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Abstract 9 

A hybrid method is developed to solve the interaction problem of wave with a three dimensional 10 

floating structure in a polynya. The linearized velocity potential theory is used for fluid flow, and 11 

the thin elastic plate model is adopted for the infinitely extended ice sheet. Because of sudden 12 

change of the upper boundary of the computational domain, namely from the ice sheet to the free 13 

surface, the domain is divided into two sub-domains, one below free surface and the other below 14 

the ice sheet. The solution method is divided into three components. The first component is the 15 

integral equation over the structure surface and the interface of the two sub-domains. In the second 16 

component, the velocity potential is expanded into a series of eigenfunctions in the vertical 17 

directions, which avoids the numerical difficulty in calculation of the fifth derivatives. This is 18 

coupled with a series of integral equations along the edge of the ice sheet. In the third component 19 

of the method, two orthogonal inner products are used to impose the continuity conditions of the 20 

velocity and pressure on the interface, as well as the boundary conditions on the ice edge. The 21 

developed method is verified through comparison with the analytical solution for a circular 22 

cylinder. Case study is then made for a FPSO in a polynya with different shapes and floating 23 

positions. The hydrodynamic coefficients, wave exciting force and wave elevation in polynya are 24 

provided and analyzed.  25 

Keywords: hybrid method; polynya; flexural-gravity wave; free surface wave; hydrodynamic load 26 

1. Introduction27 

Accurate prediction of wave-induced loads is very important in both the design and operation of28 

offshore structures. Motivated by the new potentials in natural resources, there is major interest in 29 

building structures for the far north Arctic regions, such as drilling rigs, oil-gas production 30 

facilities [1]. This has led to some new challenges to the hydrodynamics, as the platform may 31 
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operate in different icy water conditions, e.g. near large icebergs or ice blocks, floating in a 1 

polynya surrounded by large ice sheet. The last case will be considered in this work and solved by 2 

an efficient hybrid method based on the velocity potential theory.  3 

There has been extensive research over the many decades on the free surface wave interactions 4 

with a structure in open sea, and various numerical methods have been developed (e.g. [2-4]). 5 

These methods are nowadays well established and their applications have significantly advanced 6 

our understanding of water wave interactions with structures. Among them is the boundary 7 

element method which transforms the governing Laplace equation for the velocity potential into 8 

the boundary integral equation over the boundary, with the help of a Green function. In general, 9 

the integral equation is over the entire boundary. For the linearized problem, however, the Green 10 

function satisfying all the boundary conditions, apart from that on the structure surface can be 11 

derived. In such a case, the integral equation involves only the body surface and the need to 12 

discretize the free surface is removed. The method has then been widely used in the free surface 13 

problem (e.g. [5-7]). In [7], the integral was over an vertical circular cylindrical surface and 14 

performed analytically, which was then used as a radiation condition for the inner domain with 15 

Rankine source as the Green function.  16 

For the problem considered in the present paper, a body floating on the free surface of a polynya 17 

surrounded by ice sheet, it is not straight forward to derive the Green function satisfying both the 18 

free surface boundary conditions in the polynya and the ice sheet boundary conditions. An 19 

alternative may be to use the so called Rankine source method. In such a case, both the ice sheet 20 

and free surface have to be discretized, together with the body surface. It will increase the number 21 

of panels drastically. More importantly, there are higher derivatives, up to fifth one, on the ice 22 

sheet (see [8-10] for example). To deal with higher derivatives in the integral equation is always 23 

difficult because of the singular behaviour of the Green function. In fact, even for the second 24 

derivative, some special method is needed (e.g. [11, 12]). Thus for the two dimensional problem 25 

(2D), a hybrid method was introduced [13]. In the polynya, the boundary element method was 26 

used. In the region below the ice sheet, the potential is expanded in terms of eigenfucntions in the 27 

vertical direction. Since it is a 2D problem, the Laplace equation can be replaced by a series of 28 

second order linear ordinary differential equations, each of which can be solved analytically. 29 

Because of the analytical expression, the higher derivatives can be obtained directly through 30 

differentiating the known functions. The method was verified with analytical solution and found to 31 

be very accurate and efficient, and was then used for a 2D floating body of arbitrary shape. Here 32 

the hybrid method is extended to the 3D problem. A major difference is that in the horizontal 33 

direction the governing 3D Laplace equation does not reduce to ordinary differential equations. 34 
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Instead it becomes a series of 2D Helmholtz equations, each of which has to be solved through 1 

integral equations (e.g. [14]).  2 

It is also important to ensure the continuity of velocity and pressure at the interface of the 3 

polynya and the region below the ice sheet. As expansion is already used in the vertical direction, 4 

an inner product of orthogonality can be used to enforce the required continuity [15]. Thus the 5 

computational procedure for the problem has three components: (1) a 3D integral equation in the 6 

polynya, (2) an infinite number of 2D integral equations in the region below the ice sheet, and (3) 7 

inner product on the interface to ensure continuity. This forms the major novelty of the present 8 

paper. 9 

Apart from the development in terms of the computational technique, the present work also 10 

attempts to use the developed method to investigate the mechanism of the wave/ice sheet/body 11 

interaction. There has been extensive work on wave/ice interaction in the context of geophysics. 12 

Much of them are focused on the 2D simplified problems, for example wave propagating from 13 

open sea to the semi-infinite shore fast ice (e.g. [16-19]), across a polynya or an ice floe (e.g. 14 

[20-22]), in an infinite ice sheet but with step changes of thickness (e.g. [23]), and through one or 15 

multiple cracks (e.g. [24-26]). The methods used are generally the matched eigenfunction 16 

expansion, boundary integral equation, Wiener-Hopf technique, or the Residue Calculus approach. 17 

