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Áureo de Paula†

April 10, 2020

Abstract

Evidence suggests that, in the presence of imperfect market institutions,

individuals devote resources to the establishment of reliable connections in

order to attenuate the frictions that reduce trading and insurance opportu-

nities. In this paper I survey the relevant literature on strategic formation

of networks and use it to study this particular economic situation. A sim-

ple model is built to show that the investment in strong ties often, though

not always, produces stable configurations that manage to improve upon

the imperfections of market institutions. JEL Classification Numbers : C70,

D20.

⇤The first version of this article was written in 2002 while I was in graduate school at

Princeton University and first learned about the network formation literature. I thank
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1 Introduction

The American Heritage Dictionary defines a network as (among other things)

“an extended group of people with similar interests or concerns who interact

and remain in informal contact for mutual assistance or support”. Families

and gangs are typical networks, but many other social and economic groups

and situations can be framed similarly. As a matter of fact, sociology and

other social sciences have explored this idea in many di↵erent contexts,

from the “small world phenomenon” to needle sharing among drug addicts

(for an introduction to the social networks literature, see Wasserman and

Faust [30]). Networks also play a significant role in the economic arena. For

instance, interpersonal contacts can be instrumental in job acquisition (e.g.

Granovetter [16], Boorman [5] and Topa [29]), in the trade and exchange

of goods (e.g. Kranton and Minehart [23] and Corominas-Bosch [9]), in

providing insurance in underdeveloped communities (e.g. Fafchamps and

Lund [13]) and in the di↵usion of innovations (e.g. Rogers and Shoe-

maker [26]). Other examples could be cited, but these su�ce to advocate

the importance of better understanding the formation and consequences of

social networks for economic behavior. This research agenda can actually be

seen as part of the interest among economists in the feedbacks between so-

cial interactions (not mediated through markets) and economic institutions

and behavior (e.g. Akerlof [1] and Postlewaite [25]).

In fact, group formation theories are not new in economics: from a strate-

gic viewpoint, for instance, coalitional games have been around for about

seventy years1. The more recent strategic network formation theories are

naturally related to this literature, but allow for an even richer environment.

In these models not only the composition of a coalition matters, but also

the internal organization of each group: a given coalition may achieve very

di↵erent results according to how its members relate to each other. Within

this framework one can consider nuances such as the existence of costly ties

and group benefits that flow through direct as well as indirect acquaintances.

1Examples of non-strategic approaches to problems of group formation are Tiebout [28]

and Buchanan [6]
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Interesting phenomena arise under these circumstances, such as the tension

between e�ciency and stability of a social network that is present in many

of these studies.

Whereas the mere establishment of links explored in the strategic models

cited above already sparks several of facts and questions, extensions in some

directions arise naturally. In a celebrated paper, for instance, Granovet-

ter [15] suggests that as interpersonal links are allowed to vary in strength

curious interactions come to pass. The author interprets the strength of a

link as intuitively related to measures of emotional intensity, amount of time

spent as well as the benefits and services provided by the tie. One of the main

insights of the paper is that strong ties tend to cluster 2, causing the di↵usion

of information and/or influence within the network of strong interpersonal

links to be short-lived as only a reduced number of individuals—those within

the strong links cluster where the information originates—will be reached.

As a consequence, weak ties gain relevance as bridges between the di↵erent

cliques of the population, working as the main highway for the di↵usion of

benefits. The author then goes on to support the “strength of weak ties”

with a variety of informal evidences as well as a more careful investigation

on the importance of personal contacts for job acquisition. One of my goals

is to incorporate the concept of tie intensity in a strategic network formation

model.

In his paper, Granovetter suggests that, under some circumstances, “for-

mal” or mass procedures for di↵usion of information or benefits can appro-

priately be treated as limiting cases of weak linkage chains. I follow this

insight in representing markets as economic institutions in which individu-

als are brought together through a web of “weak ties”. Under such repre-

sentation, the connections operate to guarantee the transmission of trade

opportunities within a certain community.

Some casual observation nevertheless shows that the fabric support-

ing this particular economic institution is neither uniform nor frictionless.

Transaction costs of various sorts, search frictions and many other imper-

2If A and B are each strongly connected to C, it is very likely that A and B be strongly

linked.

3



fections are usually seen in economic life and may significantly reduce the

dissemination of trade opportunities among a certain set of agents . When

the weak linkages that put together market institutions are subject to noise,

it is natural to expect the emergence of “voluntary networking”: individuals

will spend resouces (time, e↵ort, money) establishing strong contacts that

help attenuate the information and flow frictions which hinder the full re-

alization of trade opportunities. In developing societies, for instance, where

formal markets are subject to significant noise, informal networks for trade

or insurance purposes are not rare events3. The formation of informal net-

works can be seen as well in small specialized markets such as markets for

collectibles or rare books in which “connections” are very important. These

markets can also be thought to be subject to significant friction if one is to

rely solely on formal or casual trade opportunities.

When should we expect to see the apperance of such interpersonal net-

works as a stable support of economic transactions? Having been established

as a stable phenomenon, does voluntary networking improve upon the situa-

tion in which no such connections can be established? In this paper I extend

a trade network first suggested by an example in Jackson and Watts [21] to

investigate these questions.

The rest of the paper is organized as follows: Section 2 presents a survey

of the relevant literature on strategic network formation, the following sec-

tion sets up a very simple framework to investigate the properties of a trade

model that incorporates di↵erent intensities for interpersonal links. Section

4 concludes.

2 Review of the Literature

This section presents a brief survey of the recent work on strategic formation

of networks4. Before this is done though, I present a generic description of

3See Fafchamps and Lund [13] for an empirical investigation on informal insurance

networks in rural Philippines and Genicot and Ray [14] for a theoretical investigation

using a framework closer to the traditional coalitional game literature
4The section focuses particularly on issues of stability and e�ciency. For broader views

of this literature, see Dutta and Jackson [11] and Jackson [19].
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the object investigated in the paper: a strategic model of network formation.

2.1 A Network Formation Game

A graph is a collection of binary subsets of a given finite set, whose elements

are called the vertices of the graph. Each of these binary subsets corresponds

to an edge or a link between a pair of vertices. Two di↵erent elements can

be connected directly or indirectly through a series of intermediaries, which

determine a path between two elements. These objects are easily represented

graphically. For instance, taking as primitive a set with n = 8 elements

represented by dots, each the following figures relates to a di↵erent graph.

Figure 1A represents an empty graph, in which there are no edges. Figure

1B depicts a complete graph, in which all the vertices are linked. Figure 1C

shows a graph with two components (isolated subgraphs).

FIGURE 1 HERE

Graphs are natural representations for networks in many di↵erent con-

texts. They are also a basic ingredient of a strategic model of network

formation. Such a game can be generically described by the tuple � =

hN, (Ai)i2N , v, Y i, consisting of:

• A finite set N = {1, ..., n} (the set of players);

• For each player i a set Ai (the set of possible strategies) where Ai = {
all binary subsets of N , ordered or not, depending on the context,

containing i} or Ai = { all ordered pairs (i, j) : j 2 N\{i}};

• A function v : {G|G ⇢ GN} ! < (the value of a graph) where GN is

the set of all networks on N ; and

• A function Y : {G|G ⇢ GN}⇥ v ! <N (the allocation rule).

It is also common practice to represent a strategy by a vector gi =

(gi1, ..., gii�1, gii+1, ..., gin) where i 2 N and gij 2 {0, 1} for each j 2 N\{i}.
When agent i’s strategy includes the formation of a link with another agent
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j (i.e. {i, j} 2 Ai) gij = 1, while gij = 0 otherwise. We use the nota-

tion gT to denote a strategy profile (gi)i2T chosen by the players in the set

T ✓ N . Agents are assumed to prefer higher payo↵s. The payo↵ structure

is captured by the allocation rule. This allocation structure may represent

many things. When a pure social network is considered and utility is not

transferable, the allocation rule stands for the utility ascribed to each indi-

vidual. When the network relates to a production or trade architecture, the

allocation rule may correspond to the share of each player, the outcome of

a bargaining process or some other form of redistribution. In some appli-

cations the value of a graph is simply the sum of each agent’s utility under

a given configuration (v(G) =
Pn

i=1 ui(G), where ui : {G|G ⇢ GN} ! <).
As mentioned in the introduction, the flexibility of the above model allows

for the consideration of costly ties and indirect benefits from individuals not

directly connected to a player, but accessible through a path of adjacent

neighbors.

