
1

Delay-Constrained Beamforming and Resource
Allocation in Full Duplex Systems

Mahmoud T. Kabir, Student Member, IEEE, and Christos Masouros, Senior Member, IEEE

Abstract—This paper studies the beamforming and resource
allocation problem in a multiuser full duplex (FD) system with
delay-awareness. We design a power-efficient algorithm to mini-
mize the long-term sum transmit power under delay constraints.
We do this by jointly optimizing the uplink transmit power and
the downlink beamforming vectors while satisfying the long-term
stability constraints on the queue buffers for the downlink and
uplink users as well as quality of service constraints. Due to the
stochastic nature of the problem, we exploit the classic drift-plus-
penalty function and subsequently simplify the problem into a
difference of convex functions. Building upon the transformed
problem, we propose two algorithm designs, one, that exploits
the users with good channel conditions for efficient resource
allocation, and the other that ensures delay-fairness among all
users based on the max-min formulation. Simulation results show
significant gains achieved by the proposed FD schemes compared
with the baseline HD schemes.

Index Terms—full-duplex, queue, stability, power minimization

I. INTRODUCTION

The next generation wireless networks are expected to
provide high data rates and reliability for data transmission
and various applications. Full duplex (FD) is one enabler of
higher data rate communication. Thanks to the development
of various self-interference (SI) cancellation/suppression tech-
niques [1], FD is now closer to reality than ever. Motivated
by the fact that the rapid growth of high data rate services
leads to the increase in the power consumption in commu-
nication networks, it has become important to design power
efficient communication systems in order to reduce the amount
of greenhouse gases emission and operational expenses of
communication systems.

The main aim in traditional system design is to minimize
the system power consumption while satisfying some quality
of service (QoS) constraints [2]. For example, [3] studied
the resource allocation for distributed antenna systems with
a FD base station (BS) that simultaneously serves uplink
and downlink users where the network power consumption
is minimized by jointly optimizing the downlink beamformer
and uplink transmit power. Similarly, in [4], the authors
investigated a power efficient resource allocation design for
secure communications in a similar FD system setup. Also, the
trade-off between the uplink and downlink power consumption
was investigated in [4], [5]. In [5], the authors used the
knowledge of the downlink signals at the FD BS to exploit
multi-user interference (MUI) instead of treating the MUI as
unwanted as in traditional interference suppression techniques.

However, with the rise of ultra reliable low latency com-
munications (URLLC), a key performance metric with rising

Fig. 1: A FD BS serving multiple users showing their queue
buffers

interest towards 5G communications that has been neglected in
traditional system designs is the transmission delay. Delay is
a critical performance metric that determines the reliability of
a wireless system and it is directly related to the system queue
length [6]. [7] studied the trade-off between energy efficiency
(EE) and delay in time-varying wireless systems by maximizes
the system EE subject to network stability constraints. Simi-
larly, in [8] the authors studied EE maximization in a bufffer-
aided relay system while maintaining queue stability. In [9],
the authors studied resource allocation in LTE-A system by
maximizing a utility function of the transmission rate with
queue stability constraints.

In contrast to the above mentioned works, which study
either resource allocation in FD system without stability con-
straints or half-duplex (HD) resource allocation with stability
constraints, we design a power-efficient resource allocation
algorithm in multi-user FD system. The contributions of our
proposed work as compared to existing works are twofold:
(i) Unlike existing FD works in [3]–[5], we aim at mini-
mizing the long-term average system transmit power while
ensuring system queue stability, and, (ii) we jointly optimize
the downlink beamforming vectors and uplink transmit power
since existing HD methods in [7]–[9] can not be applied to
our considered problem due to the introduction of SI and co-
channel interference (CCI) in our FD study, which is not trivial
to handle given the nature of the problem. Thus, in this paper
we aim at addressing these gaps by means of weighted and
delay constrained optimization.

