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Criticality of Dirac fermions in the presence of emergent gauge fields
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We consider spontaneous symmetry-breaking transitions of strongly interacting two-dimensional Dirac
fermions minimally coupled to mass and emergent gauge field order parameters. Using a renormalization group
analysis, we show that the presence of gauge fields leads to fermion-induced quantum (multi)criticality where the
putative emergent Lorentz invariance is violated. We illustrate this with the example of translational symmetry
breaking due to charge-density wave order on the honeycomb lattice. Finally, we identify that topological phase
transitions are well described by this effective field theory.
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Interacting Dirac fermions exhibit the simplest form of
fermionic quantum criticality. In high-energy physics this has
been known for some time as spontaneous fermion mass
generation and chiral symmetry breaking in the Gross-Neveu-
Yukawa (GNY) model [1,2]. The prototypical condensed
matter examples are semimetal-insulator transitions on the
half-filled honeycomb lattice [3,4], which are driven by strong
onsite and nearest-neighbor repulsive interactions. The low-
energy excitations are well described by Dirac fermions [5],
which couple to the dynamical order-parameter fields and
play a crucial role in determining the universal behavior
[6,7]. In recent years, GNY models and sign-free lattice
quantum Monte Carlo simulations have helped to push our
understanding of fermionic criticality beyond the Landau-
Ginzburg-Wilson paradigm [8–18].

Strong parallels can be drawn between the high-energy and
condensed matter settings. First, the quantum critical fixed
point exhibits emergent Lorentz invariance with a characteris-
tic terminal velocity and dynamical exponent z = 1 [19–24].
Second, the emergent chiral symmetry is spontaneously bro-
ken in the ordered phase, opening a mass gap in the Dirac
spectrum.

Yet, it is precisely the reduction from Poincaré symmetry
to the crystallographic space groups that allows the solid state
to host exotic fermionic quasiparticles with no elementary
particle analogs [25] and interesting criticality. A prominent
example are anisotropic semimetals [26,27] displaying rela-
tivistic and nonrelativistic dynamics along orthogonal direc-
tions. Such unconventional excitations are known to exist at
the critical point of topological phase transitions involving
nodal fermions [28] and the underlying quasiparticles have
been dubbed semi-Dirac fermions [29–31].

In this paper we investigate the universal nature of Dirac
fermion systems undergoing quantum phase transitions with
dynamical order-parameter fields that minimally couple to the
fermions as components of emergent gauge fields, in addition
to the standard mass fields of GNY theories. We find that the

quantum critical points violate the putative emergent Lorentz
invariance of the GNY critical fixed points.

Although our conclusions are general, we illustrate these
principles by means of a concrete example. We examine the
half-filled two-dimensional honeycomb lattice in the presence
of dominant next-nearest-neighbor repulsions. This model has
attracted a lot of attention because of the suggestion [32]
that second-neighbor interactions V2 could stabilize topolog-
ical Mott phases, as described by the Haldane model [33].
Extensive numerical [34–44] and analytical [45] efforts have
concluded, however, that fluctuations beyond mean-field the-
ory lead to a direct transition from the Dirac semimetal to
charge-density wave order (CDW3) with a threefold increased
unit cell (see Fig. 1).

It has been suggested [44] that the regime of dominant
V2 could become accessible in cold-atom experiments [46]
by engineering optical lattices in which the triangular sub-
lattices of the honeycomb lattice are spatially separated into
a bilayer structure. This is also what happens naturally in
two-dimensional (2D) materials like silicene and germanene,
which are chemically similar to graphene but are realized in a
buckled lattice with triangular sublattices at different heights
[47]. Moreover, these siblings of graphene are chemically
more active, which might be utilized to functionalize or
further enhance interaction parameters.

The three-dimensional (3D) materials YbFe2O4 and
LuFe2O4 contain Fe bilayers of triangular lattice planes with
comparable interlayer and intralayer distances. These ma-
terials show charge ordering [48,49] similar to the CDW3
state, albeit with a small incommensurate modulation along
the c direction. The situation is significantly more complex,
however, due to the resulting ferroelectricity, the role of orbital
degrees of freedom, and magnetic ordering [50].

From the lattice model we derive the effective field theory
that describes the onset of CDW3 order at half-filling. The
theory is formulated in terms of the irreducible representations
of all possible charge instabilities of the six-site unit cell.
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FIG. 1. Schematic phase diagram of Dirac fermions on the half-
filled honeycomb lattice with first- and second-neighbor repulsive
interactions V1 and V2. Charge modulation is shown relative to half-
filling. The CDW breaks sublattice inversion symmetry. The CDW3

breaks translation, rotation, mirror, and inversion symmetries.

While one representation couples like the mass field in the
GNY theory, the others, crucial for the lattice symmetry
breaking, couple like non-Abelian gauge fields. This gauge
structure is an emergent property of the continuum field theory
that is broken by the lattice. Importantly, the lattice terms turn
out to be irrelevant at the critical fixed point, which implies the
scaling is universal. Naturally, this effective gauge symmetry
is broken on either side of the transition.

We point out that the apparent local gauge structure that
emerges at low energies in the continuum limit is physically
distinct from the local lattice gauge structure present at all
energy scales in, for example, spin liquids.

We characterize the fermion-induced (multi)critical fixed
point using the renormalization group (RG), which is con-
trolled with the ε expansion and by generalizing to a large
number N of fermion flavors. We find that the universality
class is quantitatively distinct from the putative chiral GNY
class, which highlights the relevant role of spontaneous lattice
symmetry breaking. Next, in combination with a free-energy
analysis, our results show that the broken-symmetry state is in
the vicinity of a topological critical point. This demonstrates
that topological phase transitions in Dirac systems can be
comprehensively described by effective field theories contain-
ing mass fields and emergent non-Abelian gauge fields.

This paper is organized as follows: In Sec. I, we derive the
low-energy theory of lattice symmetry-breaking charge order
on the honeycomb lattice. We also discuss some important
symmetries from the lattice, as well as those that emerge in the
low-energy, continuum limit. In Sec. II the RG equations for
the effective field theory are presented, and their critical fixed-
point solutions are studied. In Sec. III the broken-symmetry
state is analyzed by minimizing the free energy obtained from
integrating out the fermions. In addition, a generic description
of topological phase transitions in Dirac systems is presented.
Conclusions are drawn in Sec. IV.

I. EFFECTIVE THEORY

We consider fermions on the honeycomb lattice at
half-filling, subject to first- and second-neighbor repulsive

interactions V1 and V2,

Ĥ = −t
∑

〈i, j〉
(c†

i c j + H.c.) + V1

∑

〈i, j〉
n̂in̂ j + V2

∑

〈〈i, j〉〉
n̂in̂ j, (1)

where t is the hopping amplitude and ci and n̂i = c†
i ci denote

the fermion annihilation and density operators. Note that we
have neglected spin, for simplicity. This is justified since
we focus on charge instabilities that do not break the spin
degeneracy. We will later generalize to a large number N of
fermion flavours, which are not involved in the symmetry
breaking and include the electron spin.

