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Abstract

This paper studies the generalization error of
invariant classifiers. In particular, we con-
sider the common scenario where the classi-
fication task is invariant to certain transfor-
mations of the input, and that the classifier
is constructed (or learned) to be invariant to
these transformations. Our approach relies
on factoring the input space into a product of
a base space and a set of transformations. We
show that whereas the generalization error
of a non-invariant classifier is proportional to
the complexity of the input space, the gener-
alization error of an invariant classifier is pro-
portional to the complexity of the base space.
We also derive a set of sufficient conditions
on the geometry of the base space and the
set of transformations that ensure that the
complexity of the base space is much smaller
than the complexity of the input space. Our
analysis applies to general classifiers such as
convolutional neural networks. We demon-
strate the implications of the developed the-
ory for such classifiers with experiments on
the MNIST and CIFAR-10 datasets.

1 Introduction

One of the fundamental topics in statistical learning
theory is the one of the generalization error (GE).
Given a training set and a hypothesis class, a learning
algorithm chooses a hypothesis based on the training
set in such a way that it minimizes an empirical loss.
This loss, which is calculated on the training set, is also
called the training loss and it often underestimates the
expected loss. The GE is the difference between the
empirical loss and the expected loss.
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There are various approaches in the literature that
aim at bounding the GE via the complexity measures
of the hypothesis class, such as the VC-dimenension
(Vapnik, 1999; Vapnik and Chervonenkis, 1991), the
fat-shattering dimension (Alon et al., 1997), and the
Rademacher and the Gaussian complexities (Bartlett
and Mendelson, 2002). Another line of work provides
the GE bounds based on the stability of the algo-
rithms, by measuring how sensitive is the output to the
removal or change of a single training sample (Bous-
quet and Elisseeff, 2002). Finally, there is a recent
work by Xu and Mannor (2012) that bounds the GE
in terms of the notion of algorithmic robustness.

An important property of the (traditional) GE bounds
is that they are distribution agnostic, i.e., they hold for
any distribution on the sample space. Moreover, GE
bounds can lead to a principled derivation of learn-
ing algorithms with GE guarantees, e.g., Support Vec-
tor Machine (SVM) (Cortes and Vapnik, 1995) and its
extension to non-linear classification with kernel ma-
chines (Hofmann et al., 2008).

However, the design of learning algorithms in practice
does not rely only on the complexity measures of the
hypothesis class, but it also relies on exploiting the
underlying structure present in the data. A promi-
nent example is associated with the field of computer
vision where the features and learning algorithms are
designed to be invariant to the intrinsic variability in
the data (Soatto and Chiuso, 2016). Image classifi-
cation is a particular computer vision task that re-
quires representations that are invariant to various nui-
sances/transformations such as viewpoint and illumi-
nation variations commonly present in the set of nat-
ural images, but do not contain “helpful information”
as to the identity of the classified object. This moti-
vates us to develop a theory for learning algorithms
that are invariant to certain sets of transformations.

The GE of invariant methods has been studied via
the VC-dimension by Abu-Mostafa (1993), where it
is shown that the subset of an hypothesis class that
is invariant to certain transformations is smaller than
the general hypothesis class. Therefore, it has a
smaller VC-dimension. Yet, the authors do not pro-
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vide any characterization of how much smaller the VC-
dimension of an invariant method might be. Similarly,
group symmetry in data distribution was also explored
in the problem of covariance estimation, where it is
shown that leveraging group symmetry leads to gains
in sample complexity of the covariance matrix esti-
mation (Shah and Chandrasekaran, 2012; Soloveychik
et al., 2016).

There are various other examples in the literature that
aims to understand/leverage the role of invariance in
data processing. For example, Convolutional Neural
Networks (CNNs) – which are known to achieve state
of the art results in image recognition, speech recog-
nition, and many other tasks (LeCun et al., 2015) –
are known to possess certain invariances. The invari-
ance in CNNs is achieved by careful design of the ar-
chitecture so that it is (approximately) invariant to
various transformations such as rotation, scale and
affine deformations (Cohen and Welling, 2016; Diele-
man et al., 2016; Gens and Domingos, 2014); or by
training with augmented training set, meaning the
training set is augmented with some transformed ver-
sions of the training samples, so that the learned net-
work is approximately invariant (Simard et al., 2003).
Another example of a translation invariant method is
the scattering transform, which is a CNN-like trans-
form based on wavelets and point-wise non-linearities
(Bruna and Mallat, 2012). See also (Sifre and Mal-
lat, 2013; Wiatowski and Bölcskei, 2015). In practice,
such learning techniques achieve a lower GE than their
“non-invariant” counterparts.

