
RESEARCH ARTICLE

Deep reinforcement learning for the control

of microbial co-cultures in bioreactors

Neythen J. TreloarID
1, Alex J. H. FedorecID

1, Brian Ingalls2*, Chris P. BarnesID
1,3*

1 Department of Cell and Developmental Biology, University College London, London, United Kingdom,

2 Department of Applied Mathematics, University of Waterloo, Waterloo, Canada, 3 UCL Genetics Institute,

University College London, London, United Kingdom

* christopher.barnes@ucl.ac.uk (CPB); bingalls@uwaterloo.ca (BI)

Abstract

Multi-species microbial communities are widespread in natural ecosystems. When

employed for biomanufacturing, engineered synthetic communities have shown increased

productivity in comparison with monocultures and allow for the reduction of metabolic load

by compartmentalising bioprocesses between multiple sub-populations. Despite these ben-

efits, co-cultures are rarely used in practice because control over the constituent species of

an assembled community has proven challenging. Here we demonstrate, in silico, the effi-

cacy of an approach from artificial intelligence—reinforcement learning—for the control of

co-cultures within continuous bioreactors. We confirm that feedback via a trained reinforce-

ment learning agent can be used to maintain populations at target levels, and that model-

free performance with bang-bang control can outperform a traditional proportional integral

controller with continuous control, when faced with infrequent sampling. Further, we demon-

strate that a satisfactory control policy can be learned in one twenty-four hour experiment by

running five bioreactors in parallel. Finally, we show that reinforcement learning can directly

optimise the output of a co-culture bioprocess. Overall, reinforcement learning is a promis-

ing technique for the control of microbial communities.

Author summary

In recent years, synthetic biology and industrial bioprocessing have been implementing

increasingly complex systems composed of multiple, interacting microbial strains. This

has many advantages over single culture systems, including enhanced modularization and

the reduction of the metabolic burden imposed on strains. Despite these advantages, the

control of multi-species communities (co-cultures) within bioreactors remains extremely

challenging and this is the key reason why most industrial processing still uses single cul-

tures. In this work, we apply recently developed methods from artificial intelligence,

namely reinforcement learning combined with neural networks, which underlie many of

the most recent successes of deep learning, to the control of multiple interacting species in

a bioreactor. This approach is model-free—the details of the interacting populations do

not need to be known—and is therefore widely applicable. We anticipate that artificial

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007783 April 10, 2020 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Treloar NJ, Fedorec AJH, Ingalls B,

Barnes CP (2020) Deep reinforcement learning for

the control of microbial co-cultures in bioreactors.

PLoS Comput Biol 16(4): e1007783. https://doi.

org/10.1371/journal.pcbi.1007783

Editor: Lingchong You, Duke University, UNITED

STATES

Received: November 22, 2019

Accepted: March 10, 2020

Published: April 10, 2020

Copyright: © 2020 Treloar et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The code and

examples are available in the ROCC package

available on GitHub: https://github.com/ucl-cssb/

ROCC. Data to reproduce the main plots in this

manuscript are available on Zenodo doi:10.5281/

zenodo.3728079. All other relevant data are within

the manuscript and its Supporting Information

files.

Funding: NJT, AJHF, and CPB received funding

from the European Research Council (ERC) under

the European Union’s Horizon 2020 research and

innovation programme (Grant No. 770835). BI was

http://orcid.org/0000-0002-9180-034X
http://orcid.org/0000-0003-0165-1705
http://orcid.org/0000-0002-9459-1395
https://doi.org/10.1371/journal.pcbi.1007783
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007783&domain=pdf&date_stamp=2020-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007783&domain=pdf&date_stamp=2020-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007783&domain=pdf&date_stamp=2020-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007783&domain=pdf&date_stamp=2020-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007783&domain=pdf&date_stamp=2020-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007783&domain=pdf&date_stamp=2020-04-10
https://doi.org/10.1371/journal.pcbi.1007783
https://doi.org/10.1371/journal.pcbi.1007783
http://creativecommons.org/licenses/by/4.0/
https://github.com/ucl-cssb/ROCC
https://github.com/ucl-cssb/ROCC
https://doi.org/10.5281/zenodo.3728079
https://doi.org/10.5281/zenodo.3728079

intelligence has a fundamental role to play in optimizing and controlling processes in syn-

thetic biology.

Introduction

The ability to engineer cells at the genetic level has enabled the research community to make

use of biological organisms for many functions, including the production of biofuels [1–3],

pharmaceuticals [4] and the processing of waste products [5]. Communities consisting of mul-

tiple strains of cells have been shown, in some cases, to be more productive than monocultures

at performing processes such as biofuel production [2, 3, 6] and alleviate the problem of meta-

bolic burden that occurs when a large pathway is built within a single cell [7]. For these reasons

co-cultures should play a significant role in the advancement of bioprocessing. However,

maintaining a co-culture presents its own set of problems. The competitive exclusion principle

states that when multiple populations compete for a single limiting resource, a single popula-

tion with the highest fitness will drive the others to extinction [8]. It has been proven that,

under ideal conditions, at most one population can survive indefinitely in a chemostat where

multiple cell populations are competing for a single substrate [8]. An additional challenge is

that the interactions between different populations of microbes can make long term behaviour

in a co-culture difficult to predict [9]; the higher the number of distinct populations, the

greater the challenge becomes to ensure system stability [10].

Previously, methods of co-culture population control have been engineered into cells genet-

ically, e.g. using predator-prey systems [11] or mutualism [7, 12]. However, processes such as

horizontal gene transfer and mutation make the long term genetic stability of a population

hard to guarantee [9], meaning that genetic control methods can become less effective over

time. Another potential problem is the increased metabolic load imposed on a cell due to the

control genes, which can leave less resources for growth and the production of useful products

[13]. These downsides can be avoided by exerting control over the environment, which is the

dominant approach in industry. Established techniques are Proportional-Integral-Derivative

controllers [14], Model-Predictive-Controllers [15–17] or the development of ad hoc feedback

laws [18–21]. Here we investigate the viability of reinforcement learning as a complement to

these methods.

For our analysis, we use the chemostat model, which provides a standard description of bio-

process conditions. This model is applicable to a wide range of other systems where cell or

microorganism growth is important, including wastewater treatment [22] and the gut micro-

biome [23]. Such systems can be especially difficult to control because they are often equipped

with minimal online sensors [24], limiting the effectiveness of classical control techniques that

are hampered by infrequent or delayed system measurements [20, 25].

Reinforcement learning is a branch of machine learning concerned with optimising an

agent’s behaviour within an environment. The agent learns an optimal behaviour policy by

observing environmental states and selecting from a set of actions that change the environ-

ment’s state (Fig 1A). The agent learns to maximise an external reward that is dependent on

the state of the environment. The training of a reinforcement learning agent is often broken

up into episodes. An episode is defined as a temporal sequence of states, rewards and corre-

sponding actions (generated by the agent interacting with the environment) until a terminal

state is reached. The total reward obtained during an episode is called the return. For this

study, we used a data-efficient variant of reinforcement learning called Neural Fitted Q-learn-

ing [26–28] (see Methods).

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for the control of microbial co-cultures in bioreactors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007783 April 10, 2020 2 / 18

supported by a Discovery Grant from Canada’s

Natural Sciences and Engineering Research

Council (NSERC). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007783

Much reinforcement learning research has been done on video games [29] due to the avail-

ability of plentiful training data. However, it is also seeing application to more practical prob-

lems in the sciences, including the optimisation of chemical reactions [30] and in deriving

optimal treatment stategies for HIV [31] and sepsis [32]. A partially supervised reinforcement

learning algorithm has also been applied to a model of a fed-batch bioreactor containing a

yeast monoculture [33].