The strategy space Ai is represented by sets of binary sets or ordered

pairs according to whether a directed or non-directed graph is the suitable

network model. Di↵usion is unidirectional on each arc in a directed graph,

which is often represented diagrammatically by arrows instead of segments

linking two vertices. These structures are usually applied to situations in

which the costs of a tie are asymmetric, when the establishment of the link

gij = 1 imply costs to i but not to j (clicking on j’s website or reading a

paper written by j, for instance).

Once each agent picks a strategy, a graph is formed as the outcome of the

game: the network structure that will allow the di↵usion of benefits through

the links established between the players. The papers in the literature have

come up with a series of solution concepts in order to assess the stability of

a given structure. These concepts vary according to the way in which the

game is set up and might relate to categories in standard non-cooperative

theory, in the cooperative game theory tradition or some sort of compromise

between both. Some of the equilibrium notions used are pairwise stability

(Jackson and Wolinsky [21]), Nash networks (Bala and Goyal [2]) and weak

and strong stability (Dutta and Mutuswami [12]). A detailed presentation
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of these concepts is left for a later subsection.

Another concept that raises attention in the literature is that of strong

e�ciency of a given network. This notion is distinct from that of Pareto

e�ciency and, as highlighted by Jackson [18], is more suitable when value

is fully transferable and intervention is possible. Pareto e�ciency, on the

other hand, would be more appropriate when the allocation rule is fixed and

payo↵s are not tranferable5.

Definition 1 (Strong E�ciency) A network G ⇢ GN
is strongly e�-

cient if v(G) � v(G0) for all G0 ⇢ GN
.

A tension between stability and e�ciency is very common in many of

the works.

2.2 Examples

Below I present a sample of specific models. These examples are often

discussed in the literature as a device to motivate the analysis in more

abstract settings.

1. The Connections Model (Jackson and Wolinsky [21]) Players establish

ties in order to communicate. The benefit of the information obtained

by a player i from a vertex j has value equal to 1, whereas the cost of

maintaining a direct link with this individual is given by c > 0. The

connection cost c is incurred by both vertices of a link. Agents can

benefit from indirect contact with other players, but costs are incurred

only on direct contacts. The utility of each node on a graph g is then

assumed to be:

ui(G) =
X

i 6=j

�tij �
X

j:{i,j}2G
c,

where 0 < � < 1 suggests the idea that there is some decay in the

transmission of value—closer individuals are more valuable—and tij is

5I make this distinction following the characterization given by Jackson [18], although

this same author stresses elsewhere (Jackson and Wolinsky [21]) that the two concepts

(strong and Pareto e�ciency) coincide when utility is transferable.
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the number of links in the shortest path between i and j (also known

as geodesic distance and assumed to be 1 when no path exists be-

tween i and j).

For this model v(G) =
P

i2N ui(G) and Yi(v,G) = ui(G). In establish-

ing connections with other players an agent will take into consideration

the costs and benefits of direct ties as well as the indirect benefits that

a link might provide.

2. The Co-Author Model (Jackson and Wolinsky [21]) In this model,

each agent is a researcher that has to decide whether to establish

co-authorship links with other researchers. The production of an pa-

per consumes time and the more committed the co-author is to other

projects, the lower his or her potential contribution is to someone con-

sidering him or her for a new project. The utility of an individual that

is involved in ni projects on a graph G is postulated to be:

ui(G) =
X

j:{i,j}2G

1

ni
+

1

nj
+

1

ninj

when ni > 0, whereas for ni = 0 it is postulated that ui = 0. The

output of each project is interpreted to be positively related to the

time invested by each member in the project (1/ni + 1/nj) and on

some measure of interaction captured by 1/ninj). In contrast to the

previous situation, here indirect links are harmful since they take up

the co-author’s attention. v and Y are given by the same expressions

of ui as in the previous example.

3. The Trade Example (Jackson and Watts [20]): The players benefit

from trading with other agents as long as they are linked (directly or

not). Trade is assumed to flow without any decay or friction along

any path, delivering a Walrasian equilibrium at each connected sub-

graph. The players begin by forming a network, then randomly receive

endowments and trade with whoever belongs to his or her network

component. This model is further specialized by Jackson and Watts

to deliver an interesting situation in which no stable network exists
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(according to the concept of pairwise stability). This is the model I

extend in section 3 in order to explore weak and strong connections in

exchange situations.

2.3 The Literature

This subsection surveys a few of the papers in the literature, dedicating

special attention to the issue of compatibility between e�ciency and stability

in the models. A more comprehensive view of the field can be found in Dutta

and Jackson [11] or Jackson [19]. Most of the models can be understood

through the framework of a network formation game developed earlier in

this section.

One of the pioneering papers in the literature is Myerson [24]. In this

paper, the author incorporates a network structure into a traditional trans-

ferable payo↵ coalitional game represented by hN, vi, meant to capture pos-

sible communication and/or cooperation channels among the players of the

game. A graph would list connections between agents and restrict the pos-

sible formation of coalitions to those among individuals belonging to a same

connected subgraph. The object generated in this setting, comprising the

original coalitional game hN, vi and the graph G, is called a graph-restricted

game hN, vGi. Using this structure Myerson explores some extensions of tra-

ditional solution concepts in cooperative game theory, such as the Shapley

value (which in this framework is usually called the Myerson value).

Though providing an invaluable extension of coalitional game theory,

the structure developed by Myerson still exhibited a reduced degree of flex-

ibility in the interaction between the cooperation architecture and payo↵

profiles. In a graph-restricted coliational game like the one introduced in

Myerson [24], the network only restricts the possible coalitions to be formed

and, as long as the players are connected, any graphical structure within a

given coalition would deliver the same results. Jackson and Wolinsky [21]

expanded the analysis of cooperation strutures by defining the value func-

tion directly on the network structure instead of the coalition composition.

This introduces the possibility of costly links as well as indirect, decaying

benefits from interpersonal links. Within this framework a given coalition
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can achieve very di↵erent results depending on the internal organization of

the group. To investigate the relation between e�ciency and stability of a

social network, the authors introduce the notion of pairwise stability, which

requires that no pair of agents be willing to establish a link that is not

present and that no player be willing to sever existing ties with any of his

or her partners. Formally:

Definition 2 (Pairwise Stability) The graph G is pairwise stable with

respect to v and Y if

(i) for all {i, j} 2 G, Yi(G, v) � Yi(G� ij, v) and Yj(G, v) � Yj(G� ij, v)

and

(ii) for all {i, j} /2 G, if Yi(G, v) < Yi(G+ij, v) then Yj(G, v) > Yj(G+ij, v)

where G + ij stands for G [ {i, j} and G � ij means G � {i, j}. As re-

marked by the authors, this notion of stability is relatively weak and can be

strengthened in many ways, but looks like a reasonable starting point for

any notion of stability that one may devise. Jackson and Wolinsky initially

analyze the properties of the connections and of the co-author models de-

lineated earlier. In both models they find a tendency for stable networks to

be over-connected from an e�ciency perspective. In the connections model,

this will happen for su�ciently high costs as no agent will wish to maintain

links with another agent that does not bring additional new value from indi-

rect ties. Though stable, this network could be made more productive as a

whole—from the perspective of v—if individuals incurred in less connection

costs. In the co-authors model, the tension arises as researchers disregard

the negative externality they bring about on the productivity of his or her

co-author with respect to other joint projects. In a more general setting,

the authors find out that, for a natural class of value function v, no strongly

e�cient network is pairwise stable. Jackson and Wolinsky’s results raise in-

teresting questions as to the circumstances that guarantee the compatibility

of stable and e�cient networks.

In Jackson and Wolinsky [21] only homogeneous settings are considered.