Poggio et al. (2012) and Anselmi et al. (2014, 2016)
study biologically plausible learning of invariant repre-
sentations and connect their results to CNNs. The role
of convolutions and pooling in the context of natural
images is also studied by Cohen and Shashua (2016).

There are various works that that study the GE of
CNNs (Huang et al., 2015; Neyshabur et al., 2015;
Shalev-Shwartz and Ben-David, 2014; Sokolić et al.,
2017), however, they do not establish any connection
between the network’s invariance and its GE.

Motivated by the above examples, this work proposes
a theoretical framework to study the GE of invariant
learning algorithms and shows that an invariant learn-
ing technique may have a much smaller GE than a
non-invariant learning technique. Moreover, our work
directly relates the difference in GE bounds to the size
of the set of transformations that a learning algorithm
is invariant to. Our approach is significantly different
from (Abu-Mostafa, 1993) because it focuses on the
complexity of the data, rather than on the complexity
of the hypothesis class.

1.1 Contributions

The main contribution of this paper can be summa-
rized as follows:

We prove that given a learning method invariant to a
set of transformations of size T , the GE of this method
may be up to a factor

√
T smaller than the GE of a

non-invariant learning method.

Additionally, our other contributions include:

• We define notions of stable invariant classifiers
and provide GE bounds for such classifiers;

• We establish a set of sufficient conditions that en-
sure that the bound of the GE of a stable invariant
classifier is much smaller than the GE of a robust
non-invariant classifier. We are not aware of any
other works in the literature that achieve this;

• Our theory also suggests that explicitly enforcing
invariance when training the networks should im-
prove the generalization of the learning algorithm.
The theoretical results are supported by experi-
ments on the MNIST and CIFAR-10 datasets.

2 Problem Statement

We start by describing the problem of supervised
learning and its associated GE. Then we define the
notions of invariance in the classification task and the
notion of an invariant algorithm.

2.1 Generalization Error

We consider learning a classifier from training samples.
In particular, we assume that there is a probability
distribution P defined on the sample space Z and that
we have a training set drawn i.i.d. from P denoted
by Sm = {si}mi=1, si ∈ Z, i = 1, . . . ,m. A learning
algorithm A takes the training set Sm and maps it
to a learned hypothesis ASm

. The loss function of an
hypothesis ASm on the sample z ∈ Z is denoted by
l(ASm , z). The empirical loss and the expected loss of
the learned hypothesis ASm

are defined as

lemp(ASm
) = 1/m

∑
si∈Sm

l (ASm
, si) and (1)

lexp(ASm) = Es∼P [l (ASm , s)] , (2)

respectively; and the GE is defined as

GE(ASm) = |lemp(ASm)− lexp(ASm)| . (3)

We consider a classification problem, where the sample
space Z = X × Y is a product of the input space
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X and the label space Y, where a vector x ∈ X ⊆
RN represents an observation that has a corresponding
class label y ∈ Y = {1, 2, . . . , NY}. We will write
z = (x, y) and si = (xi, yi).

2.2 Stable Classifier and its Generalization

The feature extractor (e.g., CNN) used in this work
defines the non-linear function f(x, θ) : RN → RNY ,
where NY represents the number of classes, N rep-
resents the dimension of the input signal, and θ rep-
resents the parameters of the feature extractor. The
classifier defined by the feature extractor is then given
as

arg max
i∈[NY ]

(f(x, θ))i , (4)

where, (f(x, θ))i is the i-th element of f(x, θ). For ex-
ample, this may correspond to a CNN with a softmax
layer at the end. We will often write f(x, θ) = f(x),
and define its Jacobian matrix as

J(x, θ) =
df(x, θ)

dx
= J(x) . (5)