A recent work conducted by Mattsson, Dunham and Werpers [27] also solved the similar 2D 18 

problem through a high order finite difference method, but with the focus mainly on the acoustic 19 

waves. For an ice sheet with a complicated edge shape, the 3D effects must be considered directly 20 

through the 3D model, for example wave scatterings by a circular ice floe (e.g. [28, 29]) or an ice 21 

floe with arbitrary geometry (e.g. [30]), and by an arbitrary smooth ice polynya (e.g. [31]). As 22 

mentioned above, there has also been extensive work on wave/body interaction, such as the linear 23 

and higher order wave loads on ships and offshore structures in open sea (e.g. [32-34]), in a water 24 

channel (e.g. [6, 35]), or in a harbor (e.g. [36, 37]). In contrast, there have been much fewer works 25 

on the wave/ice sheet/body interaction. Typical work includes those 2D problems of a body 26 

submerged below an ice floe or floating in a polynya (e.g. [13, 38-40]), and below an ice sheet 27 

with one or multiple cracks (e.g. [41-43]). However, for 3D problems, the work has been mainly 28 

focusing on structures with simple geometries, for example bottom-mounted vertical circular 29 

cylinders in an infinitely extended ice sheet (e.g. [44, 45]) or in a circular polynya (e.g. [46]). Thus 30 

the main goal of the present work is to develop an accurate numerical solution approach for a 3D 31 

structure with a complicated shape, and undertake in depth study for the behaviour of a practical 32 

structure in the polynya surrounded by ice sheet. 33 

The paper is organized as follows. The governing equation of the problem and corresponding 34 
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boundary conditions are described in section 2. Formulations for the velocity potential in interior 1 

sub-domain or polynya are established in section 3.1, while those in exterior sub-domain or 2 

infinite ice covered region are given in section 3.2. In section 3.3., the solution from matching 3 

procedure on the control surface are shown. Equations for hydrodynamic loads are given in 4 

section 3.4, and numerical discretization scheme is provided in section 3.5. In section 4, 5 

verifications of the proposed method are first carried out, and then the code WISPICE is applied to 6 

a FPSO in a polynya with different shapes and floating positions. Finally, conclusions are drawn in 7 

section 5. 8 

2. Mathematical Model  9 

The problem of flexural-gravity wave interaction with a body floating on a polynya of arbitrary 10 

shape is sketched in Fig. 1. The polynya is confined by an infinitely extended ice sheet, and the 11 

water depth of finite value H  is assumed to be constant. To describe the problem, a Cartesian 12 

coordinate system O xyz  is defined, with O xy  plane being the undisturbed mean free water 13 

surface, and z  axis pointing vertically upwards. The oscillation of the body is excited by a 14 

flexural-gravity incident wave, which propagates underneath the ice sheet from infinity from an 15 

angle   with the positive x  axis. When the floating body is at its equilibrium position, the z  16 

axis passes through the centre of mass of the body, as shown in the figure. The edge of polynya 17 

can be described parametrically by  18 

 ( ( ), ( ))x s y s   ( s     ), (1) 19 

where 2  is the total arc length of the edge, and s  is the curvilinear coordinate along the edge.  20 

 21 
Figure 1. Coordinate system and sketch of the problem.  22 
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motion irrotational, the velocity potential   can be introduced to describe the fluid flow. When 1 

the amplitude of wave motion is small compared to its length and the dimension of body, the 2 

linearization of boundary conditions can be further adopted. For sinusoidal motion in time with 3 

radian frequency  , we may write the total velocity potential as  4 

 
6

i i

0 0

1

( , , , ) Re[ ( e, , ) ( , , ) ]i et t

i i

i

x y z t x y z x y z    


  ,  (2) 5 

where 0 I D     is the scattering potential with 
I  as the incident potential and 

D  as the 6 

diffracted potential, 0  is the amplitude of the incident wave; i  is the radiation potential due to 7 

the i-th mode of body oscillation in six degrees of freedom with complex amplitude i , i.e. i  8 

( 1,2,3i  ) are the translational modes along x , y  and z  directions respectively, while i  9 

( 4,5,6i  ) are the corresponding rotational modes. The conservation of mass requires that the 10 

velocity potential i  ( 0, ,6i   ) should satisfy the following Laplace equation  11 

 
2

2
2

0i
i

z








  ,  (3) 12 

throughout the fluid, where  13 

 
2 2

2

2

2x y
 
 


 

,  (4) 14 

is the Laplacian in horizontal plane. In polynya, the combination of linearized dynamic and 15 

kinematic free surface boundary conditions provides  16 

 2 0i
i g

z


 




    (in 1  with 0z  ),  (5) 17 

where g  is the acceleration due to gravity. Following Squire [10] and others, the ice sheet can be 18 

modelled as a thin elastic plate with its properties, Young’s modulus E , Poisson’s ratio  , 19 

density i  and thickness h , being assumed to be constant and its draught effect being ignored. 20 

By assuming that there is no gap between ice sheet and water upper surface, the boundary 21 

condition on their interface can be written as  22 

 
4 2 2( ) 0i

w w i
z

L g m


    





    (in 2  with 0z  ),  (6) 23 

where 3 2/ [12(1 )]L Eh    and im h  are respectively the effective flexural rigidity and 24 

mass per unit area of the ice sheet, w  is the density of water. On the boundary of polynya, the 25 

edge of ice sheet is assumed to be free to move, i.e. zero bending moment and shear force 26 

conditions should be satisfied, or [47] 27 

 ( ) 0i

z





 and ( ) 0i

z





 ( ( , )x y  , 0z  ),  (7) 28 

for 0, ,6i   , where the operator  and  are respectively defined as  29 
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2 2 2

2 2 2

0 2 2
(sin cos sin 2 )

x y x y
   

  
   

   
,  (8) 1 

 
2 2 2

2

0 2 2

sin
cos 2 ( )]

2

2
[

N x y y xs


 

   
    
    




,  (9) 2 

with 0 1   , and N  and s  are the unit vectors along the normal and tangential directions 3 

respectively, as shown in Fig. 1. Here, ( )s  is the angle between positive N  and x axis, and 4 

thus (co )sis , nN    and ( sin ,c s )os    . It should be noted that in (6) and (7), the 5 

following kinematic boundary condition has been used 6 

 
W

t z

 