A. Noninteracting effective theory

In the absence of interactions, the low-energy theory of the
semimetallic state describes massless Dirac fermions at the
valleys Kτ=± = 4π

3
√

3
(τ, 0) [51],

H0 = vF

∫ $ d2k
(2πa)2

%†(k) k · α %(k), (2)

which is defined up to the ultraviolet cutoff $ ∼ 1/a where a
is the lattice spacing. Here, vF = 3ta/2 is the Fermi velocity,
k = (kx, ky), and α = (αx,αy). From hereon we work in units
where a = 1. For compactness, we have introduced the four-
component spinor

% = (ψA+,ψA−,ψB+,ψB−), (3)

and tensor products

(αx,αy,αz ) = (σx ⊗ τz, σy ⊗ τ0, σz ⊗ τz ), (4)

where σµ, τµ (µ = 0, x, y, z) are the four-vectors of iden-
tity and Pauli matrices acting, respectively, on the spa-
tial honeycomb sublattice σ = A, B and Dirac valley τ =
± pseudospins. The SU(2) pseudospin algebra [αi,α j] =
2i

∑z
k=x εi jkαk and {αi,α j} = 2δi jα0 is formed, with the (im-

plicit) identity α0 = σ0 ⊗ τ0.

1. Emergent symmetries

In addition to the symmetries of the honeycomb lattice,
Eq. (2) is endowed with a number of emergent symmetries.
These include the following: (i) The intravalley spatial rota-
tional symmetry

% → eiθαz/2%,
(5)

k → (kx cos θ − ky sin θ , kx cos θ + ky sin θ ).

(ii) The global SU(2) chiral/gauge symmetry

% → ei
∑3

i=1 θ iT i
%, (6)

that is generated by

(T 1, T 2, T 3) = (−σy ⊗ τy, σy ⊗ τx, σ0 ⊗ τz ). (7)

T 1,2,3 form a second SU(2) algebra, with the (implicit)
identity T 0 = σ0 ⊗ τ0. (iii) The pseudorelativistic invariance
where the “speed of light” is vF . This Lorentz invariance is
exposed using the anticommuting Dirac matrices, in which
the covariant form of the noninteracting local Lagrangian is
achieved:

L% = %̄[∂τ γ0 + vF ∂ · γ]%, (8)
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where %̄ = %†γ0, γ0 = αzT 3, γ = iγ0α, and

%(τ, r) =
∫ ∞

−∞

dk0

2π

∫ $ d2k
(2π )2

e−ik0τ−ik·r%(k0, k). (9)

Here, τ and k0 are imaginary time and frequency, r = (x, y) is
position and ∂ = (∂x, ∂y) is the spatial gradient.

2. Symmetries from the honeycomb lattice

Equation (2) inherits the symmetries of the honeycomb
lattice point group C6v , which includes reflections, rotations,
and inversions [52–54]. The reflection symmetries in the x and
y planes are

Rx : % → αxT 3%, ky → −ky,

Ry : % → αyT 2%, kx → −kx.
(10)

Rx interchanges the sublattices, as can be seen from the lattice
in Fig. 1. Ry interchanges the Dirac valleys. Together RxRy
defines spatial inversion, which is equivalent to a C2 rotation.
The honeycomb lattice also has threefold rotational symmetry

C3 : % → e±2π iαz/3%,

k → (−kx ∓
√

3ky,±
√

3kx − ky)/2.
(11)

There is also the translational symmetry under the primitive
lattice vectors

a1 =
√

3
2

(1,
√

3), a2 =
√

3
2

(−1,
√

3), (12)

that is generated by T 3 (also the generator of chiral transfor-
mations), and is enacted as

ta1,2 : %(r) → eiK+·a1,2T 3
%(r + a1,2), (13)

where K+ · a1,2 = ±2π/3. In the following, we are interested
in the case where this primitive translational symmetry, in
combination with point-group symmetries, is spontaneously
broken. We refer to this as spontaneous lattice symmetry
breaking.

Additionally, the theory has the discrete time reversal T ,
chiral S , and particle-hole (or charge-conjugation) C = T S
symmetries [54]. Time reversal is the antiunitary operation

T : % → αyT 2K%, k → −k, (14)

where K denotes complex conjugation. Chiral symmetry S is
a property of any nearest-neighbor hopping fermionic model
on a bipartite lattice. It is the operation under which cA → c†

B

and cB → −c†
A, which here is encoded by

S : % → αzT 3%. (15)

Finally, the particle-hole operation is

C : % → αxT 1K%, k → −k. (16)

It is important to note that additional real hopping terms, such
as the next-nearest neighbor t2 would break the particle-hole
symmetry. However, at half-filling, particle-hole symmetry
remains an emergent symmetry of the noninteracting low-
energy Dirac theory. This is because the additional term
∼t2|k|2α0 in the Hamiltonian, which breaks particle-hole
symmetry, is of quadratic order in k and hence an irrelevant
perturbation in naive scaling analysis.

B. Lattice symmetry-breaking charge order

In recent years it has become well established [45,55]
that sufficiently strong next-nearest-neighbor V2 repulsions
stabilize CDW3 order on the honeycomb lattice, as is shown
in Fig. 1. This charge ordering has reduced translational
symmetry with a threefold enlarged unit cell, containing an
entire hexagonal plaquette. Equivalently, the charge order has
finite wave vector that couples the Dirac points, resulting
in a threefold reduced Brillouin zone. Here, we derive the
effective GNY-like theory for charge ordering with reduced
translational symmetry. This is achieved by means of the
Hubbard-Stratonovich transformation in the charge channel
that introduces the six auxiliary dynamical charge order-
parameter fields

ρ =
(
ρA1 , ρA2 , ρA3 , ρB1 , ρB2 , ρB3

)
, (17)

coupled to the density n̂i on each site of the hexagon. In light
of the the extensive literature [45,55], we assume that the
global minimum of the free energy has negligible weight in
the bond order channel conjugate to c†

i c j *=i.

1. Hubbard-Stratonovich decomposition

Here, we present an overview of the steps taken to derive
the low-energy effective field theory. Further technical details
can be found in Appendix A. First, the interaction is decou-
pled in the charge channel,

exp



−
∫

τ



V1

∑

〈i, j〉
n̂in̂ j + V2

∑

〈〈i, j〉〉
n̂in̂ j









=
∫

D[ρ] exp

[

−
∫

τ

∑

k∈RBZ

(ρ†
k V k ρk + 2n̂†

k V k ρk)

]

,

where the momentum summation is over the reduced Brillouin
zone (RBZ) that is reciprocal to the enlarged unit cell. The
complicated effective interaction matrix V k, that contains V1
and V2 terms, is defined in Eq. (A9). Then, the high-energy
modes up to vF $ are integrated out by projecting into the
Dirac subspace (3), %i =

∑
j Pi jc j , where the j sum is over

the sites of the hexagon, and P is defined in Eq. (A8). Next, it
is convenient to introduce the order-parameter fields

(
ρ0,φ, A1

x, A1
y, A2

x, A2
y

)
= U · ρ, (18)

where

U = 1
6





√
6

√
6

√
6

√
6

√
6

√
6√

6
√

6
√

6 −
√

6 −
√

6 −
√

6√
3 −2

√
3

√
3 −

√
3 2

√
3 −

√
3

−3 0 3 3 0 −3
−3 0 3 −3 0 3

−
√

3 2
√

3 −
√

3 −
√

3 2
√

3 −
√

3




.

