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Summary

This paper introduces measures for how each moment contributes to the pre-
cision of parameter estimates in generalized method of moments settings. For
example, one of the measures asks what would happen to the variance of
the parameter estimates if a particular moment was dropped from the esti-
mation. The measures are all easy to compute. We illustrate the usefulness
of the measures through two simple examples as well as an application to a
model of joint retirement planning of couples. We estimate the model using
the British Household Panel Survey, and we find evidence of complementarities
in leisure. Our sensitivity measures illustrate that the estimate of the comple-
mentarity is primarily informed by the distribution of differences in planned
retirement dates. The estimated econometric model can be interpreted as a
bivariate ordered-choice model that allows for simultaneity. This makes the
model potentially useful in other applications.

1 INTRODUCTION
Indirect inference and other nonlinear generalized method of moments (GMM) estimators are used extensively in
empirical research. These estimators are, however, sometimes seen as black boxes. It can be difficult to understand exactly
what features of the data are informative about which parameters, and how sensitive parameter estimates are to moments
included in the objective function.

In this paper, we provide simple and easy-to-compute measures that can indicate how altering the moments used in
estimation affects the precision of parameter estimates. Informally, we think of these as measures of how informative
each moment is about a particular parameter. More precisely, we provide measures of the effect on asymptotic standard
errors from (i) a marginal increase in the noise associated with a moment, (ii) completely removing a (set of) moments
from estimation, and (iii) a marginal increase in the weight put on a moment.

The measures are derived from the asymptotic distribution of the class of GMM-type estimators considered here and
are, for the most part, based on derivatives of the asymptotic covariance matrix. The measures are almost costless to
calculate because most of the required quantities are already constructed when calculating asymptotic standard errors.
Furthermore, the measures have straightforward interpretations if scaled in a meaningful way.

There is a growing literature investigating sensitivity of estimators in economics. Recently, for example, Andrews,
Gentzkow, and Shapiro (2017) proposed a measure to inform researchers on the sensitivity of the asymptotic bias in esti-
mators to misspecification of moments included in the estimation function. We note that their measure is also related to
the change in the asymptotic variance from a marginal change in the included moments, which inspired our proposed
alternative measures. While we focus on the precision of the parameter estimates, more recently Armstrong and Kolesár
(2018) and Bonhomme and Weidner (2018) also studied local misspecification. Christensen and Connault (2019) studied
global misspecification.
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We illustrate the applicability of our measures through two simple examples and an empirical application. The two
examples are a binary outcome probit model and a proportional hazards Weibull duration model with time-varying
covariates. The application is a simple structural model of joint retirement planning of dual-earner households. The model
is founded in utility maximization with household bargaining, but can also be interpreted as a bivariate ordered-choice
model that allows for simultaneity. The parameters of the model are most easily estimated by indirect inference, but the
complexity of the model makes it difficult to understand the link between the data and the parameter estimates.

While a growing empirical literature has established that dual-earner households tend to retire simultaneously or in
quick succession in age,1 the empirical evidence of joint retirement planning of couples is much more scarce and with
ambiguous findings.2 We contribute to this literature by estimating a structural model of dual-earner retirement planning
using indirect inference and prospective retirement planning questions in the British Household Panel Survey (BHPS).
Our estimation results support the notion of leisure complementarities in retirement. Our proposed sensitivity measures
confirm the intuition that the parameter estimate measuring leisure complementarities in the model is sensitive to the
distribution of the difference in the year of planned retirement between household members.

The remaining paper is organized as follows. In Section 2 we present the sensitivity measures and show examples of
their use in Section 3. In Section 4 we apply our measures to a novel model of dual-earner retirement planning before
concluding with final remarks in Section 5.

2 FRAMEWORK AND SENSITIVITY MEASURES

Indirect inference and other nonlinear GMM estimators are sometimes seen as black boxes where it can be difficult to
understand exactly what features of the data are informative about which parameters. In this section, we review and
introduce a number of measures that are meant to provide information about this.

To fix ideas, consider a set of moment conditions E [𝑓 (xi, 𝜃0)] = 0, where xi is data for observation i and it is assumed
that this defines a unique 𝜃0. The GMM estimator of 𝜃0 is 𝜃 = arg min𝜃

(
1
n

∑n
i=1 𝑓 (xi, 𝜃)

)′
Wn

(
1
n

∑n
i=1 𝑓 (xi, 𝜃)

)
, where

Wn is a symmetric, positive definite matrix. While some of the measures below also apply to just-identified models, we
focus here on overidentified models where the number of moments are larger than the number of parameters in 𝜃, and
the weighting matrix thus plays a role.

Subject to the standard regularity conditions, the derivation of the asymptotic distribution of 𝜃 gives

𝜃 = 𝜃0 −
(

G′WG
)−1G′W

(
1
n

n∑
i=1
𝑓 (xi, 𝜃0)

)
+ op

(
n−1∕2) , (1)

where G = E
[
𝜕𝑓(xi,𝜃0)

𝜕𝜃

]
and W is the limit of Wn. See Hansen (1982). The limiting distribution of the GMM estimator is

√
n
(
𝜃 − 𝜃0

) d
→ N (0,Σ) ,

where
Σ =

(
G′WG

)−1G′WSWG
(

G′WG
)−1

and S = V [𝑓 (xi, 𝜃0)]under random sampling. If we use the optimal weighting matrix, W = S−1, the asymptotic covariance
collapses to

Σopt = (G′S−1G)−1.

Intuitively, when there is little sampling variability in the moment functions, f, S will be small. G is larger if the moment
condition is more sensitive to perturbations in the parameter. Both of these contribute to the precision of the estimates,
as the proposed measures highlight.

1See, for example, Hurd (1990), Blau (1998), Gustman and Steinmeier (2000, 2004), Coile (2004), An, Christensen, and Gupta (2004), Jia (2005), Blau
and Gilleskie (2006), van der Klaauw and Wolpin (2008), Banks, Blundell, and Casanova (2010), Casanova (2010), and Honoré & de Paula, (2018).
2See Pienta and Hayward (2002), Moen, Huang, Plassmann, and Dentinger (2006), and de Grip, Fouarge, and Montizaan (2013).
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Andrews et al. (2017) proposed the sensitivity measure

M1 = −(G′WG)−1G′W .