Johnson and Gilles [22] extend the connections model to allow for heteroge-

neous costs of link formation depending on some notion of distance between
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two individuals. Even though significantly di↵erent results from the orig-

inal model are obtained concerning the archictecture of stable graphs, the

tension between stable and e�cient graphs remains.

Dutta and Mutuswami [12] further expand the analysis of this issue using

a framework very similar to the one presented in Jackson and Wolinsky [21].

In the game, each player concomitantly announces the set of links he or

she wants to form and whenever there is simultaneity of wants the tie is

established. They work with the notion of strong and coaliton-proof Nash

equilibria, instead of pairwise stability. These concepts are defined below.

Definition 3 (Strong Nash Equilibrium) The strategy profile g⇤ = (g⇤1, ..., g
⇤
n)

is a strong Nash equilibrium with respect to v and Y if there exists no T ✓ N

and no strategy profile g = (g1, ..., gn) such that

(i) gi = g⇤i for all i /2 T

and

(ii) Yi(G, v) > Yi(G⇤, v) for all i 2 T (where G⇤
and G are the graphs

induced by g⇤N and gN ).

This stability concept requires that the network be robust to deviations

by groups of players. Notice that if a graph is the outcome of a strong Nash

equilibrium, it necessarily is pairwise stable. The next concept requires that

we define some new notation. For any T ⇢ N and profile of strategies

g⇤N\T = (g⇤i )i2N\T , we define the game induced on T by g⇤N\T as

�(v, Y, g⇤N\T ) = hT, (Ai)i2T , v̄, Ȳ i

where v̄ and Ȳ are defined to be the functions v and Y restricted to graphs

induced by strategy profiles in which the strategies of players in N\T are

fixed at g⇤N\T . The concept of coalition-proof Nash equilibrium is defined as

follows 6 :

Definition 4 (Coalition-proof Nash Equilibrium) In a single-player game,

g⇤ is a coalition-proof Nash equilibrium of the game � if and only if g⇤i max-

imizes i’s payo↵ over the set of possible strategies available to i. If � is an n-

6See the original formulation in Bernheim, Peleg and Whinston [4].
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person game (n > 1) and assuming that a coalition-proof Nash equilibrium

was defined for games with less than n players, then (i) g⇤ is self-enforcing if

for all T ⇢ N , g⇤T is a coalition-proof Nash equilibrium of �(v, Y, g⇤N\T ); and

(ii) g⇤ is a coalition-proof of � if it is self-enforcing and there does not exist

another self-enforcing strategy vector g such that provides a higher payo↵ to

all players in the game.

Given these two equilibrium concepts, the following notions of stability

are defined:

Definition 5 (Strong and Weak Stability) The graph G⇤
is strongly

stable (respectively weakly stable) with respect to v, Y if G⇤
is induced by

a strategy profile that is a strong Nash equilibrium (respectively a coalition-

proof Nash equilibrium).

Dutta and Mutuswami [12] study the very same problem analyzed by

Jackson and Wolinsky [21], but from a somewhat di↵erent angle. Their

approach consists of regarding the value function as a datum of the situa-

tion at hand, while the allocation rule shows some flexibility, possibly being

“chosen” or “designed”. They then take a “mechanism design” or “imple-

mentation” perspective: given a value function, can there be an allocation

rule that delivers convenient e�ciency and ethical properties for the equi-

librium network? The authors find that such “mechanisms” are possible,

though the nice properties required of the network do not necessarily hold

out of the equilibrium. For situations in which the concept of stability is

well understood and appropriate and intervention is possible, the results are

then encouraging.

The models reviewed so far assume that the formation of a link in-

volves costs for both parties involved. One consequence is that any stability

concept has as a minimum requirement the notion of pairwise incentive

compatibility. Bala and Goyal [2] consider instead situations in which con-

nection costs are unilaterally incurred and a link prescinds from mutual

consent (e.g., web links or one-sided compatibility of software). Networks

generated under these circumstances are directed graphs, as opposed to the
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non-directed structures obtained under two-sided costs for the establishment

of links. This structure allows for the analysis of stability notions that are

even weaker than the ones defined previously, such as networks induced by

Nash equilibrium strategy profiles. Bala and Goyal call these graphs Nash

networks. They also analyze structures induced by strict Nash equilibria

(strict Nash networks), where each agent gets a strictly higher payo↵ with

his or her current strategy than he or she would with any other strategy.

To study the stability-e�ciency conflict, the authors take a di↵erent av-

enue. Instead of investigating this tension in a static setting, as done by

the previous papers cited in this survey, learning dynamics is introduced.

For this, a version of the best response dynamics is used, where the network

game is played repeatedly and each individual chooses the set of links that

maximizes his or her payo↵ given the graph of the previous period. For a

few variations of the network formation model the results indicate that the

network frequently converges to a stable and e�cient architecture7, which

contrasts with the results obtained in a non-directed setting. Though en-

couraging, these results get a cautionary note in Dutta and Jackson [10],

which indicate that the e�ciency-stability tension may be significantly frag-

ile in more general directed settings. Other interesting explorations on Nash

networks can be cited. In an interesting extension, for instance, Heller and

Sarangi [17] introduce agent heterogeneity and imperfect information to the

model.

Although these papers comprise a representative sample of the recent

literature on strategic network formation models, many unexplored possi-

bilities remain. Dutta and Jackson [11] is a recommended reference for a

broader view and other perspectives on the subject. One suggestion that

seems to have received reduced attention in this literature, at least until

the original writing of this note, is the sort of structure suggested by Gra-

novetter [15]: the possibility of di↵erent intensities for the links established.

Boorman [5] is one of the few papers to attack the idea at the time when

7Two graphs belong to the same architecture if one network can be obtained from the

other by permuting the roles of the vertices.
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this note was first written8.

Boorman formally examines a symmetric labor market model like the one

described in Granovetter’s paper, where individuals choose to establish weak

or strong ties with other players. Here, the transmission of job information

follows a priority rule according to which a job o↵er not taken by the person

that first learns about it is forwarded to the circle of friends with strong

ties. In case they refuse it, the job news is sent to other acquaintances,

those in the weak-tie neighborhood. The model presented in Boorman’s

paper is closely related to the analysis of Nash networks and this is the

concept of stability adopted by the author. Given the priority rule assumed

to guide information transmission, higher unemployment rates tend to raise

the attractiveness of strong ties. Not surprisingly, as the probability of

unemployment rises, personal connections in stable networks tend to involve

an increasing number of strong ties and less weak links. After a certain

threshold in the unemployment rate, individuals start to invest much more in

strong ties than would be recommended from a group optimum perspective.

This over-investment in strong ties can be interpreted as the valued-graph

version of the e�ciency-stability conflict9.

As mentioned in the introduction, one of the interesting insights in Gra-

novetter [15] regards the superior performance of weak links for the flow

of information within the social web when compared to stronger ties, turn-

ing those connections into the preferential highway for the di↵usion of in-

formation. Such is not the whole story though, since strong links can be

much more operative in the coordination of individuals as highlighted by

Chwe [7] and [8]. Since strong links tend to overlap, common knowledge

is facilitated and strong connections may turn out to be superior in situa-

tions that require higher-order knowledge—such as political uprisings and

revolutions—whereas weak links are collectively more favorable when the

phenomenon investigated requires only first-order knowledge—such as job

8Chwe [7] is not a study of strategic group formation, but it also formalizes Granovet-

ter [15] to analyze the e↵ect of network architecture on information transmission and

coordination within a certain group.
9Valued graphs are those networks in which arcs may have di↵erent intensities
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acquisition information.

In the next section I set up a model to analyze the properties of a trade

network formation game that incorporates the idea of strong and weak inter-

personal links and shows that strong links can also be relevant to overcome

limitations of “cheaper” but less reliable weak links.

3 A Trade Network

3.1 The Basic Setup

The economic situation presented in this section generalizes and extends an

idea suggested in Jackson and Watts [20] and part of the analysis resembles

the discussion in that paper10. The basic configuration of the economy

analyzed in this section consists of a set of players N = {1, . . . , n} connected

by the complete graph—the set of all binary subsets of N .

