
 

 1 

Genome wide association study in 
steroid sensitive nephrotic syndrome 

 

 

 

Dr Stephanie Dufek-Kamperis 

 

 

 

A Thesis Submitted for the Degree of  

Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

 

 

University College London 

 

 

April 2020 

  



 

 2 

Declaration 
 

I, Stephanie Dufek-Kamperis, confirm that the work presented in this thesis is my own. 

Where information has been derived from other sources, I confirm that this has been 

indicated in the thesis. 

  



 

 3 

Abstract 
Steroid sensitive nephrotic syndrome (SSNS), the most common form of nephrotic 

syndrome in childhood is considered a complex disease with the immune system 

playing a critical role in its development.  This is supported by recent molecular findings 

showing an association with classical human leukocyte antigen; yet, the exact nature 

of the disease, specifically the genetic architecture outside the HLA region, has not 

been elucidated.  

 

With this thesis we aimed to explore the genetics of SSNS by performing a genome-

wide association study on a cohort of 422 European cases and 5642 ethnically 

matched controls with more than 5 million high-quality imputed genome-wide markers.  

 

Our results revealed three loci achieving genome-wide significance in association with 

the disease. The strongest association was found within the HLA-DR/DQ region (lead 

variant rs9273542, p=1.59×10-43, OR=3.39, 95%CI=2.86-4.03) confirming findings of 

previous GWAS. Moreover, we are the first reporting on two loci outside the HLA 

region on chromosome 6q22.1 and 4q13.3 that are associated with SSNS with 

genome-wide significance. The region on chromosome 6q contains the gene 

CALHM6, which has been implicated in the regulation of the immune system and is 

particularly expressed on CD4+ cells and naïve and memory B cells. The identified 

lead variant (rs2637678, p=1.27×10-17, OR=0.51, 95%CI=0.44-0.60) is a strong 

expression quantitative trait locus (eQTL) for CALHM6, with the risk allele predicting 

lower expression of CALHM6 on lymphocytes and hence possibly altered immune 

regulatory responses. The same variant is also an eQTL for the neighbouring gene 

DSE, which codes for an enzyme essential in the dermatan sulfate production. 

Overexpression of dermatan sulfate has been previously associated with glomerular 

diseases and could be a potential antigen involved in SSNS.  

 

These findings support the hypothesis that the immune system and its dysregulation 

play a critical role in the pathogenesis of SSNS.  
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Impact statement  
Despite SSNS being a rare disease, it is the most common form of nephrotic syndrome 

in childhood and affects approximately 1 in 10,000 children. Children present with 

heavy proteinuria, oedema and low albumin, and per definition respond to steroid 

treatment. Until now our understanding of the disease pathomechanisms is mainly 

built on indirect hints supporting that the immune system plays an important role. By 

performing the largest genome-wide association study (GWAS) so far reported on 

SSNS, we shed light on the genetics of this complex disease.  This has crucial impacts 

on unravelling the pathomechanisms and developing the optimal treatment strategies 

for these patients. 

 

To date, 3 GWAS on SSNS have been published showing an association of the HLA 

region with the disease, confirming the general involvement of the immune system in 

the disease development. Arguably, the crucial key for the understanding of the 

pathogenesis of the disease is the detection of an association outside the HLA region. 

In this thesis, we were the first to detect such an association outside the HLA region. 

Our lead variant in the non-HLA region is associated with altered expression of two 

candidate genes, CALHM6 and DSE.  

 

The first, CALHM6, is a gene that has been implicated in immune regulatory 

processes. It is highly expressed on lymphocytes and regulated by cytokines, mainly 

IFN-y. Although little is known about the function of the protein encoded by CALHM6, 

this finding strongly supports the concept that immune dysregulation is crucial in the 

disease pathomechanisms and contributes to our understanding of the aetiology of 

this rare autoimmune disease.  

 

Moreover, the lead variant identified in this study also alters the expression of the gene 

DSE, which codes for an enzyme involved in dermatan sulfate synthesis. 

Overexpression of dermatan sulfate has been associated with other glomerulopathies 

including FSGS. Hence, our study could have possibly contributed to the detection of 

an antigen involved in the development of SSNS.  

 



 

 5 

Although at the current point of time, these hypotheses need further investigation and 

the exact pathomechanisms remain to be elucidated, our findings are the first 

providing more detailed insight into the genetic architecture of this complex disease.  

By identifying an association outside the HLA region with the disease, we shed light 

on the possible pathomechanisms and discovered two candidate genes for the 

disease. Our results are published in a high impact journal and are made available for 

all researches with interest in this field. The identification of these loci open up the field 

for a whole new line of research into SSNS. 
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Part 1: Introduction 

Chapter 1. Nephrotic syndrome 

Introduction and historical account 

Nephrotic syndrome is a renal disease in which increased permeability of the 

glomerular filtration barrier leads to loss of vast amounts of protein in the urine. It is 

characterized by a triad of symptoms: 

• Proteinuria 

• Hypoalbuminemia  

• Generalized oedema  

The first description of patients with severe proteinuria dates back over 2000 years to 

Hippocrates, who identified the relationship between “bubbles settling on the surface 

of the urine” and disease of the kidney  [1,2]. In 1484 Cornelys Roelans of Belgium 

described a child with “whole body swelling”. He further commented on the treatment 

of this disease by suggesting a mixture of herbs and other remedies. During the 16th 

to the mid 18th century the concept of “dropsy” for generalized oedema was 

established, but was used as a general term for many types of swellings, with no 

distinction between potential causes.  

 

The first accurate description of “dropsy” related to nephrotic syndrome in children was 

made by paediatrician Theodore Zwinger of Basel in 1722, who described a range of 

symptoms including pitting, generalised oedema, thirst, altered bowel motions and 

affection of the respiratory system [3]. Already at that point, he associated the swelling 

with renal disease. He noticed that urine output was decreased and related that finding 

to compression of the tubules in the kidneys.  

 

In the later 18th century Morgagni and his follower William Heberden pursued the 

concept that the disease might be attributed to a specific organ. The division of dropsy 

into those dependent on “morbid viscera” (liver and heart) versus a “general, 

inflammatory” form was established [1].  During this time, several observers, including 
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Cotugno, Cruikshank, Wells and Brande noted that urine had a high specific gravity 

with a high amount of albuminous material [3,4].  

 

In 1827 Richard Bright set a landmark by distinguishing the heat-coagulable 

albuminous material in the urine as a result of a kidney disease [5].  He further made 

the association of “dropsy” with albuminuria and low albumin in the serum. This was 

based on findings of his colleague, John Bostock, who used specific gravity to quantify 

protein in the serum. He observed that the specific gravity of the serum is the lowest, 

if there is a high amount of albumin in the urine. This was soon after confirmed by 

Robert Christison of Edinburgh in 1829 [4]. Hence, the definition of nephrotic as we 

know it today, with heavy albuminuria, hypoalbuminemia and oedema, as a result of 

a kidney disease, was finally established in 1830.  

 

In the following century as histological techniques improved, the attention was drawn 

to the microstructure of the kidneys in health and disease. In 1905 the distinction 

between “nephritis” for “inflammatory” lesions of the kidneys and “nephrosis” for 

“degenerative” lesions of the kidneys was introduced by the German pathologist 

Friedrich von Müller [6]. In the 1930s the transition from the clinical and pathological 

entity “nephrosis” to “nephrotic syndrome” as a picture not directly related to 

glomerulonephritis or inflammatory renal disease was gradually established [7]. And 

in 1950s with introduction of the percutaneous renal needle biopsy by Poul Iverson 

and Claus Brun in Denmark the understanding that nephrotic syndrome can be 

associated with a variety of different types of histopathology evolved [6]. 
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Nephrotic syndrome in childhood 

Nephrotic syndrome in children is defined as per KDIGO criteria [8]: 

• Generalized oedema 

• Protein excretion ≥40 mg/m2/hour, Urine Protein/Creatinine Ratio ³ 

200mg/mmol, or 3+ Protein on urine dipstick 

• Hypoalbuminemia £ 25g/l (£ 2.5g/dl) 

The incidence reported is 4.7 (range 1.15 - 16.9) per 100,000 children worldwide aged 

below 16 years with a male to female ratio of 2:1 [9]. The incidence depends on the 

geographical area and varies between different ethnicities [10]. The highest incidence 

is reported among South Asian, African American and Arab children [11].   

 
Idiopathic nephrotic syndrome 

Idiopathic nephrotic syndrome (INS) refers to nephrotic syndrome where an underlying 

disease is not identified and is the commonest form of nephrotic syndrome in 

childhood [12].  

If a renal biopsy is performed in children with INS, typically only minimal changes are 

seen, most commonly foot process effacement on electron microscopy. Hence, the 

entity is often also referred to as “minimal change disease” (MCD) and the terms MCD 

and INS are used interchangeably [13]. In a minority of children with INS, in addition 

to such minimal changes, focal and segmental glomerulosclerosis (FSGS) is seen 

[14]. It is under ongoing discussion whether MCD and FSGS represent different stages 

of one disease or if they should be considered as separate entities because of their 

different likelihood to respond to steroid treatment, associated with different prognosis 

and outcome [15]. Patients with FSGS are often (but not always) resistant to steroid 

treatment, are more likely to progress to end stage renal disease and to relapse after 

renal transplantation. In contrast, patients with MCD typically respond to steroid 

treatment and may have a milder disease course. Interestingly some children with 

initial MCD might at a later point develop histological findings of FSGS, further 

complicating this discussion.  
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At presentation, most children with MCD can be distinguished clinically from those with 

other biopsy findings such as FSGS or secondary NS [14]. Patients with MCD are 

usually younger than six years at presentation, have no macroscopic haematuria, 

normal complement levels and normal renal function [14]. Therefore, most of the 

children presenting with nephrotic syndrome do not undergo a biopsy in the first place, 

but are subjected to a course of steroids first [16]. Children are consequently classified 

according to their response to steroid treatment, which has great implication for 

treatment, prognosis and outcome [17]: 

 

Steroid sensitive nephrotic syndrome (SSNS): The majority of children 

(approximately 90%) do respond to steroid treatment [16], which is defined as 

complete remission within the initial 4 weeks of corticosteroid treatment [8]. After the 

initial response to steroids a large number of children with SSNS would experience 

one or more relapses. It is estimated that approximately half of the patients with SSNS 

will have a frequently-relapsing and/or steroid-dependent course [17].  

 

Steroid resistant nephrotic syndrome (SRNS): SRNS is defined as failure to 

achieve complete remission after 8 weeks of corticosteroid treatment [8]. Those 

patients have an increased risk of development of chronic kidney disease and a less 

favourable long-term outcome [17]. These children usually necessitate treatment with 

other immunosuppressive agents. 

 
Secondary nephrotic syndrome  

Nephrotic syndrome caused by an underlying process affecting the glomerulus or as 

part of a systemic disease is referred to as secondary nephrotic syndrome: 

• Post-infectious glomerulonephritis  

• Nephritis secondary to systemic lupus erythematosus  

• Nephritis associated with vasculitis, such as Henoch-Schönlein purpura, or with 

granulomatosis with polyangiitis and microscopic polyangiitis 

• IgA nephropathy 

• Other causes include Alport syndrome and haemolytic uremic syndrome as well 

as sickle cell disease  
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Congenital and infantile nephrotic syndrome 

Congenital nephrotic syndrome (CNS) and infantile nephrotic syndrome (INS) are 

separate entities where patients present either within the first 3 months or the first year 

of life with severe proteinuria, hypoalbuminemia and oedema. Both are associated 

with a high morbidity and mortality [18]. Those patients typically do not respond to 

steroid treatment and may suffer from severe complications, such as recurrent 

infection, thrombosis and impaired growth [19]. In many centres, including developed 

countries, active treatment was not offered until the 1980s. CNS and INS is primarily 

caused by mutations within the NPHS1 gene that encodes for Nephrin [20]. Further, 

mutations in other genes including NPHS2, PLCE1, WT1, LAMB2, PDSS2 and COQ2 

can cause CNS and are associated with clinically heterogeneous phenotypes [21-24].  
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Chapter 2. Pathogenesis of idiopathic nephrotic 
syndrome 
The glomerular filtration barrier 

The glomerular filtration barrier consists of three layers 1) the fenestrated endothelial 

cells covered by a glycocalyx, 2) the glomerular basement membrane (GBM) and 3) 

podocytes. Podocytes are highly differentiated cells, whose cell bodies have multiple 

extensions, called foot processes, wrapping around the glomerular capillary loops. The 

foot processes are arranged in an interdigitating pattern and are interconnected by slit 

diaphragms which together form the glomerular filter.   

 

INS is associated with changes in podocyte architecture. These changes consist of 

loss or effacement of the podocyte foot. The exact pathogenesis behind podocyte foot 

process effacement, its relationship to proteinuria and also its response to steroids 

and the variable courses are not fully understood and cannot be predicted. Theories 

around the pathogenesis are detailed in Figure 1.  
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Figure 1 Pathogenesis of idiopathic nephrotic syndrome 

 

Legend Summary of proposed mechanisms leading to idiopathic nephrotic syndrome. 
APCs: Antigen-presenting cells; GBM: glomerular basement membrane 
 
A) The onset is often related to trigger events, such as viral infections, allergies, vaccinations. 
Trigger events are thought to stimulate the immune system, antigen presenting cell (APC), T 
and/or B cells.  
B) The involvement of T cells in idiopathic nephrotic syndrome has been long time speculated. 
Studies support a reduction of CD4+ cells with increased CD8+ cells, however, findings are 
controversial and no clear predominance of either has been proven. An imbalance between Th2 
and Th1 cells with an increase in the production of the Th2-specific interleukin-13 (IL-13) has 
been discussed, but no clear cytokine profile has been identified. Recently, an imbalance 
between Th17 cells and regulatory T cells (Tregs) towards increased activity of Th17 cells and 
its Interleukin 17 (IL-17) has been observed.  
C) The involvement of B cells is supported by the beneficial role of rituximab, a CD20 antibody. 
A correlation between the recovery of memory B-cells after rituximab treatment and relapse has 
been observed. The role of autoantibodies, including anti-CD40, has been discussed.  
D) Since long time the role of circulating permeability factors such as hemopexin, the soluble 
form of the urokinase-type plasminogen activator receptor and the cardiotrophin-like cytokine 
factor 1 has been discussed to directly alter the podocyte function, leading to foot process 
effacement and disruption of the glomerular permeability barrier.  
E) The podocytes themselves can express specific molecules such as CD40 or CD80 (B7-1) 
which can interact with the immune system.  
 

 

 

 

A) 

B) C) 

D) 

E) 
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Circulating permeability factor 

This model of nephrotic syndrome pathophysiology proposes that in patients with INS, 

normal kidneys exist in an abnormal environment. The theory that circulating 

permeability factors play a role in the development of the disease has been supported 

by several observations and studies primarily on FSGS patients.  

Recurrence of NS in the donor kidney of FSGS patients after transplantation of a non  

FSGS kidney and the efficacy of plasma exchange to induce remission in patients with 

FSGS  support the theory of a causative factor in the plasma [25,26]. Further, the 

transplantation of a kidney into a recipient with the disease resulted in immediate 

recurrence, but when the kidney was subsequently transplanted into a patient without 

the disease it induced remission in the transplant kidney [27,28]. In animal models it 

has been shown that proteinuria can be induced in healthy rats by transfusing serum 

of a FSGS patient into the animal [28]. For MCD the evidence of a circulating factor is 

less striking. However, the evidence is supported by data showing that albuminuria 

can be induced in rats after infusion of peripheral blood cell products from patients 

with MCD [29].  

Throughout the years, several molecules have been shown to be able to modify the 

shape and the proprieties of podocytes and to induce proteinuria in experimental ex 

vivo and in vivo conditions. We here summarize the most discussed circulating factors 

that have been hypothesized to be associated with MCD and FSGS [30].  

Lagrue et al [31] were one of the first studying the effect of plasma factors on vascular 

permeability in guinea pig skin capillaries. The injection of supernatants derived from 

lymphocytes of MCD patients resulted in significantly higher vascular permeability 

compared with controls. The authors concluded that a vascular permeability factor 

(VPF) is generated by stimulated T lymphocytes from patients with MCD [31]. Several 

studies followed, however, the exact nature of the VPF remains unknown. Further, 

VPF seems not to be specific for MCD, but is also common in other glomerular disease 

and more importantly, direct evidence that it acts on the glomerular capillary wall 

permeability and causing proteinuria is not provided [32]. 
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The study of VPF in guinea pig skin models has clear limitations because of the 

discrepancies between vascular and glomerular permeability. Hence, subsequent 

studies focused on characterizing a glomerular permeability factor using rat models 

and looking at the glomerular histology and proteinuria as permeability markers [33].  

 

The study of the glomerular permeability factor led to the identification of hemopexin 

[34]. Hemopexin is a protein mainly produced in the liver and is increased in the acute 

phase reaction to inflammation or infection. In normal conditions hemopexin is 

inactive, but it gets activated in certain circumstances [34]. Activated hemopexin has 

serine protease activity and can alter the glomerular filtration barrier [34]. In vivo, 

activated hemopexin provoked reversible proteinuria in rats together with podocyte 

foot process effacement. In children with MCD relapses, activated hemopexin was 

found to be increased [34]. Activated hemopexin is believed to alter the glomerular 

permeability by causing a nephrin-dependent remodelling process of the podocytes 

and a degradation of the glycocalyx [35]. However, the crucial process leading to the 

activation of hemopexin remains unclear [30]. 

For FSGS, cardiotrophin-like cytokine 1 (CLC-1), a galactose binding factor and 

member of the interleukin 6 family has been proposed as a permeability factor [36]. It 

was intensively studied by a group in the US who analysed the plasma of patients with 

FSGS recurrence after transplant [36,37]. The group used a functional assay of 

isolated rat glomeruli that showed changes in the glomerular permeability to albumin 

when incubated with the patients’ plasma. With subsequent purification steps the 

same group concluded that the permeability factor resides in a 30- to 50-kDa plasma 

fraction and identified CLC-1 as being enriched in FSGS patients plasma [36,37]. They 

showed that CLC-1 increases the glomerular permeability to albumin and induces 

proteinuria in rats [36]. The same group hypothesized that galactose administered to 

patients with FSGS might prevent the development of CKD by preventing the binding 

of CLC-1 on galactose residues present at the surface of podocytes [38]. However, a 

clinical trial in paediatric patients with SRNS did not confirm the hypothesis [39].  

Recently, the role of urokinase-type plasminogen activator receptor (uPAR) in its 

soluble form (suPAR) has been the centre of discussion as a proposed circulating 

permeability factor causing FSGS [40]. uPAR is a membrane bound urokinase 
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receptor and its stimulation has been linked to foot process effacement and proteinuria 

[41]. Cleavage of uPAR results in its soluble form suPAR. Studies demonstrated that 

both overexpression of uPAR on podocytes and the administration of suPAR cause 

proteinuria in mice by deforming the podocyte cytoskeleton [40]. suPAR was elevated 

in two-thirds of FSGS patients (significantly higher than in patients with MCD) and in 

those having recurrence after transplantation [42].  However, subsequent studies have 

given conflicting results and at present, there is no consensus that suPAR plays a 

pathophysiological role in FSGS [40]. 

Despite intensive research into this topic a clearly pathogenic circulating factor has not 

been convincingly identified yet (Reviewed in [30,37]). The data presented above, 

however, suggest that a possible circulating factor in INS might be generated by 

mononuclear cells such as T cell or B cells, pointing to a role of the immune system. 

Immune dysregulation 

Since decades the involvement of the immune system in the development of SSNS 

has been suspected. This is driven by the observation that the disease is commonly 

triggered by infection, such as upper respiratory infections and a good therapeutic 

response to corticosteroids, as well as to other immunosuppressants. It is also 

supported by histological findings, where a full reversibility of the foot process 

effacement with corticosteroid treatment is seen [43]. 

T cells 

The pathophysiological role of T-lymphocytes in the development of the disease was 

already suggest in the 1970s [44]. Further supporting the idea that T lymphocytes are 

the source of a possible permeability factor is the observation that remission can be 

induced by steroids and cyclophosphamide, which both suppress a T cell mediated 

response. Furthermore, measles infection can induce remission in patients with INS 

by affecting the cell-mediated immune system and suppressing T cell subsets [45], 

whereas T cell lymphomas such as Hodgkin’s lymphoma, can trigger INS in patients 

with subsequent chemotherapy inducing remission [46].  

 

Widespread research into the involvement of T cells in the pathophysiology of INS is 

published. The results can be summarized as follows [47]: 



 

 31 

 

Studies demonstrated that patients with INS show an imbalance of T-cell 

subpopulations, with a reduction of CD4+ T helper (Th) cells [48,49]. However, other 

studies could not replicate these findings and did not find any difference in the 

expression of CD4+ or CD8+ T cells in patients with INS [50].  

 

In a different line of research, the involvement of cytokines in the pathogenesis of INS 

was investigated. Cytokines are small proteins that function as soluble mediators and 

are produced by immune and non-immune cells. Several cytokines were discussed to 

be related to INS, however, no distinct Th1 or Th2 cytokine profile has been identified. 

Reported results are variable and their interpretation remains difficult as studies show 

heterogeneity in their methodologies [51,52].  

 

Recently, an imbalance between Th17 and T regulatory (Tregs) cells towards Th17 

cells and their cytokine IL-17 has been reported in children with INS [53]. Also in adult 

patients with MCD, an increase in Th17 cells and IL-17 with a decrease of Tregs was 

observed and the imbalance returned to normal after effective corticosteroid therapy 

[54]. Further, it was observed that IPEX syndrome, a genetic disease leading to 

dysfunction of regulatory T cells, was complicated by MCD [55]. Hence, the 

involvement of Th17 cells and the imbalance between Th17 cells and Tregs is one of 

the emerging topics in the pathogenesis of INS, but does need further studies and 

confirmation.  

B cells 

The role of B cells in the pathophysiology of the disease is primarily supported by the 

beneficial effect of rituximab, a monoclonal antibody directed against CD20 [56]. 

Several clinical trials have confirmed the beneficial role of rituximab on inducing and 

maintaining remission in patients with steroid dependent or frequent relapsing SSNS. 

However, CD20 is not expressed on antibody producing plasma cells, hence the action 

of rituximab on these cells is assumed to be indirect via inhibiting the regeneration of 

plasma cells from activated CD20+ B cells [57].  
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The role of antibodies in INS is not yet clarified. The involvement is supported by data 

showing that the permeability factor may be an immunoglobulin or may bind to an 

immunoglobulin [58]. Further, reduced IgG levels have been observed in patients with 

SSNS also during remission [59]. And lately the role of anti-CD40 antibodies in 

recurrent FSGS patients has been discussed [60]. CD40 is a transmembrane protein 

that is mainly expressed on antigen presenting cells, including B cells, but was also 

found on podocytes. Stimulation of B cells via CD40 leads to activation and 

differentiation into memory B cells and plasma cells. In FSGS patients, CD40 was 

found to be expressed on cultured podocytes and circulating anti-CD40 IgG were 

identified in the serum of FSGS patients [60]. This gives rise to speculation that 

autoantibodies play a role in INS.   

Podocytes 

Apart from direct dysfunction of B or T cells, changes in the function of the podocytes 

themselves linked to the immune system are speculated to be involved in the disease 

pathogenesis [47]. As an example, altered expression of the diseased podocyte of 

CD80 (B7-1), a T cell co-stimulatory molecule, was speculated to contribute to the 

pathogenesis of proteinuria by disrupting the glomerular filter and discussed as a novel 

molecular target for treatment of INS [61]. Further studies are needed to confirm these 

theories.  

 

In summary, over the years, a large body of evidence has emerged supporting the 

theory that the immune system plays a pathogenic role in disease development. 

However, the exact pathophysiological mechanism remains unknown.  

 
Genetics of steroid sensitive nephrotic syndrome  

To date, only a limited amount of data on the genetics of SSNS is available, but there 

is epidemiological evidence supporting that SSNS might be associated with genetic 

variants in one or multiple genes. This is based on the following observations.  

Firstly, there is evidence of familial aggregation in SSNS as children with common 

backgrounds (e.g. siblings) have a higher risk of developing SSNS [62,63]. This can 

be secondary to genetic factors but may also represent a common environmental 
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exposure (e.g. lifestyle, diet). Secondly, there are differences in the prevalence of 

SSNS between different ethnical groups. In a small epidemiologic study of children 

with SSNS in the UK, it was shown that the incidence of MCD among Asians was 

higher compared to non-Asian children [64]. Differences in the course of SSNS in 

regards to relapses and steroid dependency has been observed between patients with 

Caucasian and African American or Hispanic background [65]. However, although 

different in many genomic characteristics, including allele frequencies, different ethnic 

groups also differ in environmental factors, lifestyle, and culture. Therefore, we can 

hypothesise that the susceptibly to develop SSNS is based on specific genetic risk 

variants, either alone or in combination with environmental triggers. 

 

For (familial) SRNS multiple monogenic mutations have been described as causal for 

the disease [66]. For SSNS, despite several studies on families with multiple 

generations affected by SSNS, no single gene has been confirmed to cause the 

disease exclusively [63,62,67]. Additionally, reported possible monogenic causes of 

SSNS fail to explain the apparent contribution of immune dysregulation to the disease 

[68].  

 

The reason why none of these studies has been conclusive could be that SSNS follows 

a complex inheritance pattern. Possibly, variation in multiple genes and the interaction 

between those and with the environment is relevant for disease development. There 

are a handful studies investigating complex inheritance pattern of SSNS (Table 1). 

These focus on determining the role of variants in Human Leucocyte Antigen genes 

and loci as genetic risk factors for SSNS. An overview of candidate genes identified 

until now is provided in Table 1. 
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Table 1 Overview of risk loci identified for SSNS 

Study population Number of cases Gene References 

UK Caucasian 40 HLA-DR7 
HLA-DQW2 Clark et al 1990 [69] 

US Caucasian 32 HLA-DQW2 Lagueruela et al 1990 [70] 

French and German 161 
HLA-DR7 
HLA-DQB 
HLA-DQA 

Konrad et al 1995 [71] 

Japanese 30 HLA-DQB1 Kobayashi et al 1995 [72] 

Taiwanese 59 HLA-DQB1 
HLA-DR Huang et al 2009 [73] 

South Asia 76 HLA-DRB1 
HLA-DQB1 

Ramanathan et al 2015 [74] 
1 South Asia 
USA white 

214 
100 

HLA-DQA1 
PLCG2 

Gbadegesin et al 2015 [75] 

2 European, African, 
Maghrebian 385 

HLA-DQA1 
HLA-DQB1 
HLA-DRB1 
BTNL2 

Debiec et al 2018 [76] 

3Japanese 
Replication 

224 
216 

HLA-DRB1 
HLA-DQB1 

Jia et al 2018 [77] 

1Exome association study 
2Transethnic meta-analysis 
3Genome-wide association study 

 

Only recently, an exome association study described an association of the disease 

with HLA-DQA1, a MHC class II gene, and PLCG2, a gene involved with the adaptive 

immunity [75]. During the preparation of this thesis two genome wide association 

studies on SSNS were published [77,76]. The first included 4 cohorts with European, 

African and Maghrebian patients followed by a transethnic meta-analysis of the 

results. Results showed an association of three risk alleles, HLA-DQA1, HLA-DQB1, 

HLA-DRB1 and BTNL2, with the disease, supporting the idea that autoimmunity plays 

a role in the development of the disease [76]. The second was performed in a 

Japanese population likewise revealing an association with the HLA-DR/HLA-DQ 

region [77]. 

 

The common theme in these studies is the identification of risk loci in the HLA region, 

highlighting the importance of the human leukocyte antigens, which are critical for the 

immune system to distinguish between self and foreign [78]. Yet, it is the identification 

of risk loci outside the HLA locus that arguably provide the most informative 

mechanistic insights. Prominent examples from nephrology include membranous 

nephropathy (MN) and IgA nephropathy: in MN, a GWAS identified a locus over 
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PLA2R1, acting as an antigen in the kidney, thus suggesting a genetic predisposition 

to antibody formation against the PLA2R1 receptor as a crucial disease mechanism 

[79,80]. Similarly, in IgA nephropathy, GWAS have highlighted the important role of 

the intestinal immune response, as well as IGA1 antibody glycosylation in the 

pathogenesis of the disease [81-83].  

However, for SSNS further insight in the genetic architecture remains elusive. 
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Chapter 3. Genetics and Genome wide association 
studies 

Genetics is the study of heredity and the variation of inherited characteristics. The first 

written proof of genetics dates back to Hippocrates and Aristotle (460-300 BC) who 

recognized that characteristics were inherited over generations.  

 

The current understanding of genetics is based on milestones set by Gregor Mendel 

in 1866 who studied the inheritance of traits in pea plants. The term genetics was 

introduced by the British biologist William Bateson in 1905 and in 1911 Thomas 

Morgan proposed that genes are on chromosomes. In 1928, Frederick Griffith 

discovered that genetic material can transform living bacteria. In 1944, DNA was 

proven to be the molecule responsible for this transformation and in 1953, James 

Watson and Francis Crick set a milestone by determining the structure of DNA. Since 

then technologies have evolved and the molecular understanding of inheritance has 

increased dramatically. Nowadays, most genetic research aims to better understand 

the pathophysiology and mechanism of a disease. This led to the development of new 

treatment strategies and of preventive measurements.  

 

In box 1 a short overview is given of the current understanding of relevant terms in 

genetics [84,85].  
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Box 1 Definitions of commonly used terms [84,85] 

• Locus: a specific position on a chromosome  
• Variant: a change in the DNA sequence compared to a reference DNA sequence 
• Allele: different forms of a variant at one given locus 
• Genotype: the particular complement(s) of alleles at one or more specific loci (one pair per 

locus in the case of diploid organisms) 
• Haplotype: a series of alleles that are inherited together from one single parent 

 

• Phenotype: the biochemical, physiological, and physical characteristics resulting from the 
interaction of genotype with environment 

• Polymorphism: variant, which occurs in more than 1% in a certain population  
• SNV (single-nucleotide variant): change of a single nucleotide (A, T, G or C) in a DNA 

sequence 
• SNP (single-nucleotide polymorphism): SNV with a frequency of >1% in the population 
• INDELS (insertion/deletions): insertion or deletion of small number of base pairs, usually less 

than one kilobase [86] 
• CNV (copy-number variant): a structural variant that results in gain or loss of a one kilobase 

or larger DNA segments [87] 
• MAF (minor allele frequency): the frequency of the less common allele in a certain population 
• Sequencing: process of determining the exact DNA sequence of a specific DNA stretch of 

an individual 
• Genotyping: process of determining sites of known genetic variants in the DNA of an 

individual  
• Risk alleles: a genetic variant that, when present, increases a person’s risk for a specific 

condition, but is not sufficient to cause disease 
• SNP array: an array in which patient genotypes are determined by hybridizing the patient’s 

DNA to DNA probes corresponding to hundreds of thousands to millions of SNPs 
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Mutation and variants 

The process that introduces genetic variation in eukaryotes is mutations. Mutation 

describes any change to a given DNA sequence. Mutations can arise from many 

different sources and can occur either in somatic cells or in gametes. If the mutations 

are in germline cells, they can be passed on to the next generation and subsequently 

to further generations. Mutations that are passed on over a generation are referred to 

as variants. It is estimated that two human genomes differ at approximately 20 million 

bases (0.6%) and over 320 million variants in humans are described. The most 

common form of those variants are single nucleotide variants, where a single 

nucleotide is replaced by another. Importantly, the majority of variants is in non-coding 

areas of the genome and most do not recognisably alter the phenotype of an 

individual. 

Genetic recombination and linkage disequilibrium  

Genetic recombination forms the basis of the controlled reshuffling of genetic variation 

in humans and all other eukaryotes. Genetic recombination is based on the exchange 

of genetic material between maternal and paternal chromosomes during the creation 

of haploid gametes (sperm and egg cells). Haploid gametes are formed during 

meiosis, a particular type of cell division.  Meiosis starts with DNA replication forming 

two sets of chromosome pairs. Each pair has a maternal and a paternal copy of the 

chromosome and the two copies in a pair are called homologues. This is followed by 

crossing over, where the two homologous chromosomes are aligned, the DNA of the 

chromosomes is cut at random places and DNA fragments are exchanged between 

the same place in the paired chromosomes. This process is also called homologous 

recombination. During this process alleles are put together in a new combination on 

the chromosomes and hence a genetically unique set of chromosomes which are a 

mix of paternal and maternal DNA is created.  