It is clear from Equation 1 that M1 provides the mapping from moment misspecification of the type E [𝑓 (xi, 𝜃0)] = 𝜌 ≠ 0
into parameter biases for small 𝜌. Alternatively, by noting that Σ = M1SM′

1, M1 tells us how additional noise in each of
the sample moments 1

n

∑n
i=1 𝑓 (xi, 𝜃0) would result in additional noise in each element of 𝜃. This is what motivates our

alternative measures that address the sensitivity of estimation precision to each moment.
The proposed measures are intended to complement the measure of sensitivity to misspecification proposed by Andrews

et al. (2017). Like M1, our measures are matrices where the (j, k)th element provides an answer to how the precision of
the jth element of 𝜃 depends on the kth moment.

Our first measure asks the hypothetical question: How much precision would we lose if the kth moment is subject to a
little additional noise? This measure is formally defined as

M2,k ≡ 𝜕Σopt

𝜕S(kk)
= Σopt(G′S−1OkkS−1G)Σopt,

where Okk is a matrix with 1 in the (k, k) element and zero elsewhere. This measure assumes that the optimal weighting
matrix is used and updated. Alternatively, we could ask the same question keeping the (possibly nonoptimal) weighting
matrix unchanged. This measure is

M3,k ≡ 𝜕Σ
𝜕S(kk)

= (G′WG)−1G′WOkkWG(G′WG)−1 = M1OkkM′
1.

The difference between M2,k and M3,k is that the former evaluates the potential information in each moment, while the
latter evaluates the information actually used in the estimation. With efficient GMM (so W = S−1), M3 equals M2. This is
also true in the just-identified case where the number of moments equals the number of parameters to be estimated.

Related to M2,k, we could consider the change in the asymptotic variance from completely excluding the kth moment:

M4,k ≡ Σ̃k − Σ,

where
Σ̃k = (G′W̃kG)−1G′W̃kSW̃kG(G′W̃kG)−1,

W̃k = W ⊙ (𝜄k𝜄′k).

Here⊙ denotes element-wise multiplication and 𝜄k is a J×1 vector with ones in all elements except the kth element, which
is zero. M4,k leaves the weighting matrix on the remaining moments unchanged after we have excluded the kth moment.

We note that this measure assumes that the parameter vector is identified after the kth moment has been excluded.
Specifically, (G′W̃kG) needs to have full rank. Importantly, this means that the original model has to be overidentified in
the sense that it has more moments than parameters. In practice, G has to be estimated, and violations of the full rank
assumption will result in (Ĝ′W̃kĜ) being close to singular. Extremely large values in the estimate of M4,k therefore suggest
that the model is not point-identified when the kth moment is excluded. This can happen even if the original model was
overidentified.

Alternatively, one could also consider measures that adjust the weighting matrix. For example, one could consider a
measure that compares the precision of the optimal GMM estimator that uses all moments to the optimal GMM estimator
that excludes that kth moment:

M5,k = (G′
−kS−1

−kG−k)−1 − (G′S−1G)−1,

where G−k is the same as matrix G except that the kth row has been removed, and S−k is S with the kth row and column
removed. This measure also assumes that the parameter vector is identified after the kth moment has been excluded, and
it implicitly assumes that the original number of moment conditions exceeds the number of parameters to be estimated.
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M4 and M5 can also be used to gauge the sensitivity of the estimator to a set of moments. This is potentially useful
in cases where one can group moments in some natural way. One can then address the question of how much of the
precision in an estimator would be lost if one did not use one of the groups of moments. For example, (Gayle & Shephard,
2019) talks about five sets of moments (in their online appendix), and Honoré and de Paula (2018) get their moments
from the estimation of four different auxiliary reduced form models. A reparametrization of those reduced-form models
would lead to moment conditions that are (asymptotically) linear combinations of the original moment conditions. In
that case, it might be useful to construct a measure that reflects giving zero weight to all the moments that come from a
specific auxiliary model. This approach would be application specific, and we therefore do not pursue it in this paper.

Our final measure addresses the question: How would the precision of our estimates change if we slightly increased
the weight put on the kth moment? This measure is formally defined as the derivative

M6,k ≡ 𝜕Σ
𝜕W (k,k)

= − (G′WG)−1(G′OkkG)Σ + (G′WG)−1G′OkkSWG(G′WG)−1

+ (G′WG)−1G′WSOkkG(G′WG)−1 − Σ(G′OkkG)(G′WG)−1.

We do not think of M6,k as a measure of moment sensitivity, but rather as a measure of how close the chosen weighting
matrix is to being optimal. M6,k will be 0 when W is the optimal weighting matrix. It will also be 0 in the just-identified
case, where the number of moments equals the number of parameters to be estimated.

These measures are not invariant to the scale of the included moments in f(·). One approach, which we take, is to report
scaled measures. Concretely, we report the sensitivity of the jth parameter to the kth moment as

 ( 𝑗,k)
2 = M( 𝑗,k)

2
S(k,k)

Σ( 𝑗,𝑗)
opt

,

 ( 𝑗,k)
3 = M( 𝑗,k)

3
S(k,k)

Σ( 𝑗,𝑗) ,

 ( 𝑗,k)
4 = M( 𝑗,k)

4
1

Σ( 𝑗,𝑗) ,

 ( 𝑗,k)
5 = M( 𝑗,k)

5
1

Σ( 𝑗,𝑗)
opt

,

 ( 𝑗,k)
6 = M( 𝑗,k)

6
W (k,k)

Σ( 𝑗,𝑗) ,

where M( 𝑗,k)
2 refers to the jth diagonal element of M2,k and similarly for M( 𝑗,k)

3 , M( 𝑗,k)
4 , M( 𝑗,k)

5 and M( 𝑗,k)
6 . Note that  ( 𝑗,k)

2 ,
 ( 𝑗,k)

3 and  ( 𝑗,k)
6 are elasticities, whereas  ( 𝑗,k)

4 and  ( 𝑗,k)
5 are the relative changes in the asymptotic variance compared to

the baseline with all moments included.

3 EXAMPLES

In this section, we illustrate the use of our proposed measures through two concrete examples. The first example is a
simple binary-choice probit model and the second example is a proportional hazards duration model. The first example
is chosen because it is a case where one would have a strong prior about which moments matter. The second example, on
the other hand, is complicated enough that this is not obvious.