(19)

The half-filling condition constrains the total charge density
over the hexagonal plaquette, hence, ρ0 is fixed and thus
neglected in the following. The corresponding charge patterns
on the hexagonal unit cell that are induced by

A = (A1, A2), A1 =
(
A1

x, A1
y

)
, A2 =

(
A2

x, A2
y

)
, (20)
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FIG. 2. All possible charge instabilities in the six-site unit cell
on the half-filled honeycomb lattice. Charge modulation is shown
relative to half-filling. They are labeled with the order-parameter
fields that couple to the Dirac fermions in the effective field theory,
as well as the corresponding elements in symmetry groups C′′

6v and
C6v in parentheses.

and φ are shown in Fig. 2, from which the elements of U can
be read off.

In fact, the terms we have obtained are precisely the
irreducible representations of the point group

C′′
6v = C6v + ta1C6v + ta2C6v, (21)

that contains the primitive translations ta1,2 [Eq. (13)], which
has been discussed extensively in Refs. [52,56]. Here, φ
transforms as the B2 irreducible representation and (A1, A2)
transform like the four components of G. The components mix
into each other under primitive translations % → e±i2πT 3/3%,
thereby breaking the translational symmetry of C6v (the prim-
itive unit cell). The fields (A1

x, A1
y, A2

x, A2
y ) are distinguished by

their properties under reflection

Rx : (even, odd, odd, even),

Ry : (odd, even, odd, even),
(22)

which can be seen by inspection of Fig. 2.
Finally, the effective local Yukawa Lagrangian that couples

Dirac fermions and (dynamical) order-parameter fields has the
compact form

Lg = %†(gφφαzT 3 + gAα · AaT a)%, (23)

where the implicit summation over repeated a = 1, 2 is used
throughout. Lg preserves emergent spatial rotational and U(1)
chiral symmetries, but breaks Lorentz invariance.

The bare effective couplings are related to the lattice
couplings (gφ )0 =

√
3/2(V1 − 2V2) and (gA)0 =

√
3/2V2, but

these will flow under the RG. In addition, we obtain the bare
Hubbard-Stratonovich order-parameter mass term

LHS =
√

3/2(gφ )0φ
2 +

√
3(gA)0A2, (24)

where A =
√

Aa · Aa. The unimportant bare gradient terms
have been suppressed in the interest of brevity.

2. Mass sector

The anticommutator relation {Ĥ0, gφφαzT 3} = 0 identifies
φ as a mass field that fully gaps the quasiparticle spectrum
upon condensation [53,57],

ε = ±
√

|vF k|2 + 〈gφφ〉2, (25)

and is therefore expected to maximize the condensation en-
ergy gain. In the regime V1 - V2 the order parameter φ de-
scribes the quantum phase transition from the semimetal into

the CDW insulator, which spontaneously breaks the sublattice
exchange symmetry % → Rx%, φ → −φ. This corresponds
to Z2 chiral symmetry breaking in the low-energy effective
field theory [58], where the dynamics of φ is encapsulated by
the Lagrangian

Lφ = 1
2φ

(
−∂2

τ − c2
φ ∂2 + m2

φ

)
φ. (26)

The order-parameter mass m2
φ tunes through the fermionic

quantum critical point at m2
φ = 0, which belongs to the Z2

Gross-Neveu (or chiral Ising) universality class. It is un-
derstood to describe the same universal behavior as tuning
through V1 = (V1)c, (V1 - V2) in the lattice model (1). For
m2

φ < 0 the order-parameter expectation value 〈φ〉 is finite
corresponding to V1 > (V1)c, where as for m2

φ < 0 the sym-
metry is unbroken 〈φ〉 = 0 corresponding to V1 < (V1)c. The
properties of this critical fixed point have been intensively
studied. Further details can be found in Refs. [59,60] and
references therein.

For clarity, we now briefly discuss the remaining possible
mass terms of four-component spinless Dirac fermions and
their meaning on the honeycomb lattice. The mass terms can
be enumerated by

Lmass =
3∑

i=0

%†MiαzT i%. (27)

We reiterate that only the sublattice CDW mass [5] (M3 = φ)
is relevant in our paper. The other terms arise from bond order
〈c†

i c j *=i〉 on the honeycomb lattice, and are not energetically
favorable in the region of the phase diagram of interest
V2 - V1. Although at mean field the Haldane [33] quantum
anomalous Hall mass %†M0αzT 0% is stable for V2 - V1 [32],
upon the inclusion of beyond-mean-field quantum fluctuations
it is known that CDW3 order is favored [45,55]. The masses
%†(M1αzT 1, M2αzT 2)% form an XY order parameter that
corresponds to the Kekule valence bond solid phase [9,10,61],
which is understood to be the leading instability for strong
V1 ≈ V2.

3. Emergent gauge sector

Following the discussion of the mass fields, it is important
to notice that all possible remaining terms that minimally
couple to four-component Dirac fermions are gauge fields,

Lgauge =
3∑

i=0

∑

j=0,x,y

%†Ai
jα jT i%, (28)

where A0
j are the Abelian and Ai>0

j the non-Abelian compo-
nents. From this identification it follows that any order param-
eter associated with lattice symmetry breaking is necessarily
composed of a combination of mass and emergent gauge
fields. Although we have focused on the honeycomb lattice,
it is evident that this is a generic property of Dirac materials.
We now explicitly demonstrate that this is the case for CDW3
order.

In the low energy, Aα (α = 1, 2) minimally couple as com-
ponents of an emergent SU(2) non-Abelian local gauge theory
generated by T a. This is revealed by the local Lagrangian

L% + LgA = %†[∂τ + iα · (vF ∂ − igAAaT a)]%, (29)
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which is invariant under the local gauge transformation gen-
erated by T 1,2. To avoid integrating over the emergent gauge
redundancies, the theory is gauge fixed in the Rξ gauge by
following the Fadeev-Popov procedure [62]. The dynamics of
A1,2 is described by the gauge fixed Lagrangian

LA = 1
2

Aa ·
(
−∂2

τ − c2
A∂2 + m2

A

)
Aa

+ ξ − 1
2ξ

∑

i, j=x,y

Aa
i c2

A∂i∂ jAa
j , (30)

which is invertible for all finite ξ . It is convenient to employ
the Feynman–’t Hooft gauge ξ = 1, where the Lagrangian is
spatially isotropic. Naturally, the universal behavior should
not depend on the choice of gauge.

The bosonic mass m2
A is finite from the lattice Hubbard-

Stratonovich transformation (24) with the bare mass (m2
A)0 =

3V2. This implies that A1,2 can have finite order-parameter
expectation values [63–65], which is of course expected from
the lattice model where A1,2 are linear combinations of charge
order parameters. This is in contrast to the standard Yang-
Mills theory, where m2

A = 0 is enforced by the Ward identity
associated with the chiral/gauge invariance (6).

4. Order-parameter self-interactions

From symmetry considerations, or alternatively by inte-
grating out high-energy fermionic modes, one obtains the
self-interaction of the dynamical order-parameter fields

Lλ = λφφ4 + λAA4 + λφAφ2A2 + λYM(A1 × A2)2. (31)

The Yang-Mills term λYM reflects the underlying emergent
non-Abelian gauge structure. The coupling λφA implies that
the condensation of the mass field φ could dynamically gen-
erate a finite expectation value for the emergent gauge fields,
which is reminiscent of a Higgs mechanism.