 

The likelihood that crossover happens between two loci, and consequently they are 

not inherited together, depends on the physical distance between them. A short 

distance between two loci means that the “target” for cross over between them is very 

small and therefore unlikely. Whereas a large distance between two loci will increase 

the chance that crossover is happening between them. A way to measure the distance 
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between two loci is to calculate the frequency of recombination events between the 

loci. The measure for the genetic distance between two loci depending on the 

recombination frequency between them is expressed as centimorgan (cm).The 

physical distance between two loci is measured in base pairs (bp).  

 

Crossover is not completely random and there are areas where crossover is more 

frequent compared to others. 

 

The human genome is structured into genetic regions with a historically low 

recombination rate separated by regions with a high rate of recombination (hotspots 

of recombination). The regions with a low recombination rate contain alleles which are 

more likely to be inherited together; therefore, they are also called linked to each other 

or in linkage disequilibrium (LD). Whereas alleles that are further away from each other 

are more likely to have a recombination hotspot between them and therefore are less 

tightly linked. However, two alleles with a close physical distance but in a hotspot of 

recombination may still have a lower LD than if they are further apart in a region of low 

recombination.  

 

A group of alleles that are inherited together because they are in LD with each other 

is called a haplotype. Regions with a low recombination rate will have, at population 

level, a distinct number of such haplotypes and are also called haplotype blocks, or in 

short haploblocks [88].  

Monogenic versus polygenic disease 

Monogenic diseases, also called Mendelian diseases are caused by variants in a 

single gene. They are generally inherited according to Mendel's Laws and follow either 

an autosomal recessive, autosomal dominant or X-linked inheritance pattern. 

Autosomal dominant and X-linked mutations do usually have a strong family history, 

but mutations can also occur spontaneously in the absence of positive family history 

(de novo mutations). Mendelian traits are generally characterized by a strong 

genotype-phenotype correlation and they can usually be studied with single family 

studies. 
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In contrast to monogenic diseases stand oligogenic diseases, where variants in a few 

genes are accountable for disease development. Oligogenic diseases represent an 

intermediate form or a bridge to polygenic and complex diseases where multiple genes 

are affected.  

 

In complex diseases, additional interactions between genes and between genes and 

the environment are relevant for disease development (Figure 2). There might be 

multiple risk alleles with each of them having only a small effect on the patients’ risk 

for developing the disease. They usually show a weak genotype-phenotype 

correlation. All these factors make the study of complex disease more challenging and 

single-family studies are often not sufficient to identify relevant variants.  

Figure 2 Mendelian versus complex disease 

 

 
Legend Mendelian diseases are caused by variants in a single gene. They are usually rare and 
inherited according to Mendel's Laws. In complex diseases, multiple risk alleles, and the 
interactions between those alleles and between the alleles and the environment are leading to 
an increased susceptibility for disease.  

 

The approaches to study Mendelian disease differ from those investigating complex 

disease. We will shortly describe the following possible techniques: candidate gene 

testing, linkage analysis and genome wide association studies.  

Mendelian versus Complex

Cancer
SSNS

Cystic fibrosis 
Sickle cell disease

• Pathogenic variant in 
a single gene

• Rare
• Inheritance defined

• Variants in multiple 
genes

• Interactions gene/gene 
and gene/environment

• Common
• Inheritance uncertain
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Candidate gene testing 

Candidate-gene studies are based on an a priori hypothesis of which genes might be 

involved in the disease development and are usually performed on a population level 

[89]. Few candidate gene studies have been performed in SSNS, mainly attempting 

to find variants accounting for the differences in response to steroid or other 

immunosuppressive treatment [68,90,91]. However, findings of those studies have not 

been replicated when followed up in subsequent association studies. Because of the 

uncertainty regarding the number and action of genes involved in SSNS, a more broad 

and unbiased approach, which uses markers throughout the genome seems more 

appropriate. The two main approaches investigating the whole genome are linkage 

studies (using family pedigrees) and association studies (using population data).  

Linkage analysis 

Linkage analysis is the statistical method for mapping genes responsible for heritable 

traits to their location on the chromosome. The process involves that markers are 

genotyped across the genome and tested in pedigrees if they are linked to the trait. 

This is based on the assumption that some markers of known chromosomal location 

will be co-inherited with the trait of interest. The markers which have the strongest 

statistical evidence of linkage to the trait, point towards the location where the gene 

responsible for the trait is located. In general, many genes will cluster within the linked 

region and therefore the resolution at the locus might be poor. Still, a statistically 

significant linkage result limits the search for the responsible gene to those in the linked 

region, thus reducing cost and follow-up time.  

 

Linkage analysis has mainly proven successful in the identification of genes causal for 

monogenic disease following a Mendelian pattern [92,93]. For complex disease 

without a clear Mendelian inheritance linkage analysis has been less effective. In 

complex disease, where each variant has a small effect size, association analyses 

seem more powerful and a genome-wide association study is the preferred tool (Figure 

3) [92,93].  
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Figure 3 Linkage analysis versus association studies 

 
Legend Linkage analysis is the preferred method to identify rare variants causing Mendelian 
disease. Linkage analysis is a family-based approach which tests for the co-segregation of alleles 
within family members. Association analysis is the preferred method to investigate common 
variants implicated in complex (common) disease and is a population-based approach where 
allele frequency is compared between unrelated cases and controls. Rare variants of small effect 
are hard to identify and common variants with a high effect size are unlikely to exist.  

 

Genome wide association study 

A genome wide association study (GWAS) is a hypothesis free approach performed 

on population level, where SNPs distributed over the whole genome, are used as 

markers to tag risk loci in the genome. In a case-control design every single marker is 

tested if the frequency of alleles varies between cases and unaffected controls 

suggesting a relation (positive or negative) of the allele itself or a nearby variant to the 

susceptibility for the disease (Figure 4).  

 

Association studyLinkage analysis

Ef
fe

ct
 si

ze

(Allele) frequency in population

Hard to 
identify

Unlikely to 
exist



 

 43 

Figure 4 Case-control design of association studies 

 
Legend A difference in the allele frequencies between cases and controls can be observed.  
The allele T is more common in cases compared to controls. 
 

 

It is important to keep in mind that association does not imply causation of the disease. 

It may be that the identified SNP is associated with other factors associated with the 

disease, confounders, but not involved in the causal pathway. Such possible 

confounders could be e.g. the ethnic ancestry. If confounders are ruled out and the 

association of the SNP with the disease is thought to be true, it is important to keep in 

mind, that the identified SNP very rarely is the actual causative variant. Most of the 

identified SNPs are not disease causing themselves but are in LD with a causative 

variant and therefore an association is found. 

 

The underlying rational why GWAS is currently the favourable approach to study 

complex disease is the ‘common disease, common variant (CDCV)’ hypothesis. This 

hypothesis refers to the idea that common diseases are caused by the combination of 

common genetic variations with a small effect size each, which can be detected in 

association studies [94]. Although SSNS represents a rare disease we believe its 

inheritance pattern is complex. Hence, GWAS using common SNPs to map common 

risk variants as well as rare risk variants contained in common haplotypes, is expected 

to identify variants associated with SSNS. 

 

However, most variants found by current GWAS alone or in combination explain only 

a small proportion of the heritability of complex disease. This gap is referred to as the 

‘missing heritability’ problem [95]. There are different explanations why so little 

heritability is explained by GWAS findings. These include the theory that an even 
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larger number of variants with a small effect have yet to be found. Another hypothesis 

is that multiple rare variants, each with a relatively large effect size, are the major 

contributors to genetic susceptibility to complex diseases. This model is also referred 

to as the ‘Common Disease, Rare Variant (CDRV)’ hypothesis [96]. However, most 

common genotyping arrays focus on common variants and only poorly detect rare 

variants. Further, an association with rare variants is difficult to detect via GWAS, 

unless the effect size is large. Different methods accounting for the overall “mutational 

load” would be advantageous to detect rare variants. Moreover, structural variants are 

poorly captured by existing genotyping arrays and might not be represented in most 

GWAS and GWAS do not account for gene–gene interactions, which may play a 

substantial role in complex disease. Nonetheless, despite those disadvantages, 

GWAS is the best established tool to investigate complex diseases (Figure 3) [97]. 

 

GWAS is followed by a fine-mapping process which refers to the steps undertaken to 

analyse the genomic region associated with a disease in order to identify the particular 

genetic variant responsible for the trait. Fine mapping usually contains the following 

steps (reviewed in Schaid et al. [98]): Each associated region is investigated in regards 

to linkage disequilibrium between SNPs using Haploview plots or LocusZoom plots. 

LocusZoom plots additionally annotate the genes in the investigated region and 

illustrate the patterns of LD between the lead SNP and the surrounding SNPs. Further 

fine-mapping can be performed in each region with different statistical methods (e.g. 

Bayesian methods). Another way to increase fine-mapping resolution is by combining 

the results of different cohorts, e.g. in a Transethnic Meta-analysis of the results, as 

performed in our study. The SNPs selected from fine-mapping are then annotated 

using genomic databases to identify the likely function of the selected SNPs.  

However, fine-mapping is becoming progressively challenging and variants identified 

do often explain just a small proportion of the inheritability of the disease. It is 

becoming increasingly clear that complex traits are highly polygenic, with a large 

number of variants, regulatory mechanisms and gene–gene or gene–environment 

interaction involved, that challenges fine-mapping procedures.   
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Chapter 4. Genotyping and allele encoding  

Genotyping for GWAS 

In the context of GWAS, genotype describes which two alleles can be found at a 

specific location. In most cases these are single nucleotide polymorphism (SNP), 

where one single nucleotide is replaced by another. The two possible alleles at each 

SNP are usually referred to as minor allele a and major allele A and could be e.g. the 

nucleotide T (allele A) or the nucleotide C (allele a). The genotype of this person at 

this specific SNP can be either AA, Aa or aa. If the two alleles are identical, it is called 

a homozygous genotype. If they differ, it is called a heterozygous genotype. 

Association studies are based on comparing the frequency of the two possible alleles 

for each given SNP between cases and controls. The process of determining sites of 

known genetic variants in the DNA is called genotyping. Those variants are in the 

downstream analysis used to mark areas of association and therefore often referred 

to as markers. The whole-genome genotyping technology allows the identification of 

markers catalogued across the whole genome. Depending on the SNP chip used, it 

can interrogate several million markers per sample [99]. It can detect single nucleotide 

polymorphism, but also other variants.  

Allele naming and encoding 

Association studies are based on comparing the frequency of two possible alleles for 

each given SNP between cases and controls. In order to get adequate results, the 

naming and encoding of alleles has to be understood and clearly defined, otherwise it 

is not possible to compare them. The naming and encoding of alleles is based on the 

reference genome. The reference genome is an agreed sequence for an organism 

that generally represents the most common sequences in the global population and is 

managed by the Genome Reference Consortium (https://www.ncbi.nlm.nih.gov/grc). 

Different versions of the reference genome have been released, in the form of different 

genome builds, with the latest at the time of writing this thesis being GRHc38 (March 

2017), although for this study GRHc37/hg19 was used (Feb 2009). The human 

reference genome can be accessed via the National Centre for Biotechnology 

Information (NCBI) database.  
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Any documented alterations to the reference genome are called variants. Those 

variants are recorded in a different database called dbSNP (single nucleotide 

polymorphism) [100]. DbSNP mainly contains single nucleotide polymorphisms, but 

can also include other kind of variants. The reference allele for a SNP is defined as 

the allele found on the reference genome sequence. The alternate alleles are the 

variants seen and consequently documented and submitted to dbSNP. Very often the 

reference allele is also the major allele (meaning the more frequent allele) in one 

population whereas the alternate allele is also the minor allele (meaning the less 

frequent allele) in the same population. However, because frequencies vary between 

populations, it could be that the major allele in one population is the minor in another.  

 

The definition of which nucleotide of a certain SNP is the reference and which the 

alternate allele is depending on the strand (5’ to 3’ or 3’ to 5’). In some SNPs the 

reference and alternate alleles are a complement to each. A C on the 5’ to 3’ strand 

would be a G on its complementary reverse strand. This can lead to ambiguity if the 

strand is not defined. E.g. when referring to the allele C in a SNP where the two options 

are C/G and the strand assignment is not clear, it is impossible to tell whether the 

allele C is the reference or the alternate allele (Figure 5).  

 

Figure 5 Unambiguous versus ambiguous alleles 

 
Legend Unambiguous alleles can be uniquely identified without knowledge of strand assignment. 
For ambiguous alleles the strand assignment is essential in order to uniquely identify allele A and 
allele a.   

 

Therefore, it is crucial to know, to which strand the allele name is referring to. In order 

to deal with that problem, different schemes to encode alleles have been developed. 
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Encoding schemes  

• Plus/Minus (+/-): This encoding scheme is used by the HapMap project 

(www.hapmap.org). The 5′ end of the + strand is at the tip of the short arm (p-

arm) of the chromosome and the 5′ end of the - strand is at the tip of the long 

arm (q-arm). +/- encoding for a particular SNP may change with the genome 

build used, hence the genome build must be specified when reporting +/- 

strands. The alleles are usually named with the GATC nucleotide letters.  

 

• Forward/Reverse (FWD/REV): This is the encoding scheme used by dbSNP. 

Usually dbSNP receives a cluster of submissions per SNP. Those are 

compared to the reference genome to define their position and orientation and 

can be either on the forward or reverse strand. The one with the longest flanking 

sequence is chosen to give the orientation of the RefSNP. Hence, RefSNP are 

either on the forward or reverse strand in relation to the genome build used, 

which again can vary between different versions of dbSNP. The alleles are 

usually named with the GATC nucleotide letters.  

 

• Illumina TOP/BOT: Both of the above encoding schemes are dependent on 

the genome build used and can vary with different versions. Illumina therefore 

developed its own strand designation scheme which they use internally [101]. 

This encoding scheme is aimed to solve the genome build problem and is 

genome build independent. Strand designation is defined by taking the flanking 

probe sequence around the variant into account using TOP and BOT strand. 

For unambiguous SNPs (A/C or T/G), A and B allele on the TOP strand denote 

A and T (or C and G, respectively); whereas for BOT strand, A and B allele 

denote T and A (or G and C, respectively). For ambiguous SNPs (A/T or C/G) 

the surrounding sequence is taken into account for strand and allele definition. 

If A or T is on 5' side of the SNP, then it is a TOP strand otherwise it is a BOT 

strand [101]. The alleles can be encoded with the GATC nucleotide letters or 

as allele A and B.  
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• DESIGN: In the case of Illumina microarrays, each SNP chip probe is designed 

against a certain genome build and position. The DESIGN scheme indicates 

the alleles in relation to the strand the probe was designed against.  

Often association studies include data obtained by different groups, which have been 

generated in different centres and therefore are encoded according to different 

schemes. That said, for comparing data of different groups it is crucial that the 

genotyping data is encoded via the same scheme and in relation to the same strand. 

Therefore, the identification of the encoding of the datasets and the conversion to a 

common encoding scheme is essential prior to any downstream analysis.  
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Chapter 5. Imputation  
The ideal situation for association studies would be to compare the highest number of 

genotyped variants between cases and controls. However, the number of genotyped 

variants is restrained by the SNPchip used and even modern chips with > 1 million 

variants only cover a fraction of all genetic variants. To overcome missing study data, 

genotype imputation has been developed as a concept of filling in missing genotypes 

by putting information into a context.  

This can be demonstrated with a “hangman” example: 

 

?at 

The dog chases the ?at 

 

Putting missing information in a context, can provide information on the missing data.  

In genotype imputation, the genotyped data of study samples is compared to a 

reference panel of haplotypes. This reference panel provides genotype information on 

a much larger number of markers. Shared haplotype stretches are identified and 

missing genotypes within a haplotype stretch in the study samples are filled in by the 

alleles observed in the matching reference haplotype. However, it is not always 

categorical which haplotype should be used to fill in missing genotypes for a particular 

sample. For example, in 60% of reference haplotypes genotype A/A was observed at 

a specific site, whereas in the remaining 40% a different genotype A/a was observed. 

Imputation output is therefore a probabilistic output. Based on the observed sample 

data and on the reference data, the genotype with the highest probability is outputted. 

This can be illustrated when solving our hangman example: 

 

?at 

The dog chases the cat – in 97% the ? would stand for a c 

The dog chases the rat – in 3% the ? would stand for a r 
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Models of imputation  

Genotype imputation methods were first developed in 2007 by a group from Oxford 

and the Wellcome Trust Case Control Consortium. The standard model for imputation 

is based on Hidden Markov Model (HMM) [102,103]: 

“A class of statistical model that can be used to relate an observed process across the 

genome to an underlying, unobserved process of interest.” [104] 

The general workflow for imputation of unrelated individuals contains the following 

essential steps [104-106] and is graphically displayed in Figure 6: 

• Strand alignment between study dataset and reference panel: The study 

dataset and the reference panel must be aligned to the same strand in order to 

provide accurate imputation results. 

• Phasing of the study dataset: For each haplotype we have two copies, one on 

each chromosome (maternal and paternal). Genotyping identifies the two 

alleles that can be found on the two haplotypes, but doesn’t identify which allele 

is on which copy of the haplotype. Phasing refers to the separation of genotype 

data into their chromosomal origin to identify which alleles are together on one 

haplotype. Therefore, genotyped data require computationally pre-phasing 

before they can be used for imputation. Pre-phasing means to first phase your 

sample genotypes and then use the estimated sample haplotypes to impute 

ungenotyped variants from a reference panel. 

• After pre-phasing, the haplotypes of each individual in the study dataset are 

compared to the haplotypes in the reference panel. The reference haplotypes 

which match the best to each study sample haplotype are selected. The idea is 

that the haplotypes of the study samples are like a mosaic of haplotypes of the 

reference panel.   

• After identifying the haplotypes with the best match in the reference panel, 

missing genotypes in the study sample are imputed by copying the genotypes 

from the matching haplotypes.  

• Further analysis of SNPs with imputed genotypes is similar to those genotyped.  
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Figure 6 Important steps of imputation process 

 
Legend Shown is the process of genotype imputation.  
1) Haplotypes are detected in the unphased genotype sample.  
2) Those sample haplotypes are matched to reference haplotypes. The best matching haplotypes 
are identified (indicated by the same colouring as the sample haplotype).  
3) Variants are imputed by filling in the genotypes from the matching reference haplotypes in the 
sample haplotypes. Note that there is generally more than one matching reference haplotype.  
Therefore, the corresponding values are filled in probabilistically. E.g., for the first loci of the 
second imputed sample haplotype this is 1/3 for a T and 2/3 for a C. One can convert this to a 
‘best guess’ genotype, which would be a C. 

 

Imputation accuracy 

The whole imputation process is based on probabilities, providing an output with the 

most probable genotype at each SNP. 

 

For Example: 

Allele 1: P(A) = 0.98, P(a) = 0.02 

Allele 2: P(A) = 0.14, P(a) = 0.86 

This sample is outputted with the genotype A/a for this specific SNP. 

The probability with which a genotype is imputed varies, with one genotype being 

imputed with a very high probability to another genotype imputed with a very low 

probability. Probability can also be understood as how likely the imputed genotype 

matches the real (observed) genotype. The probability depends on different factors, 

e.g. the density of surrounding genotyped markers, LD at this certain position, the 

number of samples in the reference panel. In general, the more context information is 

_ _ _ A _ _ G _ _ C _ _

_ _ _ T _ _ T _ _ T _ _

T C T A T T G T T C A A

T C T A T T G T T C A C

C C C T C C T C C T C C

C C C T C C T C C T C C

T C C T C C T C C T C C  

T C C A T T T T T C A A

T C C A T T T T T C A C

… .

_ _ _ A/T _ _ G/T _ _ T/C _ _
T C T A T T G T T C A AC

TC C C T C C T C C T C C

Sample genotypes unphased Sample haplotypes Imputed sample haplotypes

2) Matching to 
reference haplotypes

1) Phasing

3) Filling
in corresponding 
values
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given, and the larger the reference panel is, the higher will be the probability a 

genotype can be imputed accurately.  

Imputation accuracy is the correlation between the real (observed) and the imputed 

genotype. It is important to take imputation accuracy into account when analysing 

imputed data [102]. One way to address imputation accuracy is by taking the allele 

dose into account. Allele dose gives an estimate of how accurately the alternate allele 

at a specific SNP was imputed. A value of 0.97 means that out of all the haplotypes 

with an alternate allele at this site, 97% of them are imputed accurately to the alternate 

allele, if this site was assumed to be not genotyped. The closer the value is to 1.0, the 

more accurately that site has been imputed. 

 

The accuracy has to be interpreted in conjunction with the minor allele frequency. E.g 

in a data set with 1000 samples, different minor allele frequencies affect the accuracy 

as follows: If a marker has a minor allele frequency of 40%, and 390 of 1000 are 

imputed correctly to the minor allele, whereas 10 of 1000 are imputed incorrectly to 

the major allele, the imputation accuracy is 99%. If the minor allele frequency of this 

marker is only 0.1%, and no minor allele is imputed at all, the calculated accuracy 

would even be higher with 99.9%. However, all the information of that marker got lost. 

In order to use this estimate appropriately it is essential to know the minor allele 

frequency of each marker.  

 

To overcome this problem most programs use the squared correlation between 

estimated and true allele dose [102]. The allelic R square (R2) is an imputation quality 

metric for each imputed marker [102]. Values range between 0 – 1 and larger values 

of allelic R2 indicate more accurate genotype imputation.  
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Chapter 6. Human Leucocyte Antigen complex 
The MHC (major histocompatibility complex) is a group of genes encoding for proteins 

involved in the regulation of the immune system as well as other fundamental 

molecular and cellular processes [107]. Human leukocyte antigen (HLA) is the human 

version of MHC which historically was identified as a set of antigens involved in 

transplant rejection, hence the name “major histocompatibility”. 

 

The human leukocyte antigen (HLA) locus is a genomic region on the short arm of 

chromosome 6p21.3 that codes for more than 220 genes. The first complete sequence 

and gene map of the HLA region dates back to the 1990s [108]. Since then the interest 

in and research into the HLA region has been extensive, because of its established 

role in the regulation of the immune system including regulation of inflammation, 

complement cascade and the innate and acquired immune system. The HLA locus is 

essentially involved in the discrimination between “self” and “non-self” and its role in 

autoimmunity and development of autoimmune disease has been well established 

[109,110].   

 

The extended HLA locus spans over 7.7 Mb and is divided into subregions named 

extended class I, classical class I, class III, classical class II and extended class II 

regions from telomere to centromere. The classical HLA region spans over 3.5 Mb 

from ZFP57 to HLA-DPA3 [107]. The region has a high density of genes, containing 

more than 200, coding for ligands, receptors, signalling factors and regulatory factors 

mainly involved in the immune system.  

 

The classical HLA region includes the genes encoding for three basic groups of 

molecules: HLA class I, HLA class II, and HLA class III. A main characteristic of the 

HLA genes is that they are highly polymorphic [111]; multiple variants of each gene 

are known.  

 

Humans have three main HLA class I genes, known as HLA-A, HLA-B, and HLA-C. 

Those genes encode a set of structurally related, highly polymorphic proteins 

historically called antigens as they were identified in transplant rejection. They are 

present on the surface of all nucleated cells. HLA class I proteins are responsible for 



 

 54 

the presentation of antigens from inside the cell to CD8+ cytotoxic T cells. If the 

immune system recognizes the presented antigen as foreign, a cascade is initiated 

resulting in cell destruction.  

 

For HLA class II six main genes are known in humans: HLA-DPA1, HLA-DPB1, HLA-

DQA1, HLA-DQB1, HLA-DRA, and HLA-DRB1. HLA class II genes encode proteins 

that are present almost exclusively on the surface of antigen-presenting immune cells, 

including macrophages, dendritic cells and B cells. MHC II proteins present exogenous 

antigens that originate from outside the cell from foreign bodies e.g. bacteria, to CD4+  

helper T cells, leading to the release of lymphokines and initiating the destruction of 

the antigenic material.  

 

HLA class III genes are less polymorphic and are involved in inflammation and other 

immune system activities.  

 

The polymorphic nature of the HLA genes allows the immune system to react to a wide 

range of foreign invaders.  By June 2019, the 8 classical HLA genes (HLA-A,-B,-C,-

DRA,-DRB1,-DPA1,-DPB1,-DQA1, and -DQB1) had approximately 24,000 named 

alleles, encoding for more than 13,000 protein variants [112]. Specific HLA alleles 

have been linked to the susceptibility of a wide range of disease including different 

autoimmune diseases, infections and cancer. Also for SSNS, the crucial role of the 

immune system has been implicated and associations in the HLA region with the 

disease were identified in previous studies [75,76]. 

 
HLA nomenclature 

The genes encoding for HLA molecules are highly polymorphic and therefore a 

systematic nomenclature is necessary. The naming of the HLA genes is defined in a 

given version of the WHO HLA Nomenclature Report [113]. Each HLA allele name has 

a unique number corresponding to up to four sets of digits separated by colons (Table 

2).  

The HLA type is represented by the digits before the first colon (e.g. HLA-A*02), also 

called 1st field. The next set of digits describes the subtype (HLA-A*02:01), also called 
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2nd field. Alleles who differ within these first two sets of digits have at least one 

nucleotide changed that alters the amino acid sequence of the encoded protein.  

Differences in the third set of digits indicates alleles that differ only by synonymous 

nucleotide substitutions (silent or non-coding substitutions) within the coding 

sequence (HLA-A*02:01:01). Also called 3rd field.  

Differences in the fourth set of digits describes alleles that only differ by sequence 

polymorphisms in the introns, or in the 5' or 3' untranslated regions that flank the exons 

and introns (HLA-A*02:01:01:02). Also called 4th field.  

 
Table 2 Nomenclature of HLA alleles  

Nomenclature Meaning 
HLA the HLA region and prefix for an HLA gene 
HLA-DRB1 a particular HLA locus i.e. DRB1 
HLA-DRB1*13 a group of alleles that encode the DRB1*13 antigen or 

sequence homology to other DRB1*13 alleles 
HLA-DRB1*13:01 a specific HLA allele 
HLA-DRB1*13:01:02 an allele that differs by a synonymous DNA substitution 

within the coding region from DRB1*13:01:01 
HLA-DRB1*13:01:01:02 an allele that differs by DNA substitution outside the 

coding region from DRB1*13:01:01:01 

Legend adapted from WHO Nomenclature Committee for Factors of the HLA System [113] 
 

 

"Low-resolution typing" (antigen or allele family level) is equivalent to serologic typing, 

and describes resolution at the level of the first two digits or 1st field (e.g., HLA-

DRB1*02, -DRB1*03, -DRB1*04) [113]. 

"High-resolution typing" describes the resolution down to the four-digit level or protein 

level (2nd field) (e.g. HLA-DRB1*02:01) [113]. 

“Allelic resolution” is typing down to a single allele as defined in a given version of the 

WHO HLA Nomenclature Report [113]. 

 
Human Leukocyte Antigen imputation 

Direct sequencing of classical HLA alleles is expensive and is not feasible in most of 

the current association studies. The HLA region itself is characterized by high linkage 

disequilibrium and earlier studies demonstrated that specific SNPs can be in strong 

LD to specific HLA alleles [114]. Consequently, a limited number of SNPs can be used 
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to tag the majority of HLA alleles and imputation of HLA alleles from SNP-level data 

has become a widespread method [115]. This process is known as HLA imputation 

and follows the same principles as genotype imputation (Figure 7).  

 

Figure 7 HLA imputation scheme 

 

Legend Shown is the imputation of classical HLA alleles in a genotyped sample set. The 
reference panel contains genotyped SNPs in the HLA region tagging HLA alleles. The best 
matching reference haplotypes are identified and HLA alleles are imputed by filling in the HLA 
alleles from the matching reference haplotypes in the sample haplotypes. 

 

Different software tools have been developed to perform HLA imputation from SNP- 

level data [116]. The downstream analysis is identical to that of genotyped SNPs.   
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Chapter 7. Replication and Meta-analysis 

Replication  

The gold standard for GWAS findings to be considered as valid is to replicate the 

findings in an independent cohort (replication cohort). This means to test if an identified 

allele/variant in one cohort is also associated with the disease in another cohort. This 

is important to overcome concerns about false positive signals e.g. deriving from 

hidden population stratification effects.  

 

In most of the association studies published to date the discovery cohort is of 

European ancestry. Reasons for that were the availability of data as well as increased 

funding opportunities in European countries (larger groups and well-established 

scientists). Also, technological difficulties in non-European populations, e.g. 

requirement of different SNP chips and markers to account for varying allele 

frequencies between different population, led to a bias towards European studies.   

 

Using a replication cohort coming from a non-European background can have 

advantages besides merely replicating the association findings [117]. Association 

studies detect markers which are in LD with the causative variant and very seldomly 

they directly detect the causal variant. In a single ethnicity population this association 

can span over a larger region representing a haploblock. Often it is not clear which of 

the variant within a haploblock has the strongest association with the phenotype or is 

possibly causal for the trait. Differences in LD structure across different populations 

can help narrowing down this region of interest and consequently help in identifying 

the causal variant. Looking at the overlap of haploblocks associated with the trait in 

different populations can help to dissect the causal variant form non-causal variants. 

 

On the other hand, using a replication cohort from a different ethnicity, can also lead 

to difficulties [117]. Differences in allele frequencies between populations can pose a 

challenge when aiming to replicate findings [118]. A given variant detected in a 

European ancestry GWAS may be polymorphic or monomorphic in a replication cohort 

of different ancestry and consequently the risk allele cannot be directly replicated. 

Also, the prevalence and incidence rates of a disease and trait can vary considerably 
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between different ethnic populations not only secondary to differences in the genetic 

architecture, but also because of differences in environmental, lifestyle, and cultural 

characteristics or the combination of both [118]. Nevertheless, many well-established 

SNPs have been replicated in transethnic studies [117].  

 
Meta-analysis of GWAS 

Transethnic meta-analyses are combining GWAS results of the same trait across 

genetically diverse populations and can offer a lot of possibilities [76]. Comparisons of 

GWAS findings across different populations have revealed that the direction of effect 

of the associated alleles (protective or deleterious) on the trait is often consistent 

across ethnically different populations. Transethnic meta-analyses are taking 

advantage of that and are investigating the direction of effect of the risk alleles across 

different ethnical cohorts [119]. This can be useful in the situation of small sample 

sizes where the power of the study is limited and the risk allele might not reach the 

level of significance at P<5×10-8.  Rather than replicating the signals at genome wide 

significance in each cohort separately, combining the results of the separate studies 

can show the same direction of effect and consequently increases the overall 

significance across the different ethnic studies [76]. Therefore, in case of a low 

powered GWAS, a transethnic meta-analysis can detect a common direction of effect 

for risk alleles across different populations and add more strength to the study. 

 

  



 

 59 

Chapter 8. Hypothesis and aims 

Hypothesis 

The hypothesis of this thesis was that there is a genetic susceptibility for steroid 

sensitive nephrotic syndrome. Previous studies had shown that SSNS is a complex 

disease with involvement of the immune system. We hypothesised that besides the 

known association of SSNS and the HLA region, variants outside the HLA region are 

implicated in the disease development.  We further hypothesised that the identification 

of these variants outside the HLA region, will ultimately increase the understanding of 

the involvement of the immune system in the disease and probably guide towards an 

antigen relevant for the disease.  

We decided to use a hypothesis free approach with a population-based study. We 

hence intended to perform a genome wide association study with the aim to first 

confirm previous findings on the association of SSNS with HLA loci and secondly to 

identify loci outside the HLA region associated with SSNS. We aimed to gain 

fundamental mechanistic insights into the disease aetiology with the identification of 

such risk loci.  