 
 (in 2  with 0z  ),  (10) 7 

where W  is the deflection of the ice sheet and can be written as  8 

 
i i

0

6

0

1

( ie eR )et t

i i

i

W w w  


  .  (11) 9 

Here, 0w  is the component due to the scattering potential, and iw  is that due to the radiation 10 

potential in i-th mode. The impermeable condition on the mean wetted body surface BS  can be 11 

written as  12 

 i
i

n
n




  and D I

n n

 
 

 

 
 ( ,61,i   ),  (12) 13 

where 1 2 3( , , )n n n n  are the components related to the translational modes, with n  as the unit 14 

normal vector pointing into body, 4 5 6 0( , , ) ( )rn n r nn    are those related to the rotational 15 

modes, with 0r  as the position of the rotational centre. On the flat seabed, we have  16 

 0i

z




  ( z H  ),  (13) 17 

for ,60,i   . At infinity the radiation condition should be imposed, which requires that the 18 

radiated and diffracted waves should propagate outwards, or  19 

 0lim ( 0)i
h

i
h i

r
h

r
r


 




 


 and 0lim ( 0)i

h

D
h D

r
h

r
r


 




 


, (14) 20 

for ,61,i   , where 2 2 2

hr x y , 0  is the flexural-gravity wave number and i 1  . It may 21 

be noticed that 0  is the purely positive real root of the dispersion equation 02( ) 0,K     for 22 

flexural-gravity wave in the ice sheet, with  23 

 4 2 2

2( , ) ( ) tanh( )w wg mK k Lk k kH       . (15) 24 

Here, we may notice that the adopted linear velocity potential theory for fluid flow and the thin 25 

elastic plate model for ice sheet flexural motion have been verified extensively, e.g. as reviewed 26 

by Squire [10]. 27 

3. Solution Procedures  28 
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From the above section, it can be seen that the boundary condition for the velocity potential 
i  1 

on the upper surface is non uniform, i.e. in polynya the free surface boundary condition (5) should 2 

be enforced, while out of polynya the ice sheet boundary condition (6) should be satisfied. To 3 

solve such a problem, we shall use the hybrid method, i.e. divide the total fluid domain into two 4 

sub-domains 
1  and 

2 . In the former, the free surface Green function (1)( , )G p q  will be used 5 

to construct the boundary integral equation, while in the latter, expansion in the vertical direction 6 

will be adopted. On the interface between 
1  and 

2 , the continuity of pressure and normal 7 

velocity conditions will be enforced, and the free bending moment and shear force conditions will 8 

be imposed at the ice sheet edge.  9 

3.1. Boundary integral equation in polynya sub-domain 
1  10 

In the polynya region with a free surface, we may use the following Green function [48] 11 

 
2

(1)

0

1
0

1 2

1 1 cosh[
( , ) d

, cosh

( )]
2 e cosh[ ( )] ( )

(( ))

kH g
G p q k

k k

k k H
k z

H
H J kR

r r K

 






 



   ,  (16) 12 

where the integral route from 0  to   should pass over the pole at 0k k  with 1 0( ) 0,K k  . 13 

Here, 14 

 2

1( , ) tanh( )K k k kg H   ,  (17) 15 

is the dispersion equation for free surface gravity wave, 1r  is the distance between p  and q , 16 

2r  is the distance between p  and the mirror image of q  about the flat seabed, 0( )J kR  is the 17 

zero order Bessel function of first kind [49], with R  as the horizontal distance between p  and 18 

q . We may note that (16) can be also written into the series form as [48] 19 

 
(1) 2 (2)

0

0

cosh ( ) ( ) (( , 4 )) i ( )m m m m m

m

G p q D Z Z H Rk H z k 




   ,  (18) 20 

where (2)

0 ( )mH k R  is the Hankel function of second kind [49], 21 

 
2 + sinh(2 )

m
m

m m

k

k H
D

k H
 ,  (19) 22 

 
cosh[ ( )]

( )
cosh( )

m
m

m

k z H

H
Z z

k


 ,  (20) 23 

with mk  as the root of the dispersion equation in (17). It should be noticed that 0k  is the purely 24 

positive real root, and mk  ( , ,1m    ) are an infinite number of purely negative imaginary 25 

roots. It may be noticed that the series of ( )mZ z  is orthogonal [2] and a velocity potential can be 26 

expanded into a series of these functions in the vertical direction.  27 

Applying Green’s identity to (1)G  and i , we have  28 

 
(1)

(1) (1) ( ) ( , )
( ) [ ( , ) ( )( ) d]i

i
S

i

q G p q
p

n n
p G p q q s


  

 

 
   ( ,60,i   ),  (21) 29 



8 

where both the normal derivative and integration are carried out with respect to the source point 1 

q , (1) ( )p  is the solid angle at point p , and S  is comprised of all the boundaries of the 2 

sub-domain 
1 . It should be noticed that inclusion or removal of the imaginary part of (1)G  in 3 

(16) would not affect (21). As the imaginary part is nonsingular, its integration with 
i  through 4 

Green’s identity over the closed boundary 
1S  of 

1  is zero. Invoking the boundary conditions 5 

satisfied by (1)G  and 
i , we have that only the integrals over the mean wetted body surface 

BS  6 

and the interface 
CS  are nonzero. Then the integral equation (21) can be further written as  7 

 
(1)

(1) (1) ( ) ( , )
( ) [ ( , ) ( )) ]( d

B CS S

i
i i

q G p q
p

n n
p G p q q s


  



 

 
  .  (22) 8 

It might be noticed that when CS  is removed from (22) there will be irregular frequencies for the 9 

Neumann problem exterior the body, which correspond to the eigensolutions of the interior 10 