There are two goods in this economy and each agent has identical pref-

erences represented by the Cobb-Douglas utility function U(x) = x1x2,

where x = (x1, x2). Each individual i receives a random endowment !i 2
{(1, 0), (0, 1)} according to a probability law that is independent and iden-

tically distributed across agents, assigning the vector (0, 1) with probability

p and, consequently, (1, 0) with probability 1 � p. After uncertainty is re-

solved, agents are allowed to trade and a Walrasian equilibrium is supposed

to be established.

If there is only one agent, his or her expected utility is easily seen to

be zero, as any realization yields zero utility. If there are two agents, indi-

vidual expected utility is p(1 � p)/2, since endowments will coincide with

probability p2 + (1� p)2, yielding utility 1⇥ 0 = 0 for each agent, and will

di↵er with probability 2p(1� p), yielding the Walrasian equilibrium alloca-

tion {(1/2, 1/2), (1/2, 1/2)} and utility level (1/2) ⇥ (1/2) = 1/4 for each

individual. The expected utility for each member in an n-agent economy is

shown in the appendix to be

10Jackson and Watts [20] use ⇡ = 1 and p = 1/2 and partially investigate stability on

this specification.
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[1� pn � (1� p)n]

4
.

Expected utility is higher as the number of individuals increases, since

this provides greater trade opportunities. Also, utility is maximized when

p = 1/2 and decreases when p approaches 0 or 1. This occurs because,

as p approaches extreme values, population heterogeneity and thus trade

opportunities tend to decrease.

In this simple economy, the trading links that bring each individual to-

gether are assumed to be perfectly reliable once endowment uncertainty is

resolved and agents engage in market exchanges. As suggested earlier, one

can imagine a “perfectly communicating” market like this as the limit case

of a di↵usion chain, in which whatever is to be di↵used—in this case the

trading opportunities—is certainly transmitted through the existing links.

The next subsection relaxes this assumption.

3.2 Imperfect Reliability of Links

In this subsection, some friction is incorporated into the model by assuming

that the links that bring the individuals together in the marketplace are

not as reliable as we first postulated. In this case, each individual may end

up trading with only part of the other agents in the economy or even not

trading at all. This exercise can be justified in a variety of ways, as in real

life individuals will often be confronted with search costs and transaction

frictions that might prevent or significantly reduce their potential trading

opportunities with other members of the community.

In order to formalize this idea, I assume that each arc in the structure

postulated in the previous subsection disappears with probability ⇡, inde-

pendent from the failure or survival of other edges. For a given draw, each

individual has access to the agents directly or indirectly connected to him or

her and is thus assumed to trade with these agents. The market structure

can then be thought of as a random graph whose realizations define each

individual’s trading opportunities, which will be restricted to those agents
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in his or her realized connected subgraph. The probability ⇡ can be re-

garded as a measure of “reliability” for this network, as defined in Bala and

Goyal [3].

A particular agent will be isolated when his or her links to the other

vertices fail, which occurs with probability ⇡n�1. By a similar reasoning,

this same individual will be able to trade with only one other individual

with probability (n � 1)⇡2(n�2)(1 � ⇡). This is because 1. there are n � 1

possible partners, 2. for each of these partners, there is a probability ⇡2(n�2)

that the pair is not connected to the remaining n� 2 vertices, and 3. there

is a 1�⇡ probability that the two vertices form indeed a pair. I show in the

appendix that a similar reasoning can be used to obtain the probability that

a given vertex end up in a k-vertex component. Having this, an individual’s

expected utility in a population of size n can be represented as

nX

k=1

 
n� 1

k � 1

!

�(k,⇡)⇡k(n�k) 1� pk � (1� p)k

4

where

�(1,⇡) = 1 and �(k,⇡) = 1�
k�1X

j=1

 
k � 1

j � 1

!

�(j,⇡)⇡j(k�j) for k > 1.

The function �(k,⇡) represents the probability that k vertices end up

connected in the complete graph with probability of arc disappearance ⇡.

As can be seen by mere inspection, as ⇡ ! 0, the expression above converges

to [1� pn � (1� p)n]/4—the expected utility when there is no noise—and,

as ⇡ ! 1, the expected utility tends to zero. This agrees with the intution

that, as the probability of failure approaches unity the realized network will

be closer to an empty graph, with no edges, only isolated vertices. In this

case, each agent will be unable to trade and will thus collect zero utility. On

the other hand, the more likely it is that an edge remains intact, the closer

the realized network is to the original architecture, yielding the utility level

achieved in the perfect communicating market with n agents. Also notice

that expected utility is decreasing in ⇡, so that more reliable environments

are better for the agents involved.
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What happens if agents can somehow invest in reliable links? Can an

“equilibrium” occur in which agents choose to spend resources on these ties?

Moreover, does the possibility of establishing these links improve welfare?

In the next subsections I try to shed some light on these questions.

3.3 Strategic Establishment of Ties

The trade network presented in the previous subsection introduces the pos-

sibility of unreliable connections. Links may be, in some sense, “weak”. In

my model, the strength of a tie is understood as a composite measure of the

costs and the benefits involved. As put by Granovetter [15],

[T]he strength of a tie is a combination of the amount of time,

the emotional intensity, the intimacy (mutual confiding), and the

reciprocal services which characterize the tie. (p.1361)

To be sure, Granovetter’s definition of weak and strong ties encompasses

more than simply a characterization of costs and services delivered by a link.

He additionally assumes that strong ties tend to generate clusters, as two

individuals that are strongly attached to a third party also tend to be con-

nected to each other. Consequently, weak ties operate as bridges between

di↵erent cliques and tend to traverse society faster. In this model, I char-

acterize the strength of a tie according to its reliability and costs. Though

Granovetter’s notion of strength is broader than the simple balance of costs

and benefits, this remains as a close characterization to his more including

definition since, whatever it is that must be transmitted, it will more cer-

tainly be di↵used through strong links, though probably to a much smaller

number of people than when weak ties transport it. My characterization

of weak and strong ties is not distant in that sense from other formaliza-

tions of Granovetter’s suggestion, as is the case of Boorman [5], in which a

priority rule that favors strong connections governs the transmission of job

information. In his model, the strength can also be measured according to

the reliability (probability of transmission) and costs of a link.

In a trade setting, agents invest in link strength by engaging in activities

to attenuate the type of frictions that cause “communication” to be occa-
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sionally unreliable. Such would be, for instance, the case of frequent trips

to the marketplace to check potential opportunities or constant updating

of commercial connections. People spend time “networking”. In a similar

framework, one can imagine the formation of insurance networks in devel-

oping economies in order to overcome frictions that would be unavoidable

otherwise in these societies. This is the case, for example, of the phenomenon

investigated by Fafchamps and Lund [13] in rural Philippines—a setting in

which formal markets for insurance are very rare (one could loosely inter-

pret this as a high ⇡ in my model) and in which informal insurance networks

(strong ties) tend to guarantee a relatively smooth consumption profile.

In my model, weak links are represented by the complete graph intro-

duced as the infrastructure of the economy in the previous subsections. Here,

weak links are costless but also unreliable, because they can fail with prob-

ability ⇡. Since costs are null, a strategic setting in which weak links are

voluntary would have the complete graph as the only pairwise stable net-

work. If any two individuals were disconnected, it would pay to form a link

since this would increase the expected number of individuals directly or in-

directly connected to these players in the random network. On the other

hand, severing links would only deprive individuals of benefits without any

savings in costs. The complete configuration is then a natural choice for the

weak-link infrastructure.

On top of the weak-link network, agents are allowed to establish reliable

ties (strong links) at a cost c for each of the individuals involved. To better

understand the strategic nuances of this assumption, let ⇡ = 1 initially,

so that in the absence of any voluntary establishment of ties, individuals

remain isolated. After a network is established, individuals trade within

components (isolated connected subgraphs). So, for a component involving

players 1, 2, 3, structures {{1, 2}, {2, 3}} and {{1, 2}, {2, 3}, {1, 3}} yield the

same trading possibilities although in the second configuration 1 and 2 incur

in excessive link costs.