Steps 

The thesis was built on following steps: 

a) To collect and genotype cases with SSNS 

b) To find relevant control datasets for the performance of a genome wide 

association study on SSNS 

c) To optimize quality control steps in the process of performing a genome wide 

association study 

d) To perform association testing to identify risk loci associated with the disease 

e) To understand and perform imputation in order to increase the density of 

markers and then repeat the association testing on the imputed dataset 

f) To understand and perform HLA-imputation and perform an association test on 

the imputed HLA alleles 

g) To replicate the findings in a different ethnical cohort 
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h) To perform a meta-analysis of the results in order to increase the significance 

of findings 

i) To investigate the regions of association further and interrogate potential 

candidate genes 

j) To develop a hypothesis for the pathophysiological mechanisms implicated with 

these candidate genes 

k) To develop ideas of how to investigate the suggested pathophysiological 

mechanisms behind the candidate genes as part of future directions  
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Part 2: GWAS Methods 

Chapter 1. Genome wide association study 
 

Genome wide association studies examine if any genetic variant across the whole 

genome is associated with the disease, hence the word genome wide association 

study (GWAS). Tests for GWAS are based on using SNPs. The aim is to identify SNPs 

where one allele is significantly more common in cases than controls. Statistical 

methods to test for association of those SNPs with the disease are the basic allele test 

or logistic regression.  

Basic allele testing 

A basic allele test (BAT) is based on a 2x2 contingency table which represents the 

counts for each SNP for the minor allele a and major allele A in cases and controls 

(Table 3). The test for association is performed for each SNP separately. Under the 

null hypothesis that there is no association between the allele frequency and the 

disease, we expect the allele frequency to be the same in cases and controls [120].   

 

 
Table 3 2x2 Contingency table 

 
 
 
 

 

Legend The table contains the counts of the two possible alleles per SNP, allele A and allele a, 
for cases and controls 

 

A test of association is calculated by a Chi-square test (χ2 test) for independence of 

the rows and columns of the contingency table. The test calculates, if the observed 

frequency of allele A and allele a differs from the expected frequency of allele A and 

allele a between cases and controls [120]: 

 

 Allele A Allele a Row total 
Cases a b a+b 
Controls c d c+d 
Column total a+c b+d Total n 
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χ2 = Σ [ (O - E)2 / E ] 

 

Where: 

O = Observed frequency 

E = Expected frequency 

∑ = Summation 

χ2 = Chi-square value 

 

The expected frequency is defined as: 

E = N / n 

 

Where: 

N = Number of observations 

n = Total n 

e.g., referring to the Table 3, the expected frequency of cases having allele A is 

calculated as:  

E = row total (a+b) x column total (a+c) / table total (n) 

 

Under the null hypothesis the observed and the expected values are close to each 

other and therefore O − E will be a small value. When the observed values are not 

close to the expected values, O – E will be a large value. The chi-square value χ2 is 

thus small when the null hypothesis is true, and large when the null hypothesis is not 

true.  

 

The degree of freedom (d.f.) for a chi-square test is calculated by the following 

formula:  

 

d.f. = (number of rows - 1) x (number of columns - 1) 

 

Hence, for a 2x2 contingency table the d.f. is 1. The degree of freedom together with 

the chosen significance threshold determines the critical value. If the observed chi-

square test value χ2 is greater than the critical value the null hypothesis is rejected. 
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The same principle applies when testing genotypes between cases and controls, only 

that a 2x3 contingency table is required (Table 4). 

 
Table 4 2x3 Contingency table 

 

 

 

Legend The table contains the counts of the three possible genotypes per SNP, AA, Aa and aa, 
for cases and controls 

 

 

In order to perform a basic allelic test on genotypes, genotypes AA, Aa, and aa are 

dissolved into pairs of alleles A and A, A and a, or a and a. Both alleles in a pair 

stemming from the same sample are connected to the same value of the dependent 

variable (case or control). The associations with these dissolved alleles and the 

dependent variable are then tested. 

 

Logistic Regression analysis 

Logistic regression analysis is used to calculate the relationship between a dependent 

and one or more independent variables [121]. The dependent variable is the factor 

which needs to be understood or predicted and the independent variables are factors 

that are suspected to have an impact on the dependent variable. In our study, the 

dependent variable is the occurrence of the disease and the independent variables 

are the genotypes. As the disease status is not a continuous variable (as for example 

weight would be) but a binary outcome (either disease yes or not), a binary logistic 

model was used in our study, which estimates the probability of a binary outcome 

(case or control) based on one or more independent variables (alleles). 

 

The basic logistic regression model looks like: 

 

The expected value of the phenotype Pi = E(Yi | Xi) 

 

 AA Aa aa 

Cases    

Controls    
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Yi is the phenotype for individual i, therefore Yi = 0 stands for controls and Yi = 1 for 

cases  

Xi is the genotype of individual i at a particular SNP, with the 3 possible options 

AA referred as Xi = 0  

Aa referred as Xi = 1  

aa referred as Xi = 2   

 

Extra factors can be added to adjust for potential confounders: e.g. ethnicity (Ei), 

genotypes at other SNPs (Si) etc. 

 

These factors can be included in the formula for the expected value of the phenotype. 

 Pi = E(Yi | Xi, Ei, Si,..) 

 

The main advantage of logistic regression over the basic alleles test is that it can 

handle more than two independent variables simultaneously, which is important when 

correcting for covariates. Covariates are variables or the interaction between 

variables, which could affect the outcome of the analysis without necessarily being 

related to the disease. (A simple example would be the association between ice cream 

sales and bicycle accident. A higher sale of ice cream is associated with a higher 

number of bicycle accidents. This is not because ice cream increases the risk of having 

a bicycle accident, but both are associated with the covariate good weather or the 

season of the year. If not correcting for the factor good weather, one could wrongly 

assume that ice cream sales and bicycle accidents are directly related). Correcting for 

covariates allows to see the effects of the remaining variables on the outcome. This 

also enables to correct for stratification (based on Principal Component Analysis). 

 

Recoding of genotypes to numerical variables is required before performing a 

regression analysis. In order to recode genotypes, the alleles were classified into 

major allele (A) vs. minor allele (a). Major allele was the more frequent one as counted 

in the dataset. Recoding to numerical variables followed an additive model:  

aa=2, Aa=1, AA=0 

 



 

 65 

P- value  

Determining the correct P-value threshold for statistical significance of association 

studies is crucial to control the number of false positive results without greatly 

sacrificing true positives. Statistical significance of a test leads to rejection of the null 

hypothesis. The cut-off is usually set at a p-value below 0.05. This means that in 5% 

the null hypothesis is rejected when the null hypothesis is in fact true and a false-

positive result is detected. This probability is in relation to a single statistical test; in 

the case of a GWAS, where hundreds of thousands of tests are conducted, each one 

has its own false positive probability leading to numerous false positive 

results. Correction for multiple testing becomes necessary. A common method to 

correct the p-value of 0.05 for multiple testing is the Bonferroni correction [122]. The 

Bonferroni correction simply divides the p-value by the number of independent tests 

performed. In the case of GWAS this would mean dividing p by the number of markers 

tested. However, this approach is conservative and would "overcorrect" for variants 

that are not truly independent. In genetic data many variants are in strong LD and 

hence not "independent".  

 

The International HapMap Consortium estimated the ‘effective number of independent 

tests’ when testing all common (MAF ≥ 0.05) variants across the genome. The results 

showed that in a European sample set the number of independent common variants 

is approximately 150 for every 500 kilo base pair region [123]. Extrapolating this 

number to the whole genome of approx. 3.300 mega base pairs indicates 1,000,000 

independent markers over the whole genome. 

 

Hence, for genome-wide significance the p-value of 0.05 should be corrected for 

1,000,000 independent tests using the Bonferroni correction: 

 

p = 0.05 / 1,000,000 = 5 × 10-8; –log10 p = 7.3 

 

The results suggest a significance threshold of 5 × 10−8. In general, a genome-wide 

significance threshold p - value of 5 × 10−8 (-log 7.3) is broadly accepted for common-

variant GWAS and has also been intensively investigated and published in different 
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papers as in international guidelines [124-126]. For our study the same significance 

level of 5 × 10−8 (-log 7.3) was chosen.  

 

Odds ratio 

The odds ratio (OR) is a measurement for the strength of the association between an 

exposure (presence of an allele) and an outcome variable (case/control status) in a 

given dataset. The OR represents the odds that an outcome will occur given a 

particular exposure, compared to the odds of the outcome occurring in the absence of 

that exposure. 

 

The genotypic OR represents the odds for a disease in association with a specific 

allele. This is calculated by comparing the odds of the disease in an individual carrying 

the specific allele (e.g. allele A) to the odds of the disease in an individual not carrying 

the specific allele (e.g. allele a) [127]. 

 

 

Allele count Allele A Allele a 

Cases a b 

Controls c d 

 

 

Odds that allele A occurs in cases = !
"
 

Odds that allele a occurs in cases = #
$
 

Odds ratio (OR) = %$$&	()!(	!**+*+	,	-""./&	01	"!&+&
%$$&	()!(	!**+*+	!	-""./&	01	"!&+&

 = 
!
"
#
$

=	 !×$	
#×"

 

 

With each allele A being present in cases, the odds ratio increases. Therefore, an OR 

of 1 indicates no association between genotype and disease, an OR > 1 indicates that 

the allele A increases the risk of disease and an OR < 1 indicates that allele A 

decreases the risk of disease.  
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Haplotype association test 

Haplotypes can be used, comparable to single SNPs, to investigate an association 

between haplotype or haploblock frequencies and case/control status. The advantage 

is that haplotypes can capture the combined effect of causal variants which are linked 

[128]. The problem about haplotypes is that they cannot be observed directly but have 

to be inferred. Haplotypes can also be tested in blocks, haploblocks. Again, where a 

haploblock starts and ends cannot be directly observed but is inferred indirectly 

through the use of algorithms. Details on haplotype and haploblock definition can be 

found in the introduction part on page 38. 

 

In our study, haploblocks were defined algorithmically with standard settings. The 

Haplotype Block Detection algorithm is described in detail in the defining paper by 

Gabriel et al [88]. The haploblock association test was performed using these 

precomputed blocks.  

 

For the association testing a Chi-squared test was used, which allows to compare the 

frequency of haploblocks between cases versus controls. The same correction for 

multiple testing (Bonferroni method) as used for the BAT was applied. A significance 

level of p < 5 × 10-8 was chosen.  

 

Programs and software tools 

SVS 

All analyses, if not stated otherwise, was performed in Golden Helix SNP & Variation 

Suite version 8.8.1 (SVS, http://goldenhelix.com/products/SNP_Variation/index.html). 

SVS is an analytic program specially developed to perform multifaceted analyses and 

visualizations on genomic and phenotypic data. The recommended format to store 

and utilize data in SVS is in dsf files. The files encode matrices which can be visualized 

in the program. The columns are the makers and the rows represent the individuals. 

The data cells contain the genotype for each individual at the specific marker. The two 

alleles of each genotype are represented in their nucleotide form (A,T,G,C). 
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PLINK 

For some analyses the software toolset PLINK v1.90 beta was used [129-131]. PLINK 

is a free, open-source whole genome association analysis toolset. PLINK has no 

graphical interface, but is a command line program. Input file formats are PED/MAP 

or BED/BIM/FAM. The PED file is a white-space (space or tab) delimited file and 

contains information about the individual, the pedigree and the genotypes. The MAP 

file describes data about each marker. BED/BIM/FAM are the binary version of 

PED/MAP files. The BED file contains the genotype information. And the BIM file the 

information about the marker. The FAM file the pedigree and phenotype information.  

LocusZoom  

LocusZoom is a bioinformatic tool to visualize results of a genome wide association 

study by generating a regional plot of the area of interest [132].  

The software can be downloaded from LocusZoom homepage (http://locuszoom.org). 

LocusZoom provides useful information about the locus including its exact location 

and genes in that area (GRCh37/hg19 build). An example of a locus zoom plot is 

shown in Figure 8. On the x-axis the chromosomal region and the genes in that region 

are displayed. On the y-axis the -log of the p-value is indicated. Per standard settings, 

a purple diamond indicates the SNP with the smallest p-value (index SNP) within the 

region plotted. SNPs are coloured differently based on their level of LD to the index 

SNP. The LD is calculated from the 1000 Genomes European reference panel. 

Recombination hotspots are indicated by blue vertical lines [132].  
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Figure 8 Example for locus zoom plot 

 

Legend The chromosomal position of the markers is represented on the x-axis corresponding to 
the human genome GRCh37/hg19. The -log p-value of each marker is on the y-axis. The index 
SNP (usually the one with the lowest p-value) is annotated with a purple diamond. The colouring 
of the remaining SNPs indicates the level of LD (r2) to the index SNP.  

 

Power calculation 

Power calculation was performed using the Michigan Genetic Association Study power 

calculator (https://csg.sph.umich.edu/abecasis/gas_power_calculator/index.html). 

As input parameter the number of cases and controls with an assumed disease 

prevalence of 1:10,000 and a significance level of 5×10-8 was used. Calculated was 

the minimum genetic risk score that can be detected assuming an additive model with 

a power of 0.8, when the allele frequency in controls is 0.1. 
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Chapter 2. Cases and Controls 
 

In order to perform a successful GWAS cases and controls need to be carefully 

identified and it has to be ensured that data is of high quality. Details on case and 

control collection as well as quality control steps are provided in the following chapters.   

Case cohort 

Patients with SSNS enrolled in this study were identified by different collaborators 

(Table 5). All patients were assessed carefully and diagnosed with nephrotic syndrome 

as per KDIGO 2012 guidelines [8]: 

• Oedema 

• Protein excretion ≥40 mg/m2/hour, or Urine Protein/Creatinine Ratio ³ 

200mg/mmol, or 3+ Protein on urine dipstick 

• Hypoalbuminaemia £ 25g/l (£ 2.5g/dl) 

Steroid sensitive NS was defined according to KDIGO 2012 guidelines [8] if the patient 

achieved complete remission (urine protein/creatinine ratio < 20 mg/mmol or < 1+ of 

protein on urine dipstick for 3 consecutive days) within 4 weeks of corticosteroid 

therapy. No distinction was made between patients who had none, one or multiple 

relapses or were steroid dependant.  

 

Excluded were all patients who developed nephrotic syndrome secondary to systemic 

diseases, malignancies, medications, and other conditions. An overview of the case 

datasets from different collaborators is provided in Table 5.  
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Table 5 Overview of case datasets provided by collaborators 

Dataset Number Comment 
European collaborators 

DB (family) samples 40 UK cohort with a high rate of multi-ethnic migrants 
DB samples 89 UK cohort with a high rate of multi-ethnic migrants 
NW samples 11 UK cohort with a high rate of multi-ethnic migrants 
LEV samples 14 Belgium cohort, exact ethnicity not provided 
European samples 109 European cohort, exact ethnicity not provided 
Dutch samples 109 Dutch cohort, exact ethnicity not provided 

PREDNOS 178 Participants in the PREDNOS study 
(PMID: 31156083) 

PREDNOS2 162 Participants in the PREDNOS2 study 
(PMID: 24767719) 

Total 712  

South East Asian collaborators 

JK (family) samples 10 Asian cohort, exact ethnicity not provided 
JK 1 samples 38 Asian cohort, exact ethnicity not provided 
JK 2 samples 100 Asian cohort, exact ethnicity not provided 
Asian samples 203 Asian cohort, exact ethnicity not provided 
Sri Lanka samples 162 Sri Lanka cohort, exact ethnicity not provided 
Total 513  

Legend DB, NW, LEV, JK: Initials of the individual collaborators. PREDNOS: PREDnisolone in 
NephrOtic Syndrome; PREDNOS2: Trial of short course daily prednisolone therapy at the time of 
upper respiratory tract infection in children with relapsing steroid sensitive nephrotic syndrome. 

 
Sample preparation 

After informed consent was obtained, based on the relevant locally approved 

protocols, DNA was extracted from the patients’ whole blood samples and sent to the 

laboratory at the Royal Free Hospital, London. Each sample was assigned an internal 

sample ID. The sample ID contained information on the collaborator where it stemmed 

from together with a unique sample number. All information that could directly trace 

back to the individual (such as names, date of birth, etc.) were removed for data 

protection purposes. The samples were then plated on 96-well plates with 200ng of 

DNA in each well. Genotyping itself was performed by a specialised team at the core 

facility at ICH (Institute for Child Health) UCL (University College London) Genomics. 
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Genotyping 

The SNPchip chosen for our study was the Infinium Multi-Ethnic Global BeadChip v.A1 

(MEGA chip) from Illumina, CA, USA. The chip contains more than 1.7 million 

(1,779,818) markers and was designed to generate a multi-ethnic genotyping chip, 

that can be used to investigate associations in populations from different ethnicities. A 

special characteristic of the SNPchip was that it contains a large number of both 

common and rare variants, which will be relevant in the downstream analysis of our 

study. The data sheet with detailed information can be downloaded on 

https://www.illumina.com/content/dam/illumina-

marketing/documents/products/datasheets/multi-ethnic-global-data-sheet-370-2016-

001.pdf 

Illumina (Array type) bead array processing 

Processing was carried out at UCL Genomics (UCL Great Ormond Street Institute of 

Child Health, London) in accordance with the Infinium LCG Assay protocol (Illumina 

Inc, San Diego, USA).  Briefly, in a deep well plate 200ng of high quality genomic DNA 

is whole genome amplified overnight (37°C, 20-24 hours), then fragmented (37ºC for 

1 hour and 15 mins in a hybridisation oven), precipitated and resuspended in 

hybridisation buffer.  Samples are hybridised onto beadchips using a liquid handling 

robot (Freedom Evo, Tecan Ltd, Switzerland) and incubated at 48°C for 16-24 hours. 

Unhybridized and non-specifically hybridized DNA is washed away, and the beadchip 

is prepared for staining and extension. Single-base extension of the oligos on the 

beadchip, using the captured DNA as a template, incorporates detectable labels on 

the beadchip and determines the genotype call for the sample. The process of single 

base extension and staining is carried out using liquid handling robot (Freedom Evo, 

Tecan Ltd, Switzerland). The staining procedure itself involves signal amplification by 

multi-layer immunohistochemical staining. Finally, the beadchips are scanned using 

the iScan scanner with autoloader (Illumina Inc, San Diego, USA). Data is generated 

in raw intensity files (IDAT) format. The raw IDAT files are processed by 

Genomestudio software (https://www.illumina.com/techniques/microarrays/array-

data-analysis-experimental-design/genomestudio.html) 
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Control cohort 

We initially used a set of 432 European controls from a previous project which were 

collected by collaborators at Oxford University (Oxford controls). By searching for 

publicly available datasets, we subsequently identified two additional control sets, one 

from the Illumina website and one from the WTCCC project. In summary the control 

dataset was obtained from 3 independent sources. The details on each dataset are 

described below.  

Oxford controls 

This dataset was already available in our laboratory and was previously provided by 

collaborators from Oxford University. Data is also available through the European 

Genome Archive (EGAD00010000144 and EGAD00010000520) [133,134]. The 

dataset contained 432 samples consisting of patients who declared themselves as 

European. Genotyping was performed at Oxford University on a HumanOmniExpress-

12 v1_J (n=144) Chip with 730,525 markers and on a HumanOmniExpress-12v1_A 

(n=288) Chip with 733,202 markers. The combined dataset, which only included 

markers present in both datasets, consisted of 730,397 markers. 

Illumina ethnicity controls 

This dataset was available from the Illumina website (http://www.illumina.com) and 

contained 270 samples. These samples were based on the Hapmap project dataset 

and comprised individuals from 4 different populations: CEU (Central European), YRI 

(African), JPT (Japanese) and CHB (Han-Chinese). The dataset is therefore referred 

as the Illumina ethnicity controls. 90 of the samples were known to be of European 

ancestry and were used as controls for the European cohort analysis. Genotyping was 

performed on a HumanOmniExpress-12v1_C Chip with 731,442 markers.  

Wellcome Trust Case Control Consortium controls 

We further identified a large control set from the Wellcome Trust Case Control 

Consortium (WTCCC) which contained 5,604 samples. This is the combined dataset 

of the 1958 birth cohort and the UK blood service control group controls. The data was 

made available through the WTCCC website (https://www.wtccc.org.uk) and 

published previously as a control set for GWAS [135].  
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The 1958 birth cohort (n=2,867), also known as the National Child Development Study, 

is a control set of individuals born in England, Wales and Scotland in 1958 [136]. 

Individuals were initially studied for perinatal mortality  and over 17,000 births survivors 

were followed up to 42 years [136]. DNA was extracted from subjects with self-

reported white ethnicity. The second subset was the UK blood service controls 

(n=2,737), which are provided by the UK blood service and includes DNA from healthy 

blood donors. The subjects were about equally divided into males and females and 

both control subgroups were geographically widely distributed across the UK.  

Genotyping of both datasets was performed on an Illumina Human 1.2M Duo custom 

BeadChip with 1,106,184 markers. Details can be found on https://www.wtccc.org.uk 

and https://www.ebi.ac.uk/ega/studies/EGAS00000000028.  

An overview of the case and the 3 control datasets is provided in Table 6. 

Table 6 Overview of case and 3 control datasets  

Dataset Case/Controls Sample number European Microarray Variant count 
SSNS Case 1225 ? MEGA 1,779,818 
Illumina Control 270 90 OmniExpress 731,442 
Oxford Control 432 432 OmniExpress 730,397 
WTCCC Control 5,604 5,604 DuoCustom 1,106,184 

Legend WTCCC: Welcome Trust Case Control Consortium  
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Chapter 3. Data encoding and REMEDY  
Many research groups outsource their genotyping process or use datasets genotyped 

in different labs and batches. This can lead to differences not only during the 

genotyping process but also how the data is exported from Genomestudio. 

Genomestudio allows the data to be exported in different file formats as well as 

different encoding schemes. The file format can usually be identified by visual 

examination of the dataset, whereas the identification of the encoding scheme of a 

dataset can be challenging. However, the knowledge of the encoding is essential to 

compare datasets of different sources as well as to identify and correct inconsistencies 

between the different batches of data prior to further analysis.  

 

In our study we used cases and controls sourced from different centres and genotyped 

in different laboratories. The initial association analysis of cases versus controls 

showed a very noisy picture (Figure 9) with thousands of markers above the 

significance threshold line. This suggested systematic errors and we started to 

investigate systematic differences between the datasets, suspecting differences in the 

encoding schemes.   
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Figure 9 Manhattan plot before processing with REMEDY 

 
Legend Manhattan plot for our initial SSNS GWAS. The red line indicates the genome wide 
significance threshold. The plot demonstrates high levels of noise referring to thousands of 
markers above the genome-wide significance threshold line. This suggested systematic 
differences between the datasets which led to the development of REMEDY.  

 

Comparing data with different encoding schemes 

Raw data generated on Illumina arrays is processed by converting the raw intensity 

files (IDAT) to a common output format using Genomestudio. The user can choose 

between different encoding schemes for the output data:  
 

• DESIGN: This output format is the most basic and does not change the 

encoding scheme of genotyped data from the raw data. This scheme is strand 

nonspecific and calls the variant according to the strand on which the probe 

was designed against. This can be a mix of TOP/BOT or +/- or FWD/REV. 

• TOP: This output format provides data in the TOP/BOT encoding scheme.  

• FWD: This output format provides data in the FWD/REV encoding scheme.  

 

More details on each encoding scheme can be found in the introduction part on page 

45. Depending on the genotyping laboratory, personal preferences etc. the output 
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format of datasets can vary. These data cannot be compared directly but the source 

encoding and strand designation of the different datasets need to be defined first and 

then converted to a unified encoding format before proceeding with further analysis. 

 

The information how to convert between the encoding schemes can be found in the 

Illumina manifest file. The Illumina manifest file for each microarray provides 

information on the internal Illumina ID, SNP rsID, genome build used and the 

calculated strand designation for the TOP/BOT and FWD/REV strand (Figure 10).  
 

 

Figure 10 Example for strand information provided in the Illumina manifest file  

 
 
Legend: Screenshot from the Illumina online web page (http://emea.support.illumina.com/ 
bulletins/2016/05/infinium-genotyping-manifest-column-headings.html). The internal Illumina ID 
(IlmnID) provides the following information: SNP ID: rs number of the SNP; Genome Build: The 
NCBI Genome Build the specific probe in this specific manifest is referring to; Strand designation: 
The calculated strand encoding for TOP/BOT and FWD/REV strand of the Illumina strand 
(DESIGN strand).  

 

This file can be used to convert between any of the schemes mentioned. The key is 

within the Illumina probe ID which provides both its TOP/BOT and FWD/REV strand 

designation. For example, T_F indicates TOP and FWD, while B_R would indicate 

BOT_REV. The DESIGN scheme is used as a bridge to transcode between the 

different schemes. For example, to change from TOP to FWD, the genotypes would 

be converted to the DESIGN encoding first using the internal Illumina ID information 

and then encode to the destination scheme again using the internal Illumina ID 

information. With the manifest file and this knowledge converting one dataset to the 

other or recoding all to a common encoding scheme is possible. 

During the course of investigations, we developed together with Chris Cheshire, a 

computer scientist PhD student [137], a software based on this knowledge, which 
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enabled to identify the encoding scheme of the data and to convert between different 

encoding schemes. The software was named REMEDY. A short summary of the 

characteristics of the program is given below.  

 

REMEDY 

In summary, REMEDY is an in-house software utilised to re-encode genotypes 

uniformly to the Genomic Forward encoding scheme based on the genotyping 

manifest file following internal quality control and matching to dbSNP [137]. 

 

REMEDY accepts two different file formats of genotyped data as input, either the 

Illumina final report or the Illumina matrix format. The Illumina matrix format is the 

simpler format, giving one variant per row for one sample per column. The Illumina 

final report format gives one variant per sample per row and additional information on 

genotyping, probe information in the following columns. 

 

After loading the dataset into REMEDY, the rsID of each variant is matched to dbSNP 

to obtain more information about the variant. Based on this, quality control steps are 

performed. This includes filtering for variants that are not matching to dbSNP, are 

multiallelic in dbSNP, are structural variants or where meta-data suggest problems 

with the variant. The dbSNP version REMEDY matches to is dbSNP version 150. 

 

To detect the encoding scheme of a dataset each SNP is compared to the same SNP 

genotyped in different schemes. The scheme with the highest proportion of matches 

over the whole genotyped data is defined as the one used for this dataset. For 

example, if all genotypes match to the FWD version of a SNP then it can be assumed 

the dataset itself was encoded to FWD. If the match is roughly 50/50 split between 

TOP and FWD it can be assumed that the dataset was DESIGN encoded, as this 

scheme is strand unspecific. 

 

The workflow of REMEDY is summarised in Figure 11.  
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Figure 11 REMEDY pipeline  

 
Legend The in-house software REMEDY pipeline, demonstrating conversion from raw data 
files to FWD encoded data for use in subsequent analysis. 

 

All case and control datasets were run through REMEDY. The detected encoding 

schemes for each dataset are shown in Table 7.  

 
Table 7 Overview of encoding schemes of case and control datasets 

Dataset Status Microarray Encoding 
SSNS Cases  MEGA DESIGN 
Illumina Controls OmniExpress FWD 
Oxford Controls OmniExpress FWD 
WTCCC Controls DuoCustom TOP 

Legend SSNS: Steroid sensitive nephrotic syndrome; WTCCC: Wellcome Trust Case Control 
Consortium; FWD: FWD/REV encoding scheme; TOP: Illumina TOP/BOT encoding scheme; 
DESIGN: Illumina DESIGN encoding scheme 

 

All datasets were converted to FWD encoding of the FWD/REV encoding scheme and 

imported into SVS (SNP & Variation Suite v8.6.0). 

  

Input: Genotyping data in Illumina Final report or 
Matrix format 

Read rsIDs in chip manifest file and match to dbSNP

Filtering of:
Non-matching variants

Multiallelic variants
Structural variants 

Erroneous markers based on meta-data

Detect encoding scheme

Re-code genotypes to FWD encoding

Output: Genotyping data in variant call file (VCF) and 
FWD encoded  
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Chapter 4. Quality control  
The genotyping process is not perfect and bears many possible sources of errors 

leading to poor quality data. Poor quality of the DNA samples, contamination or mix-

up of the samples, poor DNA hybridization to the array or poorly performing genotyping 

probes are some possible sources of errors. Thus, samples and markers have to 

undergo strict quality assessment and control (QC) before conducting an association 

analysis.  

 

Our quality control procedures are based on protocols published in Nature [138] and 

on suggestions of the Golden Helix SNP & Variation Suite (SVS) manual. QC steps 

were adapted throughout the thesis to optimize the findings of our study.   

 

The QC procedure consists of steps applied per sample, per marker and to address 

population stratification. An overview is given in box 2. 

Box 2 Summary of QC steps 

QC step Function 
Per sample 

Call rate To exclude individuals who have a high rate of missing 
genotypes. 

Heterozygosity rate 
To remove individuals with a high or low rate of heterozygous 
genotypes as this could indicate poor quality sample or 
inbreeding.  

Identity by descent Measurement for relatedness of samples. To exclude duplicated 
or related individuals. 

Per marker 

X/Y chromosomes To account for statistical and methodical challenges in analysing 
sex chromosomes.  

Call rate To exclude markers that are missing in a large proportion of 
individuals.  

Allele count To exclude markers with more than 2 alleles. 

Minor allele frequency To exclude markers where the minor allele has a frequency 
below a certain threshold. 

Hardy-Weinberg Equilibrium 
To exclude markers that deviate from the Hardy-Weinberg 
Equilibrium as this could indicate genotyping error or population 
selection. 

Population stratification correction 

Principal component analysis 
To select a homogenous ethnical group as allele frequencies 
can differ between ethnicities and therefore population 
stratification can lead to false association results.  
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QC steps per samples 

First, QC steps per sample were carried out. As genotyping of cases and controls was 

performed on different SNP chips and in different centres, quality control steps per 

sample were first done independently in the case and each control set and 

subsequently on the combined case-control set.  

Call rate  

The call rate (CR) describes the proportion of genotypes per sample with non-missing 

data. Samples with a high number of missing genotypes will present with a low call 

rate. This can be secondary to variation in DNA quality and concentration and would 

affect the overall results of an association study. Therefore, samples with missing data 

of more than 10% (equal a call rate below <90%) were removed.  

Heterozygosity rate 

The heterozygosity rate describes the proportion of heterozygous genotypes for each 

individual. Samples with an unexpectedly high number of heterozygous genotypes 

could reflect low sample quality whereas samples with an unexpectedly low number 

of heterozygous genotypes can be a sign of inbreeding.  

To detect samples with deviating heterozygosity rates we first calculated the mean 

heterozygosity rate for all samples for each dataset and then removed samples 

deviating with more than 3 standard deviation (SD) +/- from the mean. 

Identity by descent  

A GWAS is based on single, unrelated individuals. However, duplicated samples could 

be missed or individuals could be related more closely to another than assumed. 

Inclusion of those samples can bias the results.  

Identity by descent  (IBD) is a measure of how many alleles at any marker in each pair 

of two individuals are shared because of a common ancestor [139]. IBD reflects the 

grade of relatedness of those two individuals.  

• Duplicate samples or identical twins should have 100% of alleles coming from 

the same ancestral chromosome.  
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• Siblings should have 50% of the alleles coming from the same ancestral 

chromosome 

• Half-siblings should have 25% of the alleles coming from the same ancestral 

chromosome 

• Unrelated individuals should theoretically have 0% of the alleles coming from 

the same ancestral chromosome. 

 

Based on this, the thresholds should be IBD =1 for duplicates or monozygotic twins, 

IBD =0.5 for first-degree relatives, IBD =0.25 for second-degree relatives and IBD 

=0.125 for third-degree relatives. Due to genotyping error, linkage disequilibrium and 

population structure there is often some variation around these theoretical values and 

it is recommended to remove one individual from each pair with an IBD >0.1875, which 

is halfway between the expected IBD for third- and second-degree relatives [138]. 

Therefore, only samples with an IBD ≤0.1875 were included in the study.  

 

For the analysis of relatedness, it is recommended to use only independent markers. 

This can be achieved by linkage disequilibrium (LD) pruning. LD pruning is a method 

to identify and deactivate markers that are in LD with other markers that are left active. 

This will reduce the overall number for markers to a subset which is independent of 

each other. LD pruning was performed in SVS with the default settings. Only LD 

pruned markers were used for the analysis of relatedness.  