For both examples, we use both the optimal weighting matrix and a diagonal weighting matrix with the inverse of
the moment variances on the diagonal. We chose the latter nonoptimal weighting matrix because it is very common in
empirical applications.3

3There are many examples of this. They include Eisenhauer, Heckman, and Mosso (2015) and Gayle and Shephard (2019), to name two. The motivation
stems from Altonji and Segal (1996), who show that the optimal weighting matrix can have quite poor finite sample properties. They suggest equally
weighted moments (i.e., W = I) as an alternative. Of course, using equal weights will not be invariant to changes in units (or other rescaling), which
explains the practice we have adopted.
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TABLE 1 Sensitivity measures, probit model, optimal weighting

Moment

E[e] E [ex1] E [ex2] E

[
ex2

1

]
E [ex1x2] E

[
ex2

2

]

M1 𝛽0 4.261 1.475 1.469 0.192 0.378 0.184
𝛽1 1.190 6.570 −1.286 0.223 0.141 −0.069
𝛽1 1.193 −1.286 6.567 −0.073 0.152 0.214

2 𝛽0 1.104 0.088 0.087 0.003 0.004 0.003
𝛽1 0.060 1.207 0.046 0.003 0.000 0.000
𝛽1 0.060 0.046 1.205 0.000 0.000 0.003

3 𝛽0 1.104 0.088 0.087 0.003 0.004 0.003
𝛽1 0.060 1.207 0.046 0.003 0.000 0.000
𝛽1 0.060 0.046 1.205 0.000 0.000 0.003

4 𝛽0 1.206 0.292 0.291 0.005 0.003 0.005
𝛽1 0.065 4.014 0.155 0.004 0.006 0.000
𝛽1 0.065 0.153 4.034 0.000 0.006 0.004

5 𝛽0 1.203 0.292 0.291 0.001 0.003 0.001
𝛽1 0.065 4.014 0.155 0.001 0.000 0.000
𝛽1 0.065 0.153 4.034 0.000 0.000 0.001

6 𝛽0 0.000 0.000 0.000 0.000 0.000 0.000
𝛽1 0.000 0.000 0.000 0.000 0.000 0.000
𝛽1 0.000 0.000 0.000 0.000 0.000 0.000

Note. Simulations based on 107 observations.

3.1 Example 1: Method of moments estimation of a probit model
We first consider a simple probit model:

𝑦i =
{

0 if 𝑦∗i > 0
1 else,

𝑦∗i = 𝛽0 + 𝛽1x1,i + 𝛽2x2,i + 𝜀i,

where
(

x1,i, x2,i
)

has a bivariate normal distribution with means equal to 0, variance 1, and correlation 0.5. 𝜀i is inde-
pendent of

(
x1,i, x2,i

)
and distributed according to a standard normal. We set 𝛽0 = 𝛽1 = 𝛽2 = 1∕

√
3. This makes

V
[
𝛽0 + 𝛽1x1,i + 𝛽2x2,i

]
= 1 and P (𝑦i = 1) = 0.66.4

We consider the asymptotic distribution of a moment-based estimator of 𝜃0 = (𝛽0, 𝛽1, 𝛽2) solving

𝜃̂ = arg min
𝜃

g(𝜃)′Wg(𝜃),

where we use the six moments:(
E[e(𝜃)] E[e(𝜃)x1] E[e (𝜃) x2] E[e(𝜃)x2

1] E[e (𝜃) x1x2] E[e(𝜃)x2
2]
)′

and ei(𝜃) = 𝑦i − Φ
(
𝛽0 + 𝛽1x1,i + 𝛽2x2,i

)
. In the corresponding logit model, the first three moments correspond to the

first-order conditions for maximum likelihood estimation. Although they are formally different, the logit and probit
models are quite similar. We therefore expect the first three moments to be the most informative about 𝜃0. Moreover, we
expect the first moment to be the most important for determining 𝛽0 , and the second and third for determining 𝛽1 and
𝛽2, respectively.

Table 1 shows results using the optimal weighting matrix, and Table 2 shows results using the diagonal weighting matrix
with the inverse of the moment variances on the diagonal.5 We think of the latter as a practical alternative to the efficient
weighting matrix.

4We also supply Python code to illustrate our approach.
5We illustrate the proposed sensitivity measures through Monte Carlo simulation of the expected values using 107 simulated observations.
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TABLE 2 Sensitivity measures, probit model, diagonal weighting

Moment

E[e] E [ex1] E [ex2] E

[
ex2

1

]
E [ex1x2] E

[
ex2

2

]

M1 𝛽0 3.374 1.633 1.630 1.036 −0.681 1.035
𝛽1 1.354 5.656 −1.185 −0.853 −1.360 0.882
𝛽1 1.351 −1.185 5.658 0.881 −1.360 −0.851

2 𝛽0 1.104 0.088 0.087 0.003 0.004 0.003
𝛽1 0.060 1.207 0.046 0.003 0.000 0.000
𝛽1 0.060 0.046 1.205 0.000 0.000 0.003

3 𝛽0 0.651 0.101 0.101 0.080 0.013 0.080
𝛽1 0.071 0.817 0.036 0.037 0.034 0.039
𝛽1 0.070 0.036 0.817 0.039 0.034 0.037

4 𝛽0 1.076 0.341 0.340 −0.010 −0.011 −0.011
𝛽1 0.042 3.783 0.116 −0.038 −0.031 −0.028
𝛽1 0.042 0.114 3.802 −0.028 −0.032 −0.038

5 𝛽0 1.203 0.292 0.291 0.001 0.003 0.001
𝛽1 0.065 4.014 0.155 0.001 0.000 0.000
𝛽1 0.065 0.153 4.034 0.000 0.000 0.001

6 𝛽0 −0.101 0.002 0.002 0.040 0.017 0.041
𝛽1 0.011 −0.142 0.002 0.044 0.048 0.037
𝛽1 0.011 0.002 −0.142 0.037 0.048 0.044

Note. Simulations based on 107 observations.

It is clear from Table 1 that the first three moments are indeed the most informative about 𝛽0, 𝛽1, and 𝛽2, respectively. As
mentioned, this is expected since these moments would be the first-order conditions for maximum likelihood estimation
of a logit model.

The elements in the last three columns of M1 in Table 1 are much smaller than those in the first three. This suggests that
the optimal GMM estimator is much less sensitive to misspecification of the last three moments than to misspecification
of the first three moments. The reason is that the first three moments get almost all the weight (in the corresponding logit
model, they would literally get all the weight). As expected, this is less pronounced in Table 2. The values of 2 in Tables 1
and 2 confirm that the efficient GMM estimator of 𝜃0 is driven by the first three moments.6 Adding noise to the last three
moments has essentially no effect on the precision of the optimal GMM estimator of 𝜃0, whereas adding noise to the first
three elements can have a big effect. The values of 3 in Table 2 illustrate that the precision of the nonoptimal GMM
estimator is less sensitive to noise in the last three moments (because they get relatively less weight) and more sensitive
to adding noise to the first three moments (because they get relatively more weight).

Next, 4 and 5 suggest that leaving out, for example, the second moment would increase the asymptotic variance of
both the efficient and the inefficient GMM estimator of 𝛽1 by around 400%. This confirms that E[ex1] is instrumental for
precise estimation of 𝛽1.

