[

λk,2I2N − diag(uTR,u
T
I ), 0

0T −λk,2σUBk − %k,2

]
� 0,

(27)



8

 min
ed∈∆

[(eI,d − eR,dtanθ)T , (eR,d + eI,dtanθ)T ][uTR,u
T
I ]T + %d,1 ≤ 0,

min
ed∈∆

[(−eI,d − eR,dtanθ)T , (−eR,d + eI,dtanθ)T ][uTR,u
T
I ]T + %d,2 ≤ 0,

(23)

 max
ek∈∆

[(eI,k + eR,ktanθ)T , (eR,k − eI,ktanθ)T ][uTR,u
T
I ]T + %k,1 ≤ 0,

max
ek∈∆

[(−eI,k + eR,ktanθ)T , (−eR,k − eI,ktanθ)T ][uTR,u
T
I ]T + %k,2 ≤ 0.

(26)

where σUBk is similarly introduced to serve as an upper bound
of the linear combination of the elements of ek. Now the non-
convex constraints (C9) and (C10) are replaced by equivalent
LMI constraints. Defining U = uHu, the problem can be
transformed as

P2(b) (DA− imperfect− det) :

argmin
w,z,t

Tr(U)

α
+

N∑
n=1

(
tnpon + (1− tn)poff

)
,

s.t (C7) : Tr(UFn) ≤ tnpDA, ∀n ∈ N, (C9) : (24) and (25),

(C8) : tn = {0, 1}, ∀n ∈ N, (C10) : (27), ∀k ∈ K,

(C11) :

[
U u

uT 1

]
� 0, (C12) : U � 0, (C13) : λd,1 ≥ 0,

(C14) : λd,2 ≥ 0, (C15) : λk,1 ≥ 0, (C16) : λk,2 ≥ 0, ∀k ∈ K.
(28)

To handle (C8), we transform it into two equivalent con-
straints (C8a) : tn = [0, 1], (C8b) :

∑N
n=1 tn −

∑N
n=1 t

2
n ≤

0,∀n ∈ N. Then we introduce a penalty factor ϕ, typically of
large value, and move (C8b) into the objective function. By
applying successive convex approximation for the non-convex
term ϕ(

∑N
n=1 tn −

∑N
n=1 t

2
n), the problem becomes

P2(c) (DA− imperfect− det) :

argmin
w,z,t

Tr(U)

α
+

N∑
n=1

(
tnpon + (1− tn)poff

)
+

ϕ
( N∑
n=1

tn −
N∑
n=1

(t(i)n )2 − 2

N∑
n=1

t(i)n (tn − t(i)n )
)
,

s.t (C7), (C8) : tn ∈ [0, 1], (C9)− (C16),

(29)

which is ready to be solved as a standard SDP problem.
The solver for the deterministic robust optimization problem
is summarized by Algorithm 2, and its near-optimality and
convergence are similar to that of the Algorithm 1.

Algorithm 2 DA systems with imperfect CSI and deterministic
optimization (DA-imperfect-det)
Input: SINR requirements Γd and Γk . Estimated channel ĥd, ĥk, ∀k ∈ K.

Power consumption parameters α, pon, poff , pDA.
Output: Optimal precoding u and DAs activation/deactivation t.
1: repeat
2: Solve optimization problem P2(c) in (29).
3: t

(i)
n = tn,∀ n ∈ N . i = i+ 1.

4: until Convergence

Remark 2: By the deterministic manner, the SINR re-
quirements need to be always satisfied at the cost of high
transmission power. In contrast, by the probabilistic manner,
the statistical SINR constraints allow proper violations, while

obeying the pre-set outage thresholds. Moreover, when pro-
cessing robust optimization deterministically, more intermedi-
ate variables are introduced by applying S-procedure. As a
result, the deterministic optimization generally leads to high
power consumption and complexity. �

IV. POWER EFFICIENT DA SELECTION AND PRECODING
WITHOUT EVES’ CSI

In a number of practical scenarios, it is impossible to obtain
the Eves’ CSI information. In this section, we investigate
security issue when imperfect CSI is only available for the
IR while the Eves’ CSI is completely unknown. Again, we
solve the problem in probabilistic and deterministic manners.