A learning algorithm A therefore returns a hypothesis,
which is a function of the training set Sm,

ASm
(x) = arg max

i∈[NY ]

(f(x, θ(Sm)))i . (6)

In a classification task, the goal of learning is to find an
hypothesis that separates training samples from dif-
ferent classes. To model this we define the score of
a training sample, which measures how confident the
prediction of a classifier is:

Definition 1 (Score). Consider a training sample
si = (xi, yi). The score of training sample si is de-
fined as

o(si) = min
j 6=yi

√
2 ((f(xi))yi

− (f(xi))j) . (7)

Note that a large score of training samples does not
imply that the learned hypothesis will have a small
GE. In this work we leverage the (non-invariant) GE
bounds provided by Sokolić et al. (2017). Before pro-
viding such bounds we define the notion of learning
algorithm stability and the notion of covering number
that are crucial for the GE bounds.

Definition 2 (Stable learning algorithm). Consider
the algorithm A and the hypothesis ASm

(x) given in
(6). The learning algorithm A is stable if for any train-
ing set Sm

max
x∈RN

‖J(x)‖2 ≤ 1 , (8)

where ‖ · |‖2 denotes the spectral norm.

Stability of a learning algorithm defined in this way
ensures that a learned classifier has a small GE as we
shall see in Theorem 1.

We also need a measure of complexity/size of the input
space X , which is given by the covering number.

Definition 3. Consider a space X and a metric d.
We say that the set C is an ε-cover of X if ∀x ∈ X ,
∃x′ ∈ C such that d(x,x′) ≤ ε. The covering number
of X corresponds to the cardinality of the smallest C
that covers X . It is denoted by N (X ; d, ε).

In this work we will assume that d is the Euclidean
metric: d(x,x′) = ‖x− x′‖2.

Finally, we can provide the GE bounds for the stable
learning algorithm. This is a variation of theorems 2
and 4 by Sokolić et al. (2017).1

Theorem 1. Assume that the learning algorithm A is
stable and that there exists a constant γ such that

o(si) ≥ γ ∀si ∈ Sm . (9)

Assume also that the loss l(·) is the 0-1 loss. Then,
for any δ > 0, with probability at least 1− δ,

GE(ASm) ≤
√

2 log(2) ·NY · N (X ; d, γ/2)

m

+

√
2 log(1/δ)

m
. (10)

Proof. The proof is straightforward by the application
of theorems 2 and 4 by Sokolić et al. (2017).

The GE therefore approaches zero with rate 1/
√
m

and it depends on the number of classes via
√
NY .

Critical is the dependence on the covering number
N (X ; d, γ/2), which is a function of the input space
X and the margin γ.

2.3 Structured Input Space and Invariant
Algorithms

The bound of the GE provided in the previous sec-
tion depends on the covering of the input space X . As
noted in the introduction, X often exhibits symmetries
that may reduce its “effective” complexity and there-
fore also reduce the GE. We formalize this intuition in
this section.

To capture the additional structure present in the
data, we model the input space X as a product of
a base space X0 and a set of transformations T :

X = T × X0 := {t(x) : t ∈ T ,x ∈ X0} , (11)

1Sokolić et al. (2017) also provide tighter GE bounds.
For the sake of simplicity we use the bounds based on the
spectral norm of the Jacobian matrix.
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where X0 ⊆ RN , T = {t0, t2, . . . tT−1} and T corre-
sponds to the size of T .2 We assume t0 to be the
identity, i.e., t0(x) = x throughout this work. For
example, if X0 is a set of images and T is a set of
translations, then X will be the set of images with
all possible translations of the images in X0. See also
Figure 1.

We assume that the classification task is invariant to
the set of transformations T , i.e., we are really inter-
ested only in the set X0 but have access to transformed
samples of it, where clearly all of them have the same
label. In other words, the class labels of t(x) are the
same for all t ∈ T . In this case, it is reasonable to
leverage this by using an invariant learning algorithm.3

Definition 4 (Invariant algorithm). A learning algo-
rithm A is invariant to the set of transformations T
if the embedding is invariant:

f(ti(x), Sm) = f(tj(x), Sm) ∀x ∈ X0, ti, tj ∈ T ,
(12)

for any training set Sm. We will denote such learning
algorithm by ATSm

.