Using the jargon previously introduced in this paper, the object under

consideration is a strategic network formation game � = hN, (Ai)i2N , v, Y i,
where N = {1, . . . , n} and Yi = EU(G)�cµi(G) denotes the expected utility
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obtained under the assumption that i trades only with those individuals in

his or her component of the graph G (denoted by EU(G)) net of direct

links costs (µi(G) counts the number of direct links maintained by i under

network G). The value function v is simply
Pn

i=1 EU(x, G)� cµi(G). Each

individual’s strategy space Ai lists the possible links that he or she may

establish with the other players of the game. In this subsection I allow

players to establish ties to any other element.

I focus on the concept of pairwise stability, introduced by Jackson and

Wolinsky [21]. The following proposition characterizes the stability of this

network game.

Proposition 1 In the trade network game � = hN, (Ai)i2N , v, Y i:
(i) For c > p(1�p)

2 , the unique pairwise stable network is the empty network.

(ii) For c  p(1�p)
2 , let k⇤ be such that

pk
⇤
(1� p) + (1� p)k

⇤
p

4
< c  pk

⇤�1(1� p) + (1� p)k
⇤�1p

4
.

• If k⇤ � n, any architecture connecting all vertices through n� 1 edges

is a pairwise stable configuration
11
.

• If k⇤ < n and {pk⇤(1�pmin{k⇤,n�k⇤})+(1�p)k
⇤
[1�(1�p)min{k⇤,n�k⇤}]}/4 

c, then the architecture with int
⇥ n
k⇤
⇤
components with k⇤ vertices and

k⇤� 1 edges and one component with the remaining n� k⇤int
⇥ n
k⇤
⇤
ver-

tices and n� k⇤int
⇥ n
k⇤
⇤
� 1 edges is a pairwise stable architecture.

• If k⇤ < n and {pk⇤(1�pmin{k⇤,n�k⇤})+(1�p)k
⇤
[1�(1�p)min{k⇤,n�k⇤}]}/4 >

c, then there is no pairwise stable architecture.

Proof. See Appendix.

In the proposition, int[·] stands for the largest integer that is smaller than

the argument. The integer k⇤ is the critical size of a network above which an

11Architectures with n vertices and n � 1 edges comprise the lines, the stars and the

half-stars, of which {12, 23, 34, 45}; {12, 13, 14, 15} and {12, 13, 14, 45}, respectively, are

illustrations for the case in which n = 5 (ij is shorthand notation for {i, j}).
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extra member will yield a net negative contribution to the individual that

contemplates establishing a connection with him or her. It is well-defined

and unique as discussed in the proof for Proposition 1. The intuition for the

result is the following:

1. In a pairwise stable graph, components with k vertices are linked by at

most k�1 vertices. If this is not the case, at least one of the members

could dissolve ties and still trade with the rest of the elements in his

or her component.

2. When linkage costs are too large (case i), no pairwise incentives exist

for the formation of a partnership and, if any exists, members have

incentives to sever links with any element in the extremes since their

marginal contribution can be seen to be no larger than p(1�p)
2 . In this

case the only architecture that survives the pairwise stability criteria

is the empty graph (GN = ;), in which there are no edges.

3. If linkage costs are lower (case ii) than p(1� p)/2, the empty graph is

not pairwise stable since there are net gains in forming at least a pair

(p(1�p)/2� c > 0). Individuals are added to the group as long as the

marginal benefit brought by each new member is not inferior to the

connection costs. Having as many groups as possible satisfying this

marginal criterion, there are basically two possibilities. One is that

putting together two of these groups using one vertex in each team

is individually profitable for the agents establishing the connection.

In this case, no pairwise stable network exists, since there will be

incentives to eliminate the individuals in the extremes of the larger

component created. Since in the smaller separate components there

would be no marginal incentives to add new elements, in the large

coalition individuals with only one link are certain to yield a negative

net benefit to those that are connecting them. The other possibility is

that forming the large group is not pairwise incentive compatible, in

which case the configuration is pairwise stable.

The table below examplifies the pairwise stability issue for all ranges of c and
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for n = 3 and n = 4 (whose elements are generically represented by i, j, k

and i, j, k, l, respectively). For the representation of the network structures, I

group elements together to represent a component and separate components

by ‘+’ (so ij+k is the graph {{i, j}} on {i, j, k}, i.e., one pair and one isolated

vertex). Notice that the “connectedness” of society increases as c decrease.

This fact can also be inferred from Proposition 1, since k⇤ increases as c gets

smaller.

Table 1: Pairwise Stable Networks

Linkage Costs (c) n = 3 n = 4⇣
p(1�p)

2 ,1
⌘

i+j+k i+j+k+l
h
p(1�p)[1�p(1�p)]

2 , p(1�p)
2

i
ij + k ij + kl

⇣
p(1�p)

4 , p(1�p)[1�p(1�p)]
2

⌘
ij + k No Stable Graph

h
1�p4�(1�p)4�3p(1�p)

4 , p(1�p)
4

i
ijk ijk+l

h
0, 1�p4�(1�p)4�3p(1�p)

4

i
ijk ijkl

Two questions arise in this setting. Are stable networks e�cient? Also,

are e�cient graphs stable? The answer to both questions is negative, which

illustrates the tension between e�ciency and stability that is so pervasive

in network formation games.

Firstly, to investigate the possibility of ine�cient stable arrangements,

consider the case of n = 4. Suppose also that p(1�p)[1�p(1�p)]
2 < c < p(1�p)

2 ,

so that two separate pairs of connected individuals form a pairwise stable

network (see Proposition 1). Notice that

c <
p(1� p)

2
) c < p(1� p)[1� p(1� p)] ,

, 2c < (1� p)(2p� 2p2 + 2p3) ,

, 2c < (1� p)[(1 + p2 + p+ p3)� 2p� (1� 3p+ 3p2 � p3)] ,

, 2c < [(1� p)(1 + p)(1 + p2)� 2p(1� p)� (1� p)4] ,

, 2p(1� p)� 4c < 1� p4 � (1� p)4 � 6c ,

, 2

(

2

"
1� p2 � (1� p)2

4

#

� 2c

)

<

(

4

"
1� p4 � (1� p)4

4

#

� 6c

)

The left hand side in the last inequality can be seen to be the value v of the

stable architecture—two separate pairs—while the right hand side depicts
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the value v of a line connecting the four vertices. Since the latter is larger,

the stable two-pair architecture cannot be strongly e�cient.

In this particular case, the two-pair architecture can be Pareto e�cient.

But pairwise stable architectures can fail to satisfy this e�ciency require-

ment as well when costs are su�ciently low. Consider, for instance, linkage

costs to be c = p(1�p)[1�p(1�p)]
2 + ✏, where 0 < ✏ < min{ 1

64 ,
p2(1�p)2

2 }. This

guarantees that c is still within the range where separate pairs are pairwise

stable networks. Under this assumption the individual net benefit of a shift

from the pairwise stable configuration to a graph that connects all the agents

in the economy through a line is at least

1�pn�(1�p)n

4 � 1�p2�(1�p)2

4 � c = 1�pn�(1�p)n

4 � p(1�p)
2 � p(1�p)[1�p(1�p)]

2 � ✏ >

> 1�pn�(1�p)n

4 � p(1�p)
2 [2� p(1� p)]� 1

64 � 1�pn�(1�p)n

4 � 15
64 .

Since 15/64 < 16/64 = 1/4 = limn!1[1 � pn � (1 � p)n]/4, the above

expression is positive for su�ciently large n, so that all individuals can be

made better o↵.