Additionally, in the low-energy theory there is the
symmetry-allowed analytic cubic term

Lb̃3
= b̃3φ(A1 × A2)z. (32)

This is because A1 × A2 preserves the emergent global chiral
symmetry generated by T 3, under which

(
A1

A2

)
→

(
cos θ − sin θ
sin θ cos θ

)(
A1

A2

)
. (33)

Likewise, the spatial rotational symmetry (5) generated by αz
is preserved, under which

(
Aa

x
Aa

y

)
→

(
cos θ − sin θ
sin θ cos θ

)(
Aa

x
Aa

y

)
. (34)

Yet, the noninteracting theory is symmetric under the particle-
hole transformation (16), where as the Yukawa terms in Lg
[Eq. (23)] are all particle-hole odd. Therefore, the renormal-
ization of the cubic terms by fermion loops are forbidden, as
all loop corrections vanish by symmetry:

gφg2
AφAa

i Ab
j〈%†αzT 3%%†αiT a%%†α jT b%〉

→ −gφg2
AφAa

i Ab
j〈%†αzT 3%%†αiT a%%†α jT b%〉 = 0.

(35)

This is in accordance with Furry’s theorem [62], and extends
to all fermion loops with an odd number of external legs.
However, b̃3 may still be renormalized by self-interactions.

5. Lattice symmetry-allowed self-interactions

The reduced symmetry of the honeycomb lattice C′′
6v allows

for additional interactions. Such terms are not generated (or
renormalized) by the Dirac fermion loops, as they possess the
higher continuous spatial rotational symmetry.

These terms are best exposed by introducing the double-
complex, Hopf-coordinate representation

G = G1 + jG2, with Ga = Aa
x + iAa

y . (36)

Here, spatial rotations are implemented by eiθ and primitive
translations (chiral transformations) are implemented by e jθ .

The lattice symmetry-allowed cubic self-interaction is
identified by first decomposing G3 into the real (R) and
imaginary (I) parts in complex i and j:

G3 = (G3)RR + j(G3)IR + i(G3)RI + i j(G3)II. (37)

Each of the four terms is individually invariant under primi-
tive translations G → e j2π/3G and C3 rotations G → ei2π/3G.
Imposing invariance under reflections in x and y planes (22)
reduces the symmetry-allowed term to

Lb3 = b3(G3)II = b3 Im
[
G3

2 − 3G2
1G2

]

= b3

{
3
[(

A1
y

)2 −
(
A1

x

)2 +
(
A2

x

)2
](

A2
y

)

− 6
(
A1

x

)(
A2

x

)(
A1

y

)
−

(
A2

y

)3
}
. (38)

Repeating this type of analysis for φG3 identifies the lattice
symmetry-allowed quartic self-interaction

Lb4 = b4φ Re
[
G3

1 − 3G1G2
2

]
. (39)

The cubic terms Lb̃3
[Eq. (32)] and Lb3 [Eq. (38)] could

potentially render the transition first order. While such terms
would be relevant at the Wilson-Fisher fixed point, we will
show in Sec. II E that they vanish at the fermion-induced
critical fixed point [9].

II. RENORMALIZATION GROUP ANALYSIS

Quantum (multi)critical points are described by scale-
invariant fixed points of the RG transformation

k0 = k′
0e−z2, kx = k′

xe−2, ky = k′
ye−2. (40)

We use the perturbative Wilson momentum shell scheme, in
which we integrate over fast momentum modes

$e−2 ! |k| ! $, −∞ ! k0 ! ∞, (41)

to identify universal features of the action S =
∫
τ,r L for

L = L% + Lφ + LA + Lg + Lλ. (42)

Following this main analysis, we will then analyze the role of
the symmetry-allowed self-interactions

Lb = Lb3 + Lb4 + Lb̃3
, (43)
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which play a secondary role due to particle-hole and rota-
tional symmetries preventing renormalization from the gap-
less fermions.

Criticality is accessed by tuning the order-parameter
masses to their fixed-point values (m2

φ,A)∗. We follow the usual
procedure and absorb the small linear shifts from vertex cor-
rections into a redefinition of the masses such that (m2

φ,A)∗ =
0. The masses are relevant perturbations at any fixed point and
can be tuned by the lattice interaction parameters.

A. Dimensional continuation of the Lagrangian

Tree-level scaling of GNY theories determines that the
dynamical exponent is equal to z = 1, and that the Yukawa
and self-interactions are marginal perturbations at the Gaus-
sian fixed point in d = 3 spatial dimensions. This motivates
an ε = 3 − d expansion to access the strongly interacting
quantum critical point in a controlled manner. Further control
is exerted by generalizing to a large number N of fermionic
spin flavors,

%†% →
N∑

n=1

%†
n %n,

(
g2

φ,A, λi
)

→ 8π2$ε

N

(
g2

φ,A, λi
)
, (44)

which is known to favorably reorganize the perturbative ex-
pansion, enabling perturbative RG directly in the physically
relevant spatial dimension d = 2 [66]. Here, i indexes the
couplings in Eq. (31).

The dimensional continuation to d = 3 − ε spatial dimen-
sions (for ε > 0 or d < 3) is best formulated with the anti-
commuting Dirac γ matrices defined below Eq. (8) and

(γ3, γ5, γ35) = (T 1, T 2, T 3), (45)

where γ35 = −iγ3γ5 and with {γi, γ j} = 2δi j for i, j =
0, . . . , 5. Then, the Lagrangian in continuous spatial dimen-
sion 1 < d < 3 is

L =
N∑

n=1

%̄n

[
∂τ γ0 + vF ∂µγµ + gφ√

Ñ
φ

− igA√
Ñ

(
γ1γ3A1

x + γ2γ3A1
y + γ1γ5A2

x + γ2γ5A2
y

)]
%n

+ 1
2
φ
(
−∂2

τ − c2
φ∂2

µ + m2
φ

)
φ

+ 1
2

Aa ·
(
−∂2

τ − c2
A∂2

µ + m2
A

)
Aa

+ 1
Ñ

[
λφφ4 + λAA4 + λφAφ2A2 + λYM(A1 × A2)2],

(46)

where Ñ = N/8π2$ε and there is the implicit summation
over repeated µ = 1, . . . , d . In this case, Tr(γµγµ) = 4d . The
corresponding fermion propagator is

G% (k0, kµ) = i(k0γ0 + vF kµγµ)
k2

0 + v2
F k2

µ

, (47)

and the order-parameter propagators are

Gφ,A(k0, k) = 1
k2

0 + c2
φ,Ak2

µ + m2
φ,A

. (48)

FIG. 3. One-loop Feynman diagrams. The fermion propagator is
denoted by the arrowed line. The boson propagators are denoted by
the wavy line.

Under the space-time rescaling the fermion and order-
parameter fields rescale as

%(k0, kµ) = % ′(k′
0, k′

µ)e(2z+d−η% ) 2
2 , (49)

φ(k0, kµ) = φ′(k′
0, k′

µ)e(3z+d−ηφ ) 2
2 , (50)

Aa(k0, kµ) = Aa′(k′
0, k′

µ)e(3z+d−ηA ) 2
2 , (51)

where η%,φ,A are the anomalous dimensions that account for
the beyond-tree-level corrections to the field rescaling. Our
convention is that the rescaling of the fields ensures the scale
invariance of the imaginary-time gradients.