Here we develop a control scenario in which the growth of two microbial species in a che-

mostat is regulated through the addition of nutrients C1 and C2 for which each species is inde-

pendently auxotrophic (Fig 1B and 1C). The influx of each nutrient is controlled in a simple,

on-off manner (bang-bang control). At each time point, the agent decides, for each auxotro-

phic nutrient, whether to supply this nutrient to the environment at the fixed inflow rate over

the subsequent inter-sample interval. This constitutes the set of possible actions. A constant

amount of carbon source, C0, is supplied to the co-culture. We define the system state as the

population levels of each population in the chemostat (assumed to be measured using fluores-

cence techniques). The objective is either to maintain specific population levels or to maximize

product output. A corresponding reward is given that depends on the distance of the popula-

tion levels from the target value or as a function of product output. The populations evolve

Fig 1. Reinforcement learning for the control of two auxotrophic species in a chemostat. (A) The basic

reinforcement learning loop; the agent interacts with its environment through actions and observes the state of the

environment along with a reward. The agent acts to maximise the total reward it receives (the return). (B) System of

two auxotrophs dependent on two different nutrients, with competition over a common carbon source. (C) Diagram

of a chemostat. The state observed by the reinforcement learning agent is composed of the populations of two strains

of bacteria; the actions taken by the agent control the concentration of auxotrophic nutrients flowing into the reactor.

(D) Representative system trajectory. The agent’s actions, taken at discrete time-points (circles), influence the state

dynamics (black arrows), with the aim of fulfilling the reward condition (moving to the centre of the green circle). The

state is comprised of the (continuously-defined) abundance of two microbial populations, N1 and N2. The agent’s

actions dictate the rate at which auxotrophic nutrients flow into the reactor. At each time-step, the agent’s reward is

dependent on the distance between the current state from the target state.

https://doi.org/10.1371/journal.pcbi.1007783.g001

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for the control of microbial co-cultures in bioreactors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007783 April 10, 2020 3 / 18

https://doi.org/10.1371/journal.pcbi.1007783.g001
https://doi.org/10.1371/journal.pcbi.1007783

continuously, and the reward is likewise a continuous function of the state. In contrast, the

agent’s actions are discrete (bang-bang), and are implemented in a sample-and-hold strategy

over a set of discrete sampling times. A visual representation of a two-population case is

shown in Fig 1D.

Below, we illustrate that an agent can successfully learn to control the bioreactor system in

the customary episodic manner and is robust to differing initial conditions and target set-

points. Secondly, we compare our reinforcement learning approach to proportional integral

control, both working in a model free way on simulated data, and show that the learning

approach performs better in situations where sampling is infrequent. We then show that the

agent can learn a good policy in a feasible twenty four hour experiment. Finally, we demon-

strate that reinforcement learning can be used to optimise productivity from direct observa-

tions of the microbial community. Traditional proportional integral control could only be

applied to such a case via a model of the system, or with additional measurement data from

further online sensors.

Results

Reinforcement learning can be used to control the bioreactor system

We developed a parameterised model to simulate the growth of two distinct E. coli strains in a

continuous bioreactor, with glucose as the shared carbon source, C0, and arginine and trypto-

phan as the auxotrophic nutrients C1 and C2 (Fig 1B and 1C, Methods, Table 1). Episodic Fit-

ted Q-learning (Algorithm 2, Methods) was then applied to the model of the system. The

reward was selected to penalize deviation from target populations of [N1, N2] = [20, 30] × 109

cells L−1. Specifically, the reward function was: r ¼ 1

10
1 � 1

2

jN1 � Ntarget
1

j

20�109 þ
jN2 � Ntarget

2
j

30�109

� ��
. The scaling

of 1

10
was selected to ensure a maximum possible reward of 0.1, which helped prevent network

instability. (Negative rewards below -0.1 are possible; however due to the system dynamics

they rarely occurred and did not effect training performance). The contribution of each popu-

lation was scaled according to its target value so that each contributed proportionally to the

reward. This prevented the contribution to the reward function from one strain becoming

insignificant if its target value was considerably smaller than the other. The absolute error was

chosen because it is continuous and differentiable (except when populations are at the target

value) and has a unique minimum, all properties that are favourable for reinforcement learn-

ing in continuous state spaces. Absolute error was chosen over the squared error so that the

Table 1. Double auxotroph system. Parameter values used for simulations of a system consisting of two auxotrophic populations of bacteria with competition for nutri-

ents. μmax values were chosen using values from the literature [60] as a guide.

Parameter Description Value Unit Source

C0,in Reservoir concentration of carbon source 1 g L−1 Experimentally controllable

q Flow rate 0.5 h−1 Experimentally controllable

γ0 Yield coefficient for common substrate 4.8 × 1011 cells g−1 [58]

γ1 Yield coefficient for arginine 5.2 × 1011 cells g−1 [59]

γ2 Yield coefficient for tryptophan 4.4 × 1011 cells g−1 [59]

μmax,1 Maximum growth rate 1 h−1 [60]

μmax,2 Maximum growth rate 1.1 h−1 [60]

Ks,0 Saturation constant for the carbon source 6.845928 × 10−5 g L−1 [59]

Ks,1 Saturation constant for arginine 4.9 × 10−4 g L−1 [59]

Ks,2 Saturation constant for tryptophan 1.02 × 10−7 g L−1 [59]

https://doi.org/10.1371/journal.pcbi.1007783.t001

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for the control of microbial co-cultures in bioreactors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007783 April 10, 2020 4 / 18

https://doi.org/10.1371/journal.pcbi.1007783.t001
https://doi.org/10.1371/journal.pcbi.1007783

reward gradient didn’t diminish in the region near the target. The reward function is based on

target population levels because we have already assumed that these are measurable through,

for example, fluorescence measurement. Selection of a target set-point in state space is also an

approach widely used with more traditional control techniques and so allows for direct com-

parison to these.

The agent was trained on thirty sequential episodes, this provided enough data for the

agent to learn while not being prohibitive in terms of computational time. Each episode was

twenty four hours long with sampling and subsequent action choice every five minutes. The

initial system variables of the chemostat for each episode were [N1, N2] = [20, 30] × 109 cells

L−1 and [C0, C1, C2] = [1, 0, 0] g L−1. The explore rate was initially set to � = 1 and decayed as �

= 1 − log10(aE) where E is the episode number, starting at 0, and a = 0.3 is a constant that dic-

tates the rate of decay. A minimum explore rate of � = 0 was set and was reached by the end of

training. Fig 2A shows the training performance of twenty replicate agents, each trained over

thirty episodes. The twenty agents converged to a mean final return of 27.4 with a standard

Fig 2. Reinforcement learning applied to the bioreactor system. (A) Performance of the agent improves and the explore rate decreases

during training. The average of the return over twenty training replicates is plotted; error bars represent one standard deviation. (B) System

behaviour under control of a trained agent for a twenty four hour period. Populations are maintained near target values (green lines). (C)

Heatmap of the learned state value function; values are maximal at the target. (D) A learned state action plot, showing the agent’s learned

action (coloured regions) over the state space.

https://doi.org/10.1371/journal.pcbi.1007783.g002

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for the control of microbial co-cultures in bioreactors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007783 April 10, 2020 5 / 18

https://doi.org/10.1371/journal.pcbi.1007783.g002
https://doi.org/10.1371/journal.pcbi.1007783

deviation of 0.33. The theoretical maximum return is 28.8; all twenty agents were thus able to

learn near optimal policies despite being restricted to bang-bang control. The population

curve in Fig 2B shows the system behaviour when under control of a representative agent

trained in one of the replicates (for all twenty replicates see S1 Fig). The population levels track

the targets, with some jitter as expected with a bang-bang controller. Fig 2C shows the value

function learned by this representative agent at the end of training, indicating its assessment of

the total return from each point in state space. As expected, the value peaks at the target point.