II. SYSTEM MODEL

We consider a multiuser communication system where a FD
BS with N transmit and N receive antennas simultaneously
serves K single-antenna downlink users and J uplink users



2

[3]–[5]. In the considered system, we assume communication
is time slotted and slot t refers to the interval [t, t+1), where t ∈
{0, 1, 2, . . .}. Accordingly, by letting hk ∈ C

N×1 and gj ∈ C
N×1

be the channels between the FD BS and the k-th downlink
user, the j-th uplink user, respectively, the downlink and uplink
transmission rates at slot t in unit of bits/slot/Hz are defined
respectively by

RDL,k(t) = log2
(
1 + γDL,k

)
, (1)

RUL, j(t) = log2
(
1 + γUL, j

)
, (2)

where
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are the signal-to-interference plus noise ratio (SINR) [4], [5]
at the k-th downlink user and at the FD BS, respectively. In (3)
and (4), wk ∈ C

N×1, PUL, j and `j,k denote the beamforming
vector for the k-th downlink user with Wk = wkwH

k
, the

j-th uplink transmit power and the channel between the j-
th uplink user and the k-th downlink user, respectively. In
addition, nk ∼ CN(0, σ2

k
) and nj ∼ CN(0, σ2

j ) are the additive
white Gaussian noise at the k-th downlink user and the FD BS,
respectively, and uj ∈

N×1 is the receive beamforming vector
for the j-th uplink user. In this paper, to reduce complexity,
we adopt zero-forcing (ZF) receive beamforming at the FD
BS for the detection of the uplink signals. ZF is adopted
since it provides a good trade-off between complexity and
performance [10].

In this paper, we assume the FD BS has perfect knowledge
of channel state information (CSI) for the uplink and downlink
users. We focus on slow fading channel scenario, where the
channels change at the beginning of each frame. Thus, to
facilitate the channel realization in practice, handshaking is
performed between the FD BS and the uplink and downlink
users. As pilot signals are usually embedded in the data
packets and sent to the FD BS by the uplink users, and
the downlink users are required to send acknowledgement
packets during transmission to the FD BS, the FD BS can
constantly update its CSI estimation of the links. Accordingly,
the downlink users also receive the pilot signals of the uplink
users and feedback the CSI between the uplink and downlink
user to the FD BS.

Furthermore, due to the simultaneous transmission and
reception at the FD BS, there is a strong SI that degrades
the reception of the uplink signals at the FD BS. In the
literature, there are several SI mitigation techniques which
could be employed to reduce the effects of SI. In order to
isolate our proposed scheme from the specific implementation
of any passive or active SI mitigation techniques, we model

the SI after cancellation as sj = ρ
{
uH
j HSI

(∑K
k=1 Wk

)
HH

SIuj

}
[4], where the matrix HSI ∈ C

N×N denotes the SI channel at
the FD BS and 0 ≤ ρ � 1 is the SI cancellation constant.

The FD BS has separate queue buffers to store data for
each downlink user. Similarly, at each uplink user a queue
buffer is used to store the data to be transmitted to the FD
BS. Data arrive through a random process every slot at the
FD BS and the uplink users. At slot t, the queue length for
the k-th downlink user and the j-th uplink user are denoted by
QDL,k(t) and QUL, j(t), respectively, and these queues evolve
as follows:

QDL,k(t + 1) = max
{
QDL,k(t) − RDL,k(t), 0

}
+ ADL,k(t), (5)

QUL, j(t + 1) = max
{
QUL, j(t) − RUL, j(t), 0

}
+ AUL, j(t), (6)

where ADL,k(t) and AUL, j(t) are the data arrival rate for the k-th
downlink user and the j-th uplink user, which follow Poisson
distributions, with mean arrival rates of ADL,k and AUL, j ,
respectively. Accordingly, as data keeps arriving in every slot
t, the queue buffers become overloaded which may result to
packet drop. In essence, the queue buffers become unstable
and communication becomes unreliable in the system.

As such, a discrete time queue process Q(t) is mean-stable
if limt→∞

E[ |Q(t) |]
t = 0 [11], and a system of queues is said

to be stable if all individual queues are stable. This implies
that to stabilize the system, it is required to control the size
of the queues. In addition, according to Little’s law [6], for
a given arrival rate the average queue length is proportional
to the average delay. Thus, the system delay is dependent on
queue length and stability. As a result, we can address the
transmission delay by the queue length and stability. To this
end, in our problem formulation we impose a queue stability
constraint to ensure that the data in the buffers are not trapped
and are delivered with a finite delay. This is equivalent to
ensuring that the long-term average transmission rates are
greater or equal to the average arrival rates.