The final measure, 6 in Table 1, is 0 by construction. Since we are using the weighting matrix that minimizes the
variance of the estimator of each element of 𝜃, the derivative of the variance with respect to the elements of the weighting
matrix must be 0. 6 in Table 2 shows that in this case the diagonal weighting matrix with the inverse of the moment
variances on the diagonal puts too little weight on the first three moments.

3.2 Example 2: Duration model
The probit example in Section 3.1 was chosen because it is an example where we have good prior intuition about which
moments matter for what parameter. We now turn to an example where this is much less obvious.

Consider a duration, T, that follows a mixed proportional hazard model with time-varying covariates and a Weibull as
the baseline hazard:

h(t) = 𝛼t𝛼−1 exp
(

x′(t)𝛽
)
𝜂,

62 in Tables 1 and 2 differ only because of simulation error.
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where 𝛼 is the scale parameter that captures duration dependence and x′(t)𝛽 is the effect of the time-varying explanatory
variables. An example of a two-dimensional time-v arying set of explanatory variables could be

x(t) =
⎧⎪⎨⎪⎩
(x1,1, x2,1) if t < t1
(x1,2, x2,2) if t1 ≤ t ≤ t2
⋮ ⋮
(x1,k, x2,k) if tk−1 ≤ t.

⎞⎟⎟⎟⎠
Finally, 𝜂 captures unobserved heterogeneity. Except for moment assumptions, no assumptions are made on the
distribution of 𝜂.

We then have the survival function for T:

S ( t| x(·), 𝜂) = exp
(
−𝜂 ∫

t

0
𝛼s𝛼−1 exp

[
x′(s)𝛽

]
ds
)
.

Since
S (T| x(·), 𝜂) ∼ U (0, 1) ,

we have

𝜂 ∫
T

0
𝛼s𝛼−1 exp

[
x′(s)𝛽

]
ds ∼ Exp(1), conditional on x (·) , 𝜂

or

log
(
∫

T

0
𝛼s𝛼−1 exp

(
x′ (s) 𝛽

)
ds
)

∼ log(Exp(1)) − log(𝜂), conditional on x(·), 𝜂. (2)

Here, Exp(1) denotes an exponentially distributed random variable with mean 1, and − log(Exp(1)) follows a standard
Gumbel distribution with E[− log(Exp(1))] = 𝛾≈0.57721 (Euler's constant) and V[− log(Exp(1))] = 𝜋2∕6.

Equation 2 suggests moment conditions of the type

E
[(

log
(
∫

T

0
𝛼s𝛼−1 exp

[
x′(s)𝛽

]
ds
)
+ 𝛾 − 𝛽0

)
𝜓 [x(·)]

]
= 0 (3)

for functions of the covariates, 𝜓 . Here, 𝛽0 captures the mean of − log(𝜂), which is assumed to be finite.
When x(t) is time invariant, Equation 2 becomes

log
(

T𝛼 exp
(

x′𝛽
))

∼ log (Exp(1)) − log(𝜂)

or
log(T) = −x′ (𝛽∕𝛼) + “error.”

In other words, with time-invariant covariates the moments implied by Equation 3 do not identify (𝛽, 𝛼), but only 𝛽∕𝛼.
It turns out that it is possible to estimate 𝛼 by other methods (see, e.g., Honoré, 1990), but it is not possible to estimate
(𝛽, 𝛼) at the usual

√
n rate (see Hahn, 1994). This makes it interesting to investigate how precision in estimation of (𝛽, 𝛼)

depends on the various moments in Equation 3 when x does contain time-varying covariates.
We consider a data-generating process with one time-invariant and one time-varying covariate. Specifically,

x(s) = [x1 (s) , x2(s)], where

x(s) =

{ (x1, x21) for s ≤ 1
(x1, x22) for 1 < s ≤ 2
(x1, x23) for 2 < s,

with x1 = Z1, x21 = Z2, x22 = (x21 + Z3)∕
√

2 and x23 = (x22 + Z4)∕
√

2. Z1 through Z4 follow standard normal distribu-
tions. The heterogeneity term, 𝜂, follows a log-normal distribution, where the underlying normal has mean 0 and variance
1∕2. 𝜂 is independent of x(·). Finally, 𝛽 =

(
−1, 1∕

√
2, 1∕

√
2
)′

and 𝛼 = 2. With this, the median duration is approximately
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TABLE 3 Sensitivity measures, Weibull model, optimal weighting

Moment
E[e] E [ex1] E [ex21] E [ex22] E [ex23]

M1 𝛽0 −0.503 0.001 3.375 −2.053 −1.934
𝛽1 −0.000 −0.500 0.018 −0.015 −0.014
𝛽2 −0.000 0.000 −0.228 −0.251 −0.184
𝛼 −0.019 0.009 24.478 −15.092 −14.181

2 𝛽0 0.028 0.000 1.282 0.474 0.421
𝛽1 0.000 0.998 0.001 0.001 0.001
𝛽2 0.000 0.000 0.155 0.187 0.100
𝛼 0.000 0.000 1.299 0.494 0.436

3 𝛽0 0.028 0.000 1.282 0.474 0.421
𝛽1 0.000 0.998 0.001 0.001 0.001
𝛽2 0.000 0.000 0.155 0.187 0.100
𝛼 0.000 0.000 1.299 0.494 0.436

4 𝛽0 >100a >100a 4.841 0.196 0.274
𝛽1 0.324a >100a 0.005 0.000 0.001
𝛽2 0.012a >100a 0.584 0.077 0.065
𝛼 3.935a >100a 4.904 0.203 0.284

5 𝛽0 >100a >100a 4.841 0.196 0.274
𝛽1 0.324a >100a 0.005 0.000 0.001
𝛽2 0.012a >100a 0.584 0.077 0.065
𝛼 3.935a >100a 4.904 0.203 0.284

6 𝛽0 0.000 −0.000 0.000 0.000 0.000
𝛽1 −0.000 −0.000 0.000 0.000 0.000
𝛽2 0.000 0.000 −0.000 0.000 0.000
𝛼 −0.000 −0.000 0.000 0.000 0.000

Note. Simulations based on 107 observations.
aAs mentioned in the text, large values of 4 and 5 suggest that the model is not identified after the moment has been removed from estimation.

1.3, approximately 38% of the durations are less than 1, and 29% greater than 2. This design is chosen because it is a sim-
ple example with sizable unobserved heterogeneity and duration dependence, and where we expect that the time-varying
covariate might have bite. The design is not meant to mimic any realistic empirical example.