A. Probabilistic Robust Optimization

To solve the problem in a probabilistic manner, the channel
estimation error is modeled by a standard normal distributed
variable, as presented in subsection III-A. A so-called DA-
unknown-prob optimization problem is firstly formulated by
P3(a) (Eq. 30), and then the subsequent optimization form
P3(b) (Eq. 31) is obtained by handling the non-convex con-
straint (C19). At last, the final version s obtained in P3(c)
(Eq. 32) by relaxing the binary variables in antenna selection.
Since the IR’ CSI can be imperfectly obtained, we can still
guarantee the IR’ SINR requirement by a probabilistic con-
straint. However, to address physical layer security in absence
of any Eves’ CSI, we can only set a minimum power level of
AN.

1) Problem Formulation: The problem is formulated as

P3(a) (DA− unknown− prob) :

argmin
w, z, t

||w + ze−jφd ||2

α
+

N∑
n=1

(
tnpon + (1− tn)poff

)
,

s.t (C17) : 0 ≤ |wn + zne
−jφd |2 ≤ tnpDA, ∀n ∈ N,

(C18) : tn = {0, 1}, ∀n ∈ N,
(C19) : Pr{ Γd ≥ Γd} ≥ ηd, (C20) : ||z||2 ≥ PAN ,

(30)

where constraint (C20) is imposed to guarantee the minimum
power level of AN and is of importance when the Eves’ CSI
is unknown [43]. The essence of constraint (C20) is further
summarized in Appendix I for brevity.

2) Optimization Solution: To solve the problem, we trans-
form the probabilistic constraint (C19) into equivalent LMI,
as shown by (16). Define u = w + ze−jφd , U = uHu and
Z = zHz. The problem is given by
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P3(b) (DA− unknown− prob) :

argmin
w,z,t

Tr(U)

α
+

N∑
n=1

(
tnpon + (1− tn)poff

)
s.t (C17) : Tr(UFn) ≤ tnpDA, ∀n ∈ N, (C18). (C19) : (16),

(C20) : Tr(Z) ≥ pAN , (C21) : Tr(ZFn) ≤ Tr(UFn),

(C22) : w + ze−jφd = u, (C23) :

[
U u

uT 1

]
� 0,

(C24) :

[
Z z

zT 1

]
� 0, (C25) : U � 0, (C26) : Z � 0.

(31)

where constraint (C21) is imposed to guarantee that the AN
generated on each DA is lower than the overall beamformer
weight. For the binary variables involved constraint (C18), we
again transform it into two equivalent constraints (C18a) :
tn = [0, 1], (C18b) :

∑N
n=1 tn −

∑N
n=1 t

2
n ≤ 0,∀n ∈ N, .

Then we introduce a penalty factor ϕ, typically of large value,
and move (C18b) into the objective function. By applying
successive convex approximation for the non-convex term
ϕ(
∑N
n=1 tn −

∑N
n=1 t

2
n), the formulated problem becomes

P3(c) (DA− unknown− prob) :

argmin
w,z,t

Tr(U)

α
+

N∑
n=1

(
tnpon + (1− tn)poff

)
+

ϕ
( N∑
n=1

tn −
N∑
n=1

(t(i)n )2 − 2

N∑
n=1

t(i)n (tn − t(i)n )
)
,

s.t (C17), (C18a) : tn = [0, 1],∀n ∈ N, (C9)− (C26),

(32)

which is ready to solve as a standard SDP problem. The solver
is summarized in Algorithm 3, and its near-optimality and
convergence are similar to that of the Algorithm 1.

Algorithm 3 DA systems without Eves’ CSI and probabilistic
optimization (DA-unknown-prob)
Input: Minimum AN power level pAN . Probability threshold ηd. SINR re-

quirement of the IR Γd. Estimated CSI of the IR ĥd. Power consumption
parameters, α, pon, poff , pDA.

Output: Optimal precoding u and DAs activation/deactivation t.
1: repeat
2: Solve P3(c) in (32). Let t(i)n = tn,∀ n ∈ N . Set i = i+ 1.
3: until Convergence

B. Deterministic Robust Optimization

Now we present the power efficient design in deterministic
manner, for the case when the Eves’ CSI is unknown. To
guarantee the IR’s SINR in a deterministic manner, we again
define ∆ as the channel estimation uncertainties set, which
contains all the possible CSI uncertainties and specifies an
ellipsoidal uncertainty region for the estimated CSI [65].
A so-called DA-unknown-det optimization problem is firstly
formulated by P4(a) (Eq. 33). After processing the non-convex
constraint (C29) and relaxing the binary variables in antenna
selection, its final version is demonstrated by P4(b) in (34).