This leads us to the question that will occupy us
throughout this paper: what is the GE of an invariant
learning algorithm.

3 Generalization Error of Invariant
Classifiers

In this section we provide bounds to the GE of invari-
ant algorithms. The invariance of the learning method
induces a possibly more efficient covering of the input
space X , which translates into a lower GE.

The GE of invariant and stable learning algorithms
can be bounded as follows:

Theorem 2. Assume that the learning algorithm A
is stable and invariant to T and that there exists a
constant γ such that

o(si) ≥ γ ∀si ∈ Sm . (13)

Assume also that the loss l(·) is the 0-1 loss. Then,
for any δ > 0, with probability at least 1− δ,

GE(ATSm
) ≤

√
2 log(2) ·NY · N (X0; d, γ/2)

m

+

√
2 log(1/δ)

m
. (14)

2Note that the discrete representation of this set is not
limiting in practice.

3Here we define a notion of absolute invariance. It is
easy to extend it to approximate invariance, where in X we
have transformed versions of X0 plus small/bounded noise;
and also to extend the GE bounds in a similar manner for
approximately invariant learning algorithms.

X X = T ⇥ X0

X0 t1 ⇥ X0

t2 ⇥ X0t3 ⇥ X0

(a) Input space.

X X = T ⇥ X0

X0 t1 ⇥ X0

t2 ⇥ X0t3 ⇥ X0

(b) Input space de-
composition.

Figure 1: Theorem 1 shows that the size of the in-
put space X determines the GE of a stable learning
algorithm. The input space can often be constructed
as a product of a simpler base space X0 and a set
of transformations T , where the transformations in T
preserve the class labels. Theorem 2 shows that the
GE of an invariant stable learning algorithm is deter-
mined by the size of the base space X0. The size of
the base space X0 can be much smaller than the size
of the input space X .

Proof. We show that under the assumptions of this
theorem the learning algorithms is (N (X0; d, γ/2), 0)-
robust (see (Xu and Mannor, 2012) or (Sokolić et al.,
2017)). The GE bound then follows from Theorem 3
and Example 9 by Xu and Mannor (2012) (or theorems
1 and 2 by Sokolić et al. (2017)).

We construct a covering as follows. Take the cover-
ing that leads to the covering number N (X0; d, γ/2)
and denote the subsets of X0 by Ki, i =
1, . . . ,N (X0; d, γ/2). By the definition of X in (11) we
can cover X by N (X0; d, γ/2) sets of the form T ×Ki,
i = 1, . . . ,N (X0; d, γ/2).

Now take xi in the training set and x ∈ X such that
xi,x ∈ T × Kj . Due to the invariance of f we have
‖f(xi) − f(x)‖2 < γ and all x will lie in the same
decision region as xi. This implies that stable and in-
variant learning algorithm is (N (X0; d, γ/2), 0)-robust.
The GE bound follows from Theorem 3 by Xu and
Mannor (2012).

Note that the GE bound in Theorem 2 is of the same
form as the GE bound in Theorem 1 and the main
difference is in the employed covering number. In par-
ticular, the ratio between the bounds is

R(X0,X ; d, ε) =

(N (X0; d, ε)

N (X ; d, ε)

)1/2

, (15)

where ε = γ/2 in our case. We are especially in-
terested in the scenarios where the GE bound of
an invariant method is much smaller than the GE
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bound of a non-invariant method. This happens
when R(X0,X ; d, ε)� 1. We now establish a set of
sufficient conditions on X0, T , d and ε such that
R(X0,X ; d, ε)� 1.

Theorem 3. Assume that X = T × X0 and choose
ε < 1. Then

d(t(x), t′(x′)) > 2ε ∀x,x′ ∈ X0, t 6= t′ ∈ T (16)

and

d(t(x), t(x′)) ≥ d(x,x′) ∀x,x′ ∈ X0, t ∈ T (17)

=⇒ R(X0,X ; d, ε) ≤ 1/
√
T , (18)

where T is the number of elements in T . On the other
hand,

d(t(x), t′(x)) = 0 ∀x ∈ X0, t 6= t′ ∈ T (19)

=⇒ R(X0,X ; d, ε) = 1. (20)

Proof. Consider any covering of X0 that leads to the
covering number N (X0; d, ε). Denote the metric balls
of radius ε that cover X0 by Ci, i = 1, . . . ,N (X0; d, ε).
Denote the elements of T as tj , j = 1, . . . , T and the
transformed sets by tj(X0) = {tj(x) : x ∈ X0}, j =
1, . . . , T .