 

To identify a maximum of unrelated samples in our case and controls dataset we used 

the software PRIMUS_v1.9.0 [140], which can be downloaded at 

https://primus.gs.washington.edu/primusweb/res/documentation.html 

 

PRIMUS is an open source program for pedigree reconstruction (PR) and 

Identification of  the Maximum Unrelated Set (IMUS) [140]. Only the IMUS mode was 

used for our study and is an algorithm that identifies the maximum set of unrelated 

individuals with a defined threshold of relatedness in any dataset [140]. PRIMUS is 

run in command line option and uses PLINK. A relatedness threshold of second 

degree was chosen for the case and control datasets. This was operated by adding in 

PRIMUS the command line option ‘‘--rel_threshold 0.1875.’’  
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Following command was used for analysis: 

 
#Convert PED/MAP to BIM/BED/FAM 
plink --file ssnsibd 
 
#Calculate relatedness 
plink --bfile plink --genome 
 
#Run PRIMUS with higher threshold 
PRIMUS_v1.9.0/bin/run_PRIMUS.pl -p plink.genome --no_PR -t 
0.1875 -o PRIMUS_0.1875 
 
The output file indicating the maximum of unrelated samples was imported into SVS 

for further analysis. 

QC steps per markers 

In a large GWAS, where hundreds of thousands of markers are tested, even a small 

percentage of erroneous markers, can lead to a thousand false signals. In contrast, 

with every marker removed from the study a potentially important association may be 

lost. Therefore, it is essential to find the optimal balance between removing markers 

that can cause false positive results and omitting essential information.  

 

In order to optimize QC per markers, two tests were performed:  

 

a) different thresholds for each QC step were tested and examined with respect to the 

results in the association study and  

b) the difference between applying the QC steps on the combined case and control 

set or on each dataset separately was examined.  

Results are displayed in the results part on page 106.  

 

Following QC steps were applied on markers.  
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Exclusion of X and Y chromosome 

X and Y chromosome were excluded from subsequent analysis. This has been a 

common decision for many published GWAS because of the unique analytical 

challenges the sex chromosomes present [141]. The significance of variants on the X 

and Y chromosomes is harder to asses, first simply because there are two copies of 

X in women and only one in men, so the signals obtained for variants when genotyping 

are lower in men than in women. Further, one of the two X chromosomes gets 

randomly inactivated in female cells (X inactivation). It is not yet possible to tell which 

variant is on the active and which is on the silent version of the X chromosome.   

Allele count  

The allele count (AC) describes how many alleles can be found at a specific marker. 

One marker can be either biallelic or multiallelic. E.g. Looking at a single nucleotide 

polymorphism, some individuals may carry the nucleotide A and others the nucleotide 

C for this specific SNP. This SNP would be called a biallelic marker with one allele 

being nucleotide A and the other allele nucleotide C. If further individuals carry the 

nucleotide T at this specific SNP, then the SNP would have 3 possible alleles, 

nucleotide A, C and T and would be called multiallelic (>2 alleles). In association 

studies it is difficult to account for multiallelic SNPs, simply because of the test 

statistics, and therefore most SNPs are chosen to be at sites which are biallelic. If 

nevertheless markers with AC more than 2 were found in the sample set, those were 

excluded in this study.  

Call rate  

The call rate (CR) of a specific marker describes the percentage of individuals in which 

it is genotyped. A low CR of a marker can reflect problems during genotyping or with 

the sequencing method for this specific marker. Classically, markers with a call rate 

less than 95% are removed from further study, though thresholds can vary depending 

on the quality of data [138]. We tested different scenarios for cut-off levels shown in 

the results part on page 107.  
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Minor allele frequency 

The minor allele frequency (MAF) indicates the frequency of the least often occurring 

allele at a specific locus. Generally, SNP arrays include SNPs with a wide distribution 

of MAF from nearly monomorphic (MAF <0.5%) to very common (MAF ≈50%) SNPs. 

Historically, many GWAS focused on SNPs with a MAF >10% [142]. This was because 

of concerns about genotyping accuracy of low frequency alleles and because larger 

sample sizes are required to detect association at those markers. Research suggests 

that the MAF threshold should depend on the sample size of the study, with larger 

sample sizes allowing for lower MAF thresholds [143,144].  

 

The SNP chip used for genotyping of our case dataset contained a high number of low 

frequency alleles. Different MAF thresholds, 5%, 1% and 0.1%, were explored to find 

the optimal cut-off for our study. Results are shown in the results part on page 109. 

Hardy-Weinberg Equilibrium  

The Hardy-Weinberg Equilibrium (HWE) theorem assumes that allele frequencies in a 

population remain stable over generations. This is under the assumptions that a) 

mating is random, b) the population is not under selection, c) it is infinitely large, d) no 

mutations occur and e) no emigration or immigration happens [145].  

 

Based on the assumptions that the allele frequency is stable, the genotype frequencies 

can be calculated according to following equation: 

 

p2 + 2pq + q2 = 1 

 

p stands for the frequency of allele A and q for the frequency of allele a 

 

According to the equation: 

 

p2 gives the frequency of homozygous individuals carrying the genotype “AA” 

2pq gives the frequency of heterozygous individuals carrying the genotype “Aa” 

q2 gives the frequency of homozygous individuals carrying the genotype “aa” 
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In genetic association studies, where the number of individuals with each genotype is 

known, the allele frequencies can be calculated and assessed for deviation from the 

HWE. If there is a significant deviation from the HWE, with a chosen p-value as cut-

off at a certain marker this could be a sign of violation of the rules above or, more 

likely, of genotyping errors. Therefore, markers not following the HWE are excluded 

from further analysis.  

 

Different cut-off levels were tested to find the optimal level for this study. The results 

are shown in the results part on page 113. 

Population stratification 

Population stratification describes the presence of different subpopulations (e.g. 

individuals with different ethnic backgrounds) in a study [146].  

Different subpopulations can have differences in their allele frequencies not secondary 

to the disease but due to different ancestry, which can lead to false positive 

associations and/or mask true association [146]. In general, a careful selection of 

cases to an ancestry matched control set can minimize the effect of population 

stratification. However, in our study the case cohort consisted of people from different 

ancestries, with no well-defined ethnical background, whereas the control cohorts 

were self-declared Europeans. We had to overcome the problem of different ethnicities 

in our case cohort and find a method to select for Europeans only. The method of 

principal component analysis was chosen and performed in SVS.   

Principal component analysis and inflation factor lambda 
 
A principal component analysis is a statistical technique of finding patterns in a high 

dimensional dataset. It aims to reduce multidimensionality in a dataset with multiple 

correlated data points to a smaller, interpretable format [147]. With mathematical 

methods correlated variables are converted into a linear set of uncorrelated variables, 

the principal components. The first principal component represents the largest 

possible variance in the dataset and accounts for as much of the variability as possible. 

The second principal component represents the second largest variance, and so on. 

The principal components can be plotted in a two dimensional manner and visualized 

as a scatter plot [148]. 
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The computational requirement for PCA is depending on the number of samples and 

markers. Consequently, the process of principal component analysis can last up to 

more than 12 hours if performed on a large dataset with many markers and samples, 

even on a high-performance modern computer. A way to reduce the computational 

requirement and consequently the time needed, is to reduce the number of markers 

on which the principal component analysis is performed on. Hence, before performing 

PCA on our dataset, we tested if the reduction of markers affects the results of the 

principal component analysis. We reduced the number of markers in 5 steps and 

compared the first 5 principal components. A reduced number of 20,000 markers did 

not affect the results and consequently 20,000 randomly selected markers were used 

to perform principal component analysis in our dataset. 

 

The first 10 principal components were calculated for all cases and European controls 

using EIGENSTRAT and an additive model. EIGENSTRAT is the name for the 

program, developed by the Broad Institute, which implements the PCA correction 

technique in SVS [147]. Different cut off levels for removal of outliers were tested. The 

analysis was performed six times: with no removal of outlier, and with removal of outlier 

with a standard deviation of more than 4, 3.5, 3, 2.5 and 2 respectively. The results 

are shown on page 102. 

 

Further, the inflation factor lambda was calculated for each scenario. The genomic 

inflation factor lambda is a way to measure stratification in a population [149]. It is 

calculated as the ratio of the median of the empirically observed distribution of alleles 

to the expected distribution of alleles in the situation of a basic allele test [149]. A 

moderate to large lambda (1.1-1.2 and >1.2) reflects a higher grade of stratification 

(less homogeneous dataset), whereas a small lambda (1.0-1.1) reflects a lower grade 

of stratification (more homogenous dataset). A large lambda can cause false positive 

associations. To achieve a small lambda usually many outlier samples must be 

excluded, thereby reducing the number of samples in a dataset. This on the other hand 

can be problematic in the situation of a limited number of cases/controls or a rare 

variant [150]. 
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Analysis was once performed without previous quality control steps applied on 

markers and then with quality control steps applied on markers, in order to see if this 

influences the PCA results. PCA without previous QC steps on markers revealed a so-

called batch effect (stratification secondary to the inclusion of different batches of 

datasets in the analysis). Thus, all PCAs were done after QC steps.   
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Chapter 5. Imputation  
Imputation is a standard method in GWAS for increasing the marker density and thus 

the resolution of association testing (see introduction page 49).  

Beagle  

For imputation of our datasets Beagle version 5.0 was used [151]. It was developed 

by Browning at el and first published in September 2006. Since then it has undergone 

several updates and new versions have been released. The latest version at the date 

of this study was version 5.0, which was released in 2018 [151].  

Reference panel 

In 2007, the main reference panel was provided by the HapMap Project consisting of 

210 individuals with 420 different haplotypes for 3.1 million SNPs [152]. In 2015, the 

phase 3 reference panel of the 1000 Genomes Project was released consisting of 

2,504 individuals from 26 worldwide populations with 5,008 different haplotypes for 

each of 88 million SNPs [153]. This reference panel (1000 Genomes Project Phase 3 

data version 5a) was used for this study and was downloaded from the Beagle 

homepage (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/).  

 

Imputation was performed on the combined case and control dataset, after stringent 

QC for samples and markers. The detailed approach to imputation consisted of 

following steps. 

Pre-imputation filtering  

Only cases and controls of the final European dataset were processed for imputation. 

Markers were removed because of CR <0.99, AC >2, MAF <0.01 in all datasets and 

outside the HWE p<0.001 in the control dataset. The filtered and combined dataset 

was processed in variant call format (vcf). 

Split vcf file into 22 chromosomes 

In order to speed up the imputation process via parallelization the vcf file was split into 

individual chromosomes using vcf tools. The splitvcf utility splits a single vcf file into 
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multiple vcf files corresponding to the respective chromosome. The following 

command was used: 

 
vcftools --vcf dataset.vcf --chr 1 --out chr1 –recode 

 

Displayed is the command for chromosome 1. The command was repeated 22 times 

for each of the autosomal chromosomes.  

Imputation via Beagle v5  

After splitting the vcf file into each chromosome imputation was performed with Beagle 

v5 using following command: 

 
java -Xmx26g -jar /usr/lib/jvm/java-8-openjdk-
amd64/jre/lib/ext/beagle5.jar 
map=/mnt/data/projects/imputation/beagle/map/plink.chr1.GRCh37
.map 
gt=/mnt/data/projects/imputation/input/dataset_chr1.recode.vcf 
ref=/mnt/data/projects/imputation/beagle/1kgo_ref_panel/chr1.1
kg.phase3.v5a.b37.bref3 
out=/mnt/data/projects/imputation/imputed/dataset_chr1_output 
window=10.0 
 

As previously, the command was repeated 22 times for each of the autosomal 

chromosomes.  

Output files 

Beagle generates two output files. The log file gives a summary of the analysis that 

includes the Beagle version, the command line arguments and the run time. The vcf.gz 

file is a bgzip-compressed vcf file that contains phased, non-missing genotypes for all 

non-reference samples. Further, following information for each marker can be found 

in the vcf file. A “DR2” field which gives the estimated squared correlation between the 

estimated allele dose and the true allele dose. An “AF” field which gives the estimated 

alternate allele frequencies in the imputed samples. The “IMP” mark if the marker is 

imputed. 
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Post imputation filtering  

The principles of quality control per marker post imputation is similar to those for 

genotyped markers. The aim is to remove all markers, that could cause false positive 

associations. Additionally, imputation accuracy has to be addressed during the quality 

control process.  

Filtering on allelic R square 

The first step was to account for imputation accuracy. Imputation is based on 

probabilities. The genotype outputted is the most probable one for each sample at 

each marker according to a complex calculation algorithm [102]. One way to address 

imputation accuracy is by using the allelic R square. The newest version of Beagle 5.0 

has replaced the allelic R square by the dosage R square. DR2 is the estimated 

squared correlation between estimated allele dose and true allele dose. More details 

on imputation accuracy and the allelic R square can be found in the introduction part 

on page 51. 

The idea is to remove all markers which are imputed below a certain threshold of DR2. 

Beagle itself does not give a suggestion for a cut-off value. Other imputation programs, 

e.g. IMPUTE2, mention a cut-off of 0.3-0.5 in their manual [154] however they point 

out that there is no universal cut-off value for post-imputation SNP filtering, but the 

value depends on the specific analysis. In the manual of MACH, another imputation 

program, a minimal cut-off of 0.3 is recommended for filtering out poorly imputed 

markers of  bad quality [155]. A recently published GWAS suggested a more stringent 

cut-off such as >0.8 [156]. In accordance with this study we also decided to use a cut-

off of 0.8. 

The first filtering step post imputation was to retain only those markers with a DR2 

>0.8 using bcftools. Following command line instructions were used for filtering for 

DR2 score: 

for chr in {1..22}; 
do echo ${chr} 
bcftools filter -i 'DR2>=0.8' -Oz 
imputed/chr${chr}_imputed.vcf.gz -o 
filtered/chr${chr}_DR2_0.8.vcf.gz 
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Copy number variants 

Imputation not only infers genotypes where SNPs are present, but also those with 

copy number variants or insertion and deletions. Any kind of variant, in which more 

than 1 nucleotide is altered, is complex in the downstream analysis and therefore can 

cause false positive results. We therefore only kept SNPs for further analysis.  

 
#!/bin/bash 
for chr in {1..22}; 
do echo ${chr} 
plink2 --vcf filtered/chr${chr}_DR2_0.8.vcf.gz --vcf-idspace-
to _ --const-fid --out filtered/chr${chr} 
plink2 --bfile filtered/chr${chr} --make-bed --snps-only --out 
filtered/chr${chr}_snpsonly 
 

MAF, CR and HWE on controls 

As outlined before, markers with a low minor allele frequency, a low call rate or outside 

the HWE, can introduce false positive results. We therefore, repeated these QC steps 

on the imputed dataset using PLINK. Markers with a MAF <1% (--maf 0.01) and CR 

<99% (--geno 0.01) were removed.  

 
#!/bin/bash 
for chr in {1..22}; 
do echo ${chr} 
plink2 --bfile filtered/chr${chr}_snpsonly --make-bed --geno 
0.01 --maf 0.01 --out bimbam/chr${chr}_filt 
 
Markers showing significant deviation from HWE (P<0.001) in the control individuals 

were removed using SVS. 

Import to SVS 

The output data were imported to SVS for further analysis. Chromosomes 1-22 were 

merged and the appropriate marker map was applied. Downstream analysis was the 

same as with genotyped markers only.  
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Chapter 6. HLA imputation 
We aimed to impute human leukocyte antigen alleles from genotyped SNPs within the 

major histocompatibility complex (MHC) region on chromosome 6. Different 

programme tools have been developed to perform HLA imputation from SNP- level 

data, including SNP2HLA [116]. SNP2HLA is a freely available tool set and has been 

used in multiple previous studies for HLA imputation. SNP2HLA is using the software 

package Beagle for HLA imputation.  

Reference panel 

As a reference panel the HapMap CEU reference dataset was used. The dataset 

contains 124 samples with 248 haplotypes.  

Analysis 

As input the final dataset for the European GWAS with a subset of 1,189 genotyped 

SNPs overlapping with the HapMap CEU reference dataset were used. HLA 

imputation was performed using SNP2HLA v1.0.3 

(http://software.broadinstitute.org/mpg/snp2hla/) with default parameters. 

Only HLA alleles were used for analysis. Post imputation quality control included 

removal of imputed HLA alleles with a quality score R2<0.8.  

Logistic regression with adjustment for the first ten PCs of ancestry was used to test 

for association of each HLA allele with SSNS. Conditional analysis of the lead HLA 

alleles was performed using a logistic regression model.  
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Chapter 7. Post association analysis 
The association analysis detected several variants in association with SSNS. In the 

post association analysis we investigated if the lead variants outside the HLA locus 

alter the expression of any neighbouring genes.  

Multitissue eQTL 
Quantitative traits are genetic variants that are highly correlated with gene expression. 

Hence, expression quantitative trait loci (eQTLs) refers to genetic variants that alter 

the expression of one or more genes. 

GTEx 

Tissue Expression (GTEx) project is an ongoing effort to build a comprehensive public 

resource to study tissue-specific gene expression and regulation 

(http://gtexportal.org). The data available on the GTEx portal is derived from 54 non-

diseased tissue samples within nearly 1000 individuals. Correlations between 

genotype and tissue-specific gene expression levels were obtained and are available 

on the platform.  

We queried the GTEx portal (http://gtexportal.org; information obtained October 2019) 

to investigate if any of the lead variants associated with SSNS were known to alter 

expression of genes in any of the 54 available tissues included in this database, 

including immune cells.  
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Chapter 8. Meta-analysis 

METAL 

A commonly used tool to perform a meta-analysis is METAL [119,76]. 

In short, METAL uses the direction of the effect of a risk allele combined with the p-

value for this allele observed in each single study to calculate an overall effect size 

and p-value for the specific allele.  

The direction of effect is determined using a reference panel for the relevant 

population. A positive effect with respect to the reference allele A represents the 

situation where an increased number of allele A copies is associated with an increased 

risk of disease. A negative effect with respect to the reference allele A, would represent 

a situation where an increased number of allele A copies is associated with a 

decreased risk of the disease.  

 

The sample size of each study is taken into account when weighing the effect size of 

each study result [119]. Therefore, this method can combine the evidence of 

association from individual studies by using appropriate weights.  

SVS method for meta-analysis  

The method available in SVS are based on METAL concept. In our study we used a 

sample-size based approach and fixed-effect algorithm output as provided by SVS 

[119]. This means, that for every study and marker, the p-value, effect direction, and 

sample size (for weighing purposes) are taken into account. From these, a Z-score 

and an overall p-value are calculated.  
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Part 3: Results  

Chapter 1. Pre-analysis: Cases and controls 
explorations 

Case cohort 

The cases selected for this study were 1225 children diagnosed with SSNS according 

to the KIDIGO guidelines. The samples were provided from different collaborators from 

Europe (n = 712) and South East Asia (n = 513) and therefore expected to be from 

different ethnicities. The samples were genotyped together and retrieved as a 

combined dataset.  

Genotyping and data processing 

DNA was extracted from whole blood samples and genotyping was performed 

uniformly at UCL Genomics (UCL Great Ormond Street Institute of Child Health, 

London). The chip used for genotyping was the Infinium Multi-Ethnic Global BeadChip.  

Data on 1,779,818 markers was collected in raw IDAT format from UCL Genomics.  

The dataset was uploaded in REMEDY and the results showed that thousands of 

variants on the microarray were unsuitable for GWAS; Approximately 10,000 markers 

had rsIDs not matching with dbSNP, 150,000 markers were multi-allelic in dbSNP, 

another 20,000 were structural variants and 70,000 showed inconsistence in the 

strand designation. These variants all have the potential to cause noise in subsequent 

analysis and were therefore removed by REMEDY. We also noted that the data were 

DESIGN encoded. The genotypes were thus re-encoded uniformly to the Genomic 

FWD encoding scheme and 1,565,259 SNPs were outputted. 51,276 markers were 

on X and Y chromosomes and excluded from further analysis. The number of 

autosomal markers was 1,513,983. 

The definition of a successful sample included a call rate ³ 90%. According to this 

definition, 12 samples were removed from the dataset and the remaining 1,213 were 

considered as successful.   
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Control cohort 

The control cohort consisted of 6,306 individuals sourcing from 3 different control 

datasets. The Oxford controls, Illumina ethnic controls and WTCCC controls. 

Oxford controls 

The Oxford control dataset consisted of 432 samples. All samples were of self-

declared European ethnicity. Genotyping had been performed at Oxford University on 

a HumanOmniExpress-12v1_J (n=144) Chip and on a HumanOmniExpress-12v1_A 

(n=288) Chip. The combined dataset consisted of 730,397 markers.  

The dataset was uploaded in REMEDY and the results showed that approximately 

1,200 markers had rsIDs not matching with dbSNP, 45,000 markers were multi-allelic 

in dbSNP, 115,000 showed incoherence in the strand designation and another 1,000 

had multiple mappings. These variants were removed by REMEDY. The dataset was 

identified to be FWD encoded. After REMEDY, 672,361 markers were outputted. 

18,402 markers were on X and Y chromosomes and excluded from further analysis. 

The number of autosomal markers was 653,959. All samples had a call rate ³90% and 

were considered as successful.  

Illumina ethnicity controls 

The Illumina ethnicity control dataset consisted of 270 samples of which 90 were of 

European ethnicity. We initially processed all 270 samples, in order to use the 

representatives of the different populations as a reference panel for the exploration of 

ethnicity of our datasets. As a control cohort for the GWAS, only the 90 European 

samples were used. Genotyping had been performed on a HumanOmniExpress-

12v1_C Chip. The dataset contained 731,442 markers and was also processed by 

REMEDY. As the SNP chip and its manifest for this dataset is the same as for the 

Oxford controls, those datasets were processed together via REMEDY and the 

outputted markers were identical. The dataset was also FWD encoded and 672,361 

markers were used for analysis. 18,402 markers were on X and Y chromosomes and 

excluded from further analysis. The number of autosomal markers was 653,959. All 

samples had a call rate ³90% and were thus considered successful.   
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Wellcome Trust Case Control Consortium controls 

The WTCCC control dataset consisted of 5,604 samples. All samples were of self-

declared European ethnicity. Genotyping was performed on a Illumina Human 1.2M 

Duo custom BeadChip v1.  

The dataset was uploaded in REMEDY and the results showed that approximately 

100,000 markers had rsIDs not matching with dbSNP, 75,000 markers were multi-

allelic in dbSNP and 500 structural variants, 180,000 showed incoherence in the 

strand designation. These variants were removed by REMEDY. The dataset was 

identified to be TOP encoded and re-coded to FWD encoding. After REMEDY 

processing, 1,065,696 markers were outputted. 40,259 markers were on X and Y 

chromosomes and excluded from further analysis. The number of autosomal markers 

was 1,025,437. 55 samples were removed from the dataset as the call rate was less 

than 90%, whereas 5,549 were considered as successful.   

Ethnicity of case-control cohort 

As previously noted, a prerequisite for association studies is to compare cases and 

controls which are ancestry matched. Differences in allele frequencies between 

populations can otherwise lead to false positive associations and/or mask true 

association. To understand the variety of ethnicities in our dataset we first wanted to 

illustrate the ethnicity distribution of all cases and controls, and then concentrate on 

investigating European and South East Asian cohorts separately.  

 

For this purpose, a common dataset of all cases and controls was created by 

combining the data matrices, including only overlapping markers. The combined 

dataset consisted of 1,213 cases and 6,071 controls with 216,015 overlapping 

markers.  

Principal component analysis all cases 

For exploration of ethnicities the means of principal component analysis were used 

(PCA; EIGENSTRAT implemented in SVS) [147]. The principal components for each 

individual in the case and control dataset were calculated and compared to the Illumina 

ethnicity control dataset. 
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The Illumina ethnicity control dataset is based on the HapMap project and includes 

samples from four populations (YRI, JPT, CHB and CEU) on three continents. These 

samples are considered representative of the genetic diversity of human populations 

and widely used as a reference panel to explore and illustrate ethnical diversity in a 

dataset [157]. YRI stands for samples from the Yoruba in Ibadan, Nigeria, Africa. The 

Yoruba participants have identified themselves as having four Yoruba grandparents. 

JPT stands for Japanese from Tokyo and samples were recruited in the area of Tokyo 

from individuals declaring themselves and their grandparents coming from Japan. 

CHB stands for samples from Han Chinese from Beijing, China, Asia and were 

required to have at least three Han grandparents. CEPH stands for samples from the 

Centre d'Etude du Polymorphisme Humain (CEPH) collection of Utah residents of 

Northern and Western European ancestry and are labelled as CEU. CEU samples are 

considered as representatives of European. However, at the point of collection there 

was no specification of the different subpopulations residing in Europe. Therefore, it is 

not clear how the pattern of genetic variation e.g. between north and south Europe is 

reflected in this sample set [157].  

 

We performed a PCA for all cases and controls and calculated up to 10 principal 

components for each sample. The simplest way to understand and interpret the 

outputted data is by visualizing the results in a scatter plot. The largest dimension of 

variability is represented by the first two components and therefore the first principal 

component was plotted on the x-axis against the second principal component y-axis.  

We illustrated the results in comparison to the Illumina ethnicity controls, which aids 

to interpret the ethnicity distribution of our samples in relation to the reference 

populations (CEU, JPT, CHB and YRI). (Figure 12) 
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Figure 12 Scatterplot for PCA of all cases and controls 

 
Legend Principal component scatter plot. Distribution of all cases (n=1,213) from European and 
Asian collaborators together with the combined control cohort (n=6,071) along the top two 
principal components (PC1 and PC2) identified by principal component analysis. The results are 
visualized in comparison to the Illumina ethnicity controls (CEU, YRI and CHB-JPT). Note that 
the European cases aggregate around the CEU controls, but a substantial number scatter 
towards the CHB-JPT controls and AFR controls. The Asian cases aggregate between the CHB-
JPT and CEU controls, with a small number scattering closer to the CEU controls. The control 
dataset mainly clusters around the CEU controls.  

 

The distance between the clouds of aggregation reflect the amount of stratification 

between the groups. We could observe the aggregation of the European case dataset 

around the CEU ethnicity control samples, but a substantial number of samples 

scattered towards the CHB-JPT or YRI control groups. This revealed that the samples 

collected from European collaborators contained individuals from different ancestries 

and subpopulations beside Europe. Case samples collected from the Asian 

collaborators cluster between the CEU and CHB-JPT ethnicity control groups, an area 

which is known to represent South Asia (e.g. Sri Lanka). This group appeared less 

stratified. Samples from the control dataset (all self-declared Europeans) clustered 
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around the CEU control group, genetically confirming the self-declared European 

ancestry.  

Selection of Europeans 

In this part of the thesis we focus on the European cohort. This included the 709 cases 

from European collaborators and 6,071 European controls. The PCA was repeated, 

only including these datasets to assess the differences in ethnicity between European 

cases and controls in more detail. (Figure 13) 

 

Figure 13 Scatterplot for PCA of European cases and controls before removal of outliers 

 
Legend Scatter of principal components. Distribution of the presumably European cohort (709 
cases and 6,071 controls) along the top two principal components (PC1 and PC2) identified by 
principal component analysis. The results are visualized in comparison to the Illumina ethnicity 
controls (CEU, YRI and CHB-JPT). This is done before the outliers, scattering towards YRI and 
CHB-JPT control group, are removed.  

 

As observed above, the majority of the 709 samples clustered around the CEU 

ethnicity control group, but a relevant number of samples revealed not to be of 
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European ancestries. A way to remove these non-European samples, is to perform a 

PCA with removal of outliers above a certain standard deviation (SD) threshold. This 

can be done in steps, with stepwise lowering of the threshold of accepted SD. The aim 

was to establish an ethnical homogenous group containing as many samples as 

possible.  

Stepwise PCA of cases and controls  

The analysis was performed on the 709 cases and 6,071 controls in comparison to the 

Illumina ethnicity controls. Outliers were removed in 4 steps, with removal of outliers 

with a standard deviation of more than 5, 4, 3, and 2 respectively (Table 8). The first 

two principal components for each step were plotted in a scatter plot and inspected 

(Figure 14). 

 

Table 8 Summary of the influence of removal of outliers with different standard deviations on 
the number of remaining cases and controls 

  
  Cases remaining Controls remaining IF Lambda 

No removal of outlier 709 6,071 9.445 
A Removal of outlier SD >5 491 6,051 1.385 
B Removal of outlier SD >4 476 6,040 1.288 
C Removal of outlier SD >3 459 5,791 1.273 
D Removal of outlier SD >2 177 2,383 1.057 

Legend: SD: Standard deviation of the mean; IF: Inflation factor 
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Figure 14 Scatterplot for PCA of European cases and controls with stepwise removal of outliers 

A)      B) 

 

C)      D) 

 

Legend Distribution of cases and controls along the top two principal components (PC1 and 
PC2) identified by principal component analysis. The results are visualized in comparison to the 
Illumina ethnicity controls (CEU, YRI and CHB-JPT). 4 different scenarios are displayed, with 
increasing number of outliers removed. The number of cases and controls remaining in each 
scenario is displayed in Table 8. 
A) Outliers with >5 SD from the mean of the sample set are removed. A large number of samples 
is still scattering towards the CHB-JPT and YRI controls.  
B) Outliers with >4 SD from the mean of the sample set are removed. A slight reduction of 
samples scattering towards the CHB-JPT and YRI controls can be observed.  
C) Outliers with >3 SD from the mean of the sample set are removed. No further reduction of 
samples scattering towards CHB-JPY and YRI can be seen.  
D) Outliers with >2 SD from the mean of the sample set are removed. Less samples are scattering 
towards CHP-JPT and YRI, but the number of samples remaining has decreased substantially.  
Scenario B appeared to be best compromise between finding the balance of a homogenous 
group and number of samples remaining.  
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The scenario with removal of outliers > 4 SD and >3 SD deemed very similar in respect 

to the inflation factor lambda and visual inspection of the graph, whereas the removal 

of outliers with >2 SD reduced the number of cases and controls drastically with only 

slight improvement in the homogeneity of the group. As this was the first analysis and 

we wanted to keep as many cases and controls as possible in the cohort, we decided 

to use 4 SD as a cut-off. The following analysis was continued with a dataset after 

removal of European ancestry outliers with SD >4. 

Results 

We performed a basic allele test for association testing on the now ancestry matched 

476 cases and 6,040 controls. All 216,015 markers were tested to assess the results 

before applying further quality control steps on markers or samples. The significance 

level was set at 5×10-8. The results were graphically presented in form of a “Manhattan 

plot”.  

Manhattan plot is named after the New York skyline and visualizes the distribution of 

markers according to their physical position on the genome (x-axis) and their 

significance value (y-axis). In general, when examining a Manhattan plot we are 

looking for “skyscrapers”, collections of markers that build-up into the “sky” of 

significant p-values. Thus, we are not looking for isolated markers with significant p-

values, as these likely represent artefacts, but for conglomerates of markers with p-

values decreasing, the tighter they are in LD with the leading SNP (the “top floor”), i.e. 

the marker with the lowest p-value. The reason why the surrounding markers have 

also decreased p-values is that they are in LD with the causal variant, and therefore 

are found in association with the trait. Markers with low p-values, but without build-up 

are generally considered as noise. Too much noise seen in a Manhattan plot, can 

mask build-ups and make it difficult to distinguish true associations. Hence, when 

applying QC steps the aim is that with every step the Manhattan plot becomes cleaner, 

meaning the number of false positive associations decreases and build-ups become 

more visible.  
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Figure 15 Manhattan plot for BAT before applying QC steps 

 
Legend Manhattan plot for association analysis before applying QC steps. The chromosomal 
position of the markers is represented on the X-axis corresponding to the human genome 
GRCh37/hg19. The level of significance is represented on the Y-axis. The red line represents the 
whole genome wide significance threshold level of -log10  of the p-value of 5×10-8.  A high level 
of noise can be seen, reflected by a large number of markers above the genome-wide 
significance level. This image is also referred to as “starting scenario”. 

 

The Manhattan plot for the first association test before applying any QC steps (Figure 

15) displayed that many markers reached the level of significance, not necessarily 

associated with the trait, representing false positive results. Only one build-up on 

chromosome 6 p-arm can be identified. In order to address false positive results and 

unmask further possible peaks, quality control steps were implemented on the 

markers. This first Manhattan plot of the results before applying QC steps is hereafter 

referred to as the starting scenario.  
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Chapter 2. Pre-analysis: Quality control optimization 

Multiple factors influence the quality and reliability of a GWAS: the genotyping platform 

used, the data quality of samples, the number of cases and controls, the ethnicities of 

samples, etc.  

Consequently, not one standard protocol of quality control procedures can be applied 

to every dataset, but they must be explored and adapted accordingly. This part of the 

thesis summarizes the optimization process of the quality control steps.   