1) Problem Formulation: As discussed above, the IR’s
SINR needs to be satisfied with all the CSI uncertainties.
Again, we set a minimum power level of AN to address
physical layer security issue. The problem is formulated as

P4(a) (DA− unknown− det) :

argmin
w,z,t

||w + ze−jφd ||2

α
+

N∑
n=1

(
tnpon + (1− tn)poff

)
,

s.t (C27) : 0 ≤ |wn + zne
−jφd |2 ≤ tnpDA,∀n ∈ N,

(C28) : tn = {0, 1}, ∀n ∈ N,
(C29) : min

ed∈∆
Γd ≥ Γd, (C30) : ||z||2 ≥ PAN ,

(33)

where (C29) denotes that the minimum possible SINR of the
IR should be higher than the required Γd with all the CSI
uncertainties.

2) Optimization Solution: By applying S-procedure, we
transform the constraint (C29) that contains infinity proba-
bilities into equivalent LMIs, as shown by Eqs. (24) and (25).
Then we handle the binary variables involved constraint (C28)
by success convex approximation. Define u = w + ze−jφd ,
U = uHu and Z = zHz. The transformed problem becomes

P4(b) (DA− unknown− det) :

argmax
w,z,t

Tr(U)

α
+

N∑
n=1

(
tnpon + (1− tn)poff

)
+

ϕ
( N∑
n=1

tn −
N∑
n=1

(t(i)n )2 − 2

N∑
n=1

t(i)n (tn − t(i)n )
)
,

s.t (C27) : Tr(UFn) ≤ tnpDA, ∀n ∈ N,
(C28) : tn = {0, 1}, ∀n ∈ N, (C29) : (24) and (25),

(C30) : Tr(Z) ≥ pAN , (C31) : Tr(ZFn) ≤ Tr(UFn),

(C32) : w + ze−jφd = u, (C33) :

[
U u

uT 1

]
� 0,

(C34) :

[
Z z

zT 1

]
� 0, (C35) : U � 0, (C36) : Z � 0,

(C37) : λd,1 ≥ 0, (C38) : λd,2 ≥ 0,

(34)

which is ready to be solved as a standard SDP problem, and
the solver is given by Algorithm 4. Its near-optimality and
convergence are similar to that of the Algorithm 1.

Algorithm 4 DA systems without Eves’ CSI and deterministic
optimization (DA-unknown-det)
Input: CSI error bound. Minimum AN power level pAN . SINR requirement

of the IR Γd. Estimated CSI of the IR ĥd. Power consumption parameters
α, pon, poff , pDA.

Output: Optimal precoding u and DAs activation/deactivation t.
1: repeat
2: Solve optimization problem P4(b) in (34).
3: t

(i)
n = tn, ∀ n ∈ N . Set i = i+ 1.

4: until Convergence

V. COMPLEXITY ANALYSIS AND CONSTRUCTIVE
AN DESIGN FOR GENERIC MODULATION SCHEMES

In this section we analytically examine the computational
complexity of the proposed algorithms, and also discuss
the applicability of constructive AN on other constellation
schemes.
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A. Complexity Analysis
We first examine the computational complexity of the

proposed algorithms, and benchmark them against the related
schemes in [3] [21] [22] [24] [38]. For a fair comparison, the
parameters in different algorithms have been modified to be
consistent (the same number of users and antennas). It can be
seen that the proposed algorithms run in an iterative manner,
and we have several LMI and linear inequalities to handle in
each iteration. For the interior-point methods based solver, the
overall complexity can be given as ln( 1

ε )li
√
cb(cf + cg) [66].

Specifically, ln( 1
ε ) relates to the accuracy setup. li represents

the number of iterations for updating DA selection vector.√
cb represents the barrier parameter measuring the geometric

complexity of the conic constraints. cf and cg represent the
complexities cost on forming and factorization of n×n matrix
of the linear system 3 .

