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PURPOSE. To develop and assess a method for predicting the likelihood of converting from
early/intermediate to advanced wet age-related macular degeneration (AMD) using optical
coherence tomography (OCT) imaging and methods of deep learning.

METHODS. Seventy-one eyes of 71 patients with confirmed early/intermediate AMD with
contralateral wet AMD were imaged with OCT three times over 2 years (baseline, year 1, year
2). These eyes were divided into two groups: eyes that had not converted to wet AMD (n ¼
40) at year 2 and those that had (n ¼ 31). Two deep convolutional neural networks (CNN)
were evaluated using 5-fold cross validation on the OCT data at baseline to attempt to predict
which eyes would convert to advanced AMD at year 2: (1) VGG16, a popular CNN for image
recognition was fine-tuned, and (2) a novel, simplified CNN architecture was trained from
scratch. Preprocessing was added in the form of a segmentation-based normalization to
reduce variance in the data and improve performance.

RESULTS. Our new architecture, AMDnet, with preprocessing, achieved an area under the
receiver operating characteristic (ROC) curve (AUC) of 0.89 at the B-scan level and 0.91 for
volumes. Results for VGG16, an established CNN architecture, with preprocessing were 0.82
for B-scans/0.87 for volumes versus 0.66 for B-scans/0.69 for volumes without preprocessing.

CONCLUSIONS. A CNN with layer segmentation-based preprocessing shows strong predictive
power for the progression of early/intermediate AMD to advanced AMD. Use of the
preprocessing was shown to improve performance regardless of the network architecture.

Keywords: age-related macular degeneration, optical coherence tomography, image analysis,
deep learning, choroidal neovascularization

Advanced age-related macular degeneration (AMD) is a
leading cause of vision loss for people over 50 and

accounts for 8.7% of all blindness worldwide.1 AMD proceeds
in distinct stages from early, to intermediate, to advanced. In
advanced, wet (neovascular) AMD, blood vessel growth
(choroidal neovascularization [CNV]) can lead to irreversible
damage to the photoreceptors and rapid vision loss. Currently,
patients can progress to wet AMD without symptoms or any
measurable change. Thus, it is of the utmost importance to try
and determine which patients are at the highest risk for
conversion to wet AMD to allow intervention before perma-
nent damage.

This ability to see subclinical neovascularization in the
macula has been underutilized, in part due to the lack of
therapeutics, but also because of its cost and discomfort.2

While early studies using fluorescent dye imaging3,4 have
shown that subclinical irregularities (plaques, spots) are
valuable biomarkers, new noninvasive techniques seek to build
on this. The more recent findings correlating optical coherence
tomography angiography (OCTA) with indocyanine green
angiography imaging, for example, attempt to bridge early
work to the newer technologies.5–7 It is still an open area of
research, however, and tremendous interest exists in utilizing
more established imaging techniques, such as structural OCT

and fundus photography, alongside more advanced algorithms
to create clinical biomarkers stratifying a patient’s level of risk
of conversion to wet AMD. The motivation is pragmatic given
that structural OCT imaging is the standard of care in the
management of ocular diseases, is more affordable than OCTA,
and has higher utilization and legacy data.

Structural OCT thus remains the most compelling modality
to study for indications of subclinical CNV. And it, too, is an area
of active research. de Sisternes et al.,8 for example, used
traditional, feature-based modeling techniques applied to a
number of handcrafted features, or parameters, for prediction
of conversion to wet AMD. The features used included volume,
height, and reflectivity of drusen. In the case where the
advanced AMD was geographic atrophy (GA) as opposed to
neovascular, the same lab has developed similarly crafted
features that were predictive of GA progression.9 In this study,
the best feature was thinning and loss of reflectivity of the
inner/outer segment junction, a structural measure derived
from the OCT data.