QC for markers  

The first quality control procedures for markers were performed on the cases and 

controls together under the assumption that genotyping was carried out under similar 

conditions for all datasets. The dataset containing cases and controls was called 

combined dataset. This means that the cases and controls were appended (the rows 

representing the cases were added to the rows representing the controls, keeping only 

markers which were common in both datasets). After appending the case and control 

dataset 216,015 markers remained as common markers. We noticed that a significant 

number of markers got lost as they were not represented in both datasets.  

The following quality control steps for markers were addressed: 

• Removal of markers with an allele count of more than 2   

(Note that REMEDY removed markers which are multiallelic in dbSNP, whereas 

this QC step tests if any marker is multiallelic in the actual dataset and removes 

it) 

• Removal of makers with a high missing call rate 

• Removal of markers with a low minor allele frequency 

• Removal of markers outside the Hard-Weinberg equilibrium 

The quality control analysis was performed on 476 cases and 6,040 controls. The total 

number of overlapping autosomal markers between cases and controls before 

applying quality control steps was 216,015 markers. 
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First step: Allele count 

We strictly wanted to exclude all multiallelic markers from our study. Any marker which 

contains more than two alleles has the potential to be misread by the genotyping 

system and is therefore a possible source of noise. Therefore, we removed any 

markers with an allele count greater than 2. In our dataset 33 markers had an allele 

count greater than 2 and were removed from further analysis. The number of 

remaining markers was 215,982. 

Second step: Call rate per marker 

The call rate of a marker reflects the quality of the DNA together with the quality of the 

genotyping array at that specific marker. Some markers might have intrinsic problems 

during genotyping due to poor hybridization with the probe resulting in a low call rate 

of this specific marker. To examine the effect of a low call rate on the overall 

association results we first looked at the overall call rate of all markers and then 

assessed how different cut-off levels affect the results. The results were graphically 

presented in form of Manhattan plots. Of 215,982 markers in the combined case-

cohort dataset 0 markers had a call rate of 100%, but 201,944 markers had a call rate 

≥99%, 210,410 markers ≥97% and 211,758 ≥95%.  

 

The first scenario was with removal of markers that had a CR < 95%, leaving 211,758 

markers for analysis (low stringent) (Figure 16 A). After removing markers with a CR 

<95%, the Manhattan plot of the association result still displayed a significant amount 

of noise. This indicated that the cut-off for the CR might be too low. We increased the 

cut-off to 97% in a next step.  

 

The second scenario was to remove all markers that had a CR <97%, leaving 210,410 

markers for analysis (medium stringent) (Figure 16 B). With removal of all markers 

with a CR <97% the noise was reduced compared to the cut-off of 95% only. We now 

wanted to test if an even more stringent cut-off for the CR of markers decreases the 

noise further.   

 

In the last step all markers with a CR <99% were removed, leaving 201,944 markers 

for analysis (Figure 16 C).  
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Figure 16 Manhattan plot after removal of markers with increasing cut-off levels for call rate 

A) 

 
B) 

 
C) 
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Legend: Manhattan plots for association analysis with increasing cut-off levels for removal of 
markers with a low call rate. The chromosomal position of the markers is represented on the x-
axis corresponding to the human genome GRCh37/hg19. The -log10 of the p-value is represented 
on the y-axis. The level of whole genome wide significance threshold is represented by the red 
line.  
A) Manhattan plot of association analysis with removal of markers with a CR <95%. Despite 
removing markers with a CR <95% the plot continuously showed a high level of noise, indicating 
that this threshold for CR of markers might be too low.  
B) Manhattan plot of association analysis with removal of markers with a CR <97%. The amount 
of noise has reduced from the previous scenario, however, still a large amount of markers reach 
significance, creating noise and masking possibly true associations. 
C) Manhattan plot after removal of markers with a CR <99%. The level of noise has reduced 
further compared to the previous scenario, but the Manhattan plot continues to appear noisy. 

 

Despite stringent cut-off level for the call rate the Manhattan plot continued to appear 

noisy, reflecting a large number of false positive associations. This indicated that the 

removal of markers with a low call rate alone is not sufficient to control for false positive 

results. We therefore proceeded to implement the next QC step. 

Third step: Minor allele frequency  

The minor allele is defined as the least common allele at a given locus in a defined 

population. The frequency of this allele is called minor allele frequency. In general, 

variants with a low MAF can cause false positive associations. This is because the 

small number of the heterozygote genotypes of these variants can lead to erroneous 

genotype calling. Further, even when called correctly, association signals caused by 

these rare SNPs are less robust because they are driven by the genotypes of only a 

few individuals. Hence, GWAS are mainly based on common markers and therefore 

most SNPchips, including our control SNPchips, are designed to include mostly 

common markers (MAF >5%). 

 

The SNPchip (MEGA) used for genotyping of the cases was stated to have a high 

number of markers with a low MAF. In order to explore the distribution of the MAF in 

the case dataset, which were genotyped on the MEGA SNPchip, we plotted a 

histogram for the MAF of the 1,513,983 markers in this dataset. 
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Figure 17 Histogram for minor allele frequency of all markers in the case cohort 

 
Legend It can be observed that the case SNPchip (MEGA) has a high number of markers with a 
low MAF. Nearly half of the markers (696,279) have a MAF <0.01. 

 

Note that the case cohort, had a high number of markers with low MAFs. 259,057 of 

1,513,983 markers had a MAF <0.001, 696,279 markers had a MAF <0.01 and 

910,234 markers had a MAF of <0.05. This illustrated that nearly half of the markers 

on the case SNPchip were rare markers, which are commonly defined as MAF <0.01.  

 

A drawback of the high number of markers with a low MAF on our case SNPchip was, 

that most of the markers with a low MAF were not represented in the control datasets. 

This is the explanation for the large drop of markers, observed earlier, when combining 

the case with the control datasets. After combining the datasets only 11,555 markers 

remained having a MAF ≤0.01.  

 

In order to assess the influence of removing markers with a low MAF further, three 

scenarios were compared. Removal of markers with a MAF less than 0.1% (less 
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stringent), less than 1% (medium stringent) and less than 5% (high stringent). The 

results were graphically presented in form of Manhattan plots. 

 

The first scenario was to remove all markers with a MAF <0.001, which was the least 

stringent cut-off. With that cut-off 5,449 markers were removed, leaving the majority 

of markers (210,533) for analysis (Figure 18 A). 

 

We repeated the analysis with a more stringent cut-off for the MAF. 11,555 markers 

with a MAF <0.01 were removed, leaving 204,427 markers for analysis (Figure 18 B). 

 

In a last step, markers were removed with a MAF <0.05, which is a common threshold 

used in GWAS. With that threshold 23,237 markers were removed, leaving 192,745 

markers for analysis (Figure 18 C).  

 

 

 

 



 

 112 

Figure 18 Manhattan plot after removal of markers with increasing cut-off levels for minor allele 
frequency. 
A) 

 
B) 

 
C) 
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Legend The chromosomal position of the markers is represented on the x-axis corresponding to 
the human genome GRCh37/hg19. The -log10 of the p-value is represented on the y-axis. The 
level of whole genome wide significance threshold is presented by the red line.  
A) Manhattan plot for association analysis with removal of markers with a MAF <0.001. The plot 
shows a similar level of noise as seen in the starting scenario. This indicates that applying a 
threshold for MAF of 0.1% alone is not sufficient to improve the level of noise.  
B) Manhattan plot for association analysis with removal of markers with a MAF <0.01. In 
comparison to the previous plot with a MAF cut-off of 0.001, the noise has reduced slightly.   
C) Manhattan plot for association analysis with removal of markers with a MAF <0.05. A 
minimal further improvement can be observed compared to the previous scenario. However, 
ongoing noise is masking possible true associations. 

 

When comparing the Manhattan plots with the three different cut-off levels for MAF, 

we could see that the noise was the highest when markers with a very low MAF (0.01% 

- 0.1%) were included in the association test. However, also with including only 

common markers (>5%), the plot shows a high level of noise, indicating that the MAF 

alone as a QC is not sufficient to remove spurious markers. Compared to the QC step 

CR of markers, the removal of markers with a low MAF had a much lower effect to 

control for false positive associations. We went on to test how much the HWE filtering 

impacts the outcome of the association test.  

 

Fourth step: Hardy-Weinberg equilibrium filtering 

Extensive deviation from Hardy-Weinberg equilibrium (HWE) can be a sign of a 

genotyping or genotype calling error and therefore most scientists remove makers that 

deviate from the HWE above a certain threshold. However, deviations from Hardy-

Weinberg equilibrium may also indicate structural changes, and a case sample can 

show deviations from HWE at a locus associated with the disease. To remove this 

marker would obviously be counter-productive. Therefore, this QC step is only applied 

on the control dataset.  

 

Two thresholds for HWE cut-off were tested. Low HWE (removal of markers outside 

the HWE with a p-value of less than 0.0001) or high HWE (removal of markers outside 

the HWE with a p-value of less than 0.001). With a low cut-off for the HWE on the 

controls (p <0.0001), 962 markers were removed, leaving 215,020 for analysis. With 

a higher cut-off for the HWE on the controls (p <0.001), 1363 markers were removed, 

leaving 214,619 for analysis.  
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Figure 19 Manhattan plot after removal of markers with increasing cut-off levels for HWE p  

A) 

 
B) 

 
Legend The chromosomal position of the markers is represented on the x-axis corresponding to 
the human genome GRCh37/hg19. The -log10 of the p-value is represented on the y-axis. The 
level of whole genome wide significance threshold is presented by the red line.  
The plots with the two different thresholds are displayed next to each other to illustrate that no 
visible improvement can be seen between the two thresholds.  
A) HWE p <0.0001 
B) HWE p <0.001 

 

No visible difference was observed between the two cut-offs.  

 

After testing each of the QC steps separately an overview of the number of markers 

removed with each step is provided in the table below.  
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Table 9 Overview of the number of markers removed by each QC step 

Total SNPs   216,015 

QC step Threshold Removed Remaining 

Allele count >2 33 215,982 

Call rate <0.95 4,224 211,758 

 <0.97 5,581 210,410 

 <0.99 14,038 201,944 
Minor allele 
frequency <0.001 5,449 210,533 

 <0.01 11,555 204,427 

 <0.05 23,237 192,745 

HWE (ctrls) p <0.0001 962 215,020 

 p <0.001 1,363 214,619 

 

 

The testing of each QC step separately helped to get a feeling of how each QC step 

influences the number of markers in the dataset and the association results. 

Nevertheless, one QC alone did not control sufficiently for false positive associations. 

We assumed that the combination of the QC is necessary to address false positive 

results adequately and therefore examined different scenarios of combining the QC 

steps.  

We tested 3 different scenarios of increasing stringency of the quality control steps. 

For all 3 scenarios a BAT was performed and the inflation factor calculated. The results 

are demonstrated as a Manhattan plot.  

 

First scenario - Low stringency 

In the first scenario the most liberal cut-off levels were used for each QC steps. CR 

<0.95, MAF <0.001 and HWE on controls p <0.0001. This scenario is referred to as 

low stringency. Markers remaining for analysis were 205,886. (Figure 20) 
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Figure 20 Manhattan plot for scenario 1 – low stringency 

Legend Manhattan plot for association analysis of 476 cases and 6040 controls after removal of 
markers with a CR <0.95, MAF <0.001 and HWE on controls p <0.0001. The chromosomal 
position of the markers is represented on the x-axis corresponding to the human genome 
GRCh37/hg19. The -log10 of the p-value is represented on the y-axis. The level of whole genome 
wide significance threshold is presented by the red line. Inflation factor Lambda: 1.29233. 
Compared to the starting scenario, where no QC steps were applied, a reduction of noise can be 
seen.  

 

We immediately can see an improvement of the results in regards to false positive 

associations compared to the starting scenario, where no QC steps were applied. 

However, a significant amount of noise is still visible. Therefore, the quality control 

steps for this scenario were considered as insufficient to control for false positive 

results.  

 

Second scenario – medium stringency 

In the second scenario we increased the cut-off levels for each QC step to make them 

more stringent. CR <0.97, MAF <0.01, HWE on controls p <0.001. The number of 

remaining markers was 199,725. (Figure 21) 
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Figure 21 Manhattan plot for scenario 2 – medium stringency  

 
 

 
Legend: Manhattan plot for association analysis of 476 cases and 6040 controls after removal 
of markers with a CR <0.97, MAF <0.01 and HWE on controls p <0.001. The chromosomal 
position of the markers is represented on the x-axis corresponding to the human genome 
GRCh37/hg19. The -log10 of the p-value is represented on the y-axis. The level of whole genome 
wide significance threshold is presented by the red line. Inflation factor Lambda: 1.26453. A 
significant reduction of noise compared to scenario 1 was observed. Peaks are becoming more 
visible, however because of ongoing background noise, the demarcation of peaks is still difficult.  

 

 

The level of noise has visibly reduced in this scenario. When looking at the Manhattan 

plot, peaks are starting to unmask. But a clear demarcation of peaks is not possible 

yet.  

 

Third Scenario – high stringency  

In the third scenario we increased the cut-off levels for each QC step to make them 

more stringent. CR <0.99, MAF <0.05, HWE on controls p <0.001. The number of 

markers reduced by another approx. 15,000 and 182,331 remained for analysis. 

(Figure 22) 

 



 

 118 

Figure 22 Manhattan plot for scenario 3 – high stringency  

 
Legend: Manhattan plot for association analysis of 476 cases and 6040 controls after removal 
of markers with a CR <0.99, MAF <0.05 and HWE on controls p <0.001. The chromosomal 
position of the markers is represented on the x-axis corresponding to the human genome 
GRCh37/hg19. The -log10 of the p-value is represented on the y-axis. The level of whole genome 
wide significance threshold is presented by the red line. Inflation factor Lambda: 1.2319. Two 
peaks on chromosome 6, reaching genome wide significance are now clearly demarked. We can 
see two further markers on chromosome 7 and 15 above the threshold line.  

 
 

With every step the Manhattan plot became cleaner and build-ups more visible. When 

looking at the Manhattan plot of this last scenario, we can see that a second peak was 

unmasked on chromosome 6 q-arm, which was not visible in the previous scenarios. 

Therefore, scenario 3 deemed to be the best combination of quality control steps to 

control for noise. 

Until now, QC steps were applied on the combined case control dataset. Considering 

that genotyping for all 4 datasets was performed on different platforms and therefore 

the quality of data may vary significantly, we speculated that it might be better to apply 

the QC steps on each dataset separately before combing them. In order to see if there 

was a difference between applying QC steps on the combined dataset or on each 

dataset separately, the scenarios were repeated but with the QC filtering steps applied 

on each dataset separately. 



 

 119 

QC filtering on separate datasets 

The following quality control analysis was performed on the case dataset and each 

control dataset separately. Cases and controls were combined after performing the 

QC steps. Again, we tested 3 different scenarios of increasing stringency of the quality 

control steps. Based on the previous results we knew that the cut-off for the MAF of 

markers included did not seemed to influence the level of noise very drastically and 

we hence decided to keep markers down to a MAF of 1%. The main impact on the 

noise was seen from markers with a low genotyping quality, therefore we focused at 

the high stringency scenario only with respect to CR cut-off. Table 10 provides and 

overview of how many markers were removed from each dataset with the different 

scenarios.  

 

Table 10 Overview of the number of markers removed with different stringency scenarios 

Stringency level Total Low Medium  High 

Cases 1,513,982 867,512 662,700 614,712 

Oxford 653,959 608,107 579,926 571,573 

Illumina 653,959 587,523 577,781 517,212 

WTCCC 1,025,437 872,212 824,265 789,061 

Combined datasets 216,015 194,591 186,230 156,794 

Final markers 216,015 194,507 186,121 156,712 

Legend Three levels of stringency were tested: low (AC >2, CR <0.95, MAF <0.001, HWE ctrls 
p <0.0001), medium (AC >2, CR <0.97, MAF <0.01, HWE ctrls p <0.001) and high (AC>2, CR 
<0.99, MAF <0.01, HWE ctrls p <0.001). After combing the datasets the QC steps were repeated 
on the combined dataset, leaving the final number of markers. 

  
 
For all 3 scenarios a BAT was performed and the inflation factor calculated. The results 

are demonstrated in Figure 23.  

 

First scenario - Low stringency 

In the first scenario markers were removed from each of the 4 datasets if they had a 

AC >2, CR <0.95 and MAF <0.001. In the control set additionally markers with HWE 

p <0.0001 were removed. Thereafter the 4 datasets were combined to a case-cohort 

dataset. The number of markers in the combined dataset was 194,591. The above 



 

 120 

mentioned QC steps were repeated on the combined datasets with HWE testing on 

controls only. The remaining number of markers was 194,507. Association testing was 

performed on 476 cases and 6040 controls. (Figure 23 A) 

 

We visually compared the Manhattan plot of this scenario to the same scenario with 

QC steps applied only on the combined cases and controls (Figure 20). It was clearly 

recognisable that the Manhattan plot for this scenario displayed less noise and build-

ups were more visibly identifiable. This confirmed our assumption that it is better to 

apply the QC steps on each dataset separately before combing them. 

 
Second scenario – medium stringency  

In the second scenario the cut-off levels for all QC steps were set slightly more 

stringent. Markers were removed from each of the 4 datasets if they had AC >2, CR 

<0.97 and MAF <0.01. In the control set additionally markers with HWE p <0.001 were 

removed. Thereafter the datasets were combined leaving 186,230 markers. After 

repeated QC on the combined dataset, 186,121 markers were brought forward for 

association analysis. (Figure 23 B) 

 

Third scenario – high stringency  

In the third scenario only the cut-off for the call rate was increased further to 99%. After 

performing the QC on each dataset separately and then combining the dataset, 

156,794 markers were left. After repeated QC on the combined dataset 156,712 

markers were brought forward for association analysis. (Figure 23 C) 
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Figure 23 Manhattan plot after applying QC steps on datasets separately. Scenarios 1 – 3. 

A)  

 
B) 

 
C) 
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Legend Manhattan plot of association analysis of 476 cases and 6040 controls with the QC steps 
per marker applied on each dataset separately before combining them. The chromosomal 
position of the markers is represented on the x-axis corresponding to the human genome 
GRCh37/hg19. The -log p-value of each marker on the y-axis. The level of whole genome wide 
significance threshold is presented by the red line. Note, the y-axis range has been reduced to a 
maximum of 60 to inspect the lower part of the graph better and no markers were reaching -log 
of the p-value above 60.  
A) Scenario 1 – low stringency. Manhattan plot after removal of markers with a CR <0.95, MAF 
<0.001 and HWE on controls p <0.0001 in each dataset separately. Inflation factor Lambda: 
1.2358. The level of noise is much lower compared to scenario 1 (Figure 20) with QC steps 
applied on the combined dataset only.  
B) Scenario 2 – medium stringency. Manhattan plot after removal of markers with a CR <0.97, 
MAF <0.01 and HWE on controls p <0.001 in each dataset separately. Inflation Factor Lambda: 
1.2238. A further reduction of noise can be seen compared to the previous scenario. Build-ups 
are clearly distinguishable from the background. 
C) Scenario 3 – high stringency. Manhattan plot after removal of markers with a CR <0.99, MAF 
<0.01 and HWE on controls p <0.001 in each dataset separately. Inflation factor lambda: 1.2167. 
The results yield very similar to the previous scenario. 3 markers on chromosome 6, chromosome 
7 and chromosome 15 each, reaching significance in the previous scenario have disappeared 
now (arrows). 

 

The results between the last two scenarios are very comparable when looking at the 

Manhattan plot. For the main peak on Chromosome 6 (p-arm) no differences can be 

seen by visual inspection of the Manhattan plot, where the density of markers reaching 

genome wide significance is high. However, 3 markers, which reached significance in 

the previous scenario are now removed. This is on the Chromosome 6 q-arm the 

marker rs479536, on Chromosome 7 the marker rs2302443 and on Chromosome 15 

the marker rs1898882. These might be true associations and therefore we will look at 

both scenarios in the final dataset.   

QC for samples 

After we explored the different QC steps for markers, we went on to examine the 

samples in more detail. We already removed individuals with a call rate < 90%, as this 

is recommended by guidelines to do before applying quality control steps on 

markers.  The rationale is, that in a large dataset the removal of a small number of 

individuals should have little effect on overall power. In contrast, every marker 

removed from a study is potentially an overlooked disease association and thus the 

impact of removing one marker is potentially greater than the removal of one 

individual. Removing individuals with a low call rate first prevents markers being 

erroneously removed due to a subset of poorly genotyped individuals 

In accordance with published guidelines and most papers on GWAS we decided on 

following quality control steps for samples:  
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• Removal of duplicates or related individuals  

• Removal of individuals with outlying heterozygosity rates of more than 3 

standard deviations below or above the mean for the overall samples 

Step one: Removal of duplicates or related individuals 

Association studies are designed to investigate genetic differences in an independent, 

not related case and control cohort. This is in contrast to other study settings, e.g. 

linkage analysis, where genetic differences among affected and unaffected family 

members are studied. In association analysis, any related samples or duplicates could 

bias the results and should therefore be removed. Of course, already during patient 

recruitment an individual should not be recruited twice, as well as it should be clear if 

there are related individuals in the cohort. However, as relation status is not always 

clear or documented, as well as the combining of samples from different collaborators 

could also lead to potential errors in respect to this matter it is important to evaluate 

with an objective method if there are duplicates or related samples in a cohort.  

A way to identify duplicates or related samples is by examining how much of the 

genetic material is shared between two samples. This is reflected in the identity by 

descent value (IBD). A calculated IBD >0.98 represents duplicate samples, IBD >0.50 

would represent 1st degree relatives (parent offspring situation or siblings), IBD >0.25 

would represent 2nd degree relatives (1st cousins). As those cut-offs are theoretical 

and 1st degree relatives not always share exactly 50% of their genetic information, but 

can also share e.g. 45% or 55% the cut-offs used in reality are IBD >0.375 to remove 

1st degree and IBD >0.1875 to remove 2nd degrees relatives.  

Based on this idea, we first tested the influence of different cut-offs for the IBD 

calculation using PRIMUS. Results are displayed in the following table.  
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Table 11 Overview of duplicate and related samples 

 Total 
(CR³0.90) Duplicates 1st degree 

relatives 
2nd degree 
relatives Remaining 

IBD cut-off  >0.98  >0.375 >0.1875  

SSNS 709 38 18 2 651 
OXF 432 4 1 1 426 
ILUM CEU 90 0 30 0 60 
WTCCC 5549 10 44 13 5482 

Legend: IBD >0.98 represents duplicate samples, IBD >0.375 represents 1st degree relatives 
with taking into account variations around the theoretical cut-off of 0.5. IBD >0.1875 represents 
2nd degree relatives, taking in to account the variation around the theoretical cut-off level of 0.25.  

 
 

In GWAS a general accepted cut-off level above which samples should be removed 

is 0.1875 representing 2nd degree relatives. We also used this cut-off level in the 

downstream analysis.   

 

Step two: Removal of samples with deviating heterozygosity rates 

Usually the rate of heterozygous genotypes of samples in a dataset follows a normal 

distribution. Samples with an either very high or very low rate of heterozygous 

genotypes can indicate poor sample quality and should be removed from further 

analysis. Therefore, samples with a heterozygosity rate more than 3 standard 

deviations below or above the mean for the overall samples were removed.  

For the case dataset, 26 samples were deviating more than 3 SDs from the mean 

heterozygosity rate and removed from the dataset. For the Oxford controls, 6 samples 

showed a high or low rate of heterozygous genotypes and were removed. For the 

Illumina CEU controls 1 sample was removed because of extreme heterozygous rate 

and for the WTCCC controls 82 samples were removed.  

The heterozygous rate of all cases before and after removal of outliers is plotted as a 

histogram in Figure 24 to better understand the impact of removal of outliers.  
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Figure 24 Histograms for heterozygosity rate distribution of cases before and after removal of 
samples with >3 SD from the mean 

A)      B) 

 

Legend: Histogram of the heterozygosity rate of the cases before and after removal of outliers. 
The heterozygosity rate follows a normal distribution. Outliers with a low or high heterozygosity 
rate can be seen in graph A). In graph B) those outliers were removed.  

 
 
Overview QC steps per sample  

After applying the above-mentioned QC steps per sample on each dataset, 625 cases 

were remaining, and a total of 5,879 controls. An overview of how many samples were 

removed with each QC steps is given in Table 12. 

Table 12 Overview of number of samples removed with each QC step 

Dataset Total CR <0.90 IBD >0.1875 Het rate </>3SD Final 
Cases 712 3 58 26 625 
Oxford 432 0 6 6 420 
Illumina CEU 90 0 30 1 59 
WTCCC 5604 55 67 82 5400 

Legend CR: Call rate; IBD: Identity by descent; Het rate: Heterozygosity rate, SD: Standard 
deviation 

 

With testing the different QC steps for markers and samples we got a better 

understanding of how each of them affects our dataset. With that knowledge we went 

back to the original dataset and applied each of the QC steps systematically on 

samples and markers.    
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Chapter 3. GWAS European cohort 

After assessing the effect of each QC step on our dataset and identifying the optimal 

combination, we repeated the analysis for the European cohort. The quality control 

steps were applied to each dataset separately.  

Cases 

The dataset consisted of 712 cases from collaborators from Europe. The number of 

markers after REMEDY processing was 1,565,259 of which 1,513,983 were 

autosomal. Previously described quality control steps were applied. First, samples 

were removed with a CR <0.90 (n=3) leaving 709 cases.  

Then, quality control steps on markers were performed before proceeding with further 

QC steps for samples. Markers were removed because of CR <99% (n=222,889), 

MAF <1% (n=700,397) and multiallelic (n=0). The remaining number of markers were 

669,943. 

In a next step quality control per samples was performed removing duplicated and 

related samples with an IBD >0.1875 (n=58) and samples with a heterozygosity rate 

>3SD from the mean (n=26). The remaining number of cases was 625. 

Controls  

Oxford controls 

This control dataset consisted of 432 controls of European ethnicities. The number of 

markers after REMEDY processing was 672,361 of which 653,959 were autosomal.  

No samples had a CR <90. 

Markers were removed because of CR <0.99 (n= 13,310), MAF <0.01 (n= 67,724) and 

HWE p <0.001 (2,889). The remaining number of markers after QC was 571,616.  

Six samples had an IBD >0.1875 and were removed from further analysis, leaving 426 

samples. Six samples had heterozygosity rate with >3SD away from the mean and 

was removed, leaving 420 samples in the dataset.  
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lllumina ethnicity controls 

This control dataset consisted of 90 European samples. The number of markers after 

REMEDY processing was 672,361 of which 653,959 were autosomal.  No sample had 

a CR<90.  
Markers were removed because of CR<0.99 (n= 79,777) and MAF<0.01 (n= 68,185).  

Markers in the control datasets were removed if they were outside the HWE with 

p<0.001 (n=1,795). The remaining number of markers after QC was 516,372. 
Thirty samples had an IBD >0.1875 and were removed from further analysis, leaving 

60 samples. One sample had a heterozygosity rate >3SD away from the mean and 

was removed, leaving 59 samples in the dataset.  

 

WTCCC controls 

This control dataset consisted of 5604 controls of European ethnicities. 55 samples 

had a CR<0.90 and were removed leaving 5,549 samples for further analysis. The 

initial number of markers was 1,065,696, with 1,025,437 autosomal markers. 

Ten samples had an IBD >0.1875 and were removed from further analysis, leaving 

5482 samples. 82 samples had heterozygosity rate with >3SD from of the mean and 

were removed, leaving 5400 samples in the dataset.  

Markers were removed because of CR <0.99 (n=133,778), AC >2 (n=0), MAF <0.01 

(n=135,992) and HWE p <0.001 (16,941). The remaining number of markers after QC 

was 788,849.  

Combining datasets 

After performing the quality control steps on each control set separately, the datasets 

were combined to a common control set. The combined number of controls was 5,879 

with 372,137 overlapping markers.  

Those were then combined with the case dataset. The dataset for further analysis 

consisted of 625 cases and 5,879 controls with 158,314 overlapping markers.  

The QC steps for markers were repeated with HWE testing on controls only. The 

remaining markers were 158,217. 
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Ethnicity selection 

We repeated the PCA on this dataset with the aim to select a homogenous group of 

cases and controls. The results were visualised as a scatter plot of the first two 

principal components and were plotted together with the Illumina ethnicity controls 

(CEU, YRI and CHB-JPT). European ancestry outliers were identified and stepwise 

removed. As a cut-off for removal of outliers, the standard deviations 4, 3 and 2.5 were 

tested.  

With a SD of 4, 192 cases and 62 controls were removed. With a SD of 3, 203 cases 

and 237 controls were removed and with a SD of 2.5, 255 cases and 1,028 controls 

were removed. (Figure 25) 

The scenario with removal of outliers with >3 SD deemed to be the best compromise 

between getting an ancestry matched group and loosing as little cases and controls 

as possible. The results are visualized in comparison to the Illumina ethnicity controls 

(CEU, YRI and CHB-JPT) (Figure 25). 

 
 

Figure 25 Scatterplot for PCA of European dataset after optimizing QC steps 

A)      B) 

 

Legend Scatter plot for PCA for European ancestry selection  
A) prior to the exclusion of non-European individuals including all cases (n=625) and controls 
(n=5,879). The scatter plot shows the distribution of cases and controls along the top two 
principal components (PC1 and PC2). The results are visualised in comparison to the Illumina 
ethnicity controls (CEU, YRI and CHB-JPT)   
B) after ancestry selection for Europeans by removal of cases and controls with principal 
components of >3 SD from the mean. Number of remaining cases (n=422) and controls 
(n=5,642).  
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After PCA with removal of outliers with SD >3 422 cases and 5,642 ancestry matched 

controls remained in the dataset.  

Summary QC steps 

An overview of all QC steps and filtering process is provided in Figure 26. 

Figure 26 Flow chart of quality control steps leading to final dataset of pre-imputation GWAS 

 
Legend Flowchart providing information on data input and processing. QC: quality 
control; CR: call rate; IBD: identity by descent; Het rate: heterozygosity rate; MAF: minor allele 
frequency; HWE: Hardy-Weinberg equilibrium. 

 

GWAS power calculation 

Comparing 422 cases with 5,642 controls using alpha = 5×10-8 under an additive 

model, the power to detect association of an allele with a frequency of 0.1 in controls 

exceeds 0.8 at a genotype relative risk (GRR) of 2.19 and power to detect the effect 

of more common alleles exceeds 0.8 at smaller GRRs. 

Results  

A basic allele test was performed on 422 cases versus 5,642 controls with 158,217 

markers. No significant inflation was observed (inflation factor lambda 1.10045). 246 

CASES
N = 712 SNPs = 1,513,983

Infinium Multi-Ethnic Global BeadChip

CONTROLS
Oxford = 432 SNPs = 653,959

HumanOmniExpress-12 BeadChip

Illumina = 90 SNPs = 653,959
HumanOmniExpress-12 BeadChip

WTCCC = 5,604 SNPs = 1,025,437
Illumina Human 1.2M Duo BeadChip

CASES
N = 625 

SNPs = 669,943 

CONTROLS
N = 5879 

SNPs = 372,137 

SNPs: Overlapping in both datasets
Samples: Ancestry selection with PCA

CASES + CONTROLS 
Cases = 422

Controls = 5,642
SNPs = 158,217 

QC Samples: Removal of CR<90%, IBD>0.1875, Het rate>3SD
QC SNPs: Removal of MAF<1%, CR<99%, AC>2, HWE P<0.001 on controls
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markers were associated with the trait at genome-wide significance level. When 

inspecting the results of the BAT graphically in form of a Manhattan plot two peaks on 

chromosome 6 were detected (Figure 27). 

 
 

Figure 27 Manhattan plot for BAT of European GWAS 

 
Legend Displayed is the Manhattan plot for the analysis of 422 cases and 5,642 controls with 
the 158,217 genotyped SNPs. The chromosomal position of the markers is represented on the 
x-axis corresponding to the human genome GRCh37/hg19. The -log p-value of each marker on 
the y-axis. The level of whole genome wide significance threshold is presented by the red line. 
Inflation factor lambda: 1.10045 Two peaks are reaching genome wide significance, on 
Chromosome 6 p-arm and q-arm. 

 

All of 246 markers reaching genome wide significance were on Chromosome 6, and 

all but one on the p-arm. One marker (rs648210) was on the q-arm of Chromosome 

6.  