First, we show that (16) implies that any possible met-
ric ball of radius ε can only have non-empty intersec-
tion with one of the “copies” of X0. Denote by B an
arbitrary metric ball of radius ε. Then

B ∩ tj(X0) 6= ∅ =⇒ B ∩ tk(X0) = ∅ ∀k 6= j. (21)

To see this, observe that the definition of B implies
that d(x,x′) ≤ 2ε, ∀x,x′ ∈ B. Now take a point x ∈
B ∩ tj(X0) and a point x′ ∈ tk(X0), k 6= j. Note
that by (16) d(x,x′) > 2ε, which implies that x′ 6∈ B
and therefore B ∩ tk(X0) = ∅. This implies that the
covering number of X with metric ball of radius ε is

N (X ; d, ε) =

T∑
j=1

N (tj(X0); d, ε) . (22)

Finally, it remains to be proven that N (tj(X0); d, ε) ≥
N (X0; d, ε) ∀tj ∈ T , which is straightforward to estab-
lish given the condition (17). This proves (18). Proof
of (20) is trivial as X0 = X when (19) holds.

We have shown, via conditions on the geometry of the
base space X0, and the effect of transformations in T
on it, that the ratio R(X0,X ; d, ε) can be smaller or
equal to 1/

√
T . Note that conditions (16) and (17)

ensure that the effect of transformations in T can not
be captured by the metric d. Otherwise, the invariant
algorithm has no advantage over a non-invariant one
(this is illustrated by examples in Section 3.1):

• The sufficient condition in (16) can be stated as
follows. Take any pair of vectors in the base space
X0 and transform them by the two transforma-
tions in T that are not equal. Then the dis-
tance between the pair of vectors must be at least
2ε. In other words, the transformation must not
make two distinct vectors in the base space X0

(distance at least 2ε) indistinguishable (distance
smaller than 2ε). Similarly, any two transforma-
tions in T that are not equal must make two sim-
ilar vectors in X0 (with distance smaller than 2ε)
distinct (distance at least 2ε).

• The sufficient condition in (17) ensures that the
transformations in T are not trivial, i.e., they do
not reduce the complexity of the base space X0.
For example, a transformation that maps any x ∈
X0 into itself violates (17) and leads to a set of
the same complexity, as formalized by (19).

The results of this section can be summarized by the
following remark:

Remark 1. Given an input space X , which is struc-
tured according to the assumptions of Theorem 3 and
the size of transformation set T , we have established
that the GE of an invariant stable learning algorithm
may be up to a factor

√
T smaller than the GE of a

non-invariant stable learning algorithm. To the best of
our knowledge, this is the first time such quantitative
result is provided for invariant algorithms.

3.1 Illustration

To provide additional intuition related to Theorem 3,
we present the following toy example. We consider four
images of dimension N×N , with N = 16, Figure 2(a).
The sets of transformations that we consider are:

• Translation set: The set of pixel-wise cyclic trans-
lations in any direction. The size of the set is N2.

• Rotation set: The set of image rotations by 90◦.
The size of this set is 4 (this may explain why the
90◦ rotation invariance is useful but not as critical
as the translation invariance).

• Trans-rotation set: A product of the translation
and the rotation sets, where the rotation is ap-
plied first followed by a translation. The size of
this set is 4×N2.

Note that all the transformations above can be imple-
mented by permutation matrices which are orthonor-
mal. This is important as it implies that all the con-
sidered sets satisfy the condition in (17). Examples of
transformed atoms are shown in Figure 2(b).
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cross circle

corner curve

(a) Atoms.

cross circle

corner curve

(b) Transformed
atoms.