Dirichlet problem. However, the irregular frequencies without CS  will not be irregular 11 

frequencies here. On the interface CS , which is vertically extended from the ice edge to the 12 

seabed, we may expand i  and its normal derivative /i n   into a series of orthogonal 13 

functions ( )mZ z  in (20) or 14 

 ,

0

( ) ( , ) ( )i i m

m

mZp x y z 




 , 
,

0

( , )( )
( )m

m

i mi
x

Z
n

yp
z

n





 

 
 . (23) 15 

Here, it may be noticed that since CS  is a vertical surface, the normal vector n  is independent 16 

of z , or it is the same as that of   defined below (9). Substituting (23) into (22), we have  17 

 

(1)
(1) (1)

,

0

,

( ) d

, ,

( ) ( , )
( ) [ ( , ) ( )]

( , )
[ ( , ) ( , ) ( , d)]

B

i
i i

i m

m m i m

S

m

p
n n

l
N

q G p q
p G p q q s

U p V p



  

  
      





 

 





 

 





,  (24) 18 

where  19 

 ( )
0

1( , ) [ , ( ) d, ( ) ]m m
H

U p G p q Z   


  ,  (25) 20 

 
(1)

0 ( , )
( , ) [, ( )]dm

H
m

G p
p Z

N

q
V    






 .  (26) 21 

Substituting the series form of (1)G  in (18) into the above two equations, and noticing the 22 

orthogonality of the vertical modes ( )mZ z , we have  23 

 (2)

0( , ) ( ), ) (im m mU p HzZ Rk    ,  (27) 24 

 
(2)

0 ( )
( , ) (, )i m

m m

H R
Z

N

k
V p z  





.  (28) 25 

When the field point p  is located on the interface CS , we may also replace ( )i p  on the left 26 

hand side of (24) with (23). Then multiplying both sides of the obtained results with ( )mZ z , and 27 

integrating with respect to z  from H  to 0 , we have  28 
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 

 

 

 

 
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



, (29) 1 

where 2 

 
0

2sinh(2 )
( ) ( ) [ ] / cosh ( )

2
d

4

m
m m m m

H
m

Z
H k H

C z z z k H
k

Z


   .  (30) 3 

3.2. Series expansion in the ice covered sub-domain 
2  4 

In the ice covered sub-domain 
2 , through using variable separation method, we have  5 

 ,( ) ( , ) ( )i i m

m

mp x y z   , (31) 6 

where the summation contains all possible eigen values and nonzero eigenfunctions, with  7 

 22

, , 0i m m i m     , (32) 8 

and  9 

 
2

2

2
0

d

d

m
m m

z


   . (33) 10 

From (33), (6) and (13), we have  11 

 
cosh[ ( )]

( )
cosh( )

m
m

m

z H
z

H







 ,  (34) 12 

where m  are the roots of the dispersion equation in (15). It may be noticed that 2  and 1  13 

are two complex roots with negative imaginary parts and symmetric about the imaginary axis, 0  14 

is the purely positive real root, m  ( , ,1m    ) is an infinite number of purely negative 15 

imaginary roots. Thus (31) becomes 16 

 0, ,

2

( ) ( ) ( , ) ( )i i I i m m

m

p p x y z    




   ,  (35) 17 

where 0, 1i   if 0i   and 0, 0i   for others. The incident velocity potential in (35) can be 18 

given as  19 

 0( ) ( , ) ( )I Ip x y z   ,  (36) 20 

where 21 

 0 (i s )no ic s
e( , )

y

I

x
x y I

    
 ,  (37) 22 

with i /I g  .  23 

Here, it may be noted that Bennetts and Williams [31] used the method of vertical modes, or the 24 

velocity potential is expanded into a series of vertical eigenfunctions which are the same as those 25 

in (34). Then the functions of 2  and 1  can be written in terms of others, i.e. the summation 26 

in (31) starts from 0m   and the governing equations for ,i m  are coupled. Here, we follow the 27 
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normal variable separation procedure and take into account all the eigen values. The governing 1 

equation for each ,i m  in (32) is independent. To solve the Helmholtz equation in (32), together 2 

with the radiation condition in (14), we may use the Green function [14] 3 

 (2) (2)

0( , )
2

(
i

)mG p q H R


 . (38) 4 

Applying Green’s identity to (2)( , )G p q  and ,i m , we have along the ice sheet edge 5 

 
(2)

,(2) (2)

, ,

( ) ( , )
( ) [ ( ,( ) d) ( )]

i m

i m i m

q G p q
p G p q q lp

N N


  

 





   ( ,60,i   ),  (39) 6 

where (2)  is the two dimensional solid angle at point p . Here, for 0i  , the incident velocity 7 

potential should be excluded. It may be noticed that since both (2)G  and ,i m  satisfy the 8 

radiation condition in (14), the integral along the circle of infinite radius has been removed.  9 

It should be noticed when expressing ,i m  by , /i m N   through solving the boundary 10 

integral equation (39), irregular frequencies may appear. To avoid this or obtain a unique 11 

relationship between ,i m  and , /i m N  , (39) is added by a hypersingular integral equation [50] 12 

 
(2) 2 (2)

, ,(2)

,

( ) ( )( , ) ( , )
( ) [ ( )]d

i m i m

i m

p p p

p qG p q G p q
p q l

N N N N N

 
  

  
 

     .  (40) 13 

Here,   is a coupling constant that can be chosen as i/ | |m  [51].  14 

3.3. Matching on the interface between the two sub-domains 15 

On the interface CS  between the two sub-domains, both the pressure and normal velocity 16 

should be continuous, i.e.  17 

 (1) (2)( , , ) ( , , )i ix y z x y z  ,  (41) 18 

 
(1) (2)( , , ) ( , , )i i

n n

x y z x y z 


 

 
,  (42) 19 

where the superscripts (1)  and (2)  indicate that the velocity potential and its normal derivative 20 

are for the sub-domain 1  and 2  respectively. To satisfy the conditions in (41) and (42), we 21 

may use the following inner product [15] 22 

 
3 3

2 3 3

0

0d, ( )m
z

m m m
m m m

w
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m
z z

L

z z
z

   
   