III. DELAY-CONSTRAINED POWER MINIMIZATION AND
ALGORITHM DESIGN

Due to the stochastic nature of the channel conditions and
data arrivals in the considered system and following [7]–[9],
we consider the long-term average system performance metrics
in our design. Thus, our main objective is to design an optimal
resource allocation optimization problem that minimizes the
the time-averaged total system transmit power while satisfying
queue stability constraints, quality of service (QoS) constraints
as well as maximum power constraints. This can be mathe-
matically formulated as

P1 : min
{Wk �0}
{PUL, j }

c1 ·

K∑
k=1

PDL,k + c2 ·

J∑
j=1

PUL, j

s.t. A1 : RDL,k ≥ ADL,k, ∀k, A2 : RUL, j ≥ AUL, j, ∀ j,

A3 : γDL,k(t) ≥ ΓDL, ∀k, A4 : γUL, j(t) ≥ ΓUL, ∀ j,

A5 :
K∑
k=1

PDL,k(t) ≤ PDL
max, A6 : 0 ≤ PUL, j(t) ≤ PUL

max, ∀ j,

(7)
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where PDL,k(t) = Tr {Wk}, and c1 and c2 are weights attached
to the total downlink and uplink transmit powers, respectively.
Here, we define x = limT→∞

1
T

∑T
t=1 E[x(t)] as the time aver-

age expectation of the variable x(t). Accordingly, constraints
A1 and A2 ensure that the time-averaged transmission rate is
greater or equal to the average arrival rate, which guarantee
queue stability for the uplink and downlink queues. Constraints
A3 and A4 ensure a minimum QoS for all users and constraint
A5 and A6 impose the maximum power on the the FD BS and
uplink users, respectively. The problem (7) is a non-convex
problem due the time-averaged objective and constraints, thus,
classified as a stochastic problem [11]. In order to solve (7)
we resort to the classical drift-plus-penalty approach based on
Lyapunov framework [11].

Accordingly, based on [11], we can transform the long-term
problem to the following problem in each time slot. We refer
the reader to [11] for the detailed derivation. Specifically, the
optimisation problem is given by

P2 : max
{Wk �0}
{PUL, j }

K∑
k=1

QDL,k(t)RDL,k(t) +
J∑
j=1

QUL, j(t)RUL, j(t)

− V · ©«c1

K∑
k=1

PDL,k(t) + c2

J∑
j=1

PUL, j(t)
ª®¬

s.t. A3, A4, A5, A6.

(8)

The minimization problem (8) is not trivial to handle due to
the rate expressions in the objective term. Thus, we simplify
the objective as shown in (9) by expanding the non-linear log
terms into linear log terms. The objective function in (9) is
still non-convex, however, by close observation (9) can be
written as a difference of two concave functions. Thus, in
order to solve (8), we employ the convex-concave procedure
(CCP) [12] to convexify the objective function. The basic
idea of the CCP is to convexify the difference of convex
(DC) problem by replacing the convex part of the function by
their first order Taylor series expansions. This then makes the
convex part affine functions. Hence, the CCP solves a series of
concave problems successively and iteratively by initiating the
procedure with a feasible point. In addition, the CCP has been
proven to converge to the local optima of DC programming,
we refer the reader to [12] for a formal proof.

Accordingly, the objective function in (9) can be written as
a difference of two concave functions, i.e., fDL,k(t) − rDL,k(t)
and fUL, j(t) − rUL, j(t), where,

fDL,k(t) = log2
©«

K∑
i=1

hH
k Wihk +

J∑
j=1

PUL, j
��`j,k ��2 + σ2

k

ª®¬ ,

rDL,k(t) = log2
©«

K∑
i,k

hH
k Wihk +

J∑
j=1

PUL, j
��`j,k ��2 + σ2

k

ª®¬ ,
fUL, j(t) = log2

(
sj + σ2

j

uj

2
+ PUL, j

���gH
j uj

���2) ,
rUL, j(t) = log2

(
sj + σ2

j

uj

2
)
.