The corresponding state-action plot, Fig 2D, shows that the agent has adopted a simple, intui-

tive feedback law: add the specific nutrient needed by a strain when its population level is

below the target and refrain from adding the nutrient if it is above the target. From these

results, we conclude that reinforcement learning can be successfully applied to the chemostat

system with a practical inter-sampling period of five minutes, as predicted (see Methods).

Reinforcement learning is robust to different initial conditions and targets

To verify that our algorithm is robust to different initial conditions and different target popula-

tions we began by choosing a range of initial population values: [5, 10, 40, 50] × 109 cells L−1

and two different targets: [20, 30] × 109 cells L−1 and [30, 20] × 109 cells L−1. For every combi-

nation of initial populations and target, a Fitted Q-agent was trained in the same manner as in

the previous section. This was repeated three times. One of the three population curves from

each experiment is shown in S2 Fig, the corresponding actions for the first 600 minutes of the

simulation are shown in S3 Fig and the average return across each of the three repeats is

shown in S4 Fig. On 2 of the 96 total replicate runs the agent failed to maintain the populations

at the target levels. This happened with the target: [30, 20] × 109 cells L−1 with initial conditions

[N1, N2] = [5, 5] × 109 cells L−1 and [N1, N2] = [5, 10] × 109 cells L−1. Intuitively these represent

two of the most challenging combinations, where the target has the slower growing strain (N1)

above the faster growing strain (N2) and in which both populations are at low initial values.

Reinforcement learning outperforms proportional integral control for long

sampling periods

As a comparison to a standard control approach, the reinforcement learning controller was

compared to a traditional proportional integral controller. The controllers differ in that the

proportional integral controller implements feedback over a continuous action space, whereas

the reinforcement learning controller uses bang-bang control. For both controllers thirty epi-

sodes of data were generated, each twenty-four hours long, for a range of sampling-and-hold

intervals: ts = [5, 10, 20, 30, 40, 50, 60] mins by starting with initial system variables [N1, N2] =

[20, 30] × 109 cells L−1 and [C0, C1, C2] = [1, 0, 0] g L−1 and sampling random input concentra-

tions C1, C2 from [0, 0.1]g L−1. For each choice of sampling frequency, the reinforcement

learning agent was trained using Fitted Q-iteration (Algorithm 1, Methods) on the dataset of

thirty randomly generated episodes, while the proportional integral controller was tuned on

an input-output model of the system derived from the same dataset (see Methods). The perfor-

mance of the two controllers is illustrated in Fig 3, which shows how the performance depends

on the choice of sampling frequency. For inter-sampling intervals longer than five minutes,

the reinforcement learning controller outperforms the proportional integral controller. We

conclude that reinforcement learning can produce comparable and even better performance,

with the potential added advantage of a simpler implementation (the proportional integral

controller employs continuous actions, whereas the reinforcement learning controller uses

only bang-bang control). Moreover, for microbial chemostat systems that are difficult or

expensive to sample at high frequency, reinforcement learning could be the preferred option.

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for the control of microbial co-cultures in bioreactors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007783 April 10, 2020 6 / 18

https://doi.org/10.1371/journal.pcbi.1007783

A good policy can be learned online using parallel bioreactors

A barrier to the use of reinforcement learning in real world applications is the amount of data

required. Experimental systems do exist that would allow one to gather the necessary data to

train an agent in the manner demonstrated above [41]. However, we aim to lower the barrier

of entry so that our method can be implemented in low cost bioreactors. For example, the

development of a low cost turbidostat capable of running eight cell culture experiments in

parallel, demonstrated on time periods up to 40 hours [42] presents a realistic scenario for a

cell biology lab. We next show that Online Fitted Q-learning, a variant of Fitted Q-learning

adapted to run in an online manner (Algorithm 3, Methods), can learn to control the chemo-

stat system using an amount of data realistically obtainable in a single experiment. We trained

an agent online on five chemostat models running in parallel. Each modelled the system

described in Fig 1B and 1C and was run for the equivalent of twenty-four hours of real time.

The agent took an action every five minutes, making an independent decision for each of the

five chemostats from a single policy learned from experience gathered from all models. The

reward was observed and the value function updated by the agent every ten time steps, using

all experience gathered up to that time (Fig 4A). As in the previous sections, the initial micro-

bial populations were set to the target value of [N1, N2] = [20, 30] × 109 cells L−1 and the initial

concentrations of the nutrients were [C0, C1, C2] = [1, 0, 0] g L−1. Fig 4B shows the online

reward the agent received from the five chemostats. The initial reward was high, due to the ini-

tial populations being set to the target values. As the agent explored, the reward decreased and

the standard deviation between the parallel chemostats increased because the agent took inde-

pendent exploratory actions in each chemostat and drove them into different regions of state

space. As time progressed, the reward from all five chemostats increased and the standard

deviation decreased because the agent learned and moved all populations closer to the target.

A pair of representative population time-courses is shown in Fig 4C (all five are shown in S5

Fig). From these results, we conclude that Online Fitted Q-learning can be used to learn a pol-

icy in a data-efficient, online manner.

Fig 3. Comparison of reinforcement learning and proportional integral controllers. (A) The scaled average sum square error between

the system state and the target. For long inter-sample periods, the reinforcement learning controller outperforms the proportional integral

controller. The sum square error was calculated from population values that were scaled by a factor of 10−9. (B-C) Population time-courses

under the reinforcement learning and proportional integral controllers respectively, with a five minute inter-sampling time. (D-E)

Population time-courses under the reinforcement learning and proportional integral controllers respectively, with a sixty minute inter-

sampling time. Here the proportional integral controller allows the populations to stray further from their target values.

https://doi.org/10.1371/journal.pcbi.1007783.g003

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for the control of microbial co-cultures in bioreactors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007783 April 10, 2020 7 / 18

https://doi.org/10.1371/journal.pcbi.1007783.g003
https://doi.org/10.1371/journal.pcbi.1007783

The yield of a community-based product can be directly optimised

To demonstrate the ability of reinforcement learning to directly optimise the output of a com-

munity-based bioprocess, the system in Fig 5A was modelled. Here, each microbial strain pro-

duces an intermediate product; N1 produces A and N2 produces B, each at a rate of 1 molecule

per cell per hour. Factors A and B react to a product P, via the reaction 2A + B! P, which is

presumed rapid. Consequently, the optimal state of the system has population ratio N1: N2 = 2:

1, with the populations at the maximum levels that the chemostat can support, which in our

model means that all the carbon source, C0, is being consumed. In this case, we set the agent’s

reward to be proportional to the instantaneous production rate of the bioreactor. We again

take the observed state and the available actions to be the population levels and the bang-bang

auxotrophic nutrient inflow rates, respectively. We set the initial populations to [N1, N2] = [20,

30] × 109 cells L−1 and initial nutrient concentrations to [C0, C1, C2] = [1, 0, 0] g L−1 as before.

The initial levels of A, B and P were all 0. Ten replicate agents were trained using Episodic Fit-

ted Q-learning (Algorithm 2, Methods). The sample-and-hold interval was increased to ten

minutes, which improved learning performance by giving sufficient time for the agent’s

actions to affect production rate. Performance in terms of the return is shown in Fig 5B. The

average ratio of the population levels in steady state (the last 440 minutes of the simulation),

over all agents, was 1.99 (with s.d. 0.08), showing convergence to near optimal populations in

all replicates. A representative population time-course is shown in Fig 5C (for all time-courses

see S6 Fig). Likewise, the average final concentration of the carbon source was 0.11% (s.d.