 



 
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  
  

 .  (43) 23 

Then , 0m m    if m m , and ,m m mQ    if m m , with  24 

 
4

2

2 2

2 sinh(2 ) 2
tanh ( )

4 cosh ( )
m

w

m m m
m

m m

H H L
Q H

H

  


   


  . (44) 25 

To satisfy the continuity condition of pressure in (41), applying the inner product to (2)

i  and m , 26 

we have  27 
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Similarly, we have for the continuity condition of the normal velocity 2 
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.  (46) 3 

Substituting equation (35) for (2)

i  respectively into the left hand sides of (45) and (46), we have  4 
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and 6 
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 .  (48) 7 

By noticing equation (3) or 2 2 2/i iz    , we may rewrite the above two equations as  8 
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and 10 
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Using  12 

 sin
x

s



 


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y

s






, (51) 13 

we can write the operators  and  in (8) and (9) respectively as  14 
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
.  (53) 16 

It should be noticed that in (52) and (53), the partial derivatives with respect to s  are carried out 17 

with respect to the curvilinear coordinate, instead of the tangential direction. For the first order 18 

derivative, the former is the same as the latter. However, this may not be the case for higher order 19 

derivatives. Invoking the ice sheet edge condition in (7), we then have  20 
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Substituting equations (54) and (55) into (49) and (50) respectively, and noticing equations (35) 1 

and (23), we have  2 

 
0 2
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where the operators 
,

P

m mf  and 
,

V

m mf  are respectively defined as  6 
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and 9 
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It may be noticed that in equations (56) and (57), there exist up to second order partial derivatives 11 

with respect to the curvilinear coordinate s , which can be obtained numerically through the five 12 

point finite difference method [52], or 13 
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1
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where s  is the equally spaced arc length between the two adjacent points.  16 

3.4. Hydrodynamic coefficients and wave exciting force  17 

After the velocity potentials in sub-domains 1  and 2  have been solved, we can obtain the 18 

pressure at any point in fluid through the linear Bernoulli equation. Then the hydrodynamic force 19 

exerting on the body can be computed through integrating the pressure over the body surface. 20 

Invoking the decomposition of the velocity potential in equation (2), we may divide the total force 21 

into two parts, i.e. the radiation force due to the forced body oscillation, and the wave exciting 22 

force due to the incident and diffracted potentials [2]. For the radiation force, we may write it in 23 

form of added mass jk  and damping coefficient jk  as 24 

 i d
B

jk

jk j
S

w kn s


  


  , (63) 25 

while for the wave exciting force ,E jf , we have 26 

 , 0i d
B

E j w j
S

f n s    . (64) 27 
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3.5. Numerical solution through discretization and truncation 1 

To solve the velocity potentials 
i  numerically, the complex body surface 

BS  is divided into 2 

BN  flat panels, while the curved ice sheet edge   is divided into   straight line segments. 3 

On each panel or segment, the potentials 
i  or ,i m  and ,i m  are assumed to be constant, and 4 

the conditions are imposed at the centre of each panel. This means that the solid angle 
1  in the 5 

integral equation (21) can always be taken to be 2 , and the solid angle 2  in the integral 6 

equation (39) can always be taken to be  , where minus sign is due to the fact that the normal 7 

vector is pointing from free surface into the ice sheet. For the infinite series in (23) and (35), the 8 

upper bound is truncated at 1M   and 3M   respectively. Therefore, we will have 9 

4BN M   unknowns. From (24) and (29) we can obtain BN M   equations, while 10 

from equation (39) we have another M   equations. The continuity requirement in (56) and 11 

(57) will provide additional 2 M   equations. This makes a total of 4BN M   12 

equations, which is the same as the number of unknowns.  13 

The Hankel function used in (39) contains a logarithmic singularity as the source point 14 

approaches to the field point, or 15 

 (2)

0 ( )
2

ln( )
i

H k RR


  as 0R  . (65) 16 

Thus, when conducting the integration of the Hankel function over a line element, we may 17 

subtract the singular term from the integral  18 

 (2) (2)

0 0( ) ( )
2 2

[ ln( )] ln( )
i i

H kR H kR R R
 

  , (66) 19 

The integration of the first term can be carried out through the standard numerical scheme, while 20 

the second term can be evaluated analytically [2].  21 

4. Numerical Results  22 

In this section, a bottom mounted vertical circular cylinder in a circular polynya is first studied 23 

to verify the developed method. Then the code WISPICE is used for obtaining the hydrodynamic 24 

loads on a FPSO, which is a realistic offshore structure rather than an idealized geometry, floating 25 

in a polynya. In following numerical computations, the typical parameters of ice sheet are taken to 26 

be [8] 27 

 Pa5 GE  , 0.3  , -3922. m5 kgi  , (67) 28 

to provide physical meaningful results. All the results will be presented in the dimensionless form 29 

based on the basic parameters, i.e. density of water -31025 kg mw  , acceleration due to gravity 30 

-29.80 m sg  , and a characteristic length scale. 31 

4.1. Verification: a bottom mounted vertical circular cylinder in a circular polynya 32 
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We first consider the wave radiation and diffraction problems of a circular cylinder with radius 1 

a  standing in a circular polynya with radius c . The centre of cylinder coincides with that of 2 

polynya. For the rotational motion, it is assumed that the cylinder is articulated at the bottom or 3 

0 (0,0, )Hr    and allowed to rotate in the Oxz  plane, as in Drake, Eatock Taylor and Matsui 4 

[53]. The case has been investigated by Ren, Wu and Ji [46] analytically, through the matched 5 

eigenfunction expansions. To demonstrate the accuracy and efficiency of the present hybrid 6 

method, we adopt the same parameters as those in Ren, Wu and Ji [46], and the radius of cylinder 7 

a  is chosen as the characteristic length scale, i.e. 1a  , 3c  , 10H  , 0.1h  . The incident 8 

flexural-gravity wave angle is set to be 0  . There are 1960 panels on the body surface, and 9 