B. Renormalization group equations

The RG equations are obtained to one-loop order by cal-
culating the diagrams in Fig. 3, using the critical (m2

φ,A = 0)
order-parameter propagators (48). Scale invariance implies
the anomalous dimensions are

ηφ =
2g2

φ

v3
F

, ηA = 4g2
A

3v3
F

,

η% = 2
N

[ g2
φ

cφ (cφ + vF )2
+ 4g2

A

cA(cA + vF )2

]
. (52)

Then, the RG equations for the velocities are

d
d2

vF = (z − 1)vF + 4
N

g2
φ (cφ − vF )

3cφ (cφ + vF )2

− 4
N

2g2
AvF

cA(cA + vF )2
, (53)

d
d2

c2
φ = 2(z − 1)c2

φ +
2g2

φ

(
v2

F − c2
φ

)

v3
F

, (54)

d
d2

c2
A = 2(z − 1)c2

A +
4g2

A

(
v2

F − c2
A

)

3v3
F

. (55)

It is important to highlight that divergent anisotropic Fermi
velocity renormalization, preempting a fixed point, is encoun-
tered if the independent spatial rotational symmetries of A1 or
A2 are artificially broken.
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The RG equations for the Yukawa couplings are

d
d2

g2
φ = g2

φ

[
ε + 3(z − 1) −

2g2
φ

v3
F

− 4
N

g2
φ (cφ + 2vF )

cφvF (cφ + vF )2

+ 4
N

4g2
A(cA + 2vF )

cAvF (cA + vF )2

]
, (56)

d
d2

g2
A = g2

A

[
ε + 3(z − 1) − 4g2

A

3v3
F

− 4
N

2g2
φ (cφ + 2vF )

3cφvF (cφ + vF )2

+ 4
N

4g2
A

cA(cA + vF )2

]
. (57)

The RG equations for the order-parameter self-interactions
are

d
d2

λφ =λφ

[

ε + 3(z − 1) −
4g2

φ

v3
F

]

+
g4

φ

v3
F

− 4
N

[9λ2
φ

c3
φ

+
λ2

φA

c3
A

]
,

(58)
d
d2

λA = λA

[
ε + 3(z − 1) − 8g2

A

3v3
F

]

− 4
N

[
12λ2

A

c3
A

+ λ2
YM

4c3
A

+
λ2

φA

4c3
φ

+ λAλYM

c3
A

]
, (59)

d
d2

λφA = λφA

[
ε + 3(z − 1) − 4g2

A

3v3
F

−
2g2

φ

v3
F

]
+

4g2
Ag2

φ

v3
F

− 4
N

[ 4λ2
φA

cAcφ (cA + cφ )
+ 3λφλφA

c3
φ

+ 6λAλφA

c3
A

+ λYMλφA

2c3
A

]
, (60)

d
d2

λYM = λYM

[
ε + 3(z − 1) − 8g2

A

3v3
F

]
+ 8g4

A

3v3
F

− 4
N

[
2λ2

YM

c3
A

+ 12λAλYM

c3
A

]
. (61)

The RG equations for the boson order-parameter field
masses are

d
d2

m2
φ = m2

φ

[
2z −

2g2
φ

v3
F

− 12λφ

Nc3
φ

]
− m2

A
8λφA

Nc3
A

, (62)

d
d2

m2
A = m2

A

[
2z − 4g2

A

3v3
F

− 2(12λA + λYM)
Nc3

A

]
− m2

φ

2λφA

Nc3
φ

.

(63)

Note that to obtain Eqs. (62) and (63) the propagators must
contain finite order-parameter masses, and the diagrams are
then expanded to leading order.

The RG equations are solved to O(1/N ) and to leading
order in ε as follows. First, z is chosen to make vF scale in-
variant by solving Eq. (53). Then, the fixed points of the boson
velocities and Yukawa couplings are obtained simultaneously
by solving Eqs. (54)–(57). The boson self-interaction fixed
points are then obtained by solving Eqs. (58)–(61).

The RG flow in the vicinity of the multicritical fixed point
(m2

φ,A)∗ = 0 is determined by linearization in the couplings
xi = (g2

φ, g2
A, λφ, λA, λYM, λφA, m2

φ, m2
A) around their fixed-

point values (xi )∗. The inverse correlation length exponents

ν−1
1,2 are determined by the two relevant (positive) eigenvalues

of the stability matrix

Xi j = ∂

∂x j

d
d2

xi

∣∣∣∣
xi=(xi )∗

. (64)

C. Critical fixed points

The Yukawa couplings are relevant perturbations at the
putative Wilson-Fisher fixed points ({λi} *= {0}, gφ,A = 0),
owing to the gapless nature of the fermion excitations. At
the ensuing fermionic critical fixed points ({λi, gφ,A} *= {0})
both the order parameter ηφ,A and fermion η% anomalous
dimensions are finite. The latter indicates the breakdown of
the quasiparticle picture and the onset of a non-Fermi liquid.

However, the coupling to a particular fluctuating order-
parameter field can be rendered irrelevant if the related order-
parameter mass is tuned far from critical [2,15]. In this
case the order-parameter field can be integrated out and the
corresponding fermion-fermion interaction, V ∼ O(g2/m2),
will be vanishingly small. For example, in the case where
m2

A - 0 and m2
φ = 0, the theory describes the GNY/chiral

Ising quantum critical fixed point of the CDW transition at
V1 = (V1)c and V2 1 (V2)c. Similarly, there is the critical
fixed point (CDWA) at m2

A = 0 and m2
φ - 0, although this is

not expected to be physically accessible for the microscopic
model on the honeycomb lattice (1). The critical exponents
are summarized in Table I.

D. CDW3 criticality

The CDW3 fixed point is located at m2
φ = 0 and m2

A = 0.
In the large-N limit there is a well-defined multicritical fixed
point

(
g2

φ, g2
A

)
∗ = ε

(
2 − 12

N
, 3 + 3

2N

)
,

(65)

(λφ, λA, λφA, λYM)∗ = ε

(
1 − 81

2N
,−18

N
, 6 − 81

N
, 6 − 45

N

)
.

The spontaneous lattice symmetry-breaking (finite gA) results
in the violation of Lorentz invariance with

z = 1 +
(
g2

A

)
∗

2N
= 1 + 3ε

2N
. (66)

This is in contrast to the emergent Lorentz invariance of
GNY fixed points with z = 1 and cφ = vF to all orders in N .
The resulting critical exponents are collected in Table I, and
are contrasted with the GNY universality. The finite anoma-
lous dimensions indicate the breakdown of the quasiparticle
picture at the multicritical point. There is good agreement
from analysis of the CDW3 fixed point directly in the physical
spatial dimension d = 2, which is perturbatively controlled by
large N (RG equations in Appendix B).

E. Cubic terms and fermion-induced criticality

Our RG analysis indicates the existence of a continuous
quantum phase transition. However, there are symmetry-
allowed cubic terms in Lb [Eq. (43)]. If the cubic couplings
in Lb at a putative fixed point are finite, the Landau cubic
criterion could imply a first-order transition.
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TABLE I. One-loop critical exponents at the GNY/chiral Ising, CDW3, and CDWA fixed points to O(1/N2). The GNY fixed point at
m2

φ = 0, m2
A - 0 describes the quantum critical point of the semimetal-insulator transition into the sublattice CDW phase on the honeycomb

lattice. The CDW3 fixed point at m2
φ = 0, m2

A = 0 describes a new fixed point of interacting Dirac fermions where lattice symmetries are
spontaneously broken. For the CDW3 fixed point there is good agreement between the ε = 3 − d expansion and the direct evaluation in the
physical dimension d = 2 as N → ∞. The CDWA fixed point at m2

φ > 0, m2
A = 0 is shown for completion, but is not expected to be physically

accessible from the microscopic model on the honeycomb lattice (1).