Finally, the overall complexities of the proposed algorithms
are summarized in TABLE I. It is observed that the proposed
algorithms have polynomial time computational complexity,
and only lite iterations for updating DA section vector is
required. The value of lite is further demonstrated in Fig.10.
Alternatively, by an exhaustive search, there are 2N possi-
bilities for antenna selection, which imposes extremely high
computational complexity, especially given a large number of
antennas. Given the above discussion, it is worth highlight-
ing that, the proposed algorithms strike a favorable trade-
off between system performance and complexity. Moreover,
compared to the probabilistic robust optimization, the deter-
ministic optimization has 2 + 2K more linear inequalities
in the first scenario and 2 more linear inequalities in the
second scenario. However, the additional linear inequalities
have minimal impacts on the complexities as they only linearly
increase with the number of devices.

B. Constructive AN Design for Other Constellation Schemes
The principle of constructive AN is also applicable for

other constellation schemes, with a minor revision on (2). For
illustration purpose, we provide a schematic representation
for 16-QAM constellation points in Fig. 3. To guarantee
constructive AN for the constellation points, we exploit the
specific detection regions for each group of constellation
points separately as detailed below.

For the group of constellation points in the box labelled 1:
since they are all surrounded by the decision boundaries, the
constraints should guarantee that the received signals achieve
the exact constellation point so as not to exceed the decision
boundaries. Hence, the constraints are

3Assume that the problem is subjected to P LMI and (M-P) second
order cone (SOC) constraints, and the overall complexity consists of two
parts: iteration complexity and per-iteration computation cost. (i) The it-
eration complexity is calculated as ln(1/ε)

√
cb, where ln(1/ε) relates to

the accuracy setup, cb =
∑P
p=1 kp + 2(M − P ) represents the barrier

parameter measuring the geometric complexity of the conic constraints, and
kp represents the size of the p-th LMI constraint. (ii) On the other hand,
the per-iteration computation is further dominated by: a) the formation of the
n × n coefficient matrix of the optimization problem, which is calculated
as cf = n

∑P
p=1 k

3
p + n2

∑P
p=1 k

2
p + n

∑m
p=P+1 k

2
p. The first two terms

come from the P LMI constraints while the third term comes from M-P second
order cone constraints. b) the factorization of the coefficient matrix, which is
calculated as cg = n3 (Eq. (18), [66]).

Real

Imag

(a)

1 1

1 1

2 2

2 2

3

3 3

3

4

4 4

4

Fig. 3. Schematic representation of 16-QAM constellation points.

<{hd(w + ze−jφd)} =

√
Γdσn<{xd},

and ={hd(w + ze−jφd)} =

√
Γdσn={xd}.

(35)

For the group of constellation points labelled 2: the con-
straints should guarantee that the received signals fall in the
detection region away from the decision boundaries, which is
the imaginary axis. The constraints are

<{hd(w + ze−jφd)} =

√
Γdσn<{xd},

and ={hd(w + ze−jφd)} ≥ (or ≤)

√
Γdσn={xd}.

(36)

For the group of constellation points labelled 3: the con-
straints should guarantee that the received signals fall in the
detection region away from the decision boundaries, which is
the real axis. The constraints are

<{hd(w + ze−jφd)} ≥ (or ≤)

√
Γdσn<{xd},

and ={hd(w + ze−jφd)} =

√
Γdσn={xd}.

(37)

For the group of constellation points labelled 4: the con-
straints should guarantee that the received signals fall in the
detection region away from the decision boundaries. Here,
the constellation points are not surrounded by the decision
boundaries and that extend infinitely, and constraints are
written as

<{hd(w + ze−jφd)} ≥ (or ≤)

√
Γdσn<{xd},

and ={hd(w + ze−jφd)} ≥ (or ≤)

√
Γdσn={xd}.

(38)

VI. SIMULATION RESULTS

We present the simulated performance in this section. The
central frequency is set to 2 GHz with 1 MHz bandwidth. The
AWGN power spectral density is -174 dBm/Hz. A 100× 100
m2 square cell model is considered with N = 16 DAs, where
the multiple DAs are evenly fixed [4] [67] across the map, as
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TABLE II. Complexity analysis 4, with accuracy factor ε
DA-imperfect-prob Cip = ln( 1

ε
)li

√
(9N + 3) + 2K(2N + 1)[n(3N +N3 + (N + 1)3 + (2 + 2K)(2N + 1)3)
+n2(3N +N2 + (N + 1)2 + (2 + 2K)(2N + 1)2) + n3]