Based on the above analysis, the optimization problem (8) can
be reformulated as a standard DC problem as shown below

P̃2 : max
{Wk �0}
{PUL, j }

K∑
k=1

QDL,k(t)
(
fDL,k(t) − rDL,k(t)

)
+

J∑
j=1

QUL, j(t)
(
fUL, j(t) − rUL, j(t)

)
− V · ©«c1

K∑
k=1

PDL,k(t) + c2

J∑
j=1

PUL, j(t)
ª®¬

s.t. A3, A4, A5, A6.
(10)

The difficulty in solving (10) lies in convexifying the concave
components rDL,k(t) and rUL, j(t). To proceed, suppose that the
values of Wk and PUL, j at the i-th iteration are denoted by
W(i)

k
and P(i)UL, j . Since rDL,k(t) and rUL, j(t) are differentiable,

thus, we can express their first order affine approximations as
shown below, respectively.

r (i)DL,k(t) = rDL,k

(
W(i)

k
, P(i)UL, j

)
+

J∑
j=1

[(
Ψ
(i)
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+
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hH
k

(
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k

)
hk

]
, (11)
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k

)
+
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HH

SIuj

ρuH
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SIuj + σ
2
j

uj

2

 , (12)

where

Ψ
(i)
DL,k =

K∑
m,k

hH
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Algorithm 1 Optimal Algorithm to solve (7) or (14)

1: Input: T = the maximum number of time slots
2: Initialise: t = 0,QDL,k(t) = 0,QUL, j(t) = 0

Repeat
3: Set i = 0,
4: Generate initial feasible points for all W(i)

k
and P(i)UL, j

Repeat
5: Solve (13) or (15) to obtain all W∗

k
and P∗UL, j

6: Update i = i + 1
7: Update all W(i)

k
=W∗

k
and P(i)UL, j = P∗UL, j

Until Convergence
8: t = t + 1,
9: Update all queues QDL,k(t),QUL, j(t), accordingly.

Until t = T
10: Output: W∗

k
, ∀k, and P∗UL, j, ∀ j.

Here, we have used the fact that ∇X log2
(
I + ZXZH

)
=

XH
(
I + ZXZH

)−1 X and ∇x log2 (1 + zx) = x (1 + zx)−1.
Therefore, the transformed optimization problem (10) can be
expressed as

P3 : max
{Wk �0}
{PUL, j }

K∑
k=1

QDL,k(t)
(

fDL,k(t) − r (i)DL,k(t)
)

+

J∑
j=1

QUL, j(t)
(

fUL, j(t) − r (i)UL, j(t)
)

− V · ©«c1

K∑
k=1

PDL,k(t) + c2

J∑
j=1

PUL, j(t)
ª®¬

s.t. A3, A4, A5, A6.
(13)

Problem (13) is convex with respect to the optimization
variables and can be solved efficiently using standard convex
solvers. Please note that the formulation in (13) is a relaxed
problem where the rank 1 constraint on Wk has been dropped.
If the resulting solution Wk after solving (13) is rank 1,
the optimal wk can be obtained by applying eigenvalue-
decomposition (EVD), otherwise, randomization technique
can be used to retrieve wk .

After obtaining the beamforming vectors and the transmit
powers from (13) for slot t, the queues QDL,k(t),QUL, j(t)
are updated accordingly. The overall procedure to solve the
optimization problem (7) is summarized in Algorithm 1.

IV. DELAY FAIRNESS OPTIMIZATION

Building upon the simplified problem formulation P3 in
Section III, in this section, we propose a resource allocation
algorithm based on delay fairness. By close examination of the
simplified convex optimization problem P3, it can be observed
that P3 basically aims at maximizing the sum rate of the
uplink and downlink users while minimizing the sum transmit
power. Resource allocation that focuses solely on sum rate
maximization usually results in an unfair resource allocation,
since the system resources are consumed by the users with
good channel conditions. In essence, the resource allocation
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Fig. 2: Average sum transmit power versus mean arrival rate
with ΓDL = 8dB, ΓUL = 6dB and V = 4

based on P3 results in starvation of users with poor channel
conditions, which is unfair. As such, we formulate a fair
beamforming optimization and resource allocation problem
that aims at maximizing the minimum transmission rate for the
downlink and uplink users, respectively. This problem is often
referred to as the max-min problem and can be mathematically
expressed as

P4 : max
{Wk �0}
{PUL, j }

min
k

(
QDL,k(t)