0.015%) of the source concentration, showing that in all cases the total population was close to

Fig 4. Learning a policy in twenty four hours. (A) A reinforcement learning agent was trained online on a model of five parallel

chemostats for twenty four hours. (B) The average reward received from the environments. By the end of the simulation all five

chemostats were moved to the target population levels with very litte standard deviation in reward. (C) The population curve from

one of the chemostats. During the exploration phase the population levels vary and random actions are taken, as the explore rate

decreases they move to the target values.

https://doi.org/10.1371/journal.pcbi.1007783.g004

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for the control of microbial co-cultures in bioreactors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007783 April 10, 2020 8 / 18

https://doi.org/10.1371/journal.pcbi.1007783.g004
https://doi.org/10.1371/journal.pcbi.1007783

the carrying capacity of the chemostat. As shown in Fig 5D, the replicates showed very little

deviation in the final product output rate. However, in the initial phase of moving and stabilis-

ing the populations to the optimal levels, there is significant deviation. This suggests that most

of the deviation in return shown in Fig 5B is due to this initial stabilising phase and not to the

final phase the agents reached. From this analysis, we conclude that the reinforcement learning

agent can learn to move the system to,—and keep it at—the near optimal state for product for-

mation in a model free way.

Discussion

We have applied deep reinforcement learning, specifically Neural Fitted Q-learning, to the

control of a model of a microbial co-culture, thus demonstrating its efficacy as a model-free

control method that has the potential to complement existing techniques. We have shown that

reinforcement learning can perform better than the industry standard, PI control, when faced

with long sample-and-hold intervals. In addition, we showed that the data efficiency of Neural

Fitted Q-learning can be used to learn a control policy in a practically feasible, twenty-four

hour experiment. Reinforcement learning is most often used in environments where data is

Fig 5. Using reinforcement learning to optimise product output. (A) Each microbial population produces an intermediate; these

react to produce the desired product. (B) Training performance of ten reinforcement learning agents trained to optimise product

output. (C) The resulting population curves of the system under control of a representative agent. The populations reach and then

are maintained at the optimal level for product production. (D) The levels of carbon and product inside the chemostat. After the

initial phase all carbon is being consumed. The levels of product peak as all initial carbon is used, then reach a level supported by the

carbon supply to the reactor.

https://doi.org/10.1371/journal.pcbi.1007783.g005

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for the control of microbial co-cultures in bioreactors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007783 April 10, 2020 9 / 18

https://doi.org/10.1371/journal.pcbi.1007783.g005
https://doi.org/10.1371/journal.pcbi.1007783

cheap and effectively infinitely available. Importantly, our results shows that reinforcement

learning can also be realistically used to control microbial co-cultures in low cost bioreactors.

Finally it is shown that the output of a bacterial community can be optimised in a model free

way using only knowledge of microbial population levels and the rate of product output, show-

ing that industrial bioprocess optimisation is a natural application of this technique.

In this work we have developed the approach based upon a chemostat model of a bioreac-

tor. The same approach could be applied in a range of other culture environments. Over the

past several years, a number of low-cost bioreactors have been developed that can operate as

both turbidostats or as chemostats [41–44]. One such system has 78 chambers running in par-

allel; easily producing the high volume of data required to train our agent [41]. Another system

incorporates online measurement of multiple fluorescence channels, facilitating state measure-

ments at faster intervals than human sampling would allow [44]. Similar devices have been

made at a smaller scale, using microfluidics capable of running batch, chemostat and turbido-

stat cell cultures [45, 46]. These have been applied to high-throughput gene analysis [45, 46],

elucidating the relationship between population density and antibiotic effectiveness [47]. The

development of a morbidostat facilitated the investigation into the evolution of resistance to

antibiotics [48]. As these devices become more widely available, intelligent control methods

could be used to explore these important topics while enabling additional layers of complexity,

such as multiple competing species or environmental variation.

Here we adopted auxotrophy as our mechanism for control. The utility of this approach has

been highlighted by previous studies of microbial communities [49–52]. Other methods of

controlling strain growth or competitiveness could also be used as long as they can be exter-

nally controlled by the agent e.g. independent carbon sources [53], induced lysis [54] or

growth arrest [55].

It should be noted that any attempt to control microbial populations may give rise to muta-

tions. Because reinforcement learning approaches involve continual updates of the agent’s pol-

icy, our method has the capacity to adapt to evolutionary changes in the growth dynamics.

Understanding how to control populations of evolving species is crucial for preventing the

development of antibiotic resistance [56] and the design of chemotherapy regimens [57].

Dynamic programming, the model-based analogue of reinforcement learning, has been used

to solve the optimal control problem in both of these scenarios.

Overall, we have demonstrated the potential for control of multi-species communities

using deep reinforcement learning. As synthetic biology and industrial biotechnology continue

to adopt more complex processes for the generation of products from fine chemicals to biofu-

els, engineering of communities will become increasingly important. This work suggests that

leveraging new developments in artificial intelligence may be highly suited to the control of

these valuable and complex systems.

Methods

A mathematical model of interacting bacterial populations in a chemostat

We develop a general model of m auxotrophs growing and competing in a chemostat. The

model captures the dynamics of the abundance of each species (m-vector N), the concentration

of each auxotrophic nutrient (m-vector C), and the concentration of the shared carbon source

(scalar C0). A sketch of the two-species case is shown in Fig 1B and 1C.

The rate of change of the concentration of the shared carbon source is given by:

d
dt

C0ðtÞ ¼ qðC0;in � C0ðtÞÞ �
Xm

i¼1

1

g0;i
μiðtÞNiðtÞ ð1Þ

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for the control of microbial co-cultures in bioreactors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007783 April 10, 2020 10 / 18

https://doi.org/10.1371/journal.pcbi.1007783

where γ0 is a vector of the bacterial yield coefficients for each species, C0,in is the concentration

of the carbon source flowing into the bioreactor, μ is the vector of the growth rates for each

species, and q is the flow rate. The parameters are found in Table 1.

The concentration of each auxotrophic nutrient Ci is given by:

d
dt

CiðtÞ ¼ qðCi;inðtÞ � CiðtÞÞ �
1

gi
μiðtÞNiðtÞ ð2Þ

where γ is a vector of bacterial yield for each auxotrophic species with respect to their nutrient

and Cin is a vector of the concentration of each nutrient flowing into the reactor (which is the

quantity controlled by the reinforcement learning agent). Note that we assume all the auxo-

trophs are independent, i.e. each auxotrophic nutrient is only used by one population.

The growth rate of each population is modelled using the Monod equation:

μi ¼ μmax;i
Ci

Ks;i þ Ci

C0

Ks0;i þ C0

ð3Þ

where μmax is a vector of the maximum growth rate for each species, Ks is a vector of half-max-

imal auxotrophic nutrient concentrations and Ks0 is a vector of half-maximal concentrations

C0 for the shared carbon source. Finally, the growth rate for each population is determined as:

d
dt

NiðtÞ ¼ ðμiðtÞ � qÞNiðtÞ: ð4Þ

Neural Fitted Q-learning algorithm

A value function is learned which maps state action pairs to values. Here a state transition is

defined as the tuple (st, at, rt, st+1) specifying, respectively, the system state, action taken,

reward received at time t, and the state of the system at time t + 1. From a sequence of these

state transitions a sequence of Q-learning targets is created according to:

Qðst; atÞtarget ¼ rt þ g maxa Qðstþ1; aÞ ð5Þ

Here, the term maxa Q(st+1, a), where a is an action that can be taken by the agent, gives an

estimate of the total future reward obtained by entering state st+1. This is weighted by γ, the dis-

count factor, which dictates how heavily the possible future rewards weigh in on decisions. In

this work, the discount factor was set to 0.9, which is a common first choice in reinforcement

learning applications. A neural network is trained on the set of inputs {(st, at)8t} and targets {Q
(st, at)target8t} generated from all training data seen so far (Algorithm 1). In Episodic Fitted Q-

learning this was done after each episode (Algorithm 2) while in Online Fitted Q-learning this

was done after each update interval (Algorithm 3).