DA-imperfect-det Cid = ln( 1
ε
)li
√

9N + 4K + 5 + 4K2N [n(3N + 2 + 2K + (2 + 2K)(2N + 1)3

+(N + 1)3 +N3) + n2(3N + 2 + 2K + (2K + 2)(N + 1)2 + (N + 1)2 +N2) + n3

DA-unknown-prob Cup = ln( 1
ε
)li
√

13N + 5[n(5N + 2N3 + 1 + 2(N + 1)3 + 2(2N + 1)3)
+n2(5N + 1 + 2N2 + 2(N + 1)2 + 2(2N + 1)2) + n3]

DA-unknown-det Cud = ln( 1
ε
)li
√

13N + 7[n(5N + 3 + 2N3 + 2(N + 1)3 + 2(2N + 1)3)
+n2(5N + 3 + 2N2 + 2(N + 1)2 + 2(2N + 1)2) + n3]

CA-no-AS [38] ln( 1
ε
)
√

(4 + 4K)[n(8N2 + 8KN2) + n3]

DA-conv-AN [3] ln( 1
ε
)lite
√

2NL1[(1 + 2K + 3L1)(2NL1)3 + (2NL1)2(1 + 2K + 3L1)2

+(1 + 2K + 3L1)3], where L1 denotes the number of remote radio heads
Power-min algorithm [22] ln( 1

ε
)lite
√

2 + 2N [(K + 1)(n+ n2) + 2nN3 + 2n2N2 + n3]

Secrecy rate-max algorithm [21] ln( 1
ε
)lite
√

4 + 2N [4(n+ n2) + 2(nN3 + n2N2) + n3]

Untrusted-relay algorithm [24] ln( 1
ε
)lite
√

3L2N + L2 +N [L2(n+ n2) + (3L2 + 1)(nN3 + n2N2) + n3],
where L2 denotes the number of users
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Fig. 4. (a) Antenna deployment in DA systems, where antennas are geograph-
ically distributed. (b) Antenna deployment in CA systems, where antennas are
co-located in the map center.

shown in Fig. 4. The number of the Eves is K = 14. The IR
and Eves are randomly distributed across the map following
uniform distribution [11]. To further highlight the advantages
of the DA deployment, in Figs. 6, 9 and 10, subsets of the IR
and Eves are partially placed at the coverage edge. DE of all
PAs is set to α = 40%. Power consumption parameters are
set to pon = 500 mW, poff = 50 mW, and pDA = 1000
mW, respectively. CSI error variance (in subsections III-A
and IV-A) and error upper bound (in subsections III-B and
IV-B) are set to 10−4. The PL model in [68] is adopted.
Besides, we select the following two most relevant algorithms
as benchmarks: (i) DA system with conventional AN (DA-
conv-AN) [3], where AN is generated towards the null-space
of IRs whereas its disruptive effect should be kept for jamming
potential Eves. Antennas are geographically deployed and
antenna selection is enabled. (ii) CA MISO system without
antenna selection (CA-no-AS) [38], where AN can be utilized
as constructive element at IRs. Antennas are co-located and
antenna selection is disabled. We also apply the proposed al-
gorithms to CA systems, which are referred as CA-imperfect-
prob, CA-imperfect-det, CA-unknown-prob and CA-unknown-
det respectively in simulation, and the multiple antennas of CA
systems are co-located in the map center.
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Fig. 5. Impact of the IR’s SINR requirement Γd on the total power
consumption, where Γk = −10 dB, ηd = ηk = 0.95, and pAN = 25
dBm.

A. Proposed Algorithms vs Benchmarks

Fig. 5 shows the impact of the IR’s SINR requirement Γd
on the total power consumption with a random IR and Eve
deployment. Firstly, it can be seen that the proposed algorithms
outperform the two benchmarks, namely CA-no-AS and DA-
conv-AN. It is because the proposed algorithms benefit from
DAs’ activation/deactivation, the DAs far from the devices
may be deactivated for saving power. Hence, the proposed
algorithms achieve a device-centric and on-demand network
structure with higher degree of freedom over the CA-no-AS
algorithm in [38]. Besides, our proposed algorithms rotate AN
to make it constructive to the IR even with imperfect CSI,
while AN is treated as an undesired element at the IR by
conventional DA-conv-AN in [3]. Secondly, benefiting from
geographical distribution of the DAs, the distances between the
DAs and devices are shortened and the DA systems can always
find near antennas to serve the devices. With the alleviated
PL, DA can outperform its counterpart CA in terms of power
efficient transmission. Thirdly, increasing the SINR Γd leads to
higher power consumption, as more antennas become activated
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Fig. 6. (a) Impact of the percentage of edge users on power consumption.
(b) Power increment (dB) of DA and CA systems with different percentages
of edge users, where Γd = 20 dB, Γk = −10 dB, ηd = ηk = 0.95, and
pAN = 25 dBm.