We noticed that 3 markers which reached significance in the results of the pre-analysis 

basic allele test were not represented in this dataset (on Chromosome 6 q-arm, on 

Chromosome 7 and on Chromosome 15). This could be secondary to the stringent 

cut-off of 99% for CR of markers. Before analysing the association results in more 



 

 131 

detail we wanted to repeat the analysis with a cut-off of 97% for CR of markers. The 

idea was not to miss possibly true positive associations with the disease.  

Repeated European GWAS with CR cut-off 97% 

As explained above, the selection of the optimal combination of QC steps is a balance 

between reducing false positive results and retaining possibly true associations. When 

we expected the results of association analysis during the QC improvement process 

as well as the results of the association analysis after imputation (explained in the 

following chapter), we could identify 3 more markers in association with the disease. 

However, these markers got filtered out during the QC steps with a cut-off of 99% for 

the call rate of markers. This suggested that the cut-off chosen for the CR caused the 

removal of a possibly true associations and we wanted to investigate the results with 

a slight less stringent cut-off for call rate.  

In the repeated analysis markers were removed because of CR <0.97, MAF <0.01, 

and for controls HWE p <0.001. The remaining number of markers after QC were 

430,242 markers for the case dataset, 578,036 markers for the Illumina controls, 

580,024 markers for the Oxford controls and 824,485 markers for the WTCCC 

controls. Duplicated and related samples were identified by using PRISMA with a cut-

off of 0.187 and samples with a heterozygosity rate with >3SD of the mean were 

removed. The number of remaining samples was identical to the previous analysis, 

with a total of 625 cases and 5879 controls. After combining the datasets and selection 

for Europeans, 187,163 markers and 6,064 samples (422 cases, 5,642 controls) were 

brought forward to association analysis.  

A basic allele test was performed on the dataset showing 291 markers associated with 

the trait at genome-wide significance threshold. The results are displayed graphically 

as a Manhattan plot (Figure 28). 
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Figure 28 Manhattan plot for BAT of European GWAS with CR for markers 97% 

 
Legend Shown is the Manhattan plot for the analysis of 422 cases and 5,642 controls with the 
187,163 genotyped SNPs. The chromosomal position of the markers is represented on the x-
axis corresponding to the human genome GRCh37/hg19. The -log p-value of each marker on the 
y-axis. Same QC criteria were used as in the previous analysis, except for a cut-off for the CR of 
markers of <0.97. Note that on Chromosome 6 q-arm additionally the marker rs549262 reaches 
level of significance, as well as one marker on Chromosome 7 and one on Chromosome 15. 

 

The associated markers are distributed on 3 chromosomes as follows: 287 markers 

were on chromosome 6 p-arm, two markers on chromosome 6 q-arm, one marker on 

chromosome 7 (rs2302443) and one on chromosome 15 (rs1898882). An overview 

for the top markers at each locus reaching genome wide significance is given in Table 

13. Each locus was explored in more detail in the downstream analysis.  
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Table 13 Lead SNPs of the loci reaching genome wide significance  

Locus Gene SNP Minor 
allele 

MAF 
cases 

MAF 
controls OR p-value 

6p21.3 Upstream 
NOTCH4 

rs479536 T 0.22 0.07 3.47 1.87×10-47 

6p21.3 Upstream 
HLA-DQB1 

rs4947342 A 0.45 0.24 2.63 4.90×10-42 

6p21.3 Upstream 
HLA-DRA rs9501626 A 0.27 0.11 2.85 3.70×10-39 

6q22.1 DSE rs549262 A 0.30 0.40 0.63 4.30×10-9 

6q22.1 FAM162B rs648210 G 0.33 0.43 0.65 8.73×10-9 

7q36.3 NOM1 rs2302443 C 0.55 0.44 1.50 1.22×10-8 

15q15.1 DISP2 rs1898882 G 0.57 0.44 1.68 4.39×10-13 

Legend Minor allele frequencies (MAF) and p-values of the lead SNPs for each locus reaching 
significance. Standard filtering steps with a call rate cut-off of 97% for markers was used for 
quality control. Basic allele test was used for association testing.  

 

Description of regions of association  

Chromosome 6  

The association results on chromosome 6 were divided in two peaks. One on the p-

arm and one on the q-arm of the chromosome (Figure 29).  
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Figure 29 Manhattan plot for chromosome 6  

 
Legend Manhattan plot for BAT of 422 cases and 5,642 controls with 187,326 genotyped SNPs 
zoomed in on Chromosome 6. The p and the q-arm are separated by the centromere - the area 
where no markers are present. Two peaks reaching genome wide significance (indicated as the 
red line) are visible, one on the p-arm of the chromosome and one on the q-arm.  

 
 

The two observed peaks are on each side of the centromere. We therefore 

investigated them separately.   

Chromosome 6 p-arm 

The 287 SNPs clustered on chromosome 6 in the 6p30.0 to 6p33.5 region which 

corresponds to the HLA-MHC locus (Figure 30). For the purpose of this study we refer 

to the classical region spanning from 6:29,640,169 – 6:33,099,120 for the 

GRCh37/hg19 assembly. The delimiters are the ZFP57 gene on the telomeric side 

and the HLA-DPA3 on the centromeric side [107].  
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Figure 30 Manhattan plot for classical HLA region on chromosome 6 

 
Legend Manhattan plot for BAT of 422 cases and 5,642 controls with 187,326 genotyped SNPs 
zoomed in on the classical HLA region on chromosome 6p. Multiple SNPs are reaching genome-
wide significance.  

 
 

We investigated the 3 markers reaching the lowest p-values in relation to their 

surrounding genes (Figure 31). The SNPs were plotted using the software tool Locus 

Zoom, which created a regional plot of the area of interest. The regional plot provides 

information about the locus including the genes in the area. The SNP with the lowest 

p-value is indicated with a purple diamond and the colouring of the other SNPs 

indicates their level of LD to this index SNP.  
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Figure 31 Locus zoom plot for HLA region 

 

Legend Shown is the locus zoom plot for the HLA region on chr6:32.10 – chr6:32.75 
(GRCh37/hg19). The SNP with the lowest p-value is rs479536 (annotated with a purple diamond) 
and is upstream of NOTCH4. The SNP with the second lowest p-Value (rs4947342, not 
annotated) is upstream of HLA-DQB1. The colouring of the SNP at the approximate position of 
chr6:32.7 in green indicates that this SNP is in LD with the index SNP at position chr6:32.3, 
revealing LD expanding over this whole region of 0.4 Mb.  
 

 

The SNP with the lowest p-value (rs479536, p=1.87×10-47) was located 2kb upstream 

of Notch receptor 4 (NOTCH4). The SNP with the second lowest p-value (rs4947342, 

p=4.90×10-42) was located approximately 18kb upstream of HLA-DQB1. And the SNP 

with the third lowest p-value (rs9501626, p=3.70×10-39) was located 7kb upstream of 

HLA-DRA. Linkage disequilibrium extended for approximately 400 kb between these 

genes (Figure 31). 

The genes HLA-DQB1/HLA-DRA encode for classical HLA alleles. HLA imputation to 

define the exact alleles was performed in the downstream analysis.  

Chromosome 6 q-arm 

The 2 markers reaching genome wide significance on the q-arm of chromosome 6 

were rs549262 (p=4.30×10-9) and rs648210 (p=8.73×10-9). The SNPs were plotted in 
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Locus Zoom. Rs549262 was located intronic in the gene dermatan sulfate epimerase 

(DSE) and rs648210 in the intronic region of the gene Homo sapiens family with 

sequence similarity 162, member B (FAM162B). Linkage disequilibrium extends for 

approximately 100kb between these genes (Figure 32).  

 
Figure 32 Locus zoom plot for rs549262 

 

Legend Shown is the locus zoom plot for rs549262 on chromosome 6q22.1. The SNP with the 
lowest p-value is annotated with a purple diamond and is in the gene DSE. The SNP with the 
second lowest p-value (not annotated) is over the gene FAM162B.  

 
 

Chromosome 7 and 15 

Further, two isolated markers reached significance, rs2302443 (p=1.22×10-8) on 

Chromosome 7 at the position q36.3 and rs1898882 (p=4.39×10-13) on chromosome 

15q15.1.  

The SNP rs2302443 on chromosomes 7 is a missense variant in the gene NOM1.  In 

the most updated dbSNP version (at time of writing this thesis), build 153, the SNP is 

annotated as a multiallelic marker with three allele options G/C/T. The marker 

therefore should have been filtered out already by REMEDY, however, as REMEDY 
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refers to dbSNP version 151, the marker survived the QC steps. The marker was 

plotted with Locus Zoom and none of the SNPs in LD with that marker were associated 

with the disease (Figure 33). The marker was therefore considered as false positive.  

 

Figure 33 Locus zoom plot for rs2302443 

 

Legend Shown is the locus zoom plot for the marker rs2302443 on chromosome 7. The SNP is 
located in the gene NOM1. None of the markers in LD with the index SNP have a decreased p-
value, suggesting a false positive result.  

 

 

The SNP rs1898882 on chromosome 15 is a missense variant in the gene DISP2 

(dispatched RND transporter family member 2). The marker is biallelic. G is the major 

allele and C the minor allele with a frequency of 0.46. No other SNPs in LD with this 

marker were associated with the disease (Figure 34). This SNP was therefore 

considered as false positive. 
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Figure 34 Locus zoom plot for rs1898882 

 

Legend Shown is the locus zoom plot for the marker rs1898882 on chromosome 15. The SNP 
is located in the gene DISP2. No other SNPs in LD with this marker are associated with the 
disease, suggesting a false positive result. 

 

 

In conclusion, the two SNPs rs2302443 on chromosomes 7 and rs1898882 on 

chromosomes 15 were considered as false positive results. For further investigations, 

we focused on the two regions on chromosome 6.  
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Haplotype association test 

A haplotype describes a set of alleles which are inherited together. Haploblocks are 

stretches of DNA, in which recombination rate is low and therefore haplotypes within 

a haploblock are inherited together. These haploblocks are bordered by areas of high 

recombination, marking the start of a new haploblock. Haplotypes and haploblocks 

can be calculated according to algorithms, and then used for association testing with 

the disease.   

We performed a haplotype and then a haploblock association test on our dataset of 

422 cases and 5,642 controls. Using the algorithm provided in SVS, 29,529 haplotypes 

on 10,399 haploblocks were detected. The statistical test used for the analysis was 

Chi-squared test, which allows to compare the frequency of haplotypes/haploblocks 

between cases versus controls.  

48 haploblocks were associated with the disease at genome wide significance 

threshold of p<5×10-8 (Figure 35). 82 haplotypes were associated with the disease at 

genome wide significance threshold (Figure 36).  All of them were on Chromosome 6 

in the HLA region. 
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Figure 35 Manhattan plot for HAT per haploblock 

 
Legend Manhattan plot for haplotype association test for comparison of haploblock frequency 
between cases versus controls. The chromosomal position of the markers is represented on the 
x-axis corresponding to the human genome GRCh37/hg19. The -log p-value of each marker on 
the y-axis. Each blue dot represents the first marker of a haploblock. One locus reaches genome 
wide significance. This locus corresponds to the MHC/HLA region, overlapping with the results 
seen for the basic allele test.  
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Figure 36 Manhattan plot for HAT per haplotype 

 
Legend Manhattan plot for haplotype association test for comparison of haplotype frequency 
between cases versus controls. The chromosomal position of the markers is represented on the 
x-axis corresponding to the human genome GRCh37/hg19. The -log p-value of each marker on 
the y-axis.  Each blue dot represents the first marker of a haplotype. As seen in the haploblock 
association test, one locus reaches genome wide significance corresponding to the MHC/HLA 
region. 

 

 

The results of the haplotype association test showed that on chromosomes 6 in the 

HLA region not only single markers are associated with the disease, but also whole 

haploblocks. The level of significance is higher than in the basic allele test representing 

the combined effect of markers in a haplotype and haploblock on the association 

results.  
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Chapter 4. Imputation European cohort 
The ideal situation would be to investigate the highest number of variants possible 

when comparing cases and controls. However, in the final dataset of our study the 

density of genotyped markers was relatively low. Many markers dropped when 

overlapping the case and control datasets and the filtering steps removed additional 

markers. A low density of markers can cause disease loci to be missed as gaps 

between the markers might be large and whole areas might not be covered or signals 

are lower as fewer markers are in LD with the causal variant. A way to increase the 

density of markers is via imputation. Imputation is a statistical method to infer missing 

genotype data by placing information into a context. It takes the available genotype 

data and fills in the gaps between with most probable genotypes based on probabilities 

arising from the surrounding data and reference panels (details can be found in the 

introduction part on page 49).  

 

Imputation was performed on the final case and control dataset from the GWAS. This 

dataset comprised 422 cases and 5,642 controls genotyped on 158,217 markers 

passing the quality control steps. Imputation analysis itself was performed using 

Beagle 5.0 with the 1000 Genomes Project Phase 3 data (version 5a) as a reference 

panel. The reference panel included 2,504 samples including representatives from the 

5 super populations East Asian, South Asian, African, European, American (detailed 

methods are described in material and methods part page 89).  

 

Cases and controls were imputed together to a total of 30,761,499 markers. The first 

attempts of performing an association test on the imputed dataset revealed very noisy 

results (Figure 37). We consequently applied strict quality control steps on the imputed 

dataset before further analysis.   
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Figure 37 Manhattan plot for first attempt of association test after imputation   

 

Legend Shown is the Manhattan plot for the results of the first association test post imputation. 
No filtering was done on the imputed markers. One can see that a large number of markers are 
above the genome wide significance threshold causing a noisy picture. Quality control filtering is 
needed to detect and remove markers causing possible false positive associations.  

 

Post imputation quality control 

Imputation accuracy 

The genotypes outputted are the most probable ones for each marker of each 

individual. Therefore, each genotype is imputed with a certain probability. The 

probability refers to how likely the imputed genotype matches the real (observed) 

genotype. The first quality control step was to keep only genotypes which are imputed 

above a certain probability threshold.  
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The parameter representing imputation quality is the dosage R-squared (DR2), 

discussed in the methods section on page 91.  6,435,046 markers were imputed with 

a high probability given by a DR ≥80%. All markers with a DR2 <80% were removed 

Further, 587,586 markers were structural variants and removed from the analysis. 

Only SNPs were processed for further analysis (n=5,847,460). All markers had a CR 

≥99% and 624,229 markers had a MAF <1% and were removed. Nine markers had 

no assigned rsID and were removed. The cleaned dataset containing 5,223,222 

markers and was imported in SVS for further analysis. Additionally, 6,956 markers 

showed significant deviation from HWE (p<0.001) in the control samples and were 

removed.  

Final dataset 

The final dataset included 5,216,266 markers. Compared to 158,217 genotyped 

markers of the genotyped dataset, the density has increased 50-fold (Figure 38). 
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Figure 38 Flow chart of quality control steps leading to final dataset of imputed GWAS 

 
Legend Flowchart providing information on data input and processing. QC: quality control; CR: 
call rate; IBD: identity by descent; Het rate: heterozygosity rate; MAF: minor allele frequency; 
HWE: Hardy-Weinberg equilibrium. 

 
 

Association testing on imputed dataset 

Basic allele test 

A basic allele test was performed on 422 cases versus 5,642 controls with 5,216,266 

markers. The inflation factor lambda was 1.0794. 7,321 markers were associated with 

the trait at genome-wide significance level (Figure 39). 

Whole genome imputation

CASES + CONTROLS 
Cases = 422

Controls = 5,642
SNPs = 5,216,266 

QC SNPs: Removal of DR2<80%, INDELs, MAF<1%, CR<99%, HWE P<0.001 on controls

CASES
N = 625 

SNPs = 669,943 

CONTROLS
N = 5879 

SNPs = 372,137 

SNPs: Overlapping in both datasets
Samples: Ancestry selection with PCA

CASES + CONTROLS 
Cases = 422

Controls = 5,642
SNPs = 158,217 

QC Samples: Removal of CR<90%, IBD>0.1875, Het rate>3SD
QC SNPs: Removal of MAF<1%, CR<99%, AC>2, HWE P<0.001 on controls

CONTROLS
Oxford = 432 SNPs = 653,959

HumanOmniExpress-12 BeadChip

Illumina = 90 SNPs = 653,959
HumanOmniExpress-12 BeadChip

WTCCC = 5,604 SNPs = 1,025,437
Illumina Human 1.2M Duo BeadChip

CASES
N = 712 SNPs = 1,513,983

Infinium Multi-Ethnic Global BeadChip
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Figure 39 Manhattan plot for BAT of imputed dataset 

 
Legend Shown is the Manhattan plot for the analysis of 422 cases and 5,642 controls with the 
5,216,266 imputed SNPs. The chromosomal position of the markers is represented on the x-axis 
corresponding to the human genome GRCh37/hg19. The -log p-value of each marker on the y-
axis. The level of whole genome wide significance threshold is presented by the red line. The 
locus on chromosome 6q has increased in significance and more markers in the same build-up 
are now above the threshold line. The peak on chromosome 4 was not seen in the Manhattan 
plot with only genotyped markers, possibly indicating a further association finding.  

 

The markers reaching genome wide significance were distributed on 2 chromosomes. 

17 markers were on chromosome 4 and 7,304 on chromosome 6. A peak on 

chromosome 4 appeared, which was not seen in the Manhattan plot with only 

genotyped markers. The locus on chromosome 6q has increased in significance and 

more markers in the same build-up than seen with the genotyped GWAS are above 

the significance threshold.  

To address possible substratification and to correct for covariates, we decided to 

repeat the association test using a logistic regression model.  
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Regression analysis  

The main advantage of logistic regression over basic alleles test is that it can handle 

more than two independent variables simultaneously, which is important in order to 

correct for covariates. Covariates are variables or the interaction between variables, 

which could affect the analysis without necessarily being related to the disease. 

Correcting for covariates, allows to see the effects of the remaining variables on the 

outcome. This enables to correct for stratification taking the principal components into 

account.  

We performed a regression analysis with correction for the first 10 principal 

components calculated for this dataset in order to address possible substratification. 

The genomic inflation factor lambda was 1.027, hence no substantial inflation was 

noted. The analysis revealed 4,019 markers reaching genome-wide significance. The 

markers were distributed as previously seen over three loci, one on chromosome 4 

and two on chromosome 6 (Figure 40).  
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Figure 40 Manhattan plot for regression analysis of imputed dataset 
 

 
Legend Shown is the Manhattan plot for the analysis of 422 cases and 5,642 controls with the 
5,216,266 imputed SNPs corrected for the first 10 principal components. The chromosomal 
position of the markers is represented on the x-axis corresponding to the human genome 
GRCh37/hg19. The -log p-value of each marker on the y-axis. The level of whole genome wide 
significance threshold is presented by the red line. Three loci achieve genome wide significance. 
Compared to the results of the basic allele test, the overall level of significance has decreased, 
but the same loci are reaching genome wide significance.  
 

Details for the top marker of each locus reaching genome wide significance are 

displayed in Table 14. 
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Table 14 Lead SNPs of the three loci reaching genome wide significance in the imputed 
dataset. 

Locus Gene SNP DR2 Minor 
allele 

MAF 
cases 

MAF 
controls OR 95% 

CI p-value 

6p21.3 HLA-
DQB1 rs9273542 0.89 T 0.51 0.24 3.39 2.86-

4.03 1.59×10-43 

6q22.1 CALHM6 rs2637678 0.96 C 0.26 0.40 0.51 0.44-
0.60 1.27×10-17 

4q13.3 PARM1 rs10518133 0.93 A 0.12 0.06 1.96 1.57-
2.45 2.50×10-8 

Legend Minor allele frequencies (MAF) and odds ratio (OR) with 95% confidence intervals (95% 
CI) for each of the minor alleles of the lead SNPs from the three loci achieving genome-wide 
significance. DR2 (Dosage R-Squared) indicates the Beagle imputation quality score. 

 
 

For easier understanding, we broke down the analysis of the results into the three loci.   

Chromosome 6 p-arm 

The strongest signal seen in the Manhattan plot corresponded to a broad peak on 

chromosome 6p21.32 in the classical HLA region (Figure 41). 

Figure 41 Manhattan plot for chromosome 6 

 
Legend Manhattan plot for regression analysis zoomed in on chromosome 6. Two loci are 
reaching genome wide significance. The broad peak on chromosome 6 p-arm corresponds to the 
HLA region.  
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The lead markers in this region was rs9273542 (p=1.59×10-43, OR=3.39, 95%CI 2.86-

4.03). The marker was imputed with a DR2 score of 0.89 indicating high imputation 

accuracy. The marker is located in the intronic region of the gene HLA-DQB1. The OR 

of 3.39 indicates that the minor allele is associated with a higher risk for development 

of the disease. The SNP with the second lowest p-value was 100bp apart, rs9273529 

(p=2.87×10-43, OR=3.39, 95%CI=2.85-4.03), and was also located in the intronic 

region of the gene HLA-DQB1. The SNP with the third lowest p-value was rs9273371 

(p=1.64×10-43, OR=3.29, 95%CI=2.78-3.89) located intergenic between HLA-DQA1 

and HLA-DQB1. The ORs of all three SNPs are very similar, demonstrating the same 

direction of their effect on disease development. We created a locus zoom plot for the 

region of interest (Figure 42). 

 

Figure 42 Locus zoom for region on chromosome 6p  

 
Legend Shown is the locus zoom for the SNP rs9273542 on chromosome 6. The index SNP is 
annotated with a purple diamond and is in the gene HLA-DQB1. The SNP with the second lowest 
p-value (rs9273529, not annotated) is in close proximity (100bp) also in the gene HLA-DQB1. 
The SNP with the third lowest p-value (rs9273371, not annotated) was approx. 2.5kb apart and 
intergenic between HLA-DQB1 and HLA-DQA1. The red colouring of the surrounding SNPs 
indicates that they are in strong LD with the index SNP.  
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The locus zoom plot indicated that the two SNPs with the second lowest p-values are 

in strong LD with the lead SNP (Figure 42). We performed a conditional analysis 

correcting for the lead SNP to test if the association between the other two SNPs and 

the disease is independent from the lead SNP. A significant association of the 2nd 

and/or 3rd SNP with the disease after adjusting for the lead SNP would indicate that 

those SNPs have an independent effect on the risk for disease development. If the 

SNPs are not further associated with the disease, they are not independently affecting 

the disease risk.   

Additionally, the result can reveal SNPs which are independently associated with the 

disease, but are masked by the strong signal of the lead SNP.   

Conditional analysis 

We performed a conditional analysis on the lead SNP, rs9273542. The strength of the 

association in this region decreased. As expected from the LD displayed in the locus 

zoom plot (Figure 43 A), the two SNPs rs9273529 and rs9273371 did no longer reach 

significance level. The SNP with the lowest p-value changed to rs2858317 

(p=4.29×10-31) upstream of HLA-DQB1 (Figure 43 B). 

 

We subsequently conditioned on both markers, rs9273542 and rs2858317. Joint 

conditioning on the markers reduced the strength of the association in this region 

further. The marker with the lowest p-value was rs3828799 (p=2.40×10-8) just above 

the significance threshold (Figure 43 C). 
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Figure 43 Locus zoom for region on chromosome 6p before and after conditioning  

A) 
 

 
B) 

 
C) 
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Legend  
A) Locus zoom for rs9273542 before conditioning.  
b) Locus zoom after conditioning on rs9273542. The SNP rs2858317 on chromosome 6 is the 
SNP with the lowest p-value after conditioning on rs9273542. The SNP is marked with a purple 
diamond and is upstream of HLA-DQB1. The red colouring of the surrounding SNPs indicates 
that they are in strong LD with the index SNP. 
C) Locus zoom after conditioning on rs9273542 and rs2858317. After conditioning on rs9273542 
and rs2858317 the significance level in this region decreased further, indicating that the 
association at this locus is driven by the two independent markers rs9273542 and rs2858317. 

 

These results indicated that the association at this locus is driven by two independent 

signals, one around rs9273542 and another around rs2858317. 

Chromosome 6 q-arm 

The second locus associated with the disease was on chromosome 6q22.1. The lead 

marker was rs2637678 (p=1.27×10-17, OR=0.51, 95%CI=0.44-0.60) and had an 

imputation quality score DR2 of 0.96 indicating a high imputation accuracy.  The 

marker was located downstream of the gene CALHM6 (previously called FAM26F) 

(Figure 44 A) [158]. The OR of 0.51 indicated a protective effect of the minor allele. 

The SNP with the second lowest p-value was rs2637681 (p=3.53×10-17, OR=0.52, 

95%CI=0.44-0.61) approximately 18kb apart from rs2637678, upstream of CALHM6. 

And the SNP with the third lowest p-value was rs2858829 (p=1.72×10-16, OR=0.53, 

95%CI=0.45-0.62) another 1kb further upstream of CALHM6. Both of them showed a 

similar OR to the lead SNP with the minor allele being protective.  
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Figure 44 Locus zoom for region on chromosome 6q22.1 before and after conditioning  

A) 

 
B) 

 

Legend  
A) Shown is the locus zoom for the SNP rs2637678 on chromosome 6 q-arm. The index SNP is 
marked with a purple diamond and is downstream of the gene FAM26F (CALHM6). The SNPs 
with the second and third lowest p-value (rs2637681 and rs2858829) are annotated in red. Both 
of them are upstream of FAM26F (CALHM6). The red colouring indicates that they are in strong 
LD with the index SNP.  
B) Shown is the locus zoom for the peak on chromosome 6 q-arm after conditioning on 
rs2637678. No further markers reach genome wide significance, indicating that the association 
at this locus is driven by one single signal. 
 

 

As aforementioned, we wanted to test if the markers with the second and third lowest 

p-values are independently associated with the disease or if their association is driven 

by LD with the lead SNP. We performed a conditional analysis with conditioning on 

rs2637678. After conditioning on rs2637678 no further marker reached the level of 
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genome wide significance, indicating that a single signal is responsible for driving this 

association (Figure 44 B). 

Chromosome 4 

The third locus reaching genome-wide significance was on chromosome 4q13.3 

(Figure 45). 

 
Figure 45  Manhattan plot for chromosome 4  

 
Legend: Manhattan plot for regression analysis zoomed in on chromosome 4. One locus is 
reaching genome wide significance. 

 
 

The lead marker was rs10518133 (p=2.50×10-8, OR 1.96, 95% CI=1.57-2.45). The 

marker was imputed with a DR2 score of 0.93, reflecting a high imputation accuracy.  

The marker was located in the intronic region of the gene PARM1 (Figure 46). The OR 

of 1.96 indicated an increased risk for disease with the minor allele. The SNPs with 

the second and third lowest p-values, rs72660383 (p=2.73×10-8, OR 1.96, 95% 

CI=1.57-2.45) and rs17000108 (p=2.79×10-8, OR 1.96, 95% CI=1.57-2.45) were in 

close proximity to the lead SNP with comparable ORs. After conditioning on the lead 
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SNP, no marker reached genome-wide significance indicating that the association is 

driven by a single signal.  

 

Figure 46 Locus zoom for region on chromosome 4q13.3 

 
Legend Shown is the locus zoom for the SNP rs10518133 on chromosome 4. The index SNP is 
marked with a purple diamond and is in the intergenic region of PARM1. The SNPs with the 
second and third lowest p-values are among those coloured in red. The red colouring indicates 
that they are in strong LD with the index SNP.  
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eQTL analysis 

All three lead SNPs (rs2637678, rs2637681, rs2858829) in the chromosome 6q22.1 

locus showed strong cis-eQTL effects according to the GTEx database. Rs2637678 

showed the highest effect size (NES 0.56, p=3.0×10-8) in EBV-transformed 

lymphocytes on CALHM6. Similar results were obtained for rs2637681 (NES 0.56, 

p=1.1×10-7) and rs2858829 (NES 0.54, p=2.8×10-7) with the largest effect size in EBV-

transformed lymphocytes altering the expression of CALHM6. For all three variants 

the minor allele increased the expression of CALHM6, indicating that in cases (where 

the minor allele was less common) the expression of CALHM6 is downregulated.  

We also investigated how the lead variants affect the gene DSE. All three lead SNPs 

(rs2637678, rs2637681, rs2858829) had the lowest effect size on DSE in whole blood 

(rs2637678: NES -0.14, p=3.4×10-14, rs2637681: NES -0.17, p=1.3×10-20, rs2858829: 

NES -0.16, p=1.3×10-18). Here, the minor allele decreased the expression of DSE, 

indication that in cases (where the minor allele was less common) the gene DSE is 

upregulated.  

No significant eQTLs were found for rs10518133 (tagging the locus on Chromosome 

4q13.3) in any tissue in the GTEx database. 

Further, we queried data from the ENCODE project and found evidence that the SNP 

rs2858829 lies in a site of strong regulatory activity:  

We found an enrichment of H3K27Ac histone marks (high acetylation of histone H3 at 

lysine 27) at this site, which indicates transcription enhancer activity. Further, we found 

a clustering of DNAse hypersensitive areas overlapping this region, which also is an 

indication for regulatory regions in general, and promoter sites in particular. Moreover, 

chromatin immunoprecipitation followed by sequencing (ChIP-seq) data showed 

strong evidence of CCAAT/enhancer binding protein beta (CEBPB) transcription factor 

related activity in this region. 
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Chapter 5. Human Leukocyte Antigen imputation 
European cohort 

The strongest signal of the entire association study is coming from markers in the HLA 

region. The lead SNP, rs9273542 is located within the HLA-DR/DQ region. We wanted 

to investigate in more detail which HLA alleles are associated with the disease and 

which are protective. Direct sequencing of HLA alleles is expensive and was not 

feasible for this study. The HLA region itself is characterized by a high linkage 

disequilibrium and earlier studies demonstrated that specific SNPs are in strong LD to 

specific HLA alleles [114]. Therefore, a limited number of genotyped SNPs can be 

used to impute the majority of HLA alleles [115]. We used SNP2HLA, which is a freely 

available software tool, to perform HLA imputation from SNP- level data [116].  

Post imputation processing 

From the final dataset 1,189 genotyped SNPs were overlapping with the SNPs in the 

HapMap European reference dataset for HLA imputation. After imputation only HLA 

alleles with a quality score R2 above 80% were used for downstream analysis. A total 

of 100 imputed HLA alleles were carried forward for association analysis (Figure 47). 
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Figure 47 Flow chart of quality control steps leading to final dataset of HLA imputation  

 

Legend Flowchart providing information on data input and processing. QC: quality control; CR: 
call rate; IBD: identity by descent; Het rate: heterozygosity rate; MAF: minor allele frequency; 
HWE: Hardy-Weinberg equilibrium. 
 

HLA association test 

HLA association testing was performed using logistic regression with adjustment for 

the first ten PCs of ancestry. Twelve HLA alleles were significantly associated with the 

disease. Three represented a lower typing resolution of the same allele. Typing 

resolution refers to what factor the HLA allele is defined. Details about HLA 

nomenclature and HLA typing can be found in the introduction part on page 54. As the 

information of the lower resolution allele is redundant to the higher resolution allele, 

only the higher resolution ones are displayed and kept for downstream analysis (Table 

15).   