Algorithm 1 Fitted Q-iteration
1: input: {(st, at, rt, st+1) 8t}
2: iter = 0
3: N = 10 ⊳ number of Fitted Q-iterations
4: while iter < N do
5: reinitialise Q network
6: inputs = {st 8t}
7: targets = {rt + γ maxa Qiter(st+1) 8t}
8: train Q network on (inputs, targets)!Qiter+1
9: iter = iter + 1
10: end while
11: return QN

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for the control of microbial co-cultures in bioreactors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007783 April 10, 2020 11 / 18

https://doi.org/10.1371/journal.pcbi.1007783

Algorithm 2 Episodic Fitted Q-learning
1: iter = 0
2: N = 30 ⊳ number of episodes
3: tmax = 288 ⊳ number of timesteps in each episode
4: while iter < N do
5: for i in 1 to tmax do
6: a = π(st,env, QN) ⊳ get action based on current policy
7: (st, at, rt, st+1) = env.step(a) ⊳ interact with env and observe

transition
8: M M + (st, at, rt, st+1) ⊳ add transition to memory
9: end for
10: QN = Fitted_Q_iteration(M) ⊳ update agent’s policy
11: end while
12: return QN

Algorithm 3 Online Fitted Q-learning
input: envs ⊳ set of environments to learn from

2: N = 288 ⊳ 24hrs of 5min time steps
update_frequency = 10 ⊳ update the policy every 10 time steps

4: iter = 0
while iter < N do

6: for each env do
a = π(st,env, QN) ⊳ get action based on current policy

8: (st, at, rt, st+1) = env.step(a) ⊳ interact with env and observe
transition

M M + (st, at, rt, st+1) ⊳ add transition to memory
10: end for

if iter%update_frequency = 0 then
12: QN = Fitted_Q_iteration(M) ⊳ update agent’s policy

end if
14: iter = iter + 1
end while

16: return QN
We use an �-greedy policy in which a random action is chosen with probability � and the

action a = maxa Q(st, a) is chosen with probability 1 − �. The explore rate � was set to decay

exponentially as training progressed. �-greedy is a widely used policy that has been proven

effective [29, 34] and is easy to implement.

The state variables considered by the algorithm were the continuous populations of each

species of microbe. The agent acted as a bang-bang controller with respect to each input

nutrient, giving 2n possible actions, where n is the number of nutrients. (In this work,

n = 2).

The neural network that was used to estimate the value function consisted of two hidden

layers of 20 nodes, following the approach in previous work [27]. Each node in the hidden

layers used the ReLU activation function. The input layer had n nodes, one for each micro-

bial strain; the linear output layer had 2n nodes, one for each available action. We used the

Adam optimiser [35], because of its ability to dynamically adapt the learning rate, which is

favourable when implementing reinforcement learning with a neural network [36]. The

populations levels were scaled by a factor of 10−5 before being entered into the neural net-

work; this generated values between 0 and 1 (with units 106 cells L−1) and prevented network

instability.

Python version 3.6.7 was used for all reinforcement learning code, available at http://www.

python.org. The odeint function of SciPy (version 1.3.1) [37] was used to numerically solve all

differential equations. The neural network was implemented in Google’s TensorFlow (version

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for the control of microbial co-cultures in bioreactors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007783 April 10, 2020 12 / 18

http://www.python.org
http://www.python.org
https://doi.org/10.1371/journal.pcbi.1007783

1.13.1) [38]. Numpy (version 1.16.14) was used throughout [39]. The code and examples are

available on GitHub: https://github.com/ucl-cssb/ROCC.

Reinforcement learning parameter tuning

We carried out preliminary investigations to calibrate parameters for the reinforcement learn-

ing controller, as follows.

Minimum inter-sampling period. The theoretical convergence guarantees of reinforce-

ment learning assume that it is applied to a Markov decision process [61]. The two-strain che-

mostat system we use here has five state variables: two auxotrophic nutrient concentrations,

the concentration of carbon source and the two microbial population levels. Only the popula-

tion levels are known to the agent, meaning the system is only partially observed and is hence

not a Markov decision process. There are methods to extend reinforcement learning to par-

tially observed Markov decision processes, including incorporating time series information

using a recurrent network [34], keeping track of approximate belief states of the hidden vari-

ables [62] or using Monte-Carlo methods [63]. To assess whether these computationally

expensive methods would be required, we determined the minimum sample-and-hold interval

that allowed the agent to accurately predict the reward resulting from a chosen action. (Intui-

tively, this can be thought of as the minimum sample-and-hold interval in which an action has

time to have an effect on the observed states (the population levels).) To determine this mini-

mum interval length, we first generated system trajectories of (st, at, rt) resulting from random

actions. The agent was trained on these sequences to predict the reward rt from the state action

pairs (st, at). We repeated this process one hundred times for each of the following sampling

times: [1, 2, 3, 4, 5, 10] minutes. The results, shown in S7A Fig, indicate that at time steps

lower than four minutes the agents are unable to accurately predict the reward received from

the state and action, meaning reinforcement learning cannot be effective. However at four

minutes and above the reward prediction is accurate. We concluded that by using intervals of

four minutes or longer, the sophisticated non-Markovian methods mentioned above would

not be required for this application. S7B Fig shows the reward prediction for both one- and

five-minute time steps, showing that the agent performs well for five minutes intervals and

poorly for one minute intervals.

Number of Fitted Q-iterations to avoid over fitting. To determine how many Fitted Q-

iterations to implement, we generated sequences of (st, at, rt) of varying lengths by interacting

with the chemostat system using randomly chosen actions. Fitted Q-agents were trained to

predict the instantaneous reward rt (by setting γ = 0) from the state-action pair (st, at). This

was done with the rationale that the ability to correctly predict the instantaneous reward from

a state-action pair is a requirement for the ability to predict the value from a state-action pair.

We determined the training and testing error for each Fitted Q-iteration, with a maximum of

40 iterations. S8 Fig shows the results of repeating this process 100 times for each sequence

length. The data reveal clear overfitting for the datasets shorter than 200 time steps long and a

reduction in testing error as the sequence length increases (i.e. with more training data). For

each sequence length, the training process with 4 fitted Q iterations gave the smallest testing

error (except for 100 training timesteps, where 5 iterations performed marginally better). With

a training set of 200 time steps, no significant overfitting occurred.

Number of Fitted Q-iterations for value convergence. Another consideration is how

many Fitted Q-iterations are required for the values to converge via bootstrapping. For this

analysis, we generated 100 sequences of (st, at, rt), each one thousand time steps long, in the

same manner as the previous section. For each sequence, the actual values were calculated and

Fitted Q-iteration was used to obtain predicted values. After each Fitted Q-iteration, the error

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for the control of microbial co-cultures in bioreactors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007783 April 10, 2020 13 / 18

https://github.com/ucl-cssb/ROCC
https://doi.org/10.1371/journal.pcbi.1007783

between the predicted and actual values was recorded. As shown in S9 Fig, the values converge

after about ten iterations. Using this and the information from the previous section, the num-

ber of Fitted Q-iterations was chosen depending on the length of the agent’s memory to both

prevent overfitting and to allow convergence via bootstrapping. For all episodic Q-Learning

the number of Fitted Q-iterations was set to 10 as the agent’s memory always contains at least

one episode of 288 transitions. For online Q-Learning the number of Fitted Q-iterations was

set to 4 if there were less than 100 transitions in the agent’s memory, 5 if there were 100-199

transitions and 10 if there were 200 or more transitions.