We again consider a moment-based estimator of 𝜃 = (𝛽0∕𝛼, 𝛽1∕𝛼, 𝛽2∕𝛼, 𝛼) solving

𝜃̂ = arg min
𝜃

g(𝜃)′Wg(𝜃),

where we use the five moments given by Equation 3 with 𝜓 [x(·)] = (1, x1, x21, x22, x23).
The sensitivity measures are given in Tables 3 and 4. In this design, the derivative of the first two moments at the

true parameter values are nonzero with respect to 𝜃0 and 𝜃1, respectively. The derivatives are 0 with respect to the other
parameters. This implies that G becomes singular when we exclude either of the first two moments. This explains the
extreme entries for 4 and 5 in Tables 3 and 4.

The conclusions from the remaining parts of the sensitivity measures are fairly consistent. Most interestingly, the
moments formed on the basis of the time-varying covariates contribute to the identification of 𝛼, while the moment based
on the time-invariant covariate does not. This is exactly what the discussion above would predict. Interestingly, the first
moment is also important for 𝛼. Presumably, this is because this moment determines the estimate of the mean of the
(log of the) unobserved heterogeneity. It is well known in the duration literature that unobserved heterogeneity is poorly
distinguished from duration dependence. As a result, we do not consider this surprising.

4 APPLICATION: JOINT RETIREMENT PLANNING

In this section, we apply the proposed sensitivity measures to an extremely simple structural model of the joint retirement
planning of dual-earner couples.
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TABLE 4 Sensitivity measures, Weibull model, diagonal weighting

Moment
E[e] E [ex1] E [ex21] E [ex22] E [ex23]

M1 𝛽0 −0.503 0.001 3.066 −1.117 −2.679
𝛽1 −0.000 −0.500 0.016 −0.010 −0.019
𝛽2 −0.000 0.000 −0.234 −0.234 −0.197
𝛼 −0.021 0.009 22.219 −8.255 −19.619

2 𝛽0 0.028 0.000 1.282 0.474 0.421
𝛽1 0.000 0.998 0.001 0.001 0.001
𝛽2 0.000 0.000 0.155 0.187 0.100
𝛼 0.000 0.000 1.299 0.494 0.436

3 𝛽0 0.027 0.000 1.017 0.135 0.775
𝛽1 0.000 0.998 0.001 0.000 0.001
𝛽2 0.000 0.000 0.162 0.163 0.115
𝛼 0.000 0.000 1.027 0.142 0.800

4 𝛽0 >100a >100a 4.612 0.149 0.224
𝛽1 0.323a >100a 0.005 0.000 0.000
𝛽2 0.011a >100a 0.583 0.077 0.065
𝛼 3.737a >100a 4.667 0.155 0.232

5 𝛽0 >100a >100a 4.841 0.196 0.274
𝛽1 0.324a >100a 0.005 0.000 0.001
𝛽2 0.012a >100a 0.584 0.077 0.065
𝛼 3.935a >100a 4.904 0.203 0.284

6 𝛽0 0.000 −0.000 −0.049 −0.054 0.102
𝛽1 0.000 0.000 −0.000 −0.000 0.000
𝛽2 0.000 −0.000 0.002 −0.006 0.004
𝛼 0.000 −0.000 −0.049 −0.056 0.105

Note. Simulations based on 107 observations.
aAs mentioned in the text, large values of 4 and 5 suggest that the model is not identified after the moment has been
removed from estimation.

4.1 Data and institutional setting
We use the British Household Panel Survey (BHPS), which is a completed panel of 18 waves collected from 1991 to 2009.
In waves 11 and 16 of the BHPS, each adult household member is asked, “Even if this is some time away, at what age do
you expect you will retire?” We use this to measure the subjective retirement plans of each spouse.7 Based on the age at
the interview and the expected retirement age, we can calculate the expected retirement year of each household member
and use that to investigate joint retirement plans.

Besides retirement plans, we use information in the BHPS on annual labor market income, the number of visits to the
general practitioner (GP), subjective expectations about future health status, eligibility for an employer-provided pension
scheme (EPP), and whether individuals save any of their income in a private personal pension (PPP).8 Finally, we define
individuals as highly skilled if they have completed the first or second stage of tertiary education (ISCED code 5 or 6).

We use information on households consisting of two opposite-sex household members who are either married or cohab-
iting, and who meet the following sample selection criteria: (i) both members are between 40 and 59 years old when
interviewed; (ii) at least one member is not retired at the time of the interview; and (iii) retirement plans are observed in
the age range 50–70 for at least one member not retired at the time of the interview. If a household satisfies the criteria in
both waves (11 and 16), we use both survey responses in the analysis. We refer to each household member as husband or
wife, although we also include households where couples are cohabiting but not necessarily married.

4.1.1 The state pension age (SPA)
The SPA in the UK is the age at which individuals become eligible to receive state pension from the government.
Individuals who have reached SPA and contributed to the scheme for sufficient years are eligible to receive a weekly

7The exact formulation in wave 11 is slightly different: “At what age do you expect to retire/will you consider yourself to be retired?”
8The EPP includes both defined and contributed benefit (DB and CB) plans and we cannot distinguish between them. Blundell et al. (2004) show,
however, that DB plans were most common in the UK in this period.
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TABLE 5 Descriptive Statistics Mean SD Min Max Obs.
Age, husband 49.613 5.53 40 59 1,730
Age, wife 48.128 5.34 40 59 1,730
Planned retirement age, husband 62.606 3.87 50 70 1,730
Planned retirement age, wife 60.301 3.72 50 70 1,730
Diff. in planned retirement year (husband − wife) 0.823 5.71 −20 27 1,730
High skilled, husband 0.157 0.36 0 1 1,730
High skilled, wife 0.139 0.35 0 1 1,730
10+ GP visits, husband 0.039 0.19 0 1 1,729
10+ GP visits, wife 0.080 0.27 0 1 1,729
Expect worse health, husband 0.182 0.39 0 1 1,641
Expect worse health, wife 0.115 0.32 0 1 1,645
Labor income (£1,000), husband 25.248 17.12 0 244 1,600
Labor income (£1,000), wife 13.815 10.78 0 109 1,442
Private pension, husband 0.280 0.45 0 1 1,730
Private pension, wife 0.134 0.34 0 1 1,730
Employer pension, husband 0.514 0.50 0 1 1,730
Employer pension, wife 0.466 0.50 0 1 1,730

transfer with no means testing. In 2009, the weekly rate was around £95. See Bozio, Crawford, and Tetlow (2010),
Blundell, Meghir, and Smith (2004), and Cribb, Emmerson, and Tetlow (2013) for excellent descriptions of the pension
system in the UK.