Whole genome imputation

CASES + CONTROLS 
Cases = 422

Controls = 5,642
SNPs = 5,216,266 

QC SNPs: Removal of DR2<80%, INDELs, MAF<1%, CR<99%, HWE P<0.001 on controls

CASES
N = 625 

SNPs = 669,943 

CONTROLS
N = 5879 

SNPs = 372,137 

SNPs: Overlapping in both datasets
Samples: Ancestry selection with PCA

CASES + CONTROLS 
Cases = 422

Controls = 5,642
SNPs = 158,217 

QC Samples: Removal of CR<90%, IBD>0.1875, Het rate>3SD
QC SNPs: Removal of MAF<1%, CR<99%, AC>2, HWE P<0.001 on controls

HLA imputation

SNPs = 1,189

QC HLA alleles: Removal of R2<80% 

CASES + CONTROLS 
Cases = 422

Controls = 5,642
HLA alleles = 100 

Overlapping with 
HLA reference 

panel

CONTROLS
Oxford = 432 SNPs = 653,959

HumanOmniExpress-12 BeadChip

Illumina = 90 SNPs = 653,959
HumanOmniExpress-12 BeadChip

WTCCC = 5,604 SNPs = 1,025,437
Illumina Human 1.2M Duo BeadChip

CASES
N = 712 SNPs = 1,513,983

Infinium Multi-Ethnic Global BeadChip
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Table 15 Risk of classical HLA alleles associated with SSNS 

HLA allele MAF cases MAF controls OR 95%CI p-value 
HLA_DQA1*02:01 0.35 0.15 3.42 2.80-4.16 1.06×10-32 

HLA_DQA1*01 0.13 0.38 0.36 0.30-0.43 1.90×10-31 

HLA_DRB1*07:01 0.35 0.15 3.26 2.68-3.97 5.62×10-31 

HLA_DQB1*02 0.4 0.21 2.43 2.04-2.91 9.77×10-22 

HLA_DQA1*01:03 0.02 0.09 0.24 0.15-0.38 1.79×10-14 

HLA_DRB1*13 0.04 0.11 0.31 0.22-0.44 2.41×10-14 

HLA_DRB1*13:01 0.02 0.08 0.23 0.15-0.37 3.18×10-14 

HLA_DQA1*01:01 0.08 0.15 0.46 0.35-0.59 1.53×10-10 

HLA_B*08:01 0.2 0.13 2.95 2.05-4.23 9.17×10-09 

Legend Minor allele frequencies (MAFs) for patients and controls and odds ratios (ORs) with 
95% confidence intervals (95%CIs) for each of the HLA alleles achieving genome-wide 
significance are shown. 

 

The strongest association was observed with HLA-DQA1*02:01. The OR of 3.42 

indicated that carriers of this allele have an increased risk for the disease. Also 

associated with risk to develop the disease was HLA-DRB1*07:01 with an OR of 3.26. 

Whereas the HLA allele HLA-DQA1*01 had an OR of <1, indicating that carrying this 

allele is protective for disease development (Figure 48 A). 

To test if these alleles are independently associated we performed a conditional 

analysis. After conditioning on HLA-DQA1*02:01 the strongest signal came from HLA-

DQA1*01 (p=1.24×10-31, OR=0.31, 95% CI=0.25-0.38). This revealed that the allele 

from HLA-DQA1*01 is independently protective for disease development (Figure 48 

B).  

After conditioning on both, HLADQA1*02:01 and HLA-DQA1*01, only two alleles 

remained independently significant. HLA-DQB1*03:03 (p=1.22×10-8, OR=0.38, 

95%CI=0.26-0.54) and HLA-DQB1*03 (p=1.69×10-8, OR=0.64, 95% CI=0.55-0.75).   
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Figure 48 Results of HLA type association analysis 

A) 

 

B) 

 

Legend Results for HLA allele imputation for HLA class I (HLA-A, -C and -B) and class II (HLA-
DRB1, -DQB1) genes. Shown are the odds ratios (OR) for classical HLA alleles on y-axis and 
chromosomal position on x-axis. HLA alleles with an OR > 1 are deemed to be disease causing 
versus HLA alleles with an OR < 1 deemed to be protective. Significantly associated HLA alleles 
are coloured in red. Indicated are the three HLA alleles with the highest significance level. 
A) HLA-DQA1*02:01 and HLA-DRB1*07:01 are disease causing, whereas HLA-DQA1*01 seems 
to have a protective effect. 
B) After conditioning on HLA-DQA1*02:01. Note that the protective allele HLA-DQA1*01 is 
essentially unchanged, indicating that its effect is independent of HLA-DQA1*02:01. 

HLA_DQA1*01
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Chromosomal position

O
dd
s
ra
tio

HLA-DQA1*01:02

Chromosomal position

O
dd
s
ra
tio

HLA-DRB1*15:01

HLA-DQA1*01



 

 163 

Part 4. Asian cohort GWAS 

Chapter 1. Replication cohort 
The main findings of the European GWAS was, that a) specific HLA alleles are 

significantly associated with the disease and b) that there are two loci outside the HLA 

region on chromosome 4q13.3 and chromosome 6q22.1 that are significantly 

associated with the disease. The gold standard for GWAS findings to be considered 

as valid is to replicate the findings in an independent cohort (replication cohort). 

Therefore, we aimed to replicate the findings of the European GWAS in a separate 

cohort. We had cases and controls provided from Asian collaborators, which we 

utilised as replication cohort.  

Cases 

The dataset consisted of 513 cases from collaborators from South East Asia.  Those 

samples were genotyped at ICH (Institute for Child Health) UCL (University College 

London) Genomics on the Infinium Multi-Ethnic Global BeadChip. After processing 

with REMEDY the dataset contained 1,565,259 of which 1,513,983 were autosomal.  

Controls 

Samples from 223 healthy controls were provided from the same collaborators.  Those 

223 were genotyped together with the cases on the Infinium Multi-Ethnic Global 

BeadChip and processed via REMEDY.  

Quality control steps 

The same quality control steps as for the European study were applied to the Asian 

cohort. The only difference was that cases and controls were analysed together. This 

was reasonable as cases and controls were genotyped together in the same batch on 

the same SNPchip and therefore treated as a single cohort.  

First, samples were removed with a CR<0.90 (n=10) leaving 504 cases and 222 

controls. 
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Duplicated and related samples were identified by using PRISMA with a cut-off for IBD 

of 0.1875. 104 cases and 20 controls were identified to be either identical or related 

and were removed from the further analysis, leaving 400 cases and 202 controls.  

15 samples had a heterozygosity rate with more than 3 standard deviation +/- of the 

mean and were removed, leaving 387 cases and 200 controls in the dataset. The 

remaining dataset consisted of 587 samples (387 cases and 200 controls).  

The initial number of markers in the dataset was 1,565,259 of which 1,513,983 were 

autosomal markers. Markers were removed because of CR <0.97 (n=63,727) and 

MAF <0.01 (n= 739,938). Markers in the control dataset were removed if they were 

outside the HWE with p <0.001 (13,722). The remaining number of markers after QC 

was 712,190. 

Ethnicity selection 

In order to get a homogenous group a PCA was used to identify population 

stratification. Outliers were visualized in a scatter plot and excluded from the further 

analysis. As a cut-off for removal of outliers, the standard deviations 3, 2.5 and 2 were 

tested (Table 16). The results are visualized in comparison to the Illumina ethnicity 

controls (CEU, YRI and CHB-JPT) (Figure 49). The distribution of the cases and 

controls in relation to the Illumina ethnicity controls showed that they were clustering 

between Europeans (CEU) and East Asians (CHB-JPT), confirming their South/West 

Asian ancestry. However, for simplicity reasons we refer to this cohort as Asian cohort.  

 

Table 16 Summary of the influence of removal of outliers with different standard deviations on 
the number of remaining cases and controls 

  Cases remaining Controls remaining IF Lambda 
A No removal of outlier 387 200 1.709 
B Removal of outlier SD >3 358 176 1.522 
C Removal of outlier SD >2.5 245 136 1.083 
D Removal of outlier SD >2 136 61 1.074 

Legend SD: Standard deviation of the mean; IF: Inflation factor 
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Figure 49 Scatterplot for PCA of Asian cohort with stepwise removal of outliers 

A)      B) 

 
C)      D) 

 

Legend Scatter plot of the distribution of cases and controls along the top two principal 
components (PC1 and PC2). The results are visualised in comparison to the Illumina ethnicity 
controls (CEU, YRI and CHB-JPT). Number of remaining cases and controls for each scenario 
can be found in Table 16. 
A) prior to the exclusion of non-Asian individuals. There is a clustering of samples towards the 
CEU reference group visible. 
B) after ancestry selection for Asian by removal of cases and controls with principal components 
of >3 SDs from the mean. There is still a clustering of samples towards the CEU reference group 
visible. 
C) after ancestry selection for Asian by removal of cases and controls with principal components 
of >2.5 SDs from the mean. The clustering of samples towards the CEU control group is filtered 
out.  
D) after ancestry selection for Asian by removal of cases and controls with principal components 
of >2 SDs from the mean. The number of remaining samples has decreased substantially without 
generating a visibly more homogenous group.  
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The scenario with removal of outliers with >2.5 SD was deemed to be the best 

compromise between generating a homogenous group and loss of samples.  

GWAS power calculation 

Comparing 245 cases with 136 controls using alpha = 5×10-8 under an additive model, 

the power to detect association of an allele with a frequency of 0.1 in controls at a 

genotype relative risk (GRR) set at the same level as for the European cohort (2.19) 

is only 0.023. In order to exceed the power of 0.8 a genotype relative risk of 3.99 would 

be necessary. This indicates that the Asian cohort is only powered to detect risk alleles 

with an effect size > 4 at a power of 80%.   

Results  

A basic allele test was performed on 245 cases versus 136 controls with 712,190 

markers. The genomic inflation factor lambda was 1.0837, not indicating stratification.  

The statistic method used was the basic allele test and the genome wide significance 

threshold was set at p=5×10-8.  

49 markers were associated with the trait at genome-wide significance threshold. All 

of them were within one peak on chromosome 6p in the HLA region. The results are 

displayed graphically as a Manhattan plot (Figure 50). 
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Figure 50 Manhattan plot for BAT of Asian cohort 

 
Legend Shown is the Manhattan plot for the analysis of 245 cases and 136 controls with the 
712,190 genotyped SNPs. The chromosomal position of the markers is represented on the x-
axis corresponding to the human genome GRCh37/hg19. The -log p-value of each marker on the 
y-axis.  Same QC criteria were used as in the discovery cohort. In contrast to the discovery cohort 
only one locus reaches genome-wide significance on chromosome 6. This locus corresponds to 
the HLA region. No locus outside the HLA region reaches significance.  

 

Details for the top markers reaching genome wide significance are displayed in Table 

17. 

Table 17 Lead SNPs reaching genome wide significance in the Asian cohort  

Locus Gene SNP Minor 
allele 

MAF 
cases 

MAF 
controls 

OR p-value 

6p21.3 Upstream  
HLA-DQA1 

rs17612583 A 0.68 0.46 2.5 2.40×10-9 

6p21.3 HLA-DQA1 rs17612482 T 0.69 0.47 2.5 4.50×10-9 
6p21.3 HLA-DQA1 rs34843907 G 0.69 0.47 2.4 5.80×10-9 

Legend Minor allele frequencies and p-values of the lead SNPs associated in the Asian cohort 
with the disease. Minor allele is defined as calculated in the control cohort.  

 

Equal to the discovery cohort the main peak on chromosome 6 corresponded to the 

HLA region. The lead marker was rs17612583 (p=2.40×10-9) approximately 700bp 
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upstream of HLA-DQA1 (Figure 51). This locus is the same as in the imputed dataset 

of the European cohort tagged by the SNP rs9273542.  

 

Figure 51 Locus zoom for rs17612583 

 
Legend Shown is the locus zoom for the SNP rs17612583 on chromosome 6p. The index SNP 
is marked with a purple diamond and is intergenic between HLA-DQA1 and HLA-DQB1. The 
SNPs with the second and third lowest p-value (not annotated) are in close proximity and are in 
LD with the index SNP. This is indicated by their orange colouring. Note, that this locus is the 
same as tagged by the lead SNP rs9273542 of the European cohort.  

 

 

The SNP with the second lowest p-value was rs17612482 (p=4.50×10-9) in the exonic 

region of the gene HLA-DQA1. The marker with the third lowest p-value was 

rs34843907 (p=5.80×10-9) in the intronic region of HLA-DQA1. Both of them were in 

strong LD with the index SNP. This was indicated by their orange colouring in the locus 

zoom plot (Figure 51).  

We tested if any marker is independently associated with the disease. After 

conditioning on the lead SNP rs17612583 no further markers reached genome wide 

significance indicating that the HLA peak is driven by a single signal.  
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In contrast to the discovery cohort, no additional loci outside the HLA region reached 

genome–wide significance.  

 

Next, we specifically looked up the lead SNPs (rs2637678 and rs10518133) tagging 

the loci reaching genome wide significance outside the HLA region in the European 

association study. As the Asian cohort was not imputed, none of the lead SNPs from 

the European imputed dataset were represented in the Asian cohort. We hence looked 

up the markers from the pre-imputed European dataset reaching genome wide 

significance in the 6q22.1 locus (rs549262 and rs648210) (Table 18). As this is a single 

test, a significance level of p<0.05 was chosen. The markers rs549262 and rs648210, 

which tagged the 6q22.1 locus in the pre-imputed European GWAS did not reach 

significance (p-values of 0.117 and 0.375, respectively) in the Asian cohort, but 

showed the same direction of effect (the minor allele was less common in cases than 

in controls) (Table 18). 

Table 18 Results in the Asian cohort for the European lead SNPs on chromosome 6q22.1 

Locus Gene SNP Minor 
allele 

MAF 
cases 

MAF 
controls 

OR p-value 

6q22.1 DSE rs549262 A 0.17 0.21 0.74 0.12 

6q22.1 FAM162B rs648210 G 0.21 0.24 0.85 0.38 

Legend Minor allele frequencies and p-values of the lead SNPs of the pre-imputed European 
cohort in the Asian cohort  

 

A power calculation to assess if the study was powered to detect an association with 

a p-value <0.05 at this locus was performed. Using the parameters from the European 

cohort for the marker rs549262 (MAF in controls=0.40, OR=0.63) the Asian cohort 

would have the power of 0.88 to detect an association at that locus. However, when 

taking the different allele frequencies in the different ethnicities into account, hence 

using the MAF and the OR of the Asian study (MAF in controls=0.21, OR=0.74) the 

power to detect an association at a p-value of <0.05 was only 0.39.  

 

In summary, the lead SNP in the Asian cohort (rs17612583) is tagging the same region 

(HLA-DQA1/HLA-DQB1) as the lead SNP (rs9273542) in the European discovery 

cohort. However, the associations outside the HLA region could not be replicated at 

this point.  
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Chapter 2. Meta-analysis European and Asian cohort 
The replication cohort confirmed the association in the HLA region. However, the 

peaks on Chromosome 6 q-arm and Chromosome 4 p-arm could not be replicated in 

the Asian cohort.  

In the situation of small sample sizes where the power of the study is limited a meta-

analysis of the results can be useful. The focus is on investigating the direction of 

effect of the risk alleles, rather than replicating the signals at genome wide significance 

level.  

A commonly used tool to perform a meta-analysis is METAL [119,76]. In short, METAL 

uses the direction of the effect of a risk allele combined with the p-value for this allele 

observed in each single study to calculate an overall effect size and p-value for the 

specific allele. The sample size of each study is taken into account when weighing the 

effect size of each study result [119]. Therefore, this method can combine the evidence 

of association findings from individual studies by using appropriate weights. More 

details can be found in the introduction part on page 58.  

Results  

Pre-imputation European dataset and Asian dataset 

For the European dataset the pre-imputation GWAS results of 422 cases and 5651 

controls with 187,163 genotyped markers were included. For the Asian dataset 245 

cases and 136 controls with the 712,190 genotyped markers were included. The 

number of overlapping markers and therefore included in the Meta-analysis was 

185,384. Two loci on chromosomes 6 and one isolated marker on chromosome 15 

reached genome wide significance (Figure 52).  
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Figure 52 Manhattan plot for the trans-ethnic meta-analysis 

 
Legend Shown is the Manhattan plot for the trans-ethnic metanalysis of the pre-imputed 
European discovery and the Asian replication cohort. The chromosomal position of the markers 
is represented on the x-axis corresponding to the human genome GRCh37/hg19. The -log p-
value of each marker on the y-axis. Two loci on chromosome 6 reach genome wide significance 
and a single marker on chromosome 15. 

 

In the Meta-Analysis across the European and the Asian the strongest signal 

corresponded as previously seen to the HLA region. The marker with the lowest p-

value was rs4947342 (p=2.42×10-45, OR=1.39, 95%CI=1.32-1.45) upstream of HLA-

DQB1. The markers with the second lowest p-value was rs479536 (p=2.57×10-43, 

OR=1.37, 95%CI=1.31-1.43) upstream of NOTCH4. 

 

The second locus on chromosome 6 reaching genome wide significance 

corresponded to the 6q22.1 region. The marker with the lowest p-value was rs549262 

(p= 2.26×10-9, OR=0.87, 95%CI=0.83-0.91) in the intronic region of the gene DSE. 

The marker with the second lowest p-value in the same locus was rs648210 (p= 

2.36×10-8, OR=0.88, 95%Ci=0.84-0.92) in the gene FAM162B.  

 

The results for the lead SNP in the 6q22.1 locus were plotted in a Forest plot revealing 

that in both studies the minor allele had a negative effect size. This demonstrated that 
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the direction of effect of the minor allele was the same in the European and Asian 

cohort (Figure 53). 

 

Figure 53 Forest plot for meta-analysis results for rs549262 on chromosome 6q22.1 

 
 
Legend: Forest plot for the marker rs549262. The vertical dashed line represents the overall 
measure of effect for the meta-analysis. The vertical solid line is the line of no effect. If the 
confidence interval for an individual study or the meta-analysis overlaps with the line of no effect, 
it demonstrates, that the individual study’s effect size does not significantly differ from “no effect”. 
Both GWAS, the European and Asian demonstrate a protective effect of the test (minor) allele.  

 

 

The one SNP on chromosome 15, rs1898882, reaching genome wide significance, 

was the same as already considered false positive in the European discovery cohort. 

Post-imputation European dataset and Asian dataset 

The density of markers was limited in this study because of the low number of markers 

in the pre-imputed European dataset. We repeated the analysis using the post-

imputed European dataset. The number of overlapping markers increased to 386,378. 

Again, two loci reached genome wide significance, one on chromosome 6 p-arm 
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corresponding to the HLA region and one on chromosome 6 q-arm corresponding to 

the 6q22.1 locus.  

 

The marker with the lowest p-value was rs2856696 (p=7.79×10-67, OR=1.48, 

95%CI=1.42-1.55) downstream of HLA-DQB1, followed by rs9273471 (p=2.34×10-66, 

OR=1.48, 95%CI=1.42-1.55) intronic in HLA-DQB1, tagging the HLADR/DQ region. 

 

On the chromosome 6 q-arm additionally the marker rs9384981 (p=2.58×10-13, 

OR=0.85, 95%CI=0.81-0.88) downstream of CALHM6 was detected, tagging the 

chromosome 6q22.1 region (Figure 54).  

 

Figure 54 Forest plot for meta-analysis results for rs9384981 on chromosome 6q22.1 

 
Legend: Forest plot for the marker rs9284981. The vertical dashed line represents the overall 
measure of effect for the meta-analysis. The vertical solid line is the line of no effect. If the 
confidence interval for an individual study or the meta-analysis overlaps with the line of no effect, 
it demonstrates, that the individual study’s effect size does not significantly differ from “no effect”. 
Both GWAS, the European and Asian demonstrate the same direction of effect for this marker.  

 

No additional loci reached genome wide significance.  
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Part 5. Discussion 
In this thesis, we present our findings on loci outside the HLA region associated with 

SSNS as well as confirm previous association findings of SSNS within the HLA region. 

We performed a GWAS on the so far largest cohort of SSNS patients providing new 

insights into possible pathomechanisms of the disease. The identified loci strongly 

suggest an immunological component in the risk for development of SSNS.  

Loci identified  

HLA locus and SSNS 

By far the strongest association found in our study is located in the HLA region. In our 

European discovery cohort, all three lead SNPs identified, rs9273542, rs9273529 and 

rs9273371, are located within the HLA-DR/DQ region, specifically in and around the 

genes HLA-DQB1 and HLA-DQA1. These findings were replicated in the Asian cohort, 

where the lead SNP rs17612583 also tagged the region around the genes HLA-DQB1 

and HLA-DQA1, and in the transethnic meta-analysis of the European and Asian 

cohort. This is in accordance with previous GWAS published on SSNS. In Gbadegesin 

et al, four SNPS (rs1129740, rs9273349, rs1071630, and rs1140343) reached exome-

wide significant threshold and all four of them were within or around the genes HLA-

DQA1 and HLA-DQB1 [75]. In Debiec et al, the lead SNP in the European discovery 

cohort was located between the genes HLA-DQB1 and HLA-DQA2 and in the 

Maghrebian replication cohort between the genes HLA-DRB1 and HLA-DQA1 [76]. In 

both cohorts LD is extending over the whole HLA-DR/DQ region. Debiec et al further 

performed a transethnic meta-analysis across four cohorts and the one SNP reaching 

genome-wide significance was again around HLA-DQB1. The cohort ethnically most 

unrelated to ours was studied by Jia et al, who published a GWAS on Japanese SSNS 

patients. The top peak in this Japanese GWAS was also around the gene HLA-DQB1, 

indicating that the association with HLA-DR/DQ is conserved across ethnic boundaries 

[77].  

 

Imputation of HLA alleles was performed in the European cohort. We identified that 

the composite haplotype HLA-DQA1*02:01; HLA-DRB1*07:01; HLA-DQB1*02 was 
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associated with the strongest risk of disease development. The same haplotype was 

identified by Debiec et al to be associated with the disease [76]. Interestingly, South 

Asian children with SSNS carry the same risk haplotype [159]. The fact that the 

haplotype is preserved over different ethnicities strongly supports its relevance in the 

disease pathogenesis. Conversely, HLA-DQA1*01, HLA-DQA1*01:03 and HLA-

DRB1*13 appear to be protective. HLA-DQA1*01 was also identified as protective in 

the South Asian cohort [159].  

Remarkably, in the Japanese cohort, the common risk haplotype of the European and 

South Asian population (HLA-DQA1*02:01; HLA-DRB1*07:01; HLA-DQB1*02) was 

not replicated [77]. The haplotype associated with the strongest risk for disease 

development was HLA-DRB1*08:02, DQB1*03:02 and HLA-DRB1*13:02, 

DQB1*06:04 appeared to be protective [77]. These findings may indicate that the 

associated HLA alleles differ depending on geographic and ethnic origin [77]. 

Table 19 Overview of HLA alleles significantly associated with SSNS 

Legend Classical HLA alleles identified in SSNS cohorts to be associated with the disease.  

 

However, the underlying mechanisms how the different HLA class II alleles impact the 

susceptibility for immune-mediated disorders including SSNS, autoimmune or 

inflammatory diseases is not clearly understood. The highly polymorphic nature of HLA 

genes and the extensive LD across the MHC region has made the identification of the 

causal variants in the MHC region and the disease a challenging task. Further, the 

majority (if not all) MHC-associated diseases are following a complex inheritance 

HLA allele Discovery 
cohort 

Debiec et al 
[76] 

Adeyemo et al 
[159] 

Jia et al 
[77] 

 European European South Asian Japanese 
Deleterious     
HLA-DQA1*02:01 
HLA-DRB1*07:01 
HLA-DQB1*02 

X 
X 
X 

X 
X 
X 

X 
X 
X 

 

HLA-DRB1*08:02 
HLA-DQB1*03:02 

    X 
X 

Protective     
HLA-DQA1*01 
HLA-DQA1*01:03 
HLA-DRB1*13 

X 
X 
X 

 
X 
 
 

 

HLA-DRB1*13:02 
HLA-DQB1*06:04 

   X 
X 
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pattern where the combination of particular HLA alleles with other genetic variants is 

crucial for increasing the susceptibility for the disease. In addition, non-inherited 

factors including environmental influences and epigenetic factors may also alter the 

risk for disease development. Additionally, immune-mediated diseases are commonly 

heterogeneous in their clinical presentation. All these factors complicate and hamper 

the detection of the underlying mechanisms how MHC molecules influence disease 

susceptibility. 

 

However, for the better interpretation of the role of MHC molecules in immune 

mediated disease I will shortly summarize the principles of autoimmunity and immune 

dysregulation.  

Principles of Autoimmunity 

Autoimmunity describes the failure of the adaptive immune system to distinguish 

between pathogens and self-antigens leading to erroneous immune response that 

causes tissue damage [160]. The two major representatives of the adaptive immune 

system are T cells and B cells.  

 

T cells derive from immature precursors cells in the bone marrow and migrate to the 

thymus, where they develop into two effector cell lines, CD8+ cytotoxic T cells or CD4+ 

T helper cells. Activation of T cells requires antigen-presentation via specialised 

antigen presenting cells (APC), such as macrophages or dendritic cells.  

An intracellular antigen is presented via HLA class I molecules to the CD8+ cells. This 

leads to the production of specific cytotoxins and consequently to apoptosis of the 

target cell. An extracellular antigen is presented via HLA class II molecules to CD4+ T 

helper cells. This leads to the differentiation of T helper cells into several subsets of T 

helper and regulatory cells. Different cytokine profiles released by APC cells promote 

the differentiation into the subtypes of T cells, which then mediate different immune 

responses.   

 

The second arm of the adaptive immune system are B cells. B cells are antibody 

producing cells. The immature precursor cells are stored in the bone marrow. In the 

periphery, mature B cells express the antigen-sensing immunoglobulin IgM on their 
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cell surface that can bind antigens, also referred to as B cell receptor (BCR). The 

presentation of an antigen in presence of T helper cells activates the mature B cells to 

develop into either antibody-producing plasma cells or memory B cells. Five isotypes, 

or classes, of antibodies (IgM, IgD, IgG, IgA, and IgE) exist. Initially activated B cells 

produce low-affinity IgM, but subsequently they experience an isotype switch, 

producing high-affinity IgG (in a smaller proportion IgA, or IgE) type antibodies [161]. 

Plasma cells can be short or long-living. The short-lived plasma cells die after a few 

days, whereas long lived plasma cells return to the bone marrow and continue 

producing antibodies independently of antigen exposure. [162] 

 

Antibodies have three main roles in eliminating pathogens. First, antibodies can 

neutralize the recognised pathogen via binding it (e.g. the virus) and preventing it from 

entering a cell. Secondly, antibodies can activate other immune cells, such as 

macrophages, which then attack the pathogen and thirdly, antibodies are activators of 

the classic pathway of the complement system by binding to C1q. [162] 

 

In addition to the role of B cells of producing antibodies, B cells also interact with T 

cells [162]. B cells are involved in the antigen presentation to both, CD8+ and CD4+ T 

lymphocytes [163]. Secondly, B cells are involved in the co-stimulation of T cells 

leading to T cell activation and memory. Further, B cells produce inflammatory 

cytokines (IL-6 and TNF-alpha), which lead to T cell activation and differentiation 

[163,162]. On the other hand, B cells are also assumed to have a regulatory function 

on T cell activation via the production of inhibitory cytokines (IL-10 and IL-35) 

[163,162]. 

 

Autoimmunity derives if these mechanisms turn against an antigen of the own body 

(self-antigen), rather than a pathogen. There are several immune mechanisms to 

induce self-tolerance and hence protect against B and T cells reacting to a self-

antigen. In general, those are divided in central and peripheral tolerance mechanisms 

[160]. Central tolerance is established in the thymus and bone marrow during the 

maturation of lymphocytes, where B and T cells are eliminated if they react against a 

self-antigen [160]. However, this process is not perfect and not all possible self-

antigens are presented in the thymus and bone marrow. Further, tolerance has to 
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address the change occurring in the body with time. Hence, additional peripheral self-

tolerance mechanism ensure that B and T cells do not react against a self-antigen. 

For example, if a T cell detects a self-antigen, but no additional signals, such as 

cytokines, are present, the T cell will be inactivated [160].  

 

If any of those mechanisms fail, autoimmunity can develop against any antigen in the 

body. For example, in type 1 diabetes the immune system reacts against the 

pancreatic ß-cells. In membranous nephropathy, PLA2R is a recognized antigen [80]. 

However, how self-tolerance is disturbed and how autoimmunity is triggered remains 

to be understood.  

 

Hundreds of associations between immune-mediated disease and the HLA locus, 

which encode the receptors that are expressed by APC to trigger the immune 

response, have been reported. In general, different HLA class II alleles in this locus 

could possibly influence the HLA - peptide - T cell receptor (TCR) interactions and 

promote the activation of autoreactive effector CD4+ T cells [164,165]. HLA gene 

expression levels and differential HLA protein stability could further influence the 

activation of the immune system [164,165]. This could subsequently lead to increased 

TCR-mediated activation of autoreactive effector T cells, as well as to a reduction of 

regulatory T cells [164,165]. The threshold for T cell activation could be enhanced by 

impaired regulatory mechanisms of the immune system [164,165]. Arguably, it is the 

detection of associations of non-HLA genes that point towards impacted regulatory 

mechanism and hence substantially aid to understand immune-mediated disease, 

including in SSNS. 

 

Non-HLA genes in the HLA locus 
 

The majority of associations identified by GWAS on autoimmune disease to date 

involve the HLA region. Interestingly, in previous studies on autoimmune disease, 

conditional analysis on the top signals in the HLA region demonstrated multiple 

independent association signals within the region. For example, the international 

multiple histocompatibility complex and autoimmunity genetics network performed 

conditional regression analyses on seven autoimmune disorders (systemic lupus 
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erythematosus, Crohn's disease, ulcerative colitis, rheumatoid arthritis, myasthenia 

gravis, selective IgA deficiency, multiple sclerosis) in the HLA region [110]. For each 

of the diseases, after conditioning on the top marker, multiple further association 

signals were identified, revealing that the HLA region displays a complex effect, 

involving multiple loci, on autoimmune disorders. 

 

Similarly, previous studies of SSNS identified independent association signals within 

the HLA region. In the study by Debiec et al, serial conditional analysis of the HLA 

association revealed an independently associated SNP in the HLA region located in 

close proximity of BTNL2 (rs9348883) [76]. However, in our GWAS we were unable 

to confirm an independent association with this gene. This could reflect the different 

ethnicities analysed, as the BTNL2 signal was primarily driven by the African cohort in 

that study [76].  

Associations outside the HLA region 
The adaptive immune response is triggered by antigen presentation via HLA 

molecules to T cells and is modulated by regulatory mechanisms, elements of which 

are encoded in non-HLA genes [78]. B cells as part of the humoral immune response 

are capable of producing antibodies directed against a specific antigen. Consequently, 

the identification of immune regulatory genes or/and a possible antigen could provide 

the most informative insights into the complex architecture of the dysregulated immune 

response in specific diseases.  

In the European cohort we found two loci outside the HLA region achieving genome-

wide significant associations with SSNS. For the further discussion, it is important to 

note that our GWAS cannot pinpoint the causal allele or gene and therefore we are 

using a “closest gene” approach to discuss the genes in these loci tagged in our 

GWAS. 

6q22.1 locus 

The strongest signal outside the HLA region in the European cohort was on 

chromosome 6q22.1 with the lead SNP rs2637678 (p=1.27×10-17, OR=0.51). This 

marker was imputed, however a high imputation score of DR2 of 0.96 makes us 

confident about its accuracy.  
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Interestingly, Debiec et al also described two SNPs reaching suggestive levels of 

significance rs59882675 and rs2858829 outside the HLA locus. The second SNP 

reached a p-value of 6.8×10-8 and is also on chromosome 6q22.1 in the intergenic 

region between CALHM6 and DSE. The SNP rs2858829 reported by Debiec et al is 

identical to one of the lead SNPs in this locus identified in our study where it reached 

a p-value of 1.72×10-16. We consider the existence of this published suggestive 

association at rs2858829 as an independent confirmatory evidence for our genome-

wide significant finding. However, one important limitation of using this study as a 

replication cohort has to be taken into account. Debiec et al neither provide information 

on the minor allele frequency in cases and controls, nor is the OR given, hence we do 

not know the direction of effect in their study. As the majority of cases in the Debiec et 

al study were of European origin we can assume a comparable minor allele frequency. 

Nevertheless, information on the OR would be needed to confirm the same direction 

of effect.  

CALHM6 as candidate gene 

The lead SNP rs2637678 is located downstream the gene CALHM6 (Calcium 

Homeostasis Modulator Family Member 6). CALHM6 was previously also annotated 

as FAM26F or INAM (IRF-3-dependent NK-activating molecule), before the accepted 

consensus name became CALHM6 [166,158]. CALHM6 is located on chromosome 

6q22.1 and consists of three exons. It is neighboured by the genes KRT18P22 and 

TRAPPC3L (GRCH37/hg19). Sequence alignment showed that CALHM6 has 

remained evolutionary conserved [166].  

 

Malik et al investigated CALHM6 using an in silico approach and provided essential 

insight in the structure and function of the protein [166]. CALHM6 is expected to be a 

membrane protein, based on multiple predicted transmembrane helices. It is predicted 

to contain a single, well conserved calcium homeostasis modulator domain, rendering 

it member of calcium homeostasis modulator family [166]. Members of the calcium 

homeostasis modulator family (e.g. CALHM1) were shown to control cytosolic calcium 

concentration and speculated to be pore-forming ion channels [167]. Based on 
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function prediction tools CALHM6 is assumed to be a cation channel, however, the 

exact function and even the type of channel remains vague [166].  