Figure 2: (a) A set of atoms (cross, circle, corner,
curve) used to construct the base space. (b) Examples
of transformed atoms with a transformation from the
trans-rotation set.

We now provide an example of a base space X0 and a
transformation set T for which R(X0,X ; d, ε) ≤ 1/

√
T ;

and then provide an example of a base space X0 and a
transformation set T for which R(X0,X ; d, ε) 6≤ 1/

√
T .

Example for R(X0,X ; d, ε) ≤ 1/
√
T : Consider

X0 = {cross, circle, corner, curve} and T to be the
translation set. The set X = T ×X0 then contains all
possible translations of shapes in X0. We have verified
numerically that the condition in (16) is satisfied for
all ε < 0.375. Therefore, R(X0,X ; d, ε) ≤ 1/

√
T for

ε < 0.375, where
√
T = N = 16 is the dimension of

the images. Therefore, a translation invariant learning
method can attain a GE with a factor N smaller than
the GE of a non-invariant method.

Similarly, if we take X0 = {corner, curve} and
T to be the trans-rotation set, we can establish
R(X0,X ; d, ε) ≤ 1/(2N) for ε < 0.26.

Examples for R(X0,X ; d, ε) 6≤ 1/
√
T : Now con-

sider X0 = {cross, circle} and T to be the rotation
set. Therefore, X = T × X0 contains all possible
90◦ rotations of circle and cross in Figure 2(a). It
is clear that the circle and cross are already invariant
to such rotation, i.e., they corresponds to exactly the
same shape. Therefore, the condition in (19) holds and
R(X0,X ; d, ε) = 1. Clearly, in such cases, an invariant
learning algorithm is not expected to have a smaller
GE than a non-invariant learning algorithm.

4 Invariant CNNs

In this section we discuss the implication of our the-
ory on CNNs, which are very popular for classification.
Note that this is one particular example and that our
theory holds also for other possible classifiers. We con-
sider two ways for which invariance can be achieved for
CNNs: via an appropriate construction of the CNN ar-

chitecture or by training them to be invariant.

Invariance of the CNN Architecture- Given
that the set of transformations is a group, averaging a
function over a group leads to an invariant representa-
tion (Anselmi et al., 2014; Bruna and Mallat, 2012; Co-
hen and Welling, 2016). For example, in conventional
CNNs the pooling operators usually average over the
translation group and make the CNNs translation in-
variant.

Cohen and Welling (2016) generalize the notion of
convolution over translation group to general groups,
which leads to architectures that can be invariant to
arbitrary transformations that form discrete groups. A
related approach involves normalization of the network
input, which eliminates the effect of affine transforma-
tions of the input (Jaderberg et al., 2015).

Invariance of the CNN Learning- As an alter-
native to encoding the invariances in the CNN ar-
chitecture we can train a CNN to become invariant.
This is particularly helpful in the cases that we do
not know exactly how to characterize or impose the
invariance manually on the network. Such an “ap-
proximate invariance” is achieved by training CNNs
with data augmentation, which involves training the
network with the transformed samples of the training
examples. This was indicated by Lenc and Vedaldi
(2015), who showed that CNNs trained on the Ima-
geNet implicitly learn to be invariant to flips, scalings
and rotations.

Our theory suggests that enforcing the invariance of
the CNN representation explicitly should improve the
robustness of CNNs and improve their GE. For exam-
ple, we may train networks with an explicit regular-
ization term of the form∑

t∈T
‖f(xi)− f(t(xi))‖22 , (23)

which promotes the invariance of the representation.
We validate the effectiveness of this regularization in
Section 5.2.

5 Experiments

We now demonstrate the theoretical results with ex-
periments on the MNIST and CIFAR-10 datasets.

5.1 Rotation Invariant CNN

Here we compare a rotation invariant CNN and a con-
ventional CNN on rotated MNIST datasetses. The
rotated MNIST-D◦ dataset is constructed by rotating
the digits by an angle r ·D◦, r ∈ {0, 1, 2, . . . , 360/D−
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1}, where the index r is chosen randomly for each im-
age in the dataset. We use D = 180, 90, 45.