(
fDL,k(t) − r (i)DL,k(t)

))
+min

j

(
QUL, j(t)

(
fUL, j(t) − r (i)UL, j(t)

))
− V · ©«c1

K∑
k=1

PDL,k(t) + c2

J∑
j=1

PUL, j(t)
ª®¬

s.t. A3, A4, A5, A6.
(14)

The max-min problem P4 can not be solved directly in it’s
current form, however, P4 can be simplified by introducing
auxilary variables [13], tDL(t) and tUL(t), respectively. Thus,
the simplified convex problem is given by

P̃4 : max
{Wk �0}
{PUL, j }

tDL(t) + tUL(t) − V · ©«c1

K∑
k=1

PDL,k(t) + c2

J∑
j=1

PUL, j(t)
ª®¬

s.t. QDL,k(t)
(

fDL,k(t) − r (i)DL,k(t)
)
≥ tDL(t), ∀k,

QUL, j(t)
(

fUL, j(t) − r (i)UL, j(t)
)
≥ tUL(t), ∀ j,

A3, A4, A5, A6.
(15)

The problem (15) is convex and can be efficiently solved using
standard solvers. Similar to (13), the formulation (15) is a
relaxed problem. If the resulting solution Wk after solving
(13) is rank 1, the optimal wk can be obtained by applying
eigenvalue-decomposition (EVD), otherwise, randomization
technique can be used to retrieve wk . The procedure for
solving (14) is summarized in Algorithm 1.

V. SIMULATION RESULTS

We consider the system with the FD BS at the centre
of a cell with N = 3 antennas, each for transmitting and
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receiving. We assume K = J = 2 downlink and uplink
users, are randomly and uniformly distributed between the
distance of 10m and 50m. We model the channels to the
downlink and uplink users as Rayleigh fading. The SI channel
is modelled as Rician fading channel with Rician factor 6dB.
Furthermore, we consider a similar system set-up as in [4]
with σi = σj = −60dBm, PUL

max = 23dBm, PDL
max = 35dBm, ρ =

−80dB, c1 = c2 = 1 and we assume T = 10 000 slots
to approximate t → ∞. For comparison we adopt the HD
technique as in [7]–[9]. For fair comparison, here, the overall
data rate of HD is set equal to the one for FD which requires
that the individual data rate of the downlink and uplink users
are double the ones for the FD case, due to the slotted
HD transmission. Besides, the CCI and SI are avoided with
HD. In the figures, we refer to the results obtained from the
problem formulations in (7) and (14) as max-sum and max-
min, respectively.

In Fig. 2 we show the average sum transmit power for
varying mean arrival rate. It can be seen that the average sum
transmit power increases as the mean arrival rate increases for
both the proposed FD max-sum and max-min schemes, since
an increase in arrival rate implies more data to be transmitted
which requires an increase in the transmit power. In addition,
the proposed max-sum optimization achieves the minimum
sum transmit power compared with the proposed max-min
optimization. This is because the proposed max-min optimiza-
tion tries to balance the power allocation among all users,
since some users perform poorer than others. This is further
illustrated in Fig. 3, where the average rate difference between

the best and worst user is plotted against the mean arrival rate.
It can be seen that the proposed max-min optimization has a
lower rate difference since it gives no preference in the power
allocation between all users. Moreover, the figure also shows
that the proposed FD schemes out perform the baseline HD
schemes for both max-sum and max-min resource allocation.

Furthermore, Fig. 4 shows the average system delay in slots
with varying mean arrival rate for the proposed FD max-sum
and max-min resource allocation schemes, respectively. Here
we define the delay as the queue length for each user in each
time slot and thus, the average system delay is the total system
delay for all users averaged over the considered maximum
number of time slots T . As can be observed, the system delay
is proportional to increase in arrival rates. The proposed max-
sum scheme achieves lower delay because it exploits users
with good channel conditions to improve the system delay,
while the proposed max-min ensures fairness to all users at
the expense of higher system delay.

VI. CONCLUSION

In this paper, we studied the delay-constrained beamforming
and resource allocation problem in a multiuser FD system. We
minimized the long-term sum transmit power while satisfying
the long-term stability constraints on the queue buffers.
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