A similar combination of OCT-based structural features and
visual acuity was used temporally across an initiation phase to
characterize response to anti-VEGF treatment using a random
forest classifier.10 With areas under the curve (AUCs) between
0.7 and 0.8, the resulting model had comparable performance
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to an expert human grader in predicting both low and high
anti-VEGF treatment requirements. It is of interest that they
found that temporally differential features were not shown to
play an important, discriminatory role in their model’s
predictions and that a cross-sectional analysis, as is presented
here, achieved the same performance. More recently, Schmidt-
Erfurth et al.11 used machine learning methods to assimilate
various imaging, demographic, and genetic features to predict
the likelihood of conversion from intermediate to advanced
AMD. In a study of 495 eyes, they had separate models for
conversion to wet AMD (n ¼ 114) and GA (n ¼ 45) and
reported AUCs of 0.68 and 0.80, respectively, using 10-fold
cross validation. The deep learning component used segment-
ed hyperreflective foci in the OCT data producing an en face
map of their location that generated nine separate numerical
features based on location and distribution that were included
in the final 71 features used. The predictive hallmarks for CNV
were reported as ‘‘mostly drusen-centric.’’

In this work, we look to derive OCT-based biomarkers based
on a deep learning classifier to help predict which patients will
progress from early/intermediate AMD to wet AMD using OCT
imaging data alone. For context, we also present the
performance of more traditional machine learning classifiers
using features akin to those of de Sisternes et al.8 and Schmidt-
Erfurth et al.11

METHODS

Patients with unilateral neovascular AMD and early or
intermediate AMD in the fellow eye with approximately 2
years follow-up (17–27 months) were selected from the anti-
VEGF in the AMD database of Moorfields Eye Hospital. Patients
were imaged using two OCT devices, the 3D OCT-1000 (18
scans) and the 3D OCT-2000 (53 scans) in both eyes (Topcon,
Tokyo, Japan). For each instrument, the 3D macular scan was
used and produced 128 B-scans with 512 A-scans each over a 6
3 6-mm2 area centered at the fovea.

Each eye was part of a three scan, 2-year protocol (baseline,
year 1, year 2). The progressors (n¼31) were defined as fellow
eyes with new-onset macular fluid on year 2 scans confirmed
by fluorescein angiography to show the presence of CNV. The
nonprogressors (n ¼ 41) were the fellow eyes that had not
converted on year 2 scans. The OCT scans used for prediction
of conversion were the baseline scans (n ¼ 71) with early or
intermediate AMD corresponding to the progressor and

nonprogressor groups. The average interval between baseline
and year 2 scans was 2 years 6 a standard deviation of 2
months (Table 1). In order to focus on CNV, cases of GA were
excluded from the study. This work was approved by the
Ethical Review Board of Moorfields Eye Hospital (ROAD 17/
004) and adhered to the principles of the Declaration of
Helsinki.

Of the 71 participants included in the study, 43 were female
(60.6%) and 28 male (39.4%). The nonprogressors consisted of
20 females and 20 males. The progressors consisted of 23
females and 8 males. While age ranges were similar between
the two cohorts, AMD progressors were on average older
(unpaired Student’s t-test; P ¼ 0.02). Table 1 details these
demographics.

Traditional Image Processing

Following earlier work,8,11 we first assayed to perform the
prediction using traditional image processing and machine
learning techniques. All data sets were analyzed using patient
data and layer-based biomarkers from OCT analysis software
(Orion; Voxeleron LLC, Pleasanton, CA, USA). The software
automatically segments the OCT volumes into seven retinal
layers, allowing analysis of various metrics such as average
thicknesses and volumes of the different layers (and of the
drusen) within the Early Treatment Diabetic Retinopathy Study
(ETDRS) zones12 based on an automatic foveal centration. All
segmentations were verified to be error free (AL and JDO), and
then analyzed for separation using a state-of-the-art machine
learning classifier. Example segmentations for both progressors
and nonprogressors are shown in Figures 1 and 2, where we
highlight more normal-looking retinas and also those with
some obvious drusen. Multiple layer segmentation offers
multiple parameters that can be analyzed in an effort to
separate the two groups. An ETDRS grid has nine zones, and
with seven average thicknesses being reported in each of these
zones, we can use any combination of thicknesses or volumes
over different regions to train a classifier to predict the class.