and dissipate higher circuit and transmission power. Also,
the power consumption of the CA-no-AS increases slowly
as the increased transmission power is overwhelmed by its
circuit power consumption. Fourthly, when the Eves’ CSI is
completely unknown, more power is dissipated compared to
the scenario that the Eves’ CSI is imperfectly obtained. It is
because to address security, a minimum AN power level pAN
is required, which is not efficient compared to the scenario
that Eves’ CSI is imperfectly obtained.

Fig. 6 (a) shows the total power consumption with different
percentages of edge device. It demonstrates that with more
devices at edge area, the power consumption of the DA
system almost remains unchanged regardless of the devices’
positions. It is because the geographically positioned DAs
effectively extend the network coverage, and the proposed
algorithms always activate near DAs for serving the devices.
By contrast, the total power consumption of the CA systems
keeps increasing when more devices move to edge area. This
is because the CA systems have to activate more antennas and
allocate higher transmission power to serve remote devices,
which inevitably further improve the total power consumption
of CA systems. On the other hand, Fig. 6 (b) shows the
power consumption increment with different percentages of
edge devices, benchmarked by the power consumption with
25% edge devices. It is obvious that the power consumption of
the CA system increases significantly with more edge devices,
and up to 1.3 dB increment of power consumption is achieved
when all the devices are located in the edge area. Besides, it
is worth noting that the power consumption increment of the
CA-no-AS algorithm is lower than the other antenna selection-
enabled CA systems, since the fully-activated antennas of the
CA-no-AS have dominated the power consumption, which
makes the increment less significant.

Fig. 7 shows the impact of the physical layer security
requirement Γk on the total power consumption. Firstly, a
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Fig. 7. Power consumption of DA and CA systems with different SINR
requirement against the Eves, where Γd = 20 dB, ηd = ηk = 0.95, and
pAN = 25 dBm.

stringent security constraint, such as Γk = 10−3, leads to
higher power consumption compared to a loose security con-
straint. It is because with a stringent constraint, higher power
level of AN is needed to make the Eves’ SINR lower than
the requirement Γk. Secondly, since the proposed algorithms
efficiently utilize AN as a constructive element, the power
consumption of the proposed algorithms maintains low and
the security against the Eves can be simultaneously addressed.
Thirdly, the DA systems always consume less power compared
to the CA counterparts, benefiting from the device-centric
structure. Fourthly, when the Eves’ CSI is unknown at trans-
mitter, the power consumption is independent with the value
of Γk. Hence, to address a stringent security requirement, one
can properly increase the minimum power level of AN. That
is, due to the channel disparity among the IR and Eves, the
received signal of the Eves can be randomized in nature.

Fig. 8 shows the impact of CSI estimation error variance
σ2
d and σ2

k on the probabilistic robust optimizations (DA-
imperfect-prob and DA-unknown-prob), and the impact of
estimation error upper bound σUBd and σUBk on the de-
terministic robust optimizations (DA-imperfect-det and DA-
unknown-det). As can be seen, the power consumption of all
the algorithms increases in a tough estimation scenario. In
particular, for the probabilistic manner optimization, a higher
CSI estimation error increases the norm of Θ

1
2

d,1 and Θ
1
2

d,2

and thus the left hand of the first inequality in Eq. (21) also
increases, as suggested by Remark 1. As a result, the amplitude
of the precoder (also the transmission power) needs to be
properly improved to make the optimization feasible, resulting
in a increased total power. On the other hand, the deterministic
manner robust optimization needs to keep the positive semi-
definite characteristic for the matrices in Eq. (24), (25) and
(27). This mathematically requires that all the leading principal
minors in the matrices to be non-negative. Hence, with a
higher CSI uncertainty, the amplitude of precoder (also the
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transmission power) needs to be property increased. As a
result, the total power consumption of all the deterministic
optimization is increased. A similar upwards trend can be also
observed by the CA-no-AS and DA-conv-AN, which process
the CSI uncertainties based on the deterministic manner as
well.