The SPA was 65 for men and 60 for women until the implementation of the Pension Act 1995. The Pension Act 1995
introduced an increase in the SPA of women born after April 6, 1950. While the SPA for men was unaffected, the SPA
for women was gradually increased by 1 month every month (by date of birth) until the SPA for women reached 65 for
cohorts born later than (including) 1955. See Thurley and Keen (2017) for a comprehensive discussion of the reform.9

Since this might affect individual expectations, our modeling framework explicitly allows for an effect of the Pension Act
1995 on retirement planning.

4.1.2 Descriptive statistics
Table 5 reports the descriptive statistics for the variables that we use. All statistics are based on households in which both
members are not retired at the time of the interview, which is around 97% of our sample. Husbands in the estimation
sample are approximately 1.5 years older than their wives, plan to retire 2 years later than their wives (at age 63 on average),
and the average difference in the planned retirement year is approximately 0.83 years. This difference should be viewed
in light of the fact that the SPA of men is 65, while it is substantially lower for most women in our sample and as low as
60 for women born before 1950. To illustrate simultaneous retirement planning, Figure 1 shows the distribution of the
difference in the planned year of retirement between husband and wife. The left-hand panel illustrates the unconditional
distribution and the right-hand panel conditions on the husband being at least 2 years older than his wife. The peak
around zero indicates joint retirement planning, and the mass to the right of zero likely stems from men being older than
women and women having a lower SPA. When conditioning on the husband being at least 2 years older than his wife in
the right-hand panel, we see a substantial mass at 0 (same planned retirement year); we now also see a substantial mass
at −2 (same planned retirement age).

Table 5 also shows that around 16% and 14% of men and women, respectively, are classified as highly skilled, and we see
that men tend to visit the GP much less than women. Interestingly, however, men are more likely to expect their health
to worsen in the future. The labor income of husbands is around £25,000, whereas that of the wives is on average around
£14,000. Only around 13% of wives and 28% of husbands contribute to a private pension (PPP), while around 47% of wives
and 51% of husbands are eligible to some occupational retirement scheme (EPP).

9After the relevant waves in the BHPS (11 and 16) were conducted, the Pension Act 2007 further increased the SPA for both men and women. Since the
respondents were interviewed before this reform was passed (most interviews were done no later than 2006), we abstract from this and other subsequent
reforms.
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FIGURE 1 Joint retirement planning. The figure illustrates the difference in the year of retirement between husband and wife. The peak
around zero indicates joint retirement planning. Because the SPA of women is lower than that of men for most cohorts, it is expected that the
distribution is right-tailed. The left-hand panel illustrates the unconditional distribution and the right-hand panel illustrates the distribution
conditional on the husband being at least 2 years older than his spouse

FIGURE 2 Model fit, individual retirement [Colour figure can be viewed at wileyonlinelibrary.com]

4.2 A model of retirement planning of dual-earner households
In this section, we formulate a discrete time version of the continuous time bivariate duration model proposed in Honoré
and de Paula (2018). Specifically, we parametrize the difference in the utility flow between being retired and working.
Utility maximization then gives an estimatable model for joint retirement planning of couples.

Consider first the husbands. We specify the difference in utility from being retired in period t compared to working as

Uh(t, tw) = x′h𝛽h + 𝛿h(t) + 𝛾1{h(t)≥w(tw)} + 𝜀h,

where h(t) is the calendar time, tw is the retirement age of the wife, and w (tw) thus is the calendar time at which the wife
plans to retire. We interpret the term 𝛾1{(t)≥(tw)} as a utility externality that allows the husband to enjoy a higher utility
flow from planned retirement if the wife also plans to be retired at that time. We parametrize the planned retirement age
function, 𝛿h(t), as a linear trend plus indicator functions for t ≥ 55, t ≥ 60 and t ≥ 65. The histograms in Figure 2
suggest that these are empirically important. We interpret the first two as reflecting either social norms or heaping, while
the third also reflects the fact that the SPA for men is 65.

Similarly, the difference in utility flow for the wife is

Uw(t, th) = x′w𝛽w + 𝛿w(t) + 𝛾1{w(t)≥h(th)} + 𝛼1{tw ≥SPAw} + 𝜀w.

http://wileyonlinelibrary.com
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We again parametrize the function 𝛿w(t) as a linear trend plus indicator functions for t ≥ 55, t ≥ 60 and t ≥ 65. The term
𝛼1{tw≥SPAw} reflects the idea that for women there is variation in the SPA as discussed above. This allows one to infer the
effect of the SPA separately from the dummies that reflect either heaping or institutional features (e.g., early and statutory
retirement ages) at 55, 60, and 65.

To close the model, we assume that (𝜀h, 𝜀w) is jointly normal with mean zero and covariance matrix Ω, where the
off-diagonal element of Ω captures possibly correlated retirement preferences within households. We also assume that
retirement is an absorbing state. When the difference in utility from retirement compared to working is increasing in age,
this is not a binding constraint in the sense that individuals would not want to reenter the labor market once retired.

If a husband and a wife plan to retire at ages rh and rw, their discounted individual utilities are

Vh(rh, rw) =
Tmax∑
t= rh

𝜌t−ageh Uh(t, rw) (Vh)

for a husband aged ageh and

Vw(rw, rh) =
Tmax∑
t= rw

𝜌t−agew Uw(t, rh), (Vw)

for a wife aged agew. Finally, the optimal retirement plan for a household is determined jointly as

(Rh,Rw) = arg max
rh,rw

[Vh(rh, rw),Vw(rw, rh)],

where (·, ·) is a household aggregator. For the estimation, we choose (Vh,Vw) = Vh + 𝜆Vw as in the Nash bargain-
ing setting from Honoré and de Paula (2018) or, more generally, the collective model framework surveyed in Browning,
Chiappori, and Weiss (2014).

It is clear that two-scale normalizations are necessary in order to estimate the model. First, the scale of  cannot be
identified and we therefore normalize the variance of 𝜀h to be 𝜎2

h = 1. Secondly, the only effect of 𝜆 is to rescale all the
parameters in Vw. We therefore normalize 𝜆 = 1. The model is thus in effect unitary.

Our parametrization is inspired by the ordered probit model. Consider the husbands. If 𝛾 = 0 (such that there is
no utility externality) and 𝛿h is increasing, then the utility maximization will lead to planned retirement the first time
x′h𝛽h + 𝛿h(t) + 𝜀h > 0. In other words, the chosen planned retirement age satisfies

−𝛿h(Rh) < x′h𝛽h + 𝜀h ≤ −𝛿h(Rh − 1),

which is exactly the ordered probit model. In that sense, the proposed model is a generalization of the ordered probit
model to a bivariate case with simultaneity between the two outcomes.