Exponent GNY (d = 3 − ε) CDW3 (d = 3 − ε) CDW3 (d = 2) CDWA (d = 3 − ε)

z − 1 0 3ε
2N

56
√

2−75
N

3ε
2N

η%
ε

4N
7ε
4N

54
√

2−72
N

3ε
2N

ηφ ε
(
1 − 3

2N

)
ε
(
1 − 6

N

)
1 + 24

√
2−45
N

ηA ε
(
1 + 1

2N

)
1 + 64

√
2−87
N ε

(
1 + 3

2N

)

2 − ν−1
1 ε

(
1 + 3

2N

)
ε
(

1 + 11+
√

745
4N

)
1 + 84−65

√
2+

√
1307−714

√
2

N ε
(

3
5 + 9

10N

)

2 − ν−1
2 ε

(
1 + 11−

√
745

4N

)
1 + 84−65

√
2−

√
1307−714

√
2

N

The naive tree-level scaling [b3] = [b̃3] = (5z − d )/2 sug-
gests that this is indeed the case. Yet, the large order-parameter
anomalous dimensions render the cubic term irrelevant at the
d = 2 CDW3 critical point. Therefore, the coupling to gapless
Dirac fermions induces a continuous transition, an example of
fermion-induced criticality [9].

To demonstrate this, it is sufficient to calculate the RG
equations to leading order,

d
d2

b2
3 = b2

3

[
ε + 5z − 3 − 4g2

A

v3
F

− 12
N

(
3λA

c3
A

+ λYM

c3
A

)]
, (67)

d
d2

b̃2
3 = b̃2

3

[
ε + 5z − 3 −

8g2
A + 6g2

φ

3v3
F

− 4
N

(
4λA

c3
A

+ 3λYM

c3
A

+ 8λφA

cφcA(cφ + cA)

)]
, (68)

where the couplings are rescaled, b2
3 → 8π2$εb2

3/N , and
similar for b̃2

3. This requires calculating the one-particle-
irreducible contractions of 〈

∫
Lb

∫
Lλ〉> with three slow order-

parameter legs. Crucially, there is no direct renormalization by
the Dirac fermions because of their higher continuous spatial
rotational symmetry and particle-hole symmetry, as discussed
in Sec. I B. At the CDW3 fixed point the RG equations
reduce to

d
d2

b2
3 = 2b2

3

[
1 − ε − 24ε

N

]
, (69)

d
d2

b̃2
3 = 2b̃2

3

[
1 − ε − 59ε

4N

]
. (70)

Therefore, to this order the cubic terms are irrelevant pertur-
bations in d = 2 spatial dimensions (ε = 1), and the fixed-
point value is (b3)∗ = (b̃3)∗ = 0. In N → ∞, the cubic terms
are marginal to all loop orders following the arguments in
Ref. [10]. Similar behavior was found in the case of Kekule
ordering. For the complex Kekule XY order parameter χ =
(M1 + iM2)/

√
2 there is the lattice symmetry-allowed Potts

clock term χ3 + χ∗3 ∼ |χ |3 cos(3ϕ), which is found to be ir-
relevant at the fermionic critical point [9]. This highlights that
fermion-induced critical points are inherently different from
Wilson-Fisher fixed points of conventional order-parameter

theories. Naturally, quartic and higher-order lattice interac-
tions are even more irrelevant at fermionic fixed points.

III. BROKEN-SYMMETRY STATE

A. CDW3 broken-symmetry state

To analyze the nature of the CDW3 broken-symmetry state,
the free-energy density f (φ, A1, A2) must be minimized. In-
finitesimally close to the multicritical point, f is obtained
from integrating over the fermions for static order-parameter
fields with finite expectation values [66]. Although the criti-
cality is universal, the broken-symmetry state is not. Instead,
it depends on the lattice model and the concomitant path
taken through the critical surface (δφ, δA) = δ(cos θ , sin θ )
with δφ,A = (m2

φ,A)∗ − m2
φ,A.

The analysis proceeds directly in d = 2 and is controlled
with large N . In the region of the critical surface it is assumed
that the couplings are well approximated by their fixed-point
values (m2

φ,A)∗ = 4$2, (g2
φ )∗ = 4π$/N , (g2

A)∗ = 2(g2
φ )∗, and

vF = 1. Integrating over the fermions, we obtain the Landau
free-energy density

f = −N
∫ ∞

−∞

dk0

2π

∫ $ d2k
(2π )2

ln det
(

− ik0 + α · k

+ (gφ )∗√
N

φαzT 3 + (gA)∗√
N

α · AaT a
)

+
m2

φ

2
φ2 + m2

A

2
A2 + · · · . (71)

Here, the ellipsis indicates higher-order terms, which include
those that depend on the lattice model. For V2 - V1 on the
honeycomb lattice, unconstrained charge order has an ill-
defined Hubbard-Stratonovich transformation. Therefore, it
is expedient to constrain the order-parameter space to the
physically valid CDW3 region,

φ =
√

2/3(ρ − 7), (72)

(A1, A2) = 4ρ + 27√
3

(CαCβ ,CαSβ , SαCγ , SαSγ ), (73)

where ρ " 7 " 0, Cα = cos α, Sα = sin α.
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α = 0

α =
2π

3

α =
4π

3

β =
4π

3
β =

2π

3β = 0

FIG. 4. All 9 (18 with charge inversion) CDW3 charge patterns.
Charge modulation is shown relative to half-filling, with blue for
positive modulation, and red for negative modulation. Different α

correspond to C3 rotations. Different β correspond to shifts of the
unit cell.

The free energy is minimized for A1 × A2 = 0, equivalent
to β = γ . Otherwise, particle-hole symmetry would be bro-
ken, which is energetically unfavorable. Under this condition
the lattice cubic and quartic terms terms are

Lb3 = b3A3 sin(3α) sin(3β ), (74)

Lb4 = b4φA3 cos(3α) cos(3β ), (75)

which are, respectively, minimized and maximized for
(α,β ) = 2π

3 (n, m) for integers n, m = 0, 1, 2. Here, α en-
codes translations and β rotations, which together enumerate
the nine possible charge configurations, displayed in Fig. 4.
Naturally, the number of patterns is doubled with charge
inversion. Numerical simulations and semiclassical analysis
[39] have previously identified that the lattice ground-state
manifold is restricted to the same set of states.

The free energy can be partially minimized by letting 7 =
xρ and solving ∂ f

∂ρ
= 0, which results in

f∗(x) = − 4π2[2(x + 2)2 sin θ + (x − 1)2 cos θ ]3

(gA)∗(g2
φ )∗27(π − 4)2(x − 1)4(x + 2)2

δ3 + · · · .

(76)

In general, the higher-order, non-universal terms (. . . ) will
select the minimizing value of x or 7 (subject to constraints),
for a given path θ through the critical surface. It is possible,
however, to obtain the ground state in the limiting cases by
assuming generic bounding quartic terms. For θ → π/2− it
is found that 7/ρ → 1− and φ → 0+. In the other limit
θ → 0+, it is found that 7/ρ → 0+, φ → A+.