Now, in the above Figs. 5-8, we have demonstrated that the
proposed algorithms outperform the benchmarks. Importantly,
it is clear from the above results that the proposed algorithms
are most beneficial for edge users. Hence, in Fig. 9 and 10, we
hereforth focus our attention on the scenario where all the IR
and Eves are placed at the coverage edge to further highlight
the advantages of DA deployment.

Fig. 9 shows how the total power consumption is affected
by the number of Eves. Firstly, it can be seen that the DA de-
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Fig. 10. (a) Impact of users’ positions on antennas’ modes in DA systems.
(b) Impact of users’ positions on antennas’ modes in CA systems. Γd = 20
dB and Γk = −10 dB. ηd = ηk = 0.95, and pAN = 25 dBm.

ployment always outperforms its CA counterpart regardless of
the number of the Eves. For the antenna selection-enabled CA
systems, they almost dissipate the same power compared to the
DA-conv-AN benchmark. Although AN can be utilized by the
antenna selection-enabled CA systems, the systems have to
allocate higher transmission power for compensating severe
PL, which is exactly avoided by the DA-conv-AN benchmark.
As a result, the advantage of utilizing artificial noise vanishes
in the antenna selection-enabled CA systems, especially in
the scenario that all the IR and Eves are located at edge
area. Secondly, higher power for generating AN is required
to address the physical layer security when the number of the
Eves increases, and thus higher total power consumption is
led. Applying the concept of constructive AN yet pushing the
IR’s received symbols to the constructive region, the weight of
precoder w can be interestingly reduced. As a result, the total
power consumption of the proposed algorithms increase slowly
with more Eves. By contrast, the two benchmarks dissipate
more power with the increased number of the Eves, either
hindered by high circuit power consumption at the multiple
antennas (CA-no AS) or underutilized AN at the IR (DA-conv-
AN). Especially for the DA-conv-AN scheme, since AN is
treated as a harmful element at the IR, its power consumption
increases significantly compared to other schemes. Thirdly,
when the Eves’ CSI is completely unknown by the system,
the total power consumption remains unchanged with the
increased number of Eves. However, one may preset a higher
power level of pAN to address the physical layer security
against the Eves, at the cost of high power consumption.

Fig. 10 shows how antennas’ modes (activation or deac-
tivation) are affected by the positions of the devices. For
illustration, we only take the DA-imperfect-prob algorithm as
an example due to the space constraints. It can be seen from
Figs. 10 (a) that by the proposed algorithms, those DAs close
to the devices have higher probabilities of working while the
central DAs far from the devices have higher probabilities of
being deactivated to save power. This is originated that in
terms of power efficient design, letting those DAs far from
the devices transmit signal is not power efficient. By contrast,
as can be seen in Fig. 10 (b), the antennas in CA systems
have the same probabilities of being activated or deactivated.
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Fig. 11. Distribution of received signals on complex plane of the (a)
DA-imperfect-prob, (b) DA-imperfect-det, (c) DA-unknow-prob, (d) DA-
unknown-det algorithms. X-coordinate and Y-coordinate denote the real and
imaginary parts on complex plane, corresponding to that in Fig. 2. Red dots
denote the received symbols of the Eves and blue dots denote the received
symbols of the IR. Green cross denotes the IR’s SINR requirement and black
cross denotes the SINR constraint of Eves for addressing security. Γd = 20
dB. Γk = −10 dB, ∀k ∈ K. ηd = ηk = 0.95 and pAN = 25 dBm.

It is because the centralized antennas have similar PL to the
devices, and their working modes are insensitive to users’
positions.