100 line segments on the ice sheet edge, with the discretization being shown in Fig. 2. The infinite 10 

series of the eigenfunction expansions is truncated at 50M  . These have been found to be 11 

sufficient for convergence based on the convergence study similar to that in Shi, Li and Wu [36]. 12 

Fig. 3 shows the added mass ij  and damping coefficient ij  against wave number 0k , 13 

together with the analytical results from Ren, Wu and Ji [46] denoted by dashed lines. The 14 

corresponding wave exciting force in surge and pitch are given in Fig. 4. It can be seen from these 15 

two figures that further increasing BN , N  and M  will give graphically indistinguishable 16 

results, and the convergent numerical results are in excellent agreement with those analytical 17 

solutions. This shows that the present hybrid method is accurate for wave radiation and diffraction 18 

problems of a structure in a polynya. It means that results at a desired accuracy can be achieved 19 

through refining the mesh with larger BN  and  , and increasing the number of terms M  20 

kept in the infinite series. 21 

 22 
Fig. 2. The mesh on the body surface and ice sheet edge. (a) on the body; (b) on the ice sheet edge. 23 

10   2   6   

1960BN    

100N    

Polynya 

(a) (b) 
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 1 

 2 

 3 
Fig. 3. Added mass jk  and damping coefficient jk  of a circular cylinder in a circular polynya against wave 4 

number 
0k . Solid lines: numerical results by the present hybrid method ( 1960BN  , 100N  , 50M  ); 5 

dashed lines: analytical solutions from Fig. 4 of Ren, Wu and Ji [46]; circles: finer mesh on the body surface with 6 

2924BN  ; triangles: finer mesh on the ice sheet edge with 150N  ; squares: more terms kept in the series 7 

with 75M  . ( 1a  , 3c  , 10H  , 0.1h  , 0.09m  , 4.5582L  , 0  ) 8 
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 1 
Fig. 4. Wave exciting force ,E jf  of a circular cylinder in a circular polynya against wave number 

0k . (As in Fig. 2 

3.) 3 

4.2. Application: hydrodynamic loads on a FPSO floating in a polynya 4 

As shown in Fig. 5 (a) and (b), a floating structure FPSO is chosen for the case study. Its 5 

half-length l  is chosen as the characteristic length for non-dimensionalisation. The cross section 6 

of middle ship is rectangle, with its length and width respectively to be 1.5  and 0.5 . The bow 7 

and stern have the same shape, a half cylinder with radius as 0.25 . The draught of the FPSO is 8 

0.3 . On the mean wetted body surface of FPSO, 1958BN   quadrilateral panels are used, which 9 

is sufficient for convergence. The rotational centre is assumed at the geometry centre of FPSO. 10 

The water depth and ice sheet thickness are taken as 10H   and 0.1h   respectively. Five 11 

cases will be considered in this section, i.e. 1) case 1 is for a circular polynya with its radius as 12 

3c  , and the FPSO is centrally located; 2) case 2 is similar to case 1, but with the shape of 13 

polynya as a square with its half-length taken to be 3d  ; 3) case 3 is similar to case 1, but with a 14 

much larger polynya or 5c  ; 4) case 4 is similar to case 3 but with geometry centre at 15 

(1,0, 0.15) ; 5) case 5 is similar to case 3 but with geometry centre at (0,1, 0.15) . Without 16 

losing generality, in all of these five cases the incident flexural-gravity wave angle is taken as 17 

/ 4  . The wave number 0k  varies from 0.01  to 3.0 , and the increment has been chosen 18 

to be sufficiently small, or 0.01, to capture the position and the value of the peak of the curve. 19 

 20 
Fig. 5. The geometry shape and mesh on the mean wetted body surface of FPSO. 21 

(a) 

1958BN    

0.5   1.5   0.25   

0.3   

(b) 
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4.2.1. Hydrodynamic loads on a FPSO floating in polynya with different shapes 1 

Here, case 1 and case 2 respectively for circular and square polynyas will be considered to show 2 

the effects of polynya shape on the hydrodynamic loads. It may be noticed that the main 3 

dimensions of both cases are the same or 3c d  . In latter case, the four corners of the square 4 

polynya are smoothed by circular arc of radius 1.5 . As shown in Fig. 6 (a) and (b), the circular 5 

and square ice sheet edges are respectively discretized into 100N   and 120N   straight 6 

line segments, and convergent results can be obtained.  7 

 8 
Fig. 6. The mesh on the ice sheet edge. (a) case 1 for a circular polynya ( 100N  ); (b) case 2 for a square 9 

polynya with smoothed corners ( 120N  ). 10 

The computed diagonal terms of the added mass and damping coefficient are shown in Fig. 7 11 

against wave number 0k , while the wave exciting force are plotted in Fig. 8. To see the 12 

asymptotic behaviours as 0h  , the numerical results for a very small ice thickness or 13 

0.001h   are plotted, too. As a comparison, the results corresponding to the open sea or 0h   14 

are also provided. It should be mentioned that for 0h   both the hybrid method and the direct 15 

method have been used, and graphically indistinguishable results are obtained. Here, direct 16 

method means that the velocity potential are computed through the boundary integral equation in 17 

(21) over the body surface only. From these two figures, it can be seen that when h  is small, the 18 

numerical results are very close to those for open water. In fact, as 0h   both the dispersion 19 

equation and the eigenfunctions for an ice sheet will tend to those for open water, and the inner 20 

product in equation (43) will become the usual definition of orthogonality. Therefore, as 0h   21 

the solution for sub-domain 2  will serve as a radiation condition of free surface for sub-domain 22 