As for the second question, it is also easy to see that e�cient networks

might not be stable. If p(1�p)
4 < c < p(1�p)[1�p(1�p)]

2 , for instance, Propo-

sition 1 asserts that there are no stable networks if n � 4. But a Pareto

e�cient network always exists since there is a finite number of vertices and

thus a finite set of possible graphs (which are the subsets of the complete

graphGN ) on which Pareto dominance corresponds to a transitive and asym-

metric partial ordering. A Pareto e�cient finite graph does not exist if and

only if the Pareto dominace relation is cyclic and complete. But if this is so,

the dominance relation fails to be transitive and asymmetric. Then, when
p(1�p)

4 < c < p(1�p)[1�p(1�p)]
2 , there is a Pareto e�cient network that fails

to be pairwise stable. Likewise, there may be strongly e�cient networks

that fail to be pairwise stable. Since the set of possible graphs is finite,

the value function will attain a maximum for any given value of c, so there

always exists a strongly e�cient network. It fails to be stable in the range

of costs where no graph is pairwise stable. But even in the case when there

is a stable configuration the strongly e�cient graph may not be an equi-

librium, as can be seen from the example of n = 4 presented earlier when
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p(1�p)[1�p(1�p)]
2 < c < p(1�p)

2 .

In the next subsection I drop the assumption that ⇡ = 1 and investigate

the behavior of strong ties in the presence of imperfectly reliable links.

3.4 The Strength of Strong Ties

In this section I drop the assumption that ⇡ = 1 and investigate two ques-

tions. Can we still expect strong links to be formed in equilibrium once

we allow for the occurrence of unreliable connections? And, in case agents

choose to invest in ties, does the equilibrium improve upon the situation in

which no strong links are allowed?

The strategic establishment of reliable links under the presence of un-

reliable connections (0 < ⇡ < 1) parallels, in all aspects, the investigation

carried out in the last subsection (where ⇡ = 1). As a matter of fact, the

following proposition, which is very similar in nature to Proposition 1, char-

acterizes pairwise stability for this strategically restricted case. For the sake

of clarity I increase the description of the strategic situation at hand by

adding ⇡ to the original tuple: � = hN, (Ai)i2N , v, Y,⇡i.
In order to state the Proposition, let

EU(k,⇡) =
n�kX

j=0

 
n� k

j

!

⇡(k+j)(n�k�j)⇥(k, j,⇡)
1� pk+j � (1� p)k+j

4

where

⇥(k, 0,⇡) = 1,

⇥(k, 1,⇡) = 1� ⇡k and, for j > 1,

⇥(k, j,⇡) = 1�
jX

i=1

 
j � 1

i� 1

!

�(i,⇡)⇡i(k+j�i) �
j�1X

i=1

⇥(k, i,⇡)⇡(j�i)(k+i)

with �(i,⇡) defined as in subsection 3.2. The function ⇥(k, j,⇡) is the prob-

ability that a k-vertex component and j isolated vertices end up connected

in the complete graph where the probability of arc disappearance is ⇡. It

can be seen that, when k = 1, ⇥(1, j,⇡) = �(1 + j,⇡). The proposition now

is stated as:
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Proposition 2 In the trade network game � = hN, (Ai)i2N , v, Y,⇡i:

(i) For c > EU(2,⇡), the only pairwise stable network is the empty net-

work.

(ii) For c  EU(2,⇡),

• If EU(n,⇡)�EU(n�1,⇡) � c, any architecture connecting all vertices

through n� 1 edges is a pairwise stable configuration.

• If EU(n,⇡)� EU(n� 1,⇡) < c, define k⇤ such that

EU(k⇤ + 1,⇡)� EU(k⇤,⇡) < c  EU(k⇤,⇡)� EU(k⇤ � 1,⇡)

• If n/2 < k⇤ < n and EU(n,⇡)� EU(k⇤,⇡) < c, then the architecture

of one component with k⇤ vertices and k⇤�1 edges and one component

with the remaining n� k⇤ vertices and n� k⇤ � 1 edges is a pairwise

stable architecture. If the inequality is reversed to >, then there is no

pairwise stable network.

• If k⇤  n/2 and EU(2k⇤,⇡) � EU(k⇤,⇡) < c, then the architecture

with int
⇥ n
k⇤
⇤
components with k⇤ vertices and k⇤ � 1 edges and one

component with the remaining n�k⇤int
⇥ n
k⇤
⇤
vertices and n�k⇤int

⇥ n
k⇤
⇤
�

1 edges is a pairwise stable architecture. If the inequality is reverted

to ¿, then there is no pairwise stable network.

Proof. See Appendix.

The above proposition reduces to Proposition 1 if ⇡ = 1 and this allows

us to look at this new game in a very similar manner. Notice that, as

individuals can count on the possibility of link formation with an imperfect

though positive degree of confidence, the existence of (costless) weak ties

poses additional disincentives for the connection of two given players. As a

matter of fact, as ⇡ ! 0 the (strong-link) empty graph, in which nobody

voluntarily establishes links with the others, becomes pairwise stable at

25



lower and lower costs. It can actually be pointed out that the thresholds in

Proposition 2 are smaller than those in Proposition 1 for any positive ⇡: the

“connectedness” of society (through strong links) is lower.

The first question can then be answered a�rmatively: the incorporation

of weak links at no (or at very low) costs does not hinder the establishment

of strong ties between the agents of the economy. It rather introduces a

new source of disincentive for the formation of such connections on top of

the direct cost of linkage. In this sense, the noisier (high ⇡) the weak tie

structure and/or the less costly it is to create strong ties (low c) under a

particular scenario, the more likely it is that any network will voluntarily

emerge as an equilibrium—i.e. a pairwise stable configuration.

The answer for the second question in this subsection is positive: agents

are made better o↵ in equilibrium when they are allowed to invest in con-

tacts. As a matter of fact, every individual is at least as well o↵ as in the

empty graph. This follows directly from the definition of pairwise stability.

If the empty graph is not pairwise stable and there is a non-empty graph

that is pairwise stable, the establishment of links must be at least neutral

to both parties. This implies that a link will be established only when it

yields non-negative net benefits to both vertices. On the other hand, if a link

provides negative benefits to at least one of the vertices involved, there will

be incentives to sever this connection. Every individual must then collect

non-negative utility from a pairwise stable network. This is a straightfor-

ward result, which nevertheless deserves to be mentioned since not rarely

equilibrium configurations are suboptimal when the ideal conditions that

guarantee the First Welfare Theorem do not apply, which is the case here.

4 Conclusion

In this paper, I use results from the literature on strategic formation of

networks and use it to study a particular economic situation. A number

of social institutions are often represented by a web of interpersonal links

that brings agents together and coordinates some collective outcome. Fol-

lowing this insight, the harmonization of trade opportunities within a given
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population is here represented by a structure of interagent ties that brings

individuals together in the marketplace for the exchange of goods. The pos-

sibility of search and transaction frictions may nevertheless attenuate the

cohesion of such a networking structure and cause market opportunities not

to be entirely explored.

Under such circumstances it is not implausible that society will seek al-

ternative mechanisms to overcome such communication failures. I speculate

on the possibilities of voluntary networking e↵orts by the agents of a given

community for the formation of costly though more reliable connections with

other members of society in order to seize any trade opportunity more ef-

fectively. As a matter of fact, some evidence exists that such a reaction is

not uncommon in underdeveloped societies (e.g. Fafchamps and Lund [13]

and references therein) or small specialized markets, where formal market

institutions are often substantially noisy.

Using a simple model that extends and generalizes an example suggested

in Jackson and Watts [21], I find that in fact such voluntary networks of

“strong ties” can usually be sustained as a stable outcome, though exam-

ples are not hard to achieve in which no equilibrium configuration occurs.

Nevertheless, whenever such a structure exists it improves general well-being

over a situation in which only formal unreliable markets existed.

Though voluntary networking e↵orts are no substitute for an improve-

ment in the reliability of formal institutions (⇡ ! 0), the analysis indicates

that the emergence of informal insurance networks or extensive investment

in connections should come as no surprise in the presence of “noisy” market

institutions.
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Appendix

Expected utility for an n-member market

For each endowment realization, a Walrasian equilibrium consists of a price-

allocation pair hp = (p1, p2), {x = (xi1, x
i
2)}ni=1i for which 1. preferences are

maximized and 2. markets clear. More formally,

1. 8 i,xi = argmaxyU(y) s.t. p · y  p · !i; and

2.
Pn

i=1 xi =
Pn

i=1 !i.