 

Further, the protein structure of CALHM6 is predicted to have an immunoglobulin-like 

fold, which could facilitate interactions and potential synapses between immune cells 

[166]. Indeed, CALHM6 was originally identified as a membrane protein that is 

involved in dendritic cell mediated activation of natural killer cells [168]. Thereafter, 

numerous studies reported the protein to be involved in infection, stress and immune 

response and hence CALHM6 is thought to have an important role in the regulation of 

the immune system [169].  

 

CALHM6 is highly expressed in the spleen and lymphocytes. A study investigating 

CALHM6 expression with real time PCR in monkey (Rhesus macaques) lymphocytes, 

showed that calhm6 is highest expressed in CD4+ T cells, followed by CD8+ T cells 

and CD20+ B cells [170]. When interrogating expression platforms such as The 

Human Blood Atlas, CALHM6 was found to be highly expressed on non-classical and 

intermediate monocytes as well as naïve and memory B cells [171]. 

 

The same study on monkey (Rhesus macaques) lymphocytes further demonstrated 

that INF-γ is the strongest stimulator for calhm6 expression, followed by INF-α and 

TNF alpha. IFN-γ is a pro-inflammatory cytokine produced by NK cells, CD4+ helper 

cells, CD8+ T and B cells. This may indicate that CALHM6 plays a role in IFN-γ 

response in both the innate and adaptive part of the immune system [172]. The review 

by Malik et al even proposes that CALHM6 expression level is a hallmark for IFN-γ-

led immune responses (reflected in its previous name INAM - IRF-3-dependent NK-

activating molecule) [166]. This has been confirmed by other studies, reporting that 

CALHM6 has an increased expression as part of inflammatory responses, such as 

during different viral and bacterial infections, and is differentially expressed as part of 

immune responses [173,174].  

 

Little is known about the mechanism of action of CALHM6, however, CALHM1, 

another member of the CALHM superfamily, has been shown to be an ATP release 
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channel [175]. As ATP is a reported trigger of apoptosis also in immune cells [176,177], 

one can speculate that CALHM6 is involved in lymphocyte apoptotic mechanisms.  

 

In relation to our disease, SSNS, these findings are consistent with the concept that 

altered immune regulation is a key risk factor for the development of SSNS. Hence, 

the role of CALHM6 as one of our candidate genes and constituting an immunological 

component of the disease seems conclusive. 

 

To assess whether our lead variants affect the expression of CALHM6 we performed 

an expression quantitative trait locus (eQTL) analysis [178,179]. All three lead variants 

(rs2637678, rs2637681, rs2858829) are strong eQTLs associated with CALHM6 

expression. It is important to notice that for the lead variant (rs2637678) the minor 

allele was more common in controls than cases indicating that the major allele is the 

risk allele. Hence, the major (risk) allele was associated with decreased CALHM6 

expression. This leads to the hypothesis that the presence of the risk allele may impair 

an important immune regulatory role of CALHM6 in lymphocytes.  

The variant rs2858829 lies additionally in a site of strong regulatory activity according 

to the ENCODE data. This is indicated by increased histone acetylation, a pattern 

typical of enhancers, by DNaseI hypersensitivity clusters, which is associated with 

gene expression regulation, and by ChIP-seq data showing transcription factor binding 

sites in this region.  

 

Interestingly, in a GWAS on European patients with ulcerative colitis (UC) the same 

locus (rs2858829, p= 8.97×10−9, OR=1.12, 95%CI=1.08–1.16) was identified [180]. 

The eQTL analysis revealed the same cis regulatory evidence on the expression of 

CALHM6 gene. However, the risk allele showed the opposite direction, increasing the 

expression of CALHM6. The same group further performed microarray studies and 

showed that CALHM6 was consistently upregulated in inflamed colon mucosa tissue 

form UC patients compared to healthy controls [180]. Although this study did not 

explain the mechanism of action of CALHM6, it is suggesting that differential 

expression of CALHM6 is crucial in determining the immune response of an individual 

in a disease condition [180]. 
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DSE as candidate gene 

It is important to note that GWAS identify variants that represent a haploblock rather 

than a specific gene associated with the disease. Thus, it is possible that another gene 

than CALHM6 in the same haploblock may actually be causally associated with the 

disease. Interestingly, the lead variants in the imputed dataset also alter the 

expression of the gene Dermatan sulfate epimerase-1 (DSE). Hence, it could be that 

this gene (or even both CALHM6 and DSE) is the key to the pathogenesis of SSNS.  

 

DSE encodes an enzyme, named dermatan sulfate epimerase-1, that converts 

chondroitin D-glucuronic acid to dermatan L-iduronic acid (IdoA) during the 

biosynthesis of dermatan sulfate (DS) [181]. The presence of L-iduronic acid 

distinguishes dermatan sulfate from chondroitin sulfate (CS). DS and CS are members 

of a large family of polysaccharides called glycosaminoglycans (GAGs). Covalently 

bound to a core protein they form proteoglycans (CS/DS-PGs), such as decorin and 

biglycan [182].  

 

GAGs are an essential part of the glycocalyx surrounding the endothelial cells of the 

glomerular filtration barrier [183]. Several studies are supporting that GAGs are 

involved in the charge-selective and/or size-selective permeability properties of the 

glomerular basement membrane. Specially heparan sulfate (HS) has been considered 

an important part for maintaining the glomerular filtration barrier [184,183]. However, 

findings are controversial and a recent study on a heparan sulfate gene knock out 

zebrafish model showed that the glomerular permeability was unaffected [185]. 

 

The gene DSE is ubiquitously expressed, with a high expression in the kidneys. An 

experiment with dse-1 knock out mice showed that the mutant kidneys only contained 

4% of the activity of the wild-type samples, indicating that DSE is the predominant 

enzyme in the kidneys [182]. The antibodies LKN1 and GD3A12 are tagging specific 

DS domains. The GD3A12 tagged DS domain was found in rat kidneys around the 

large blood vessels and less in the peritubular space and near the Bowman’s capsule 

[186]. The LKN1 tagged DS domain was found in the tubular interstitial space, but not 

in the healthy glomerulus [187]. 
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Changes in the CS/DS content and modifications have been found in different animal 

models for renal disease. Oversulfated CS/DS with low-iduronic acid content was 

found in a rat model for tubulointerstitial nephritis [188]. In diabetic rats the production 

of DS in the mesangial cells was much increased compared to healthy controls [189].  

Recently, a study in humans looked at the expression of different DS domains in 

kidney biopsies of patients with glomerular disease (FSGS, MN and SLE) [190]. The 

two antibodies tagging DS, LKN1 and GD3A12, were used to investigate the 

expression of the different DS domains. In healthy control kidneys, neither DS domains 

are expressed in the glomerulus. However, in patients with glomerular diseases the 

DS domain tagged by LKN1 was highly expressed in the glomerulus. This suggests a 

role of this DS domain in glomerular disease including FSGS [190].  

 

All our three lead variants are eQTLs for DSE. The minor allele leads to decreased 

expression of the gene. Considering that in our SSNS cohort the minor allele was 

protective, the risk allele (major allele) increases the expression of DSE. An increased 

expression of DSE could lead to an overproduction of DS. In the assumption that 

FSGS reflects just a more progressed stage of SSNS, overexpression of DS in the 

glomerulus could be implicated also in the pathogenesis of SSNS.  

4q13.3 locus 

PARM1  

We found a genome-wide significant association with a locus on chromosome 4q13.3 

(lead SNP rs10518133, p=2.50×10-8, OR=1.96), which is located within the intronic 

region of the gene PARM1 (Prostate androgen-regulated mucin-like protein 1). 

PARM1 was mainly linked and investigated in relation to prostate cancer [191]. An 

increased expression of the gene has been seen in androgen dependent cell lines, 

and decreased expression upon castration, indicating that the gene expression is 

regulated by androgen [191]. A recent study proposed PARM1 as a potential 

prognostic tumour biomarker for colorectal carcinoma [192]. However, it has a wide 

tissue distribution with especially high expression in heart, kidney and placenta [191].  

 

The protein itself is member of the mucin-family. It has been further implicated to have 

an oncogenic role, especially in CD8+ T cell leukemia [193]. Further, in cardiac 
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research, PARM1 was found to be expressed in the endoplasmatic reticulum of 

cardiac myocytes and is speculated to be involved in cardiac remodelling in 

hypertensive heart disease [194]. There is currently no obvious association of PARM1 

with renal or autoimmune disease. Yet, the fact, that PARM1 is regulated by 

androgens may be of interest:  a significantly higher proportion of boys suffer from 

SSNS than girls. Moreover, androgen levels increase in puberty, a typical time when 

the disease spontaneously resolves. This, of course, invites speculation that a sex-

steroid regulated protein is involved in the disease mechanism and justifies further 

investigation of this locus, assuming it can be replicated in other cohorts. 

 

Nevertheless, the significance of this finding in our GWAS remains unclear, because 

we were unable to replicate it in the Asian cohort or the transethnic meta-analysis. 

Interestingly, one of the two loci reaching suggestive significance in Debiec et al, 

tagged by the SNP rs59882675 with a p-value of 5.9×10-8 is also on chromosome 

4q13 approximately 250kb away from our lead marker. Rs59882675 is within the 

intronic region of Betacellulin (BTC), the next gene upstream of PARM1 on 

chromosome 4q [76]. The lead SNP in our study and the SNP identified by Debiec et 

al are however separated by a strong recombination hotspot (> 50cM/Mb). This 

hotspot is at least equally strong in African populations, so that the different ethnicities 

cannot explain the separation of this locus between the previous and our study.  

BTC 

Betacellulin belongs to the epidermal growth factor (EGF) family that signals through 

the EGF receptor [195]. The best reported biological role of BTC is its action on 

pancreatic ß-cells. BTC stimulates ß-cell proliferation in animal models but also in 

humans [196]. It can convert a number of non-ß-cells to insulin producing cells. 

Studies further demonstrated that BTC is a ß-cell growth factor and its injection into 

diabetic rats or mice can improve glucose tolerance and ß-cell volume [197]. 

Another function of BTC is its role in reproduction. Together with other growth factor 

receptor ligands, BTC plays a central role in the transmission of LH signals in the 

ovarian follicles and oocyte maturation [198].  
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Additionally, BTC has been implicated in cancer pathophysiology. Overexpression of 

BTC was observed in different forms of cancer including endometrial adenocarcinoma, 

hepatocellular carcinoma and multiple pancreatic cancer cell lines [195]. Further, BTC 

plays a role in angiogenesis by stimulating the proliferation of different types of 

vascular smooth muscle cells [199]. No function directly related to the podocytes, 

proteinuria or the immune system has been reported. 

 

Further insight into the function of BTC was gained via btc knockout mice and a mouse 

overexpressing btc [195]. The knockout mice showed no kidney-relevant phenotype 

[195]. The mice overexpressing btc revealed multiple phenotypic changes, including 

increased bone mass and gastric epithelium hyperplasia. Again, no phenotype 

involving the kidneys or the immune system was described [195].  

Comparison of findings European – Asian GWAS  

HLA locus 

The strongest association in both studies, the European and the Asian cohort, was 

located in the HLA region. Hence, we can state that the association with the HLA 

region was replicated in the Asian cohort.  

In the European discovery cohort, the three lead SNPs identified were located within 

the HLA-DR/DQ region, specifically in and around the genes HLA-DQB1 and HLA-

DQA1. All three lead SNPs were associated with an increased risk of the disease. 

These findings were replicated in the Asian cohort, where all three lead SNPs 

(rs17612583, rs17612482 and rs34843907) also tagged the region around the genes 

HLA-DQB1 and HLA-DQA1 and were associated with an increased risk of the disease.  

However, in order to know if the same HLA alleles are associated in both ethnicities 

with the disease, HLA imputation of the Asian cohort is necessary, which was outside 

the scope of this thesis. Hence, we are currently able to say that the association with 

the HLA locus was replicated in the Asian cohort; if the same HLA alleles are 

associated with the disease in both ethnical cohorts remains a question for future 

studies. 



 

 187 

6q22.1 locus 

In the European cohort, the strongest association outside the HLA region was within 

the 6q22.1 locus. In the Asian cohort this locus was not significantly associated with 

the disease. Again, it has to be taken into account that the Asian cohort was not 

imputed and therefore the lead SNPs were not represented in this cohort. However, 

the SNP rs549262, which is in the same locus and was significantly associated in the 

pre-imputation European SSNS cohort, was also represented in the Asian cohort. 

When testing if the association at this single SNP can be replicated in the Asian cohort, 

the p value did not reach significance level of <0.05, but the OR showed the same 

direction of effect. A power calculation revealed that the number of cases and controls 

in the Asian cohort would have been sufficient to detect an association with a 

significance threshold of p-value < 0.05 at the marker rs549262. This calculation was 

based on the assumption that the allele frequency and the odds ratio are the same in 

the Asian and in the European cohort. However, in the Asian cohort the allele 

frequency of this SNP is lower than in the European cohort and the required number 

of cases and controls needed to detect an association, is hence higher. Arguably, the 

Asian study was underpowered to detect this region as significant [200]. Also 

differences in the LD pattern can result in different results of association testing [200]. 

Either, the genetic architecture of the European and Asian SSNS patients is simply 

different and the causal variant is a different one or, if it is the same, the effect size 

varies between these two ethnicities. Indeed, it has been shown that a relevant 

number of variants identified by GWAS in one ethnical group are not showing a 

comparable genetic effect in other ethnicities [201].  In addition, the same allele can 

increase risk for one disease but be protective for another, as has been shown for 

eight loci in a study analysing ten autoimmune diseases with paediatric age of onset 

[202]. 

 

The transethnic meta-analysis of the European and the Asian cohort did not reveal 

any further loci of significance. The same loci as in the European GWAS did reach 

genome wide significance also in the meta-analysis, reflecting that the results are 

mainly driven by the European cohort. Importantly, the lead SNP in the chromosome 

6q22.1 locus, showed in both cohorts the same direction of effect, supporting the 

relevance of this finding. 
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Disease mechanism 
 

At present, the pathomechanisms leading to podocyte injury and altered glomerular 

filtration barrier in nephrotic syndrome are still unknown. A detailed overview of the 

current understanding of the pathogenesis of idiopathic nephrotic syndrome is outlined 

in the introduction section on page 26. The main theory of disease mechanism 

proposes that minimal change disease involves lymphocytes that produce 

autoantibodies and/or a yet unknown circulating permeability factor, which induces 

podocyte injury increasing the permeability of the glomerular basement membrane.  

 

We subsequently want to outline how our findings fit into and impact this current 

hypothesis of pathomechanisms underlying SSNS (Figure 55).  

 



 

 189 

Figure 55 Proposed impact of our findings on disease mechanisms  

 

Legend Summary of proposed mechanisms leading to SSNS. 
APCs: Antigen-presenting cells; GBM: glomerular basement membrane; DSE-1: Dermatan 
sulfate epimerase; DS: Dermatan sulfate 
A) CALHM6 is expressed on CD4+ lymphocytes and is assumed to have an important immune 
regulatory function, possibly via mediating apoptosis of lymphocytes. IFN-y is a strong inducer of 
CALHM6 expression. IFN-γ is also produced by Th17 cells, and hence could be the mediator of 
an autoregulatory mechanism of CD4+/Th17/Tregs cells. The identified lead variant rs2637678 
downregulates the expression of CALHM6, which could lead to an alteration of this immune 
regulatory mechanism. In contrast, corticosteroids increase the expression of CALHM6, hence 
the treatment with corticosteroids could restore the immune regulatory function of CALHM6. This 
then leads to remission of nephrotic syndrome.  
B) CALHM6 is also expressed on memory B cells a subpopulation of B cells which also carry 
CD20. The recovery of memory B cells after rituximab has been linked to relapse of nephrotic 
syndrome. Hence, altered immune regulatory mechanism because of downregulated CALHM6 
in memory B cells could be involved in the pathomechanisms of SSNS. Treatment with Rituximab 
addresses those B cells, which also show altered CALHM6 expression, and hence the removal 
of these cells can induce remission.  
C) Another pathway could be that the identified lead variant rs2637678 upregulates the 
expression of DSE, which consequently leads to an increased production of DS in the glomerulus. 
Increased expression of DS has been associated previously with FSGS. However, how this could 
play a role in SSNS pathophysiology remains to be elucidated.   

 

A) B) 

C) 
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Permeability factors 

Over the years, several molecules have been shown to be able to modify the 

permeability of podocytes including hemopexin, cardiotrophin-like cytokine 1 (CLC-1) 

and the soluble form of urokinase-type plasminogen activator receptor (suPAR). A 

detailed summary of these most relevant permeability factors associated with MCD 

and FSGS is given in the introduction section on page 28. Our findings do not favour 

any of those factors, but rather contribute to the hypothesis that a permeability factor 

stems from T- or B cell dysregulation, or both.  

T cell involvement  

Since decades, SSNS was considered a T cell mediated disease. This was originally 

based on following observations. The treatment with steroids and cyclophosphamide, 

knowing to alter cell-mediated immune responses, leads to remission of steroid 

sensitive nephrotic syndrome. The injection of lymphocytes supernatant of patients 

with nephrotic syndrome in healthy controls led to an alteration of vascular 

permeability [31]. In paediatric patients with nephrotic syndrome remission was 

induced during measles infections, which led to prolonged depression of cell mediated 

immunity including T-cell subset reduction [45]. And the observation that nephrotic 

syndrome in patients with T cell lymphomas occurred and the treatment with 

chemotherapy resulted in spontaneous remission of nephrotic syndrome is supporting 

T cell involvement [46]. Since then, numerous studies investigating T cell involvement 

in the disease pathogenesis are published. 

 

Considering that CALHM6 has highest expression on CD4+ T cells, recent findings 

deserve closer attention: CD4+ T helper (Th) cells differentiate upon activation into 

different types of effector cells, which can be identified by their distinctive cytokine 

production profiles. The best known are INF-γ producing Th1 cells and IL-4 and IL-13 

producing Th2 cells. Additionally, CD4+ Th cells can differentiate into so-called Th17 

cells and regulatory T cells [203,204]. Th17 cells produce the signature IL-17. Th17 

cells have been reported to participate in inflammation and autoimmunity processes. 

Conversely, CD4+ cells which differentiate into regulatory T cells (Tregs) 

downregulate the immune response.   
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An imbalance between Th17/Treg cells towards Th17 cells as well as increased levels 

of the Th17-related cytokine (IL-17) have been observed in adult minimal change 

nephrotic syndrome patients and with effective steroid therapy a normal ratio could be 

restored [54]. This was confirmed by Matsumoto et al. [205] who found that urinary IL-

17 excretion is increased in minimal change nephrotic syndrome patients in relapse 

and restored to baseline with remission. Also, in children with idiopathic nephrotic 

syndrome an increased number of Th17 cells and decreased number of Tregs have 

been found [53]. IL-17 has been associated with podocyte damage and recent 

research showed that blockage of IL-17 led to improvement of albuminuria in a diabetic 

mouse model [206]. Interestingly, Th17 cells have been shown to produce not only 

their signature interleukin IL-17, but are also an important source of IFN-γ. The central 

role of these IFN-γ expressing Th17 cells is especially confirmed in other autoimmune 

disease [207].  

 

In our study we were not able to identify any genes involved in the Th17/IL-17 pathway 

itself, however, based on all those observations and the convincing evidence that 

CALHM6 plays an important role in immune regulatory process, we suggest the 

following hypothesis (Figure 55A).  

 

CALHM6 is highly expressed on CD4+ cells and probably involved in sustaining the 

balance between Th17 and Tregs cells. In patients with SSNS the expression of 

CALHM6 is downregulated, hence the immune regulatory role of CALHM6 is altered 

possibly leading to an imbalance between Th17 and Tregs cells. In healthy state, the 

release of IFN-γ by Th17 cells may be part of an autoregulatory process, leading to an 

upregulation of CALHM6 and hence controls the immune response. In patients with 

SSNS the expression of CALHM6 in response to IFN-γ is insufficient to regulate the 

Th17 led immune response.  

A study on glucocorticoid response in rheumatoid arthritis patients showed that 

CALHM6 was significantly upregulated in CD4+T cells of steroid responders in 

comparison to non-responders [208]. Hence, we speculate that the treatment with 

corticosteroids leads to an upregulation of CALHM6, which leads to reinstatement of 

immune regulatory processes and therefore an improvement of the disease is 

observed in patients with SSNS. The differential expression of CALHM6 could be the 
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key to different responses to steroid treatment, as well as changes in steroid sensitivity 

over time.  

 

A key effect of glucocorticoids on the immune system is also the induction of 

lymphocyte apoptosis [209]. Together with the observation that another member of the 

CALHM superfamily is an ATP release channel and ATP is a known trigger for cell 

toxicity and apoptosis, one can speculate that CALHM6 is mediating its effect on 

lymphocytes via inducing apoptosis. Impaired CALHM6 function may enhance an 

inappropriate immune response, leading to SSNS, which can be suppressed by 

administrating glucocorticoids.  

 

In summary, we speculate that the identified locus, rather than explaining the 

mechanism why these children get proteinuria, may explain important immune 

regulatory processes and why patients with SSNS respond to steroid treatment. 

 

How Th17 cells act on the podocytes and subsequently their permeability is not yet 

understood but has been lately discussed by Saleem et al, who speculate that Th17 

cells are the source of a possible permeability factor [210]. Saleem et al proposes that 

Th17 cells release a serine protease, which has yet to be identified, which cleaves 

PAR-1 on the podocytes [210]. This further leads to activation of the JNK and p38 

MAPK pathways which have been shown to be involved in podocyte injury. In the 

downstream pathways JNK and p38 MAPK converge at paxillin leading to 

phosphorylation, which induces a state of podocyte hypermotility, causing the 

observed podocyte damage. [210] Further, Th17 cells have been implicated in 

different diseases as the mediators of different steroid responsiveness [211,212]. 

Saleem et al even postulates that Th17 cells are involved in mechanism leading to 

steroid resistance in nephrotic syndrome [210].  

B cell involvement  

On the other hand, there is supportive evidence that SSNS is a B cell mediated 

disease rather a T cell mediated disease. The strongest argument for the involvement 

of B cells in the disease pathogenesis is that sustained remission can be achieved 

after administration of Rituximab. Rituximab is a monoclonal antibody that targets 
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CD20, which is specifically expressed on the cell surface of B cells, except for 

precursor and plasma cells. The beneficial effect of Rituximab and subsequent B cell 

depletion has been shown in several retrospective studies and randomized controlled 

trials (reviewed in [213]). Additionally, calcineurin inhibitors, which are also 

successfully used in treatment of SSNS are also acting on B cells.  Further, EBV is 

known to cause resistance of B cells to apoptosis and has been shown to increase the 

risk for developing SSNS [214,215].  

 

However, if, and more importantly how B cells are contributing to SSNS pathogenesis 

is still being debated. One theory proposes that antibodies produced by plasma cells, 

are the mediators of the disease. However, the target of Rituximab CD20 is not 

expressed on plasma cells, which of course complicates explaining this pathway of 

action. Vivarelli et al recently demonstrated that the effect of Rituximab is related to a 

prolonged depletion of memory B cells, rather than of total CD19+ B cells, implicating 

the importance of memory B cells in the disease development. Delayed reconstitution 

of memory B cells was related to a longer time until relapse [216]. 

 

Based on this observation, we propose another theory how our candidate gene, 

CALHM6, could be involved in the disease pathogenesis (Figure 55B). CALHM6 is not 

only expressed on T cells but also on B cells. Interestingly, the highest expression of 

CALHM6 within B cells is in naïve B cells and memory B cells, whereas the expression 

is low in plasma cells. Naïve B cells and memory B cells are the subtypes of B cells 

which also carry the surface antigen CD20 and have been implicated to SSNS relapse. 

Hence, we hypothesize that CALHM6 plays an important role in regulatory processes 

of memory B cells, possibly via inducing apoptosis. In patients with SSNS the 

expression of CALHM6 is downregulated, and hence those immune regulatory 

processes in memory B cells are disturbed. Treatment of SSNS patients with 

Rituximab is beneficial, as this leads to depletion of those insufficiently regulated B 

cells. 

 

Alternatively, the effectiveness of rituximab in INS could be mediated through other or 

additional pathways. Rituximab interacts with sphingomyelin phosphodiesterase acid-

like 3b protein (SMPDL), which is expressed by podocytes and Th17 cells [213]. In 
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vitro experiments showed that cross-reaction of rituximab with SMPDL-3b on 

podocytes prevents the downregulation of SMPDL-3b and downstream deregulation 

of the actin cytoskeleton [217]. Also, a study in rheumatoid arthritis demonstrated that 

rituximab reduces Th17 cell response, thus making a logical connection among 

rituximab, Th17, and nephrotic syndrome [213,218,219]. Further, targeting B cells with 

rituximab may affect costimulatory pathways involved in T cell activation [220].  

 

Hence, whether altered immune regulatory mechanism because of reduced CALHM6 

expression affects only B cells or T cells or perhaps both lymphocyte cell lines in 

parallel has to be further investigated.  Both cell lines could be affected at the same 

time by administering Rituximab. This could explain the major beneficial role of this 

drug in the disease.  

Role of DS in SSNS 

We further speculate that our second candidate gene, DSE, could be involved in the 

pathophysiology of SSNS. Based on the findings that our lead variant increases the 

expression of DSE, we propose that in SSNS patients DSE is overexpressed, which 

could lead to an increased production of DS in the kidneys. In patients with FSGS, 

which arguably represents a different spectrum of the same disease, DS was found to 

be overexpressed in the glomerulus of patients’ kidney biopsies [190]. Hence, we 

speculate that in the healthy state, DS is not expressed in the glomerulus of the 

kidneys, but in the presence of our variant, DS is expressed in the kidneys, where it 

possibly serves as an antigen (Figure 55C). However, the lack of immunoglobulins in 

kidney biopsies of MCD patients does not support an antibody-antigen mechanism in 

the pathogenesis of SSNS. Therefore, it remains to be elucidated what role DS plays 

in the pathophysiology of SSNS and how it possibly leads to structural changes in the 

podocyte’s cytoskeleton. 

Conclusion 
This thesis demonstrates the complexity of SSNS and the ongoing lack of 

understanding of multiple components possibly involved in the disease mechanism. 

However, our findings support the involvement of the MHC locus and CALHM6 as an 

immune regulator gene in the disease development. This is a basis on which future 
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research can be built on. Additionally, the role of DSE as a possible antigen opens 

new insights and warrants further investigation.  
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Limitations 
Our study has several limitations.  

 

First, only limited clinical information was available for our patients. It would have been 

of interest to know the age at disease onset in order to perform regression analysis of 

age of onset and number of risk alleles. Further, information on the course of the 

disease in terms of relapse rates, steroid dependency, duration of the disease would 

have been valuable. This would have allowed to stratify our patients into different 

subgroups. And also, the prescription of 2nd or 3rd line agents and response to them 

would have been of great interest. Hence, it would be recommended as part of the 

future directions of this study to collect these clinical information and perform further 

analysis.  

 

Secondly, the control datasets were sourced from different collaborators or publicly 

available databases. Hence, all three control sets as well as the case dataset were 

genotyped on different platforms and needed to be combined thereafter. This initially 

led to systematic errors caused by strand inconsistency, however, we managed to 

overcome this limitation by developing the program REMEDY. Another downside of 

combining data from different genotyping platforms and SNPs is the limited number of 

overlapping markers. We overcame this problem by imputing the datasets to a 

common reference panel and therefore increased the density of markers substantially. 

Generally, imputation has become an accepted tool in GWAS and we could show that 

the same locus (6q22.1) was identified with the imputed, but also with the genotyped 

markers only dataset. This provides evidence that the significant loci are not 

secondary to imputation inaccuracy, but are true associations identified in the GWAS.  

 

Another important limitation is that we were not able to replicate the 6q22.1 and 4q13.3 

loci in our Asian replication cohort. This is likely due to the low power of the replication 

study due to a low number of cases and controls. Still, the independent identification 

of exactly the same locus at 6q22.1 by Debiec et al provides strong confirmatory 

evidence for our results at this locus. However, Debiec et al did not provide detailed 

information on the risk allele at 6q22.1 and we are thus unable to assess whether the 
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direction of effect of the risk allele is the same for both studies. Future independent 

replication is needed to strengthen the findings at this locus. 

 

Future directions 
 

The first step could be to collect more detailed clinical information on the patients, 

including the age of onset of disease, the course of the disease (no relapse versus 

frequent relapsing or steroid depended patients), information if the disease continued 

into adulthood. The age of onset of disease could be correlated to the number of risk 

alleles to test if there is a relationship between lower age of onset and more risk alleles. 

Regarding the course of the disease, the patients could be divided into subgroups (no 

relapse, frequently relapsing (FR) SSNS and steroid-dependent (SD) SSNS) and a 

repeated GWAS performed for each separately. Further, the groups could be 

compared against each other to investigate differences in their genomes. Another 

parameter for severity of disease is the prescription of 2nd or 3rd line agents and 

response to them. This information could also be used to stratify the patients in 

different groups. The aim would be the identification of markers of disease severity 

and very importantly markers that help to predict the patients’ course of disease. If we 

were able to predict the course of the disease (no relapse, frequent relapses or steroid 

dependent), we could use this to guide the treatment of SSNS patients. Hence, the 

identification of differences in the genetic architecture between those groups would be 

of high clinical relevance.  

 

Another important future direction is the replication of our findings in a larger cohort, 

which is powered to detect further associations in the loci outside the HLA-region. This 

could be achieved by increasing the number of cases and controls for the Asian cohort, 

as well as performing whole genome imputation and HLA imputation on the Asian 

cohort. Findings from such a study could not only provide an independent replication 

of our findings but could also provide more insight in the genetic similarities and 

differences of SSNS patients across different ethnical groups.  
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Several loci in our study are just below the significance threshold line. We speculate 

that by increasing the number of cases, these suggestive loci would possibly reach 

genome wide significance. Hence, repeating the European GWAS with a larger 

number of cases could also lead to the identification of more significant loci.  This could 

be achieved by including adult MCD patients in the study. In adults minimal change 

disease causes 10% to 15% of primary nephrotic syndrome, after FSGS and 

membranous nephropathy [221]. An early kidney biopsy is essential for diagnosis and 

drives the therapeutic approach. That said, the histologic picture of MCD is identical 

in adults and children. Hence, in future studies, adults with a biopsy proven MCD, 

could be included.  

 

Further, it would be very interesting to see if the genetic architecture is the same for 

steroid sensitive and steroid resistant (SRNS) patients. This could be addressed by 

performing a separate GWAS on steroid resistant patients. Another option would be 

to develop a genetic risk score for SSNS based on our identified lead variants and 

assess if these variants also increase the risk for SRNS. In case CALHM6 is involved 

in steroid responsiveness, as we speculated above, we would expect that in steroid 

resistant patients the risk score from variants including the CALHM6 locus is different 

to the risk score not including the variants in the CALHM6 locus. 

 

We have to keep in mind that genome-wide association studies signal highlight regions 

of associations, which often contain multiple genes and the lead variants may not 

be causal to the disease phenotype. To further investigate specifically the association 

on the 6q22.1 region several steps would be possible. First, sequencing of this locus 

in a subset of cases and controls would capture all variants in this area. Subsequently 

an association study for this locus with the sequenced data could give more 

information on which variant has the strongest association with the disease.  

 

Another way forward would be to test the hypothesis that the lead variant identified in 

this study is affecting the expression of CALHM6 and DSE. This could be done by 

quantifying the expression of those genes in patient samples. The expression of 

CALHM6 in whole blood samples of patients with SSNS in relapse could be compared 

to controls. Or for DSE, as we think this might be overexpressed in the kidneys leading 
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to an altered production of DS in the glomerulus, it would be a reasonable step to 

measure the expression of DSE in cells from biopsy samples of patients with SSNS in 

relapse, compared to controls. In addition, the anti-DS antibodies GD3A12, LKN1 and 

2A12 directed against DS protein could be used to investigate the tissue distribution 

of DS in patients’ kidney samples compared to control samples.   

 

Altogether, there are multiple ways forward from our current findings and the results 

from this thesis give ground to various new possible studies into the disease 

mechanism of SSNS.  
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