Proportional integral controller tuning

For the comparison between reinforcement learning and PI control, we tested a range of sam-

ple-and-hold intervals ([5, 10, 20, 30, 40, 50, 60] mins). For each choice of sampling interval, we

generated thirty, twenty-four hour long episodes, each starting with initial system variables [N1,

N2] = [20, 30] × 109 cells L−1 and [C0, C1, C2] = [1, 0, 0] g L−1 and selecting actions randomly

from [0, 0.1] g L−1. These thirty episodes were used as training data for the Fitted Q-agent. From

each dataset, an input-output model was constructed using the plant identification function in

the PID tuner app of MATLAB’s Simulink toolbox, which allows the identification of an input-

output model for any input-output dataset. Here, the randomly chosen actions were used as

input and the resulting populations (scaled by a factor of 10−10) were taken as output. The model

was a state space model, of order chosen by the system identification app to best fit the data. The

Akaike’s Final Prediction Error (FPE) of the model fits was of the order 10−2 for the 5 min sam-

ple-and-hold intervals, rising to a maximum of almost 1 for 60 min intervals (see supplementary

file S1 Data for full results). An independent input-output model was derived for each microbial

population. These were used to tune two independent PI controllers, one controlling each popu-

lation. We used independent controllers because the PI tuner app is only compatible with single

input, single output systems. We considered a range of tuning objectives to assess the merits of

tuning to minimise settling time, rise time or overshoot percentage. We found that minimising

rise time led to high overshoot errors, while minimising overshoot percentage also led to high

errors because the controller would be slow to reach the target. Tuning the controller to mini-

mise settling time worked best for all cases tested and can be seen as a compromise between

speed of response and robustness. Hence, for all results presented, the PI controllers were tuned

to minimise settling time. All results for the PID tuning, including the gains, FPE, settling times,

rise times and overshoot percentages can be found in the supplementary file S1 Data. The Simu-

link diagram of the system is shown in S10 Fig.

Supporting information

S1 Fig. Episodic Fitted Q-iteration repeats. Population curves of twenty trained agents con-

trolling the chemostat system.

(PDF)

S2 Fig. Population curves for different initial conditions and targets. Populations of one of

the three replicates for each of the different initial conditions and targets.

(PDF)

S3 Fig. Actions for different initial conditions and targets. The actions taken by the agent

for the first 600 minutes of one of the three replicates for each of the different initial conditions

and targets. The top graph of each panel shows the agent’s actions with respect to the addition

of the nutrient that N1 is dependent on, the bottom graph shows the same for N2.

(PDF)

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for the control of microbial co-cultures in bioreactors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007783 April 10, 2020 14 / 18

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007783.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007783.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007783.s003
https://doi.org/10.1371/journal.pcbi.1007783

S4 Fig. Average returns for different initial conditions and targets. Average returns of the

three replicates for each of the different initial conditions and targets. Error bars represent one

standard deviation.

(PDF)

S5 Fig. All population curves from online Fitted Q-iteration running in parallel. Popula-

tions curves of five chemostats running in parallel while under online control of a single agent.

Here the agent is trained for 1440 minutes (twenty-four hours) and then allowed to control the

system for a further 310 minutes to show that the target system behaviour is maintained.

(PDF)

S6 Fig. Optimising product output repeats. Population curves of ten trained agents control-

ling the chemostat system with the goal of optimising product output.

(PDF)

S7 Fig. Identifying the minimum timestep above which the chemostat system behaves

effectively as a Markov decision process. (A) The error in reward prediction is negligible for

time steps above four minutes. Error bars represent one standard deviation. (B) The predicted

vs actual reward for one minute and five minute timesteps. Markov decision-based learning is

not possible for the short one-minute intervals, but performs well for five-minute intervals.

(PDF)

S8 Fig. Overfitting of Fitted Q-iteration for different dataset sizes. The training (blue) and

testing (orange) accuracy of a Fitted Q-agent to predict rewards from states and actions was

tested after every Fitted Q-iteration. Overfitting is seen for number of transitions less than 200.

Error bars represent one standard deviation.

(PDF)

S9 Fig. Convergence of Fitted Q-iteration. The scaled error between actual and predicted val-

ues as Fitted Q-iterations are completed.

(PDF)

S10 Fig. Simulink diagram. The Simulink diagram of the system and PI controllers. (A,B) the

setpoints or target population levels, from which the error is calculated (C,D) and used by the

PI controllers (E,F) to adjust nutrient levels. The system of ODEs (G) is solved by a continuous

time integrator (H).

(PDF)

S1 Data. Proportional integral controller data. The performance data resulting from three

repeated tunings of a PI controller for all selected sample-and-hold intervals.

(XLSX)

Acknowledgments

The authors wish to thank Prof. Guy-Bart Stan for helpful discussions on reinforcement learn-

ing algorithms.

Author Contributions

Conceptualization: Neythen J. Treloar, Alex J. H. Fedorec, Brian Ingalls, Chris P. Barnes.

Investigation: Neythen J. Treloar, Alex J. H. Fedorec.

Supervision: Brian Ingalls, Chris P. Barnes.

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for the control of microbial co-cultures in bioreactors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007783 April 10, 2020 15 / 18

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007783.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007783.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007783.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007783.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007783.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007783.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007783.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007783.s011
https://doi.org/10.1371/journal.pcbi.1007783

Writing – original draft: Neythen J. Treloar, Alex J. H. Fedorec, Brian Ingalls, Chris P.

Barnes.

Writing – review & editing: Neythen J. Treloar, Alex J. H. Fedorec, Brian Ingalls, Chris P.

Barnes.

References
1. Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, et al. How biotech can transform bio-

fuels. Nat Biotechnol. 2008; 26(2):169. https://doi.org/10.1038/nbt0208-169 PMID: 18259168

2. Shin HD, McClendon S, Vo T, Chen RR. Escherichia coli binary culture engineered for direct fermenta-

tion of hemicellulose to a biofuel. Appl Environ Microbiol. 2010; 76(24):8150–8159. https://doi.org/10.

1128/AEM.00908-10 PMID: 20935118

3. Goyal G, Tsai SL, Madan B, DaSilva NA, Chen W. Simultaneous cell growth and ethanol production

from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell

Fact. 2011; 10(1):89. https://doi.org/10.1186/1475-2859-10-89 PMID: 22044771

4. Paddon CJ, Keasling JD. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharma-

ceutical development. Nat Rev Microbiol. 2014; 12(5):355. https://doi.org/10.1038/nrmicro3240 PMID:

24686413

5. Fujita M, Ike M, Hashimoto S. Feasibility of wastewater treatment using genetically engineered microor-

ganisms. Water Research. 1991; 25(8):979–984.

6. Eiteman MA, Lee SA, Altman E. A co-fermentation strategy to consume sugar mixtures effectively. J

Biol Eng. 2008; 2(1):3. https://doi.org/10.1186/1754-1611-2-3 PMID: 18304345

7. Zhou K, Qiao K, Edgar S, Stephanopoulos G. Distributing a metabolic pathway among a microbial con-

sortium enhances production of natural products. Nat Biotechnol. 2015; 33(4):377. https://doi.org/10.

1038/nbt.3095 PMID: 25558867

8. Butler G, Wolkowicz G. A mathematical model of the chemostat with a general class of functions

describing nutrient uptake. SIAM J Appl Math. 1985; 45(1):138–151.

9. Brenner K, You L, Arnold FH. Engineering microbial consortia: a new frontier in synthetic biology.

Trends Biotechnol. 2008; 26(9):483–489. https://doi.org/10.1016/j.tibtech.2008.05.004 PMID:

18675483

10. Zeidan AA, Rådström P, van Niel EW. Stable coexistence of two Caldicellulosiruptor species in a de

novo constructed hydrogen-producing co-culture. Microb Cell Fact. 2010; 9(1):102. https://doi.org/10.