For a given endowment realization there are basically two types of agents

in this economy: those with endowment (1, 0) and those with endowment

(0, 1). Let n1 and n2 be the number of individuals with endowment vec-

tors (1, 0) and (0, 1), respectively (n1 + n2 = n). Let x = (x1, x2) denote

the consumption of (1, 0)-individuals and x = (x1, x2) represent the bun-

dle consumed by (0, 1)-individuals. The two conditions above can then be

translated into:

p1x
i
1 = p2x

i
2, 8i (preference maximization) (1)

p1 = p · x (preference maximization) (2)

p2 = p · x (preference maximization) (3)

n1x1 + n2x1 = n1 (market clearing) (4)

n1x2 + n2x2 = n2 (market clearing) (5)

We concentrate on the analysis of the Walrasian equilibrium allocations

for each individual. From (1) and (2) one gets x1 = 1/2. Multiplying (4) by

p1 and using x1 = 1/2 we arrive at x1 = n1/2n2. Proceeding analogously,

x2 = 1/2 and x2 = n2/2n1, so that x = (1/2, n2/2n1) and x = (n1/2n2, 1/2).

Agents with endowment (1, 0) then get utility n2/4n1,whereas agents with

endowment (0, 1) get utility n1/4n2. Averaging over all the possibilities, the

expected utility of any given individual in an n-agent economy given that

his of her endowment is (0, 1) is expressed by
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n�1X

k=1

 
n� 1

k

!

pn�k�1(1� p)k
k

4(n� k)
, (6)

whereas his or her expected utility given a (1, 0) endowment is

n�1X

k=1

 
n� 1

k

!

pk(1� p)n�k�1 k

4(n� k)
. (7)

The (unconditional) expected utility is then p⇥ (6) +(1 � p)⇥ (7). Before

putting these two pieces together—and in order to obtain a simple repre-

sentation for this expression—notice that:

(1� p)⇥
n�1X

k=1

 
n� 1

k

!

pk(1� p)n�k�1 k

4(n� k)
=

=
n�1X

k=1

 
n� 1

k

!

pk(1� p)n�k k

4(n� k)
=

=
n�1X

k=1

 
n� 1

n� k � 1

!

pk(1� p)n�k k

4(n� k)
=

=
n�1X

k=1

(n� 1)!

(n� k � 1)!k!
pk(1� p)n�k k

4(n� k)
=

=
n�1X

k=1

(n� 1)!⇥ k ⇥ (n� k)

(n� k � 1)!k!⇥ (n� k)⇥ k
pk(1� p)n�k k

4(n� k)
=

=
n�1X

k=1

(n� 1)!

(n� k)!(k � 1)!
⇥ (n� k)

k
pk(1� p)n�k k

4(n� k)
=

=
n�1X

k=1

 
n� 1

n� k

!

pk(1� p)n�k (n� k)

k
⇥ k

4(n� k)
=

=
n�1X

k=1

 
n� 1

n� k

!

pk(1� p)n�k 1

4
=

(using j = n� k as counting variable)

=
n�1X

j=1

 
n� 1

j

!

pn�j(1� p)j
1

4
.

The expression we are interested in then reduces to:
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n�1X

k=1

 
n� 1

k

!

pn�k(1� p)k(
k

4(n� k)
+

1

4
) =

=
n�1X

k=1

 
n� 1

k

!

pn�k(1� p)k
n

4(n� k)
=

=
1

4

n�1X

k=1

 
n

k

!

pn�k(1� p)k =

=
1

4
[

nX

k=0

 
n

k

!

pn�k(1� p)k � pn � (1� p)n] =

=
[1� pn � (1� p)n]

4
,

as claimed.

Expected utility for an unreliable complete n-network

Consider a set of k vertices and fix one of the elements in the set. The events

that correspond to the occurrence of more than one connected component

can be framed in terms of the fixed element as follows:

• If the element is isolated from the other vertices;

• If the element forms a two-vertex component isolated from the other

vertices;

• If the element forms a three-vertex component isolated from the other

vertices;

• . . .

• If the element forms a k � 1-vertex component isolated from the re-

maining vertex.

If the probability that the k vertices end up connected is denoted by

�(k,⇡), it should be one minus the probability that the above events happen.

This means that
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�(k,⇡) = 1�
"

⇡k�1 +

 
k � 1

1

!

�(2,⇡)⇡2(k�2) +

 
k � 1

2

!

�(3,⇡)⇡3(k�3) + . . .

#

=

= 1�
k�1X

j=1

 
k � 1

j � 1

!

�(j,⇡)⇡j(k�j)

where �(1,⇡) = 1. The sum between brackets in the first line represents the

probability that the k vertices are not connected. This happens when the

fixed element is isolated (with probability ⇡k�1); or when it forms a pair with

a given element (with probability �(2,⇡) and for
�k�1

1

�
potential partners)

and this pair is isolated from the remaining k� 2 vertices (with probability

⇡2(k�2)); or when it forms a triple with two given elements... Notice that

�(k,⇡) ! 1, 8k as ⇡ ! 0 and that �(k,⇡) ! 0, 8k � 2 as ⇡ ! 1.

An individual will end up in a k-vertex component when k � 1 other

vertices and he or she are isolated from the remaining n� k members of the

population (with probability ⇡k(n�k) and for
�n�1
k�1

�
potential mates) and the

k individuals are connected (with probability �(k,⇡)). The following table

portrays the di↵erent trading possibilities for a given agent:

Component Probability Expected

Size Utility

k = 1 �(1,⇡)⇡n�1 0

k = 2
�n�1

1

�
�(2,⇡)⇡2(n�2) 1�p2�(1�p)2

4

k = 3
�n�1

2

�
�(3,⇡)⇡3(n�3) 1�p3�(1�p)3

4
...

...
...

k = n� 1
�n�1
n�2

�
�(n� 1,⇡)⇡n�1 1�pn�1�(1�p)n�1

4

k = n �(n,⇡) 1�pn�(1�p)n

4

Averaging across the di↵erent alternatives, one gets
nX

k=1

 
n� 1

k � 1

!

�(k,⇡)⇡k(n�k) 1� pk � (1� p)k

4

Proofs and Additional Lemmas

The following lemma will be useful in some of the propositions proved in

this appendix.
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Lemma 1 Strongly (or Pareto) e�cient and pairwise stable n-vertex (costly-

link) network components have at most n-1 edges.

Proof. Suppose a (strong or Pareto) e�cient network with n vertices

has more than n � 1 edges. It is then possible to eliminate one of the

edges while still maintaining connectedness. Since members can trade with

any directly or indirectly linked player, connectedness is the only property

that matters for the allocation rule Y . Given this, severing superfluous

links will save costs for both individuals involved and will thus increase the

value function (which is the sum of the individual expected utilities net of

connection costs) or improve at least one member without hurting any other.

But if the network is (strongly or Pareto) e�cient, this is an impossibility.

So, if the network is e�cient, it must have at most n� 1 edges.

For a similar reason, a network with superfluous links for purposes of

trade will generate incentives for links to be severed, which would thus

imply that n-networks with more than n�1 arcs will not be pairwise stable.

Q.E.D.

Proof of Proposition 1

(i) According to Lemma 1, any k-component (connected subgraph) of a

pairwise stable graph with more than two vertices has at most k � 1 edges.

Consider severing links with one of the vertices in the extremity of the

component. Since 1�pk�(1�p)k

4 is concave in k, this will yield a maximum

cost in terms of expected utility from trade of

3p(1� p)

4
� p(1� p)

2
=

p(1� p)

4

which is smaller than the connection cost c saved. A component of a pairwise

stable network will thus have at most two vertices. If it has two vertices,

the individual net benefit from the link (net of connection costs) is given by

p(1� p)

2
� c < 0

so this component is not pairwise stable. Consequently, if a pairwise stable

architecture exists it is the empty graph. This configuration is indeed pair-

wise stable since, by the same cost-benefit computation above, there are no
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incentives to form links between any two individuals.