We use a 7 layer CNN architecture: (32, 5, 5)-
conv, (2, 2)-max-pool, (64, 5, 5)-conv, (2, 2)-max-pool,
(128, 5, 5)-conv followed by a global average pooling
layer and a softmax layer, where (k, u, v)-conv denotes
the convolutional layer with k filters of size u× v, and
(p, p)-max-pool denotes the max-pooling layer with
pooling regions of size p × p. The rotation invari-
ant CNN is the same as the conventional CNN, but
it includes a cyclic slice layer before the first convo-
lutional layer and a cyclic pool layer before the soft-
max layer. Both, the cyclic slice layer and the cyclic
pool layer were proposed by Dieleman et al. (2016)
and together they ensure that the CNN is invariant
to rotations. In particular, the cyclic slice layer takes
input image x and creates copies of x, each rotated
for r · D◦, r = 0, 1, 2, . . . , 360/D − 1, where D is the
same as in the dataset MNIST-D◦. The copies are
then passed through the CNN independently. At the
end of the CNN, before the softmax layer, the outputs
of the copies are averaged by a cyclic pool layer to
obtain a rotation invariant representation.

The networks are trained using stochastic gradient de-
scent (SGD) with momentum, which was set to 0.9.
The training objective is the standard categorical cross
entropy (CCE) loss. Batch size was set to 32 and learn-
ing rate was set to 0.01 and reduced by 10 after 100
epochs. The networks were trained for 150 epochs in
total. Weight decay regularization was set to 10−4.
We used training sets of sizes 103, 104, 2 · 104, 5 · 104.

The classification accuracies are reported in Fig-
ure 3(a), the GE is reported in Figure 3(b) and the
ratio of the GEs of the invariant and the conventional
CNNs are shown in Figure 3(c). We may note that
the (explicitly) rotation invariant CNN always has a
higher classification accuracy than the conventional
CNN. Moreover, the GE of the rotation invariant CNN
is much smaller than the GE of the conventional CNN.
The difference is most significant when the training set
is small, which demonstrates the importance of invari-
ance for the generalization of learning algorithms.

Note also that the GE of the rotation invariant CNNs
on different datasets MNIST-D◦, D = 180, 90, 45, is
roughly the same, whereas the conventional CNNs
have a higher GE on the datasets with a smaller D.
This can be explained by the fact that the rotated
MNIST dataset with a smaller D is more complex due
to the larger number of rotations. The sizes of the
transformation sets for D = 180, 90, 45 are 2, 4 and
8, respectively. Theorem 3 predicts that the ratio of
the GEs of an invariant and a non-invariant CNNs is
equal to

√
|T |. The actual ratios are shown in Fig-

ure 3(c). We can observe that the GE ratios obtained
empirically roughly follow the theoretical prediction.
However, when the training set is small, the conven-
tional CNN generalizes worse than predicted by our
theory and when the training set is large, the conven-
tional CNN generalizes better than predicted by our
theory. We conjecture that the conventional CNNs
learn to be “partially” invariant when the number of
training samples is large. Moreover, the current theory
might not capture the relationship between invariant
and non-invariant CNNs entirely, especially when the
assumptions of Theorem 3 do not hold.

Finally, we also consider the rotation invariant MNIST
dataset, where each image x in the dataset is rotated
by r ·D◦, r ∈ {0, 1, 2, . . . , 360/D − 1} and the 360/D
copies are averaged to obtain a sample. As our theory
suggests, the rotation invariant CNNs in this case do
not have a lower GE than a conventional CNN because
the dataset itself is rotation invariant. In fact, given
the rotation invariant MNIST dataset, the rotation in-
variant CNN and the conventional CNN are equiva-
lent. This can be easily established by observing that
the cyclic slicing layer produces copies of the input that
are identical. We have verified empirically that the ro-
tation invariant and the non-invariant CNNs perform
the same on the rotation invariant MNIST dataset.

5.2 Learning the Invariances

Finally, we demonstrate that learning invariances ex-
plicitly can lead to a lower GE. We use the CIFAR-10
dataset, which is normalized following (Zagoruyko and
Komodakis, 2016), and the Wide ResNet (Zagoruyko
and Komodakis, 2016) with 13 layers of width 5.