4.3 Indirect inference estimation
We estimate the model's parameter vector 𝜃 = (𝛾, 𝛼, 𝛽h, 𝛽w, 𝛿h, 𝛿w, 𝜎

2
w, 𝜎hw) through indirect inference10:

𝜃̂ = arg min
𝜃∈Θ

g(𝜃)′Wg(𝜃).

The weighting matrix, W, is diagonal with the inverse of the variances of the moments in the diagonal. g(𝜃) is a K × 1
vector of differences between statistics/moments in the data and identical moments based on simulated data.

For each couple i, we simulate synthetic retirement plans by drawing Ssim vectors of taste shocks 𝜀i = {𝜀(s)i,h, 𝜀
(s)
i,w}

Ssim
s=1 from

the joint normal distribution, and calculate the value of all combinations of retirement ages:

V (s)
i (rh, rw) = Vh(rh, rw|xi, 𝜀

(s)
i,h, 𝜀

(s)
i,w) + 𝜆Vw(rw, rh|xi, 𝜀

(s)
i,h, 𝜀

(s)
i,w),

10See, for example, Smith (1993), and Gouriéroux, Monfort, and Renault (1993). While we use the Wald criterion function, indirect inference can also
be performed using other metrics (e.g., the likelihood ratio or Lagrange multiplier). See Smith (2008).
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where the individual values are calculated as in Equations Vh and Vw. We then find the simulated retirement ages that
maximize utility:

(R(s)
i,h(𝜃),R

(s)
i,w(𝜃)) = arg max

rh,rw
V (s)

i (rh, rw)

for a given value of 𝜃.
To estimate the model parameters, we use four sets of auxiliary models/moments with a total of K = 52 elements in

g(𝜃). We describe in detail the construction of these moments in the Supporting Information and only list them here:

1. Ordinary least squares (OLS) coefficients from individual regressions of the planned retirement age on own and
spousal covariates xi,h and xi,w together with indicators for the wife's birth cohort 1{1950 < cohortw,i ≤ 1954} and
1{1955 ≤ cohortw,i}.

2. The share of individuals planning to retire at ages 50–54, 55, 56–59, 60, 61-64, and 65, split by gender.
3. The covariance matrix of residuals from the regression in item 1 above for each household member.

Husband Wife
𝛾 Joint leisure 0.026 (0.011) 0.026 (0.011)
𝛼 SPA age — — 0.105 (0.122)

Explanatory variables (𝛽)
High skilled −0.129 (0.100) −0.148 (0.110)
10+ GP visits 0.315 (0.291) 0.152 (0.157)
Expect worse health 0.091 (0.112) 0.001 (0.109)
Labor income (1,000£) 0.006 (0.003) 0.011 (0.005)
Has private pension (PPP) 0.194 (0.092) −0.005 (0.084)
Has employer-provided pension (EPS) 0.610 (0.089) −0.044 (0.060)
Birth year (minus 1955) 0.005 (0.005) −0.005 (0.007)
Labor income (1,000£), spouse 0.005 (0.004) 0.003 (0.003)
Has private pension (PPP), spouse 0.074 (0.093) −0.005 (0.077)
Has employer-provided pension (EPS), spouse 0.171 (0.076) 0.013 (0.080)
Age variables (𝛿)
Constant −2.413 (0.128) −1.667 (0.474)
Time trend (minus 25) 0.036 (0.004) 0.020 (0.007)
Retirement age 55 dummy 0.632 (0.068) 0.729 (0.177)
Retirement age 60 dummy 0.867 (0.038) 1.323 (0.362)
Retirement age 65 dummy 1.978 (0.078) 1.452 (0.418)
𝜎 variance 1.000 0.917
𝜎hw covariance 0.359 0.359

Note. The table reports the estimated simultaneous retirement planning model using the BHPS data
and indirect inference. Asymptotic standard errors reported in parentheses.

TABLE 6 Estimation results, indirect inference

FIGURE 3 Model fit, joint retirement [Colour figure can be
viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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4. The share of couples with retirement plans such that (i) the wife plans to retire 1–2 years before her husband, (ii)
the husband plans to retire 1–2 years before his wife, or (iii) the couple plan to retire in the same year.

The first set of moments is primarily included to help estimate 𝛽h , 𝛽w, and 𝛼 in the utility function. The second set
of moments is included primarily to help estimate the linear age trend and age dummies in 𝛿h and 𝛿w. The third set of
moments is primarily included to estimate the covariance of the preference shocks for husband and wife, Ω. Recall that
we normalize 𝜎2

h = 1 and the remaining parameters in Ω are thus 𝜎2
w and 𝜎hw. The final set of moments is included to

estimate the value of joint leisure, 𝛾 . We will use our proposed sensitivity measures below to investigate these claims in a
more systematic way.

4.4 Empirical results
We use the BHPS data discussed above to estimate the model of joint retirement planning of couples. We use the same
moments as above and simulate Ssim = 2, 000 draws when approximating the expected moments. Table 6 reports the
estimation results. We find a positive value of coordination of around 𝛾 ≈ 0.026, around two to four times as large as the
marginal utility from additional labor income of £1,000 and significant at the 5% level (p-value of 0.02).

Overall, the remaining statistically significant parameter estimates have the expected signs. High skilled individuals
value retirement less. Less healthy people value retirement more, and having some form of pension savings increases the

TABLE 7 Sensitivity of 𝛾 Moment 1 2 3 4 5 6

Regression, husband
1 Constant −0.006 0.259 0.000 −0.001 0.009 0.001
2 High skilled, husband 0.075 0.041 0.024 0.270 0.216 −0.010
3 10+ GP visits, husband 0.018 0.008 0.001 0.065 0.049 −0.002
4 Expect worse health, husband −0.003 0.001 0.000 −0.008 0.009 0.000
5 Labor income, husband 0.007 0.000 0.000 −0.005 0.000 0.001
6 Has private pension, husband −0.066 0.023 0.019 0.256 0.097 −0.004
7 Has employer provided pension, husband −0.032 0.005 0.004 0.040 0.003 −0.005
8 Birth year (minus 1955), husband −0.036 0.001 0.006 −0.006 0.001 0.004
9 High skilled, wife 0.015 0.001 0.001 −0.004 0.001 0.003
10 10+ GP visits, wife −0.007 0.001 0.000 −0.002 0.001 0.002
11 Expect worse health, wife −0.005 0.005 0.000 0.001 0.004 −0.001
12 Labor income, wife −0.017 0.005 0.001 0.010 0.009 −0.001
13 Has private pension, wife 0.105 0.039 0.048 0.904 1.033 0.014
14 Has employer provided pension, wife 0.009 0.005 0.000 0.022 0.011 −0.001
15 Birth year, wife 0.003 0.003 0.000 0.001 0.000 −0.001
16 Birth year, wife in 1951–1955 −0.003 0.072 0.000 −0.002 0.030 0.002
17 Birth year, wife later than 1955 −0.005 0.130 0.000 −0.001 0.006 0.001