(ii) First notice that k⇤ is well defined since f(x) : @ ! < with x 7! {px(1�
p)+(1�p)xp}/4 ) f(x)�f(x�1) = �[(1�p)2px�1+p2(1�p)x�1]/4 < 0 ) f

is decreasing. Also, f(1) = p(1�p)
2 and limx!1 f(x) = 0 from which it is

easy to see that 8c 2 (0, p(1�p)
2 ), there exists a unique k⇤ 2 @ : f(k⇤) < c 

f(k⇤ � 1).

The function f can be rewritten as f(k) = [1�pk+1�(1�p)k+1]�[1�pk�(1�p)k]
4 ,

which represents the expected incremental gain in a trade network with k

agents when an extra member is incorporated. The integer k⇤ is thus the

critical size of a network above which an extra member will represent a

net negative contribution to the individual that contemplates establishing a

connection with him or her.

Notice that k⇤ > n ) k⇤ � 1 > n � 1 ) [1�pn�(1�p)n]�[1�pn�1�(1�p)n�1]
4 =

f(n � 1) > f(k⇤ � 1) > c and [1�pk�(1�p)k]�[1�pk�1�(1�p)k�1]
4 > c, 8k  n,

so it is incentive compatible for any vertex to connect a new member to his

or her component. The incentives to establish a bridge between any two

disconnected components are even stronger. In consequence, any pairwise

stable network should have a single component. Any architecture connect-

ing all the vertices with n� 1 arcs (which is a requirement of Lemma 1) is

thus pairwise stable.

Starting from an empty graph, there are incentives to add new members

to a group as long as the group size is smaller than k⇤. Assume that the

population is thus divided into as many coalitions as possible of size k⇤.

Within each of these groups, no member gains by severing links with other

agents as long as the individuals are connected through k⇤ � 1 edges. If

the population size is not perfectly divisible by k⇤, gather the remaining

members in a separate group (which, having less than k⇤ elements, will not

engender incentives for the dissolution of links either).

33



If n
2 < k⇤, two components are formed: one with k⇤ members and another

with n� k⇤ members. When {[1� pn� (1� p)n]� [1� pk
⇤ � (1� p)k

⇤
]}/4 =

{pk⇤(1 � pn�k⇤) + (1 � p)k
⇤
[1 � (1 � p)n�k⇤ ]}/4 < c, no member in either

group will have incentives to establish a link between the two groups. This

configuration, in which each component has the internal structure dictated

by Lemma 1, is thus pairwise stable.

If k⇤  n
2 , the organization of groups as in the previous case will generate

int
⇥ n
k⇤
⇤
components with k⇤ vertices and one component with the remaining

n � k⇤int
⇥ n
k⇤
⇤
. When {[1 � p2k

⇤ � (1 � p)2k
⇤
] � [1 � pk

⇤ � (1 � p)k
⇤
]}/4 =

{pk⇤(1�pk
⇤
)+(1�p)k

⇤
[1� (1�p)k

⇤
]}/4 < c, no member of a k⇤-component

will have incentives to establish a connection with a vertex of another group

(with k⇤ vertices or less). As a consequence, this configuration is pairwise

stable: no vertex will be willing to break up established ties nor to form new

links.

These two cases (k⇤ > n/2 and k⇤  n/2) together deliver the result stated

in the second bullet of case ii since {pk⇤(1�pmin{k⇤,n�k⇤})+(1�p)k
⇤
[1�(1�

p)min{k⇤,n�k⇤}]}/4 = {pk⇤(1� pk
⇤
) + (1� p)k

⇤
[1� (1� p)k

⇤
]}/4 if k⇤  n/2

and {pk⇤(1� pn�k⇤) + (1� p)k
⇤
[1� (1� p)n�k⇤ ]}/4 = {pk⇤(1� pk

⇤
) + (1�

p)k
⇤
[1� (1� p)k

⇤
]}/4 otherwise.

For each of the cases above (k⇤ > n/2 and k⇤  n/2), {[1�pn�(1�p)n]�[1�
pk

⇤ � (1�p)k
⇤
]}/4 > c or {[1�p2k

⇤ � (1�p)2k
⇤
]� [1�pk

⇤ � (1�p)k
⇤
]}/4 > c

imply that incentives will be in place for larger groups to be formed. This

in turn implies that the architecture suggested will not be pairwise stable.

If a pairwise stable architecture existed, it would then involve components

with k⇤ vertices or less (if there were more than k⇤ vertices links would be

severed profitably). But at the same time there are incentives for any group

with k⇤ members or less to merge with other components. By the definition

of k⇤ the expected benefit from the incorporation of a single vertex would be

superior to the linkage cost c and the establishment of a bridge with another

component with two or more vertices would be even more so. So, there is
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no pairwise stable architecture. Q.E.D.

The following Lemma is used in proving Proposition 2.

Lemma 2 For fixed ⇡ and n, f(k) = EU(k,⇡) is a concave function of k.

Proof. Given n and ⇡, (EU(k,⇡))nk=1 can be seen as a point in <n,

the n-dimensional Euclidian space. Furthermore, ⇡(2 [0, 1]) 7! f(⇡) =

(EU(k,⇡))nk=1(2 <n) is a continuous function (each component is basically

a polynomial in ⇡).

Let S = {x = (x1, . . . , xn) 2 <n|xk+1�xk  xk�xk�1, k = 2, . . . , n�1},
so that S is the (closed) set of all (weakly) concave functions with domain

{1, . . . , n} (which are thus representable as vectors). Notice that EU(k, 1) =
1�pk�(1�p)k

4 is a strictly concave function with domain {1, . . . , n} (as long

as p 2 (0, 1) and thus belongs to the interior of S (denoted S\@S). On the

other hand, EU(k, 0) = 1�pn�(1�p)n

4 , 8k, which is a constant function with

domain {1, . . . , n} and thus belongs to the boundary of S (denoted @S).

Using Theorem 4.22 in Rudin [27] (p.93), f([0, 1]) is a connected subset

of <n. If f([0, 1]) ⇢ S, nothing remains to be shown. If otherwise f([0, 1]) is

not a subset of S, since f(1) 2 S\@S, f(0) 2 @S and f([0, 1]) is connected,

9⇡⇤ 2 (0, 1) such that f(⇡⇤) 2 @S. This means that 9k 2 {2, . . . , n�1} such

that EU(k+ 1,⇡⇤)�EU(k,⇡⇤) = EU(k,⇡⇤)�EU(k� 1,⇡⇤). But this can

be seen to be impossible for any ⇡ 2 (0, 1). Q.E.D.

Proof of Proposition 2

The proof parallels that of Proposition 1 and therefore is omitted. It is

easily reproduced once one realizes that, given a population of size n,

1. ⇥(k, j,⇡) is the probability that a k-member strong-link network and

j isolated vertices end up connected in the complete graph with prob-

ability of arc disappearance ⇡;

2. EU(k,⇡) is the expected utility from trade for a strong-link network

with k vertices; and

3. EU(k,⇡) is a concave function of k (Lemma 2).
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The derivation of ⇥(k, j,⇡) parallels that of �(k,⇡). It basically com-

putes the probability that k-member strong-link network and j isolated ver-

tices end up connected by fixing one of the isolated points and framing the

complemetary events in terms of this vertex. The k + j vertices would end

up disconnected

• If the fixed element is isolated from the other k + j � 1 vertices;

• If the fixed element forms a two-vertex component with another of the

isolated j vertices and this pair is isolated from the other k + j � 2

vertices;

• If the fixed element forms a link with the k-component and is isolated

from the other j � 1 vertices;

• If the element forms a three-vertex component with other two of the

j isolated vertices and is isolated from the other k + j � 3 vertices;

• If the fixed element forms a component with the k-component and

another of the j isolated vertices and is isolated from the other j � 2

vertices;

• etc.

Using ⇥(k, j,⇡), the computation of the expected utility from trade when

the individual is the member of a k-vertex strong-link component is easily

seen to be EU(k). The concavity of this function allows the utilization of

exactly the same rationale adopted in the proof of Proposition 1 to prove

this proposition.
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