1 . 23 

When the wave number is small, the results of the hydrodynamic loads for polynya are very 24 

close to those for open sea, as can be observed from Figs. 7 and 8. From equations (5) and (6), we 25 

have that when 0 0k   or 0 , both the leading terms of the boundary conditions on free 26 

surface and ice sheet will tend to be the same or / 0i z   . This means that the upper surface 27 

boundary condition for polynya will be the same as that for open sea as 0 0k  . Thus the results 28 

Polynya 

6   

Case 2 

Polynya 

6   

Case 1 

(a) 

100N    120N    
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for FPSO floating in polynya will be very similar to those for open sea when 
0k  is small.  1 

However, when 
0k  becomes larger, discrepancy appears. The hydrodynamic loads for polynya 2 

exhibit an oscillatory behavior around those for open sea, as shown in Figs. 7 and 8. From the 3 

dispersion equations (15) and (17), we have that when waves propagate from open sea to the ice or 4 

the other way around, there will be a change of the dispersion relation, i.e. the waves will be both 5 

reflected back to the original region and transmitted to the other region. Thus, as the wave 6 

generated or disturbed by the structure encounters the ice edge, part of it will be reflected back to 7 

the structure, and then will be further reflected back to the ice edge. This resembles the “sloshing 8 

wave in a tank”, leading to the oscillations of the hydrodynamic loads. These oscillatory features 9 

are similar to those in a two dimensional polynya [40]. An important difference is that for three 10 

dimensional polynya, the wave energies will also propagate laterally. This means that the 11 

hydrodynamic loads on the body surface will be affected not only by the dimension of polynya, 12 

but also by its geometry. This can be clearly seen in Figs. 7 and 8 that when the wave number 0k  13 

is not small, the hydrodynamic loads for a square polynya will exhibit a quite different oscillatory 14 

patterns with those for a circular polynya, although the main dimension of these two polynyas are 15 

similar. Specifically, for the former case, in addition to the overall variations, there are also some 16 

local oscillations vary sharply from peaks to the troughs. These are similar to the resonant motions 17 

of fluid in a tank, in which circular and rectangular shapes would resemble different natural 18 

frequencies [2]. Another similar problem is a ship floating in a harbor, and very large 19 

hydrodynamic loads on the structure could occur at some specific wave numbers [36]. However, a 20 

significant physical difference is that in our work only part of wave energy will be reflected back 21 

due to the change of wave dispersion relation, while in the former two cases the wave energy will 22 

be fully reflected by the solid wall due to the non-penetration condition. All these show the 23 

importance of the effects of polynya shape on the hydrodynamic loads for a realistic structure 24 

operating in icy waters.  25 

 26 
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 1 
Fig. 7. Added mass jk  and damping coefficient jk  of a FPSO floating in polynya with different shapes 2 

against wave number 
0k . Solid lines: results for open sea; dashed lines: results for circular polynya; dash-dotted 3 

lines: results for square polynya; circles: similar to dashed lines but for 0.001h  ; pluses: similar to dash-dotted 4 

lines but for 0.001h  . ( 1l  , 3c d  , 10H  , 0.1h  , 0.09m  , 4.5582L  , / 4  )  5 

 6 

 7 
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 1 
Fig. 8. Wave exciting force ,E jf  of a FPSO floating in polynya with different shapes against wave number 

0k . 2 

(As in Fig. 7.) 3 

4.2.2. Hydrodynamic loads on a FPSO floating in polynya with different positions 4 

Computations are now carried out for cases 3 to 5 to show the effects of floating position of 5 

FPSO in polynya on the hydrodynamic loads. In these three cases, the polynya has the same shape 6 

as that in Fig. 6 (a), but with a much larger polynya radius or 5c  . Here, three different floating 7 

positions of FPSO are considered, i.e. centrally located, near right ice sheet edge with geometry 8 

centre at (1,0, 0.15) , near top ice sheet edge with geometry centre at 0 (0,1, 0.15)r   , as shown 9 

in Fig. 9.  10 

 11 
Fig. 9. The floating position of FPSO in a circular polynya with radius 5c  . (a) case 3 for centrally located; (b) 12 

case 4 for near the right ice sheet edge; (c) case 5 for near the top ice sheet edge. 13 

Fig. 10 shows the diagonal terms of the hydrodynamic coefficients of a FPSO floating in a 14 

circular polynya in different positions, i.e. centrally located, near the right and top ice sheet edges 15 

respectively. The corresponding wave exciting force is given in Fig. 11. For the centrally located 16 

case, it differs from that in Figs. 7 and 8 only by the size of the polynya. As one can expect, the 17 

oscillatory behaviour of the results will be very much affected by 0k c . Thus there are more peaks 18 

and troughs in the Figs. 10 and 11 with larger c within the same wave number span as in Figs. 7 19 

and 8. When the polynya shape keeps the same and floating position of the body varies, the results 20 

Polynya Polynya 

(a) (c) 

Polynya 

(0,0)   
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in Figs. 10 and 11 reveal that the hydrodynamic loads can be much more oscillatory than those for 1 

centrally located case. These may be partly explained by the approximate formulations in Li, Shi 2 

and Wu [40] for a 2D body floating in a wide polynya. In such a simplified model, through 3 

ignoring the evanescent wave modes in the coupled ice body interactions, the hydrodynamic loads 4 

on the body in polynya can be computed via the solutions of wave ice interactions without the 5 

body and wave body interactions without the ice. The explicit equations show that at a given wave 6 

number, the hydrodynamic loads on the body will oscillate periodically against two spatial 7 

variables, i.e. the width of the polynya and the distance between the polynya centre and body 8 

centre. When the value of these two parameters increase, the corresponding oscillatory period will 9 

decrease or the results will be more oscillatory. While for a centrally located body, only the first 10 

oscillatory term will appear because of symmetry. However, when the body is away from the 11 

polynya centre, there will be two oscillatory terms, leading to a much more oscillatory results.  12 