1186/1475-2859-9-102 PMID: 21192828

11. Balagaddé FK, Song H, Ozaki J, Collins CH, Barnet M, Arnold FH, et al. A synthetic Escherichia coli

predator–prey ecosystem. Mol Syst Biol. 2008; 4(1):187. https://doi.org/10.1038/msb.2008.24 PMID:

18414488

12. Shou W, Ram S, Vilar JM. Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci.

2007; 104(6):1877–1882. https://doi.org/10.1073/pnas.0610575104 PMID: 17267602

13. Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MA. Metabolic burden: cornerstones in synthetic

biology and metabolic engineering applications. Trends Biotechnol. 2016; 34(8):652–664. https://doi.

org/10.1016/j.tibtech.2016.02.010 PMID: 26996613

14. Simutis R, Lübbert A. Bioreactor control improves bioprocess performance. Biotechnol J. 2015; 10

(8):1115–1130. https://doi.org/10.1002/biot.201500016 PMID: 26228573

15. Prakash J, Srinivasan K. Design of nonlinear PID controller and nonlinear model predictive controller for

a continuous stirred tank reactor. ISA Trans. 2009; 48(3):273–282. https://doi.org/10.1016/j.isatra.

2009.02.001 PMID: 19303071

16. Zhu GY, Zamamiri A, Henson MA, HjortsøMA. Model predictive control of continuous yeast bioreactors

using cell population balance models. Chem Eng Sci. 2000; 55(24):6155–6167.

17. Ramaswamy S, Cutright T, Qammar H. Control of a continuous bioreactor using model predictive con-

trol. Process Biochem. 2005; 40(8):2763–2770.

18. Karafyllis I, Savvoglidis G, Syrou L, Stamatelatou K, Kravaris C, Lyberatos G. Global Stabilization of

Continuous Bioreactors. In: American Institute of Chemical Engineers-Annual Meeting, Sn. Francisco,

USA; 2006.

19. De Battista H, Jamilis M, Garelli F, Picó J. Global stabilisation of continuous bioreactors: Tools for analy-

sis and design of feeding laws. Automatica. 2018; 89:340–348.

20. Mazenc F, Harmand J, Malisoff M. Stabilization in a chemostat with sampled and delayed measure-

ments and uncertain growth functions. Automatica. 2017; 78:241–249.

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for the control of microbial co-cultures in bioreactors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007783 April 10, 2020 16 / 18

https://doi.org/10.1038/nbt0208-169
http://www.ncbi.nlm.nih.gov/pubmed/18259168
https://doi.org/10.1128/AEM.00908-10
https://doi.org/10.1128/AEM.00908-10
http://www.ncbi.nlm.nih.gov/pubmed/20935118
https://doi.org/10.1186/1475-2859-10-89
http://www.ncbi.nlm.nih.gov/pubmed/22044771
https://doi.org/10.1038/nrmicro3240
http://www.ncbi.nlm.nih.gov/pubmed/24686413
https://doi.org/10.1186/1754-1611-2-3
http://www.ncbi.nlm.nih.gov/pubmed/18304345
https://doi.org/10.1038/nbt.3095
https://doi.org/10.1038/nbt.3095
http://www.ncbi.nlm.nih.gov/pubmed/25558867
https://doi.org/10.1016/j.tibtech.2008.05.004
http://www.ncbi.nlm.nih.gov/pubmed/18675483
https://doi.org/10.1186/1475-2859-9-102
https://doi.org/10.1186/1475-2859-9-102
http://www.ncbi.nlm.nih.gov/pubmed/21192828
https://doi.org/10.1038/msb.2008.24
http://www.ncbi.nlm.nih.gov/pubmed/18414488
https://doi.org/10.1073/pnas.0610575104
http://www.ncbi.nlm.nih.gov/pubmed/17267602
https://doi.org/10.1016/j.tibtech.2016.02.010
https://doi.org/10.1016/j.tibtech.2016.02.010
http://www.ncbi.nlm.nih.gov/pubmed/26996613
https://doi.org/10.1002/biot.201500016
http://www.ncbi.nlm.nih.gov/pubmed/26228573
https://doi.org/10.1016/j.isatra.2009.02.001
https://doi.org/10.1016/j.isatra.2009.02.001
http://www.ncbi.nlm.nih.gov/pubmed/19303071
https://doi.org/10.1371/journal.pcbi.1007783

21. Hoo KA, Kantor JC. Global linearization and control of a mixed-culture bioreactor with competition and

external inhibition. Math Biosci. 1986; 82(1):43–62.

22. Bernard O, Hadj-Sadok Z, Dochain D, Genovesi A, Steyer JP. Dynamical model development and

parameter identification for an anaerobic wastewater treatment process. Biotechnology and bioengi-

neering. 2001; 75(4):424–438. https://doi.org/10.1002/bit.10036 PMID: 11668442

23. Payne AN, Zihler A, Chassard C, Lacroix C. Advances and perspectives in in vitro human gut fermenta-

tion modeling. Trends in biotechnology. 2012; 30(1):17–25. https://doi.org/10.1016/j.tibtech.2011.06.

011 PMID: 21764163

24. Cougnon P, Dochain D, Guay M, Perrier M. On-line optimization of fedbatch bioreactors by adaptive

extremum seeking control. Journal of Process Control. 2011; 21(10):1526–1532.

25. Syrou L, Karafyllis I, Stamatelatou K, Lyberatos G, Kravaris C. Robust global stabilization of continuous

bioreactors. IFAC Proceedings Volumes. 2004; 37(9):995–1000.

26. Sootla A, Strelkowa N, Ernst D, Barahona M, Stan GB. Toggling a genetic switch using reinforcement

learning. arXivorg. 2013.

27. Riedmiller M. Neural fitted Q iteration–first experiences with a data efficient neural reinforcement learn-

ing method. In: European Conference on Machine Learning. Springer; 2005. p. 317–328.

28. Lampe T, Riedmiller M. Approximate model-assisted neural fitted Q-iteration. In: 2014 International

Joint Conference on Neural Networks (IJCNN). IEEE; 2014. p. 2698–2704.

29. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, et al. Human-level control through

deep reinforcement learning. Nature. 2015; 518(7540):529. https://doi.org/10.1038/nature14236 PMID:

25719670

30. Zhou Z, Li X, Zare RN. Optimizing Chemical Reactions with Deep Reinforcement Learning. ACS Cent

Sci. 2017.

31. Ernst D, Stan GB, Goncalves J, Wehenkel L. Clinical data based optimal STI strategies for HIV: a rein-

forcement learning approach. In: Proceedings of the 45th IEEE Conference on Decision and Control.

IEEE; 2006. p. 667–672.

32. Peng X, Ding Y, Wihl D, Gottesman O, Komorowski M, Lehman LwH, et al. Improving sepsis treatment

strategies by combining deep and kernel-based reinforcement learning. In: AMIA Annual Symposium

Proceedings. vol. 2018. American Medical Informatics Association; 2018. p. 887.

33. Pandian BJ, Noel MM. Control of a bioreactor using a new partially supervised reinforcement learning

algorithm. Journal of Process Control. 2018; 69:16–29.

34. Lample G, Chaplot DS. Playing FPS Games with Deep Reinforcement Learning. In: AAAI; 2017.

p. 2140–2146.

35. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXivorg. 2014.

36. Hausknecht M, Stone P. Deep recurrent q-learning for partially observable mdps. arXivorg. 2015; 7(1).

37. Jones E, Oliphant T, Peterson P, et al. SciPy: Open source scientific tools for Python; 2001. Available

from: http://www.scipy.org/.

38. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-Scale Machine

Learning on Heterogeneous Systems; 2015. Available from: https://www.tensorflow.org/.