The latter limit θ → 0+ is precisely the condition for
the broken-symmetry state to host the previously discussed

ε

kx kyx y

ε

kx ky

ε

kx ky

φ > Aφ = Aφ < A

FIG. 5. Topological phase transition between the Dirac
semimetal (φ < A) and band insulator (φ > A), tuned by
complementary mass φ and non-Abelian gauge A fields. The
topological critical point (φ = A) hosts anisotropic excitations with
orthogonal relativistic and nonrelativistic directions.

gapless semi-Dirac [28,29,31] excitations, which disperse
quadratically in the direction defined by the polar angle β
and linearly orthogonal to this. From the hybridization of
downfolded Dirac valleys there is a condensation energy
gain from the second set of bands that gap with ±|φ + A|.
Such a metallic CDW3 state with semi-Dirac quasiparticle
excitations was predicted previously [45] for the case of a pure
V2 interaction. These findings were based on a self-consistent
analysis of the free energy with the inclusion of RPA-type
order-parameter fluctuations.

B. Topological phase transitions

The broken-symmetry state with gapless semi-Dirac exci-
tations (φ = A) can be interpreted as the critical point of the
topological Lifshitz phase transition [28] between a semimetal
(φ < A) and a topologically trivial band insulator (φ > A),
as shown in Fig. 5. This notion for the d = 2 topological
critical point can be generalized to the full set of masses M1,
M2, M3 [Eq. (27)] and non-Abelian gauge fields A1, A2, A3

with Aa = (Aa
x, Aa

y ) [Eq. (28)]. This generalization accounts
for Kekule masses (M1,2) and gauge fields A3 that may be
induced by strain on the honeycomb lattice [67].

Assuming full global SU(2) gauge rotational symmetry the
analytic part of the Landau free energy up to quartic order
takes the form

f = C1M2 + C2A2 + C3ε
abcMa(Ab × Ac)z + C4M2A2

+ C5MaAa · MbAb + C6M4 + C7A4

+ C8(εabcAb × Ac)2 + C9(Aa · Ab)(Aa · Ab), (77)

where for this section the indices run over the full set a, b, c =
1, 2, 3 and where Ci are unspecified coupling constants. The
C3 and C5 terms must vanish to describe topological tran-
sitions. Subject to this constraint, and due to full SU(2)
symmetry, the minimum of the free energy is now realized
by any state obtained applying an SU(2) rotation to the φ = A
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state described above. For any such state, the Hamiltonian

Ĥ = k · α + αzMaT a + α · AaT a (78)

has a topological critical point at |M| = |A|. A finite C3
term breaks particle-hole symmetry, whereas a finite C5 term
induces a band gap for all finite M and A.

IV. DISCUSSION

We demonstrated that spontaneous lattice symmetry break-
ing in interacting Dirac fermion systems is described by
effective field theories in which dynamical order-parameter
fields minimally couple to Dirac fermions as a combination
of mass and emergent gauge field components. This is a
departure from the common wisdom that mass channels solely
dominate the energetic landscape [4,57], which is an expecta-
tion motivated by the energetic gain upon condensing into an
insulating state.

As a result, the ensuing criticality considered here is found
to be beyond the GNY universality classes. The unconven-
tional dynamical exponent z > 1 indicates that the putative
emergent Lorentz invariance associated with GNY criticality
is violated. Our conclusions follow from a one-loop renormal-
ization group analysis that is analytically controlled by the ε
expansion, as well as the generalization to a large number N
of fermion flavors.

As a concrete example, the spontaneous lattice symmetry
breaking due to CDW3 order of Dirac fermions on the half-
filled honeycomb lattice was analyzed. However, the conclu-
sions regarding the multicritical point are generic for the low-
energy field theory. For a given starting microscopic model,
the different order parameters will in general break different
symmetries, which might be a combination of translations,
point group or internal symmetries, but as long as the low-
energy theory is described by Dirac fermions in (2+1)D, all
order parameters will be represented by either mass fields
or gauge fields and our theory can be used to describe the
corresponding phase transitions.

The important role of emergent gauge fields has been
recognized in the context of the Ising nematic transition
in d-wave superconductors [19,63,64,68,69], and there is
indeed a close connection with the gauge sector of the
field theory presented here. In this case, the fourfold lattice
rotational symmetry is spontaneously reduced to twofold,
and the effective Yukawa coupling in our notation reads as
Anem%†[(αx + αy) + (αx − αy)T 3]%. However, dealing with
fermion-induced criticality one might anticipate that the lat-
tice terms are rendered irrelevant at the critical point. In this
case, the problem should be revisited, starting from a continu-
ous rotational symmetry and the full set of non-Abelian gauge
fields.

Similarly, on the π -flux lattice [70,71], sublattice
Asub%

†αxT 1% and stripe Astr%
†αxT 2% charge order param-

eters both couple as emergent gauge fields, but have thus far
not been analyzed as such. This case is interesting because
interaction-induced Haldane-type quantum Hall order couples
as a mass field, but is destabilized by beyond-mean-field
fluctuations, much like the CDW3 case. In both instances, the
existence of emergent gauge fields is tied to the breaking of
lattice symmetries.

That z > 1 raises the possibility that long-range Coulomb
interactions [3]

n̂(r)
e2

|r − r′| n̂(r′) → −i%†A0
0% + 1

2e2
A0

0|q|A0
0 (79)

could be relevant and provide further nontrivial scaling at this
novel critical point [72]. The one-loop RG equation for the
Coulomb coupling [4]

d
d2

e2 ≈ (z − 1)e2 − δd,3e4 (80)

demonstrates that z > 1 defines e as a relevant perturbation.
At the new CDW3 fixed point it is expected that z ∼ 1 +
(g2

A)∗ − xe2 (x > 0), suggesting such relevance. In contrast,
the Coulomb interaction is irrelevant at the d = 2 GNY fixed
point z = 1 − xe2 (x > 0) [3,4,21,22].

Recently, there has been considerable interest in the prop-
erties of topological quantum critical points [26,27,72–79],
which in d = 2 are commonly described by effective Hamil-
tonians of the semi-Dirac form Ĥ = k2

x σx + kyσy. Here,
anisotropic velocity renormalization needs to be regulated
with nonperturbative infrared loop resummations [27,79].

Our work shows that complementary combinations mass
and non-Abelian gauge fields provide a natural playground for
the study of topological quantum phase transitions. Lifshitz
transitions of merging Dirac cones are observed when tuning
through the broken-symmetry states close to the multicritical
point. These insights could be relevant for a range of systems,
including black phosphorus [80,81], optical honeycomb lat-
tices [46,82,83], artificial graphene [84], TiO2/VO2 interfaces
[31,85], and α(BEDT-TTF)2I3 [86].

A related open question is whether there is a similar
description of other exotic Lorentz violating fermions, such
as the multifolds in topological chiral crystals [25,87,88], and
what this means for their quantum critical properties [23,89].
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APPENDIX A: DERIVATION OF THE EFFECTIVE
FIELD THEORY

Here, we obtain the effective field theory from the extended
Hubbard model of spinless fermions on the honeycomb lat-
tice. We accommodate for broken translational symmetry with
a six-site enlarged unit cell that covers a honeycomb plaquette.
In this case, the lattice vectors are

a1 = 3a
2

(
√

3, 1), a2 = 3a
2

(−
√

3, 1),

a3 = −a1 − a2, (A1)

and the basis is

c =
(
cA1 , cA2 , cA3 , cB1 , cB2 , cB3

)
. (A2)
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The corresponding reciprocal lattice vectors of the down-
folded Brillouin zone are b1,2 = 2π

3
√

3a
(±1,

√
3).