The wave elevation 0w  in polynya along the ice edge due to incident and diffracted waves is 13 

shown in Fig. 12 against arctan( / )y x  , at different wave numbers 0k . While in Fig. 13, 0w  14 

is provided against 0k  at different ice edge positions  . From these two figures we observe that 15 

when 0 0k   or the wave length tends to infinity, 0w  will tend to 1  or the diffracted wave will 16 

be zero. This is consistent with the fact that as 0 0k   both the boundary conditions on ice sheet 17 

and free surface will tend to be the same, i.e. no diffracted wave will be generated by the polynya 18 

and then by the body due to an incident wave of infinite wavelength. As 0k  increases, it can be 19 

seen that the variation of 0w  against   for a given 0k  or against 0k  for a given   becomes 20 

highly complex. Specifically, the wave elevation in polynya can be many times of the incident 21 

wave amplitude. Strictly speaking, the linear theory is for infinitesimal wave. In practical 22 

problems, this applicability depends on the accuracy desired. It is then possible that the linear 23 

theory may be valid for the incident wave, but the nonlinearity may become important in the 24 

polynya. In such a case, nonlinear correction should be introduced into the model, or the linear 25 

theory is valid only for even smaller incoming wave amplitude. 26 

 27 
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 1 
Fig. 10. Added mass jk  and damping coefficient jk  of a FPSO floating in polynya with different positions 2 

against wave number 
0k . Solid lines: centrally located with 

0 0( ) (, 0,0)x y  ; dashed lines: near the right ice sheet 3 

edge with 
0 0( ) (, 1,0)x y  ; dash-dotted lines: near the top ice sheet edge with 

0 0( ) (, 0,1)x y  . ( 1l  , 5c  , 4 

10H  , 0.1h  , 0.09m  , 4.5582L  , / 4  )  5 

 6 

 7 
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 1 
Fig. 11. Wave exciting force ,E jf  of a FPSO floating in polynya with different positions against wave number 2 

0k . (As in Fig. 10.) 3 

 4 

 5 
Fig. 12. Wave elevation 

0w  in polynya along the ice edge due to incident and diffracted waves at different wave 6 

number 
0k . (a) 

0 0.01k  ; (b) 
0 1.0k  ; (c) 

0 2.0k  ; (d) 
0 3.0k  . Solid lines: centrally located with 7 

0 0( , ) (0,0)x y  ; dashed lines: near the right ice sheet edge with 
0 0( , ) (1,0)x y  ; dash-dotted lines: near the top 8 

ice sheet edge with 
0 0( , ) (0,1)x y  . ( 1l  , 5c  , 10H  , 0.1h  , 0.09m  , 4.5582L  , / 4  )  9 

 10 
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 1 
Fig. 13. Wave elevation 

0w  in polynya due to incident and diffracted waves against wave number 
0k  at 2 

different ice edge positions. (a) 3.11   ; (b) 1.54   ; (c) 0.03  ; (d) 1.60  . Solid lines: centrally 3 

located with 
0 0( , ) (0,0)x y  ; dashed lines: near the right ice sheet edge with 

0 0( , ) (1,0)x y  ; dash-dotted lines: 4 

near the top ice sheet edge with 
0 0( , ) (0,1)x y  . ( 1l  , 5c  , 10H  , 0.1h  , 0.09m  , 4.5582L  , 5 

/ 4  )  6 

5. Conclusions 7 

We have developed an accurate and efficient numerical solution approach for wave radiation 8 

and diffraction problems of a three dimensional floating structure in a polynya. To solve the 9 

governing equation with nonhomogeneous upper surface conditions, a vertical control surface 10 

along the ice edge is introduced, which separates the fluid into two sub-domains. In exterior region 11 

with an infinitely extended ice sheet, the upper surface condition contains up to fifth derivative of 12 

the potential. To satisfy this and the radiation condition analytically, the velocity potential has been 13 

written in the form of vertical eigenfunction series with the unknown functions in the horizontal 14 

direction, which satisfy the two dimensional Helmholtz equation and are then expressed in terms 15 

of the integral equation along the ice sheet edge. In interior region with a free surface, the velocity 16 

potential has been written in form of the integral equation over the structure and control surfaces, 17 

where the free surface Green function is taken as the kernel. On the control surface extended 18 

vertically from the ice edge, both the velocity potential and the Green function are expanded into 19 

the orthogonal eigen function series in the vertical direction. Thus, the integral over the control 20 

surface is transformed into the integral along the ice edge, the same as that in exterior domain. The 21 

unknowns in both interior and exterior sub-domains are solved together through an inner product, 22 

where the continuity condition of pressure and velocity is used. Through this the ice edge 23 

conditions are also satisfied.  24 

Simulations have been first carried out for a bottom mounted vertical circular cylinder in a 25 

circular polynya, and comparison has been made with the analytical solution derived previously. 26 

Good agreements have been found, indicating that the method is accurate. The applicability of the 27 



27 

method to a realistic offshore structure with complicated geometry is demonstrated, through 1 

applying the code WISPICE to the wave interactions with a FPSO floating in a polynya with 2 

circular and square shapes respectively. The method can be used and extended to study the more 3 

complex physical problems, for example, multiple body or multiple polynya problem by 4 

distributing panels over each body surface or dividing the fluid domain into multiple sub-domains. 5 

The same matching procedure can be followed. The method can be also easily extended to 6 

polynya surrounded by an ice sheet of finite extent. In this case, in the third domain beyond the ice 7 

sheet, the ice sheet thickness can be taken as zero and the same method used in the domain below 8 

the ice sheet can be followed. Compared with the other methods for this type of linearized 9 

problem, such as finite difference method or the finite element method, in the present hybrid 10 

method, only the body surface and ice sheet edge need to be discretized, and the boundary 11 

conditions on free surface and ice sheet as well as the radiation condition are all satisfied 12 

automatically through either the Green function or the vertical modes of the potential. However, 13 

the method is limited to the scope of the linear velocity potential theory, which is not valid when 14 

the wave amplitude or the body motion amplitude is large compared with the wavelength or the 15 

body dimension. 16 
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