39. Oliphant TE. A guide to NumPy. vol. 1. Trelgol Publishing USA; 2006.

40. MATLAB. version 9.60.0 (R2019a). Natick, Massachusetts: The MathWorks Inc.; 2019.

41. Wong BG, Mancuso CP, Kiriakov S, Bashor CJ, Khalil AS. Precise, automated control of conditions for

high-throughput growth of yeast and bacteria with eVOLVER. Nature biotechnology. 2018; 36(7):614–

623. https://doi.org/10.1038/nbt.4151 PMID: 29889214

42. Takahashi CN, Miller AW, Ekness F, Dunham MJ, Klavins E. A low cost, customizable turbidostat for

use in synthetic circuit characterization. ACS synthetic biology. 2015; 4(1):32–38. https://doi.org/10.

1021/sb500165g PMID: 25036317

43. Hoffmann SA, Wohltat C, Müller KM, Arndt KM. A user-friendly, low-cost turbidostat with versatile

growth rate estimation based on an extended Kalman filter. PloS one. 2017; 12(7).

44. Steel H, Habgood R, Kelly C, Papachristodoulou A. Chi. Bio: An open-source automated experimental

platform for biological science research. bioRxiv. 2019; p. 796516.

45. Lee KS, Boccazzi P, Sinskey AJ, Ram RJ. Microfluidic chemostat and turbidostat with flow rate, oxygen,

and temperature control for dynamic continuous culture. Lab on a Chip. 2011; 11(10):1730–1739.

https://doi.org/10.1039/c1lc20019d PMID: 21445442

46. Ullman G, Wallden M, Marklund EG, Mahmutovic A, Razinkov I, Elf J. High-throughput gene expression

analysis at the level of single proteins using a microfluidic turbidostat and automated cell tracking. Philo-

sophical Transactions of the Royal Society B: Biological Sciences. 2013; 368(1611):20120025.

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for the control of microbial co-cultures in bioreactors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007783 April 10, 2020 17 / 18

https://doi.org/10.1002/bit.10036
http://www.ncbi.nlm.nih.gov/pubmed/11668442
https://doi.org/10.1016/j.tibtech.2011.06.011
https://doi.org/10.1016/j.tibtech.2011.06.011
http://www.ncbi.nlm.nih.gov/pubmed/21764163
https://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://www.scipy.org/
https://www.tensorflow.org/
https://doi.org/10.1038/nbt.4151
http://www.ncbi.nlm.nih.gov/pubmed/29889214
https://doi.org/10.1021/sb500165g
https://doi.org/10.1021/sb500165g
http://www.ncbi.nlm.nih.gov/pubmed/25036317
https://doi.org/10.1039/c1lc20019d
http://www.ncbi.nlm.nih.gov/pubmed/21445442
https://doi.org/10.1371/journal.pcbi.1007783

47. Karslake J, Maltas J, Brumm P, Wood KB. Population density modulates drug inhibition and gives rise

to potential bistability of treatment outcomes for bacterial infections. PLoS computational biology. 2016;

12(10). https://doi.org/10.1371/journal.pcbi.1005098 PMID: 27764095

48. Toprak E, Veres A, Michel JB, Chait R, Hartl DL, Kishony R. Evolutionary paths to antibiotic resistance

under dynamically sustained drug selection. Nature genetics. 2012; 44(1):101.

49. Pande S, Merker H, Bohl K, Reichelt M, Schuster S, De Figueiredo LF, et al. Fitness and stability of obli-

gate cross-feeding interactions that emerge upon gene loss in bacteria. The ISME journal. 2014; 8

(5):953–962. https://doi.org/10.1038/ismej.2013.211 PMID: 24285359

50. Lloyd CJ, King ZA, Sandberg TE, Hefner Y, Olson CA, Phaneuf PV, et al. The genetic basis for adapta-

tion of model-designed syntrophic co-cultures. PLoS computational biology. 2019; 15(3):e1006213.

https://doi.org/10.1371/journal.pcbi.1006213 PMID: 30822347

51. Zhang X, Reed JL. Adaptive evolution of synthetic cooperating communities improves growth perfor-

mance. PloS one. 2014; 9(10).

52. Kerner A, Park J, Williams A, Lin XN. A programmable Escherichia coli consortium via tunable symbio-

sis. PLoS One. 2012; 7(3). https://doi.org/10.1371/journal.pone.0034032 PMID: 22479509

53. Zhang H, Pereira B, Li Z, Stephanopoulos G. Engineering Escherichia coli coculture systems for the

production of biochemical products. Proceedings of the National Academy of Sciences. 2015; 112

(27):8266–8271.

54. Din MO, Danino T, Prindle A, Skalak M, Selimkhanov J, Allen K, et al. Synchronized cycles of bacterial

lysis for in vivo delivery. Nature. 2016; 536(7614):81–85. https://doi.org/10.1038/nature18930 PMID:

27437587

55. Izard J, Balderas CDG, Ropers D, Lacour S, Song X, Yang Y, et al. A synthetic growth switch based on

controlled expression of RNA polymerase. Molecular systems biology. 2015; 11(11). https://doi.org/10.

15252/msb.20156382 PMID: 26596932

56. Maltas J, Wood KB. Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit

antibiotic resistance. PLoS biology. 2019; 17(10). https://doi.org/10.1371/journal.pbio.3000515 PMID:

31652256

57. Fischer A, Vázquez-Garcı́a I, Mustonen V. The value of monitoring to control evolving populations. Pro-

ceedings of the National Academy of Sciences. 2015; 112(4):1007–1012.

58. Seto M, Alexander M. Effect of bacterial density and substrate concentration on yield coefficients. Appl

Environ Microbiol. 1985; 50(5):1132–1136. PMID: 4091549

59. Owens J, Legan J. Determination of the Monod substrate saturation constant for microbial growth.

FEMS Microbiol Rev. 1987; 3(4):419–432.

60. Cox RA. Quantitative relationships for specific growth rates and macromolecular compositions of Myco-

bacterium tuberculosis, Streptomyces coelicolor A3 (2) and Escherichia coli B/r: an integrative theoreti-

cal approach. Microbiology. 2004; 150(5):1413–1426. https://doi.org/10.1099/mic.0.26560-0 PMID:

15133103

61. Sutton RS, Barto AG. Reinforcement learning: An introduction. vol. 1. MIT press Cambridge; 1998.

62. Rodriguez AC, Parr R, Koller D. Reinforcement learning using approximate belief states. In: Advances

in Neural Information Processing Systems; 2000. p. 1036–1042.

63. Silver D, Veness J. Monte-Carlo planning in large POMDPs. In: Advances in neural information pro-

cessing systems; 2010. p. 2164–2172.

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for the control of microbial co-cultures in bioreactors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007783 April 10, 2020 18 / 18

https://doi.org/10.1371/journal.pcbi.1005098
http://www.ncbi.nlm.nih.gov/pubmed/27764095
https://doi.org/10.1038/ismej.2013.211
http://www.ncbi.nlm.nih.gov/pubmed/24285359
https://doi.org/10.1371/journal.pcbi.1006213
http://www.ncbi.nlm.nih.gov/pubmed/30822347
https://doi.org/10.1371/journal.pone.0034032
http://www.ncbi.nlm.nih.gov/pubmed/22479509
https://doi.org/10.1038/nature18930
http://www.ncbi.nlm.nih.gov/pubmed/27437587
https://doi.org/10.15252/msb.20156382
https://doi.org/10.15252/msb.20156382
http://www.ncbi.nlm.nih.gov/pubmed/26596932
https://doi.org/10.1371/journal.pbio.3000515
http://www.ncbi.nlm.nih.gov/pubmed/31652256
http://www.ncbi.nlm.nih.gov/pubmed/4091549
https://doi.org/10.1099/mic.0.26560-0
http://www.ncbi.nlm.nih.gov/pubmed/15133103
https://doi.org/10.1371/journal.pcbi.1007783