The noninteracting Hamiltonian is

Ht =
∑

k

c†(k)Ht (k)c(k), (A3)

Ht (k) =
(

0 T †(k)
T (k) 0

)
, (A4)

T (k) = −t




1 1 eik·a2

1 eik·a3 1
eik·a1 1 1



. (A5)

Due to downfolding, both Dirac points reside at the 9 point
(k = 0). We integrate out high-energy modes by projecting
into the low-energy Dirac subspace % = Pc, and obtain the
noninteracting Dirac Hamiltonian

Ht (p) = P{Ht (0) + [∇kHt (k)]k=0 · p}P† = vF p · α. (A6)

The projection P is formulated from the low-energy (row)
eigenvectors of Ht (k = 0),

P0 = 1√
6





−1 −1 2 0 0 0√
3 −

√
3 0 0 0 0

0 0 0 −
√

3
√

3 0
0 0 0 −1 −1 2



. (A7)

For convenience we apply the additional unitary transforma-
tion, such that the projection is

P = e−i π
4 σz⊗τz e−i 2π

3 σ0⊗τz e−i π
4 σ0⊗τx P0. (A8)

The first exponential transforms into the basis α. The second
enacts a coordinate transformation. The third translates the
definition of the unit cell.

Now, we can obtain the low-energy theory of the charge
ordering. First, we decouple the interaction in the charge
channel with the Hubbard-Stratonovich transformation (18)
where the explicit for the coupling matrix is

V k = −1
2





0 V2e1̄3 V2e1̄2 V1 V1 V1eik·ā1

V2e13̄ 0 V2e23̄ V1 V1eik·ā3 V1

V2e12̄ V2e2̄3 0 V1eik·ā2 V1 V1

V1 V1 V1eik·a2 0 V2e23̄ V2e1̄2
V1 V1eik·a3 V1 V2e2̄3 0 V2e1̄3

V1eik·a1 V1 V1 V2e12̄ V2e13̄ 0




, (A9)

with enm = 1 + eik·an + eik·am and an̄ = −an, n = 1, 2, 3. Applying the projection, we obtain the local interaction term

LV = %†
{

(V2 − V1/2)
[
ρA1 + ρA2 + ρA3 − ρB1 − ρB2 − ρB3

]
α3T 3 + V2

4

[
ρA1 − 2ρA2 + ρA3 − ρB1 + 2ρB2 − ρB3

]
αxT 1

+
√

3V2

4

[
− ρA1 + ρA3 − ρB1 + ρB3

]
αyT 1 +

√
3V2

4

[
− ρA1 + ρA3 + ρB1 − ρB3

]
αxT 2

+ V2

4

[
− ρA1 + 2ρA2 − ρA3 − ρB1 + 2ρB2 − ρB3

]
αyT 2 + (V2 + V1/2)

[
ρA1 + ρA2 + ρA3 + ρB1 + ρB2 + ρB3

]}
%

+ V1
(
ρA1 + ρA2 + ρA3

)(
ρB1 + ρB2 + ρB3

)
+ 3V2

(
ρA1ρA2 + ρA2ρA3 + ρA3ρA1 + ρB1ρB2 + ρB2ρB3 + ρB3ρB1

)
. (A10)

Here, the gradient terms have been suppressed in the interest of brevity. The relevant gradient terms are systematically included
by the one-loop fermion bubbles.

APPENDIX B: RG EQUATIONS IN d = 2

The RG equations are calculated directly in the physical dimensions d = 2, with the expansion controlled by large N ,

%†% →
N∑

n=1

%†
n %n,

(
g2

φ,A, λi
)

→ 8π$

N

(
g2

φ,A, λi
)
. (B1)

The RG equations for the velocities are

d
d2

vF = vF

[

z − 1 + 1
N

(
g2

φ (cφ − 2vF )

cφvF (cφ + vF )2
− 8g2

A

cA(cA + vF )2

)]

, (B2)

d
d2

c2
φ = 2(z − 1)c2

φ +
g2

φ

(
v2

F − 2c2
φ

)

v3
F

, (B3)

d
d2

c2
A = 2(z − 1)c2

A +
g2

A

(
v2

F − 2c2
A

)

2v3
F

. (B4)
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For the Yukawa couplings we obtain

d
d2

g2
φ = g2

φ

[

3z − 2 −
2g2

φ

v3
F

+ 1
N

(

−16g2
A(cA + 2vF )

cAvF (cA + vF )2
−

4g2
φ (cφ + 2vF )

cφvF (cφ + vF )2

)]

, (B5)

d
d2

g2
A = g2

A

[

3z − 2 − g2
A

v3
F

+ 1
N

(

− 16g2
A

cA(cA + vF )2
−

2g2
φ (cφ + 2vF )

cφvF (cφ + vF )2

)]

. (B6)

The RG equations for the order-parameter self-interactions are

d
d2

λφ = λφ

(

3z − 2 −
4g2

φ

v3
F

)

+
g4

φ

v3
F

+ 1
N

(

−
4λ2

φA

c3
A

−
36λ2

φ

c3
φ

)

, (B7)

d
d2

λA = λA

(
3z − 2 − 2g2

A

v3
F

)
− g4

A

8v3
F

+ 1
N

(

−
λ2

φA

c3
φ

− 48λ2
A

c3
A

− 4λAλYM

c3
A

− λ2
YM

c3
A

)

, (B8)

d
d2

λYM = λYM

(
3z − 2 − 2g2

A

v3
F

)
+ 3g4

A

2v3
F

+ 1
N

(
−8λ2

YM

c3
A

− 48λAλYM

c3
A

)
, (B9)

d
d2

λφA = λφA

(

3z − 2 −
g2

A + 2g2
φ

v3
F

)

+
3g2

Ag2
φ

v3
F

+ 1
N

(
32λ2

φA

cAcφ (cA + cφ )
− 24λAλφA

c3
A

− 12λφλφA

c3
φ

− 2λYMλφA

c3
A

)

. (B10)

The RG equations for the order-parameter masses are

d
d2

m2
φ = 2m2

φ

(

z −
g2

φ

v3
F

)

+ 1
N

(

−
12λφm2

φ

c3
φ

− 8m2
AλφA

c3
A

+ 8$2(3cAλφ + 2cφλφA)
cAcφ

)

, (B11)

d
d2

m2
A = m2

A

(
2z − g2

A

v3
F

)
+ 1

N

(

−
2m2

φλφA

c3
φ

− 2m2
A(12λA + λYM)

c3
A

+ 4$2[cAλφA + cφ (12λA + λYM)]
cAcφ

)

. (B12)

The lattice-allowed cubic term is irrelevant in this treatment, as can be seen from the RG equation

d
d2

b2
3 = b2

3

[

5z − 2 − 3g2
A

v3
F

−
12 1

N (4λA + λYM)

c3
A

]

+ O
(
b4

3

)
, (B13)

with the dimensionless coupling b2
3 → 8π$

N b2
3. At the CDW3 fixed point this reduces to

d
d2

b2
3 = 2b2

3
−57 + 32

√
2

N
+ O

(
b4

3

)
. (B14)

Therefore, to this order b3 is an irrelevant perturbation and the fixed-point value is (b3)∗ = 0. In N → ∞, b3 is marginal to all
loop orders following the argument in Ref. [10]. A similar RG equation is obtained for b̃3.

[1] D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
[2] J. Zinn-Justin, Nucl. Phys. B 367, 105 (1991).
[3] I. F. Herbut, Phys. Rev. Lett. 97, 146401 (2006).
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