B. CI Regions and Convergence Behavior

For the DA-imperfect-prob algorithm in Fig. 11 (a), the
received symbols of the IR locate in the constructive region
while those of the Eves fall in destructive region in a prob-
abilistic manner, satisfying the preset outage probabilities ηd
and ηk,∀k ∈ K. This verifies that even with DA selection
mechanism to save power, the proposed algorithm successfully
keeps AN constructive for the IR whereas destructive for the
Eves. It is because the algorithm statistically guarantees the
IR’s SINR higher than Γd and the Eves’ SINR lower than
the security threshold Γk. Fig. 11 (b) shows the probabilities
by the DA-imperfect-det algorithm. According to our analysis
in section III-B, the IR’ SINR and Eves’ security constraints
should be satisfied with all the CSI uncertainties. This is
verified by the simulation that the received symbols of the
IR locate in the constructive region while those of the Eves
locate in the destructive region all the time, which is essentially
different from the probabilistic optimization that allows proper
outage occurs. However, as discussed in Fig. 5, this is achieved
at the cost of high power consumption. Differently, Fig. 11 (c)
and (d) show the probabilities when the Eves’ CSI is unknown.
Both probabilistic and deterministic robust optimization can
locate the received symbols of the IR in the constructive
region, which means the IR’s SINR requirement is readily
satisfied and AN is efficiently utilized. By setting the power
level of AN higher than a threshold pAN , the received symbols
of the Eves are completely randomized, leading to a higher
symbol error rate at the Eves.
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Fig. 12. Iteration behavior of the proposed algorithms, where Γd = 20 dB,
Γk = −10 dB, ηd = ηk = 0.95, ∀k ∈ K, and pAN = 25 dBm.

Fig. 12 shows the convergence of the proposed algorithms
for updating antenna selection vector t. It can be observed
that the proposed algorithms are readily converged after 5
iterations, proving the low complexities of the algorithms.

VII. CONCLUSIONS

We have investigated power minimization problem under
physical layer security constraints for DA systems. Targeting at
the two practical scenarios, DA selection vector and precoding
have been jointly optimized in terms of probabilistic and
deterministic robust optimizations. By the chance-constrained
formulations as well as the deterministic formulations in the
two robust optimizations, the proposed algorithms are able
to satisfy the IR’s QoS and simultaneously address physical
layer security against the Eves. Our simulation results have
showed that the proposed algorithms consume much lower
power compared to the CA-no-AS and DA-conv-AN bench-
marks, and low complexities have been confirmed by our
computational analysis and simulation. Furthermore, a flexible
and device-centric network structure is featured benefiting
from antenna selection mechanism in DA systems, and the
power consumption is maintained at low level regardless of
the devices’ positions compared to the CA counterpart.

APPENDIX A
THE ESSENCE OF THE MINIMUM POWER CONSTRAINT ON

AN

In the conventional approaches, since the input signal is con-
sidered as Gaussian signal with infinite constellation size, the
generated AN at potential Eves is assumed to be uncorrelated
with the confidential signal. Hence, the AN at Eves is treated
as noise and its effect is considered to be harmful to potential
Eves. In contrast to the Gaussian input, practical transmission
always has to rely on real-world modulation, which implicates
a finite set of constellation points, and leads to finite-alphabet
input. In this case, even AN is produced such that it lies in
the null space of the receivers channel, the generated AN may
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indeed happen to be constructive to potential Eves. To clarify
the essentiality of constraint (C20), let us write the k-th Eves
channel in the form of hk =

√
ρhd+

√
1− ρε. The parameter

ρ ∈ [0, 1] measures the strength of the channel correlation
between the IR and k-th Eves channels and ε ∈ CN (0, IN )
is a random vector independent of hd [69]. Evidently, ρ = 0
means the IR and k-th Eves channels are un-correlated. Hence,
the received signal at the k-th Eve can be equivalently written
as

yk = (
√
ρhTd +

√
1− ρεT )udejφd + nk, (39)

where u = w + ze−jφd denotes the equivalent transmitting
vector. The above equation can be further arranged into

yk =
√
ρhTd ude

jΦd +
√

1− ρεTudejφd + nk, (40)

where the first term represents the symbol of interest while the
second term is a random vector varying in each transmission.
Hence, the random term can be utilized to randomize the
distribution of the Eve received signal and thus degrade the
detection performance of the Eves [69]. For this purpose, the
power of εTu should be large enough to guarantee sufficient
randomization to the phase of the Eves received signal. With
unknown ε, we can place a constraint on the power of u
instead. The average power of εTu can be approximated as
E{|εTu|2} ≈ Tr(uHE{εεH}u) = ||u||2. Since we have
u = w + ze−jφd , imposing minimum power constraint on
the AN z has the same effect to that of the vector u. Hence,
the power constraint can be readily replaced by ||z||2 ≥ PAN ,
which randomizes the phase of the Eves received signal and
hence deteriorates the Eves’ symbol error rate performance.
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