Regression, wife
18 Constant −0.024 0.075 0.002 −0.006 0.005 0.005
19 High skilled, husband 0.025 0.013 0.003 0.002 0.007 −0.000
20 10+ GP visits, husband 0.011 0.005 0.001 −0.002 0.004 0.002
21 Expect worse health, husband −0.005 0.007 0.000 0.000 0.004 −0.000
22 Labor income, husband −0.012 0.007 0.001 0.008 0.015 −0.001
23 Has private pension, husband 0.106 0.044 0.050 0.899 0.733 0.012
24 Has employer provided pension, husband −0.062 0.012 0.017 0.003 0.048 0.009
25 Birth year (minus 1955), husband 0.023 0.090 0.002 0.009 0.032 −0.005
26 High skilled, wife 0.064 0.015 0.018 0.053 0.054 0.003
27 10+ GP visits, wife 0.009 0.001 0.000 0.033 0.010 −0.001
28 Expect worse health, wife 0.057 0.016 0.014 0.276 0.155 0.001
29 Labor income, wife −0.017 0.007 0.001 0.028 0.025 −0.001
30 Has private pension, wife −0.060 0.014 0.016 0.755 0.337 0.003
31 Has employer provided pension, wife 0.009 0.011 0.000 0.034 0.045 −0.001
32 Birth year, wife −0.028 0.062 0.003 0.011 0.009 −0.005
33 Birth year, wife in 1951–1955 −0.013 0.039 0.001 0.003 0.013 −0.002
34 Birth year, wife later than 1955 −0.024 0.021 0.003 −0.003 0.001 0.002

(Continues)
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Moment 1 2 3 4 5 6

Retirement age, husband
35 Share at ages 50–54 0.005 0.000 0.000 0.003 0.000 −0.001
36 Share at age 55 0.030 0.000 0.004 0.036 0.000 −0.009
37 Share at ages 56–59 −0.040 0.081 0.007 0.050 0.042 −0.009
38 Share at age 60 −0.003 0.043 0.000 −0.001 0.005 0.000
39 Share at ages 61–64 0.015 0.000 0.001 0.032 0.000 −0.003
40 Share at age 65 0.005 0.027 0.000 0.002 0.004 −0.000

Retirement age, wife
41 Share at ages 50–54 0.024 0.011 0.002 0.007 0.007 −0.001
42 Share at age 55 0.010 0.067 0.000 0.007 0.019 −0.002
43 Share at ages 56–59 −0.024 0.014 0.003 −0.009 0.007 0.002
44 Share at age 60 −0.001 0.250 0.000 −0.001 0.020 0.000
45 Share at ages 61–64 0.024 0.040 0.003 0.058 0.037 −0.002
46 Share at age 65 0.006 0.082 0.000 0.004 0.018 −0.001

Simultaneous retirement
47 var(eh) −0.008 0.002 0.000 −0.004 0.000 0.001
48 var(ew) −0.005 0.076 0.000 −0.005 0.021 0.001
49 cov(eh, ew) −0.145 0.204 0.092 0.757 0.557 −0.040
50 diff [-2,-1] 0.018 0.035 0.001 0.018 0.037 −0.007
51 diff [1,2] −0.113 0.000 0.056 −0.067 0.000 0.077
52 Joint retirement 0.343 0.684 0.516 8.019 5.541 −0.030

Note. The table reports the sensitivity measures of 𝛾 for the estimated joint retirement planning model.

TABLE 7 (Continued)

value of retirement. Having an employer-provided pension (EPS) especially increases the utility from retirement com-
pared to working for husbands. Perhaps surprisingly, we find that higher earning women value retirement more but this
could proxy for higher wealth, which could lead to a higher propensity to retire. All spousal variables seem to matter less
and are not statistically significant at most common significance levels. Interestingly, we estimate a small positive and
insignificant increase in the expected retirement age of women in response to an increased SPA. This goes in line with
other studies finding a relatively low degree of awareness of the reform (Crawford & Tetlow, 2010).

Figure 2 shows the histogram of planned retirement ages for women and men. We see that the model does a quite good
job fitting the empirical distribution. Likewise, Figure 3 shows the empirical and predicted distribution of retirement
year differences between couples. The predicted distribution matches the empirical one well, although there are small
deviations.

Table 7 shows the proposed sensitivity measures together with the one proposed by Andrews et al. (2017). We only
report the measures for the parameter of interest here: the value of joint leisure, 𝛾 . All reported measures are scaled as
discussed in Section 2. The measure proposed by Andrews et al. (2017) is scaled such that  ( 𝑗,k)

1 = M( 𝑗,k)
1

√
S(k,k).

Clearly, the moments which 𝛾 is most sensitive to are related to simultaneous retirement. In particular, we see from 4
and 5 that leaving out the moment “the share planning to retire the same year” (moment 52) when estimating the model
would increase the asymptotic variance of 𝛾 by a factor of 8. This confirms the intuition that this moment is extremely
informative about the value of joint leisure. The share retiring within 2 years difference also seems important. In particular,
the correlation between the OLS regression residuals are important. This is also intuitive since this moment captures a
combination of correlated shocks and preferences for joint leisure.

5 CONCLUDING REMARKS

Structural econometric models are often estimated by matching moments that depend on the parameters and on the data
in a highly nonlinear way. This can make it difficult to develop intuition for which moments of the data are informative
about which parameter. In this paper, we have proposed a number of very simple sensitivity measures that are meant to
shed light on this.

We have illustrated our measures in two artificial examples. The first is a simple probit model and the second a mixed
proportional hazard model with time-varying covariates. The first illustrates that the proposed measures are reasonable
in a setting where the answer is rather obvious ex ante. The second is chosen because it illustrates how the measures can
be used to gain insights, which are not so obvious.
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We also illustrated the measures in a simple structural econometric model of household retirement planning. This
application is of independent interest because it highlights the importance of modeling wives' and husbands' retirement
decisions jointly.

The econometric model for retirement that we develop can be interpreted as a bivariate ordered-choice model with
simultaneity. Specifically, if the “utility externality” parameter is 0, then the model that we estimate simplifies to a bivariate
ordered probit model. This may make it tractable in other applications.
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