The networks are trained using SGD and the learning
rate is set to 0.01 for the first epoch and then to 0.05,
0.005 and 0.0005, each for 30 epochs. We use 103, 104,
2 ·104 and 5 ·104 training samples. We have found that
using the Jacobian regularization (Sokolić et al., 2017)
improves performance in all cases and it’s factor is set
to 0.1 with smaller training sets (2500, 5000, 10000)
and 0.05 otherwise. Batch size is set to 128.

SGD batches are constructed as follows: the first half
of the batch contains images from the training set and
the other half of the mini batch contains transformed
versions of the images in the first half of the mini
batch where the transformations are chosen at ran-
dom. The set of transformations contains shifts of ±4
pixels and horizontal flips, as in (Zagoruyko and Ko-
modakis, 2016).

We promote the invariance by using the regularizer in
(23). We chose to regularize the output of the last
global pooling layer instead of the softmax output and
use the corresponding pairs from the batch to compute
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Figure 3: (a) Clasification accuracy, (b) the GE of the rot. invariant CNN and the conventional CNN and (c)
the ratio of the GEs of the rotation invariant CNN and the conventional CNN on the rotated MNIST datasets.

(23). The regularization factor in all experiments is set
to 10−4.

Table 1 reports the standard test accuracy and the ac-
curacy of the predictions averaged over the augmented
test set (denoted by + avg.), which are obtained as fol-
lows: for each test image we average the softmax out-
puts for the original image, shifted images (9×9 shifts),
horizontally flipped image and scaled images (scaling
factors are 0.8 and 1.2). Note that this method re-
quires approximately 80 forward passes through a net-
work to obtain a prediction.

Classification accuracies on the test set and on the aug-
mented test set for CNNs trained with invariance regu-
larization and for CNNs trained without the invariance
regularization are reported in Table 1. The training set
accuracies were 100% or very close to 100% in all cases.
First, we observe that invariance regularization leads
to a lower GE (a higher accuracy) in all cases. More-
over, testing with the augmented test set is even more
robust and leads to a lower GE for both, the regu-
larized and the non-regularized CNNs. Note however,
that CNNs trained with explicit invariance regular-
ization (except when 2500 training samples are used)
performs better or on par with a non-regularized net-
work evaluated on the augmented test set, where test-
ing with the augmented test set is approximately 80
times more expensive than conventional testing with
a single image. This experiment verifies the hypothe-
sis that enforcing the network invariance explicitly can
lead to a smaller GE.

The ratio of the GEs of the CNN trained with data
augmentation and the invariance regularization and
the CNN trained without data augmentation are be-
tween 1.5 and 2. Note that the theory from Section 3
does not apply directly as (i) the CNN trained with-
out data augmentation is already (partially) invariant
to translations due to its convolutional structure with
pooling (Boureau et al., 2010; Bruna et al., 2013); (ii)

Table 1: Classification accuracy [%] on CIFAR-10.

number of training samples
2500 5000 10000 20000 50000

No reg. 68.71 76.74 85.17 87.15 93.65
Inv. Reg. 69.32 79.08 86.69 88.14 94.50

No reg.
+ avg.

70.59 78.40 86.05 88.13 94.26
Inv. Reg.
+ avg.

70.71 79.65 86.96 88.98 94.78

the CNNs trained with data augmentation and invari-
ance regularization are not perfectly invariant as de-
fined in Definition 4, but only approximately invariant.

6 Discussion and Conclusion

We have formally demonstrated that the GE of an in-
variant learning algorithm can be much smaller than
the GE of a non-invariant learning algorithm, provided
that the input space can be factorized into a product of
a transformation set and a base space, where the cov-
ering number of the base space is much smaller than
the covering number of the input space. This work of-
fers an important foundation for the study of the GE
of learning algorithms, such as CNNs and their exten-
sions, that leverage symmetries in the data.

Our assumption in this work is that the set of trans-
formations T is discrete. A more general approach
would be to assume that the set of transformations T
is continuous. We conjecture that current results can
be extended to such cases by an appropriate covering
of T . Second, we have assumed that a learning method
is perfectly invariant. The notion can be extended to
approximately invariant learning methods and bounds
of the same form as in (14) can be derived for this case.
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