We used a 32-dimensional feature vector that comprised
biomarkers from the segmentation as well as patient informa-
tion (Tables 2, 3). We used a support vector machine (SVM), a
well-defined, state-of-the-art machine learning classifier to
perform the prediction.13 The SVM was trained with radial
basis functions for the kernel, and the free parameters (box
constraint, kernel scale) were chosen empirically. We evaluat-
ed the SVM using 5-fold cross validation. 5-fold cross validation
is performed by randomly partitioning the data into five equal
subsets, or folds. One fold is used as a test set, whereas the
other four folds are used to train a model. We created these
folds taking care that, for a given run, no one patient’s data ever
appeared in both the training folds and the testing fold. By
performing this procedure on each of the five folds in turn, we
can generate a prediction for each data point. And, for the
entire set of predictions, we generate a receiver operating
characteristic (ROC) curve as well as its corresponding AUC
(Fig. 3).

Deep Learning–Based Analysis

Our deep learning approach consists of a two-step process
decoupling the image segmentation step from the classification
step. This has the effect of allowing the classifier to focus
specifically on the regions of interest. After the segmentation
step, we tried two different convolutional neural networks
(CNNs): (1) transfer learning using the popular VGG16
network14 and (2) AMDnet, a novel, simplified architecture
trained from scratch.

TABLE 1. Demographics of the Study Subjects

Variable Total

AMD

Nonprogressors

AMD

Progressors

Number of eyes 71 40 31

Age

Mean (SD) 74 (8.5) 72 (8.7) 76 (7.5)

Median 76 72.5 77

Minimum–Maximum 57–91 57–89 62–91

Sex

Female, n (%) 43 (60.6%) 20 (50%) 23 (74.2%)

Male, n (%) 28 (39.4%) 20 (50%) 8 (25.8%)

Laterality

Right, n (%) 48 (67.6%) 26 (65%) 22 (71%)

Left, n (%) 23 (32.4%) 14 (35%) 9 (29%)

Follow-Up Exam/Conversion, months

Mean (SD) – 23.75 (1.33) 23.32 (2.06)

Median 24 24

Minimum–Maximum 20–26 17–27
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Segmentation-Based Preprocessing. The 71 volumes

were decomposed into 9088 B-scans that were preprocessed

using the aforementioned layer segmentation software to

identify the inner limiting membrane (ILM) and Bruch’s

membrane (Fig. 4). Each B-scan was then cropped from the

ILM to a fixed offset (390 lm) below Bruch’s membrane and

resampled to a uniform size (Fig. 5). The offset used was

designed to capture choroidal information over a fixed area

beneath the choriocapillaris. It was chosen based on work

from Manjunath et al.15 to represent 2 SD above the mean

subfoveal choroidal thickness in a population with AMD. This

FIGURE 1. The left-hand side shows example segmentations in both the progressor (top, bottom) and nonprogressor (middle) groups. The right-

hand side shows their corresponding total retinal thickness maps in micrometers.
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preprocessing was performed to reduce the variance of the

training set and create some invariance to scale.

A Transfer Learning Model. To evaluate the preprocess-

ing, an existing, well-established deep CNN (VGG16)14 was

fine-tuned using transfer learning based on the standard

strategy of retraining only the fully connected layers of the

model.16 We used the original paper’s fully connected layer

sizes (4096 neurons each), changing only the final layer from

1000 neurons to 2 neurons to fit our problem. Similar to

Rattani,16 we experimented with simpler versions with a

FIGURE 2. The left-hand side shows example segmentations in both the progressor (top, bottom) and nonprogressor (middle) groups. The right-

hand side shows their corresponding drusen thickness maps in micrometers.
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smaller number of neurons, settling on 512 and 128 neurons
for the first two fully connected layers, respectively. This
process was applied to both the raw and preprocessed B-scans.
The raw and preprocessed B-scans were resized to 224 3 224
to match VGG16’s expected input. The training was run for
2500 epochs using stochastic gradient descent with Nesterov
momentum and a learning rate of 5e-5. To avoid overtraining,
we used early stopping. This procedure stops the training
when the loss on a held-out validation set fails to improve for a
prespecified number of epochs, termed the patience. For this
experiment, we set the patience at 20 epochs. The resulting
classifiers were evaluated using the exact same 5-fold cross
validation folds from the prior, traditional image processing
analysis.

The AMDnet Model. Alternate architectures were ex-
plored in an effort to further improve the results. We tried both
deeper, more complex networks as well as shallower, simpler
ones and eventually settled on the latter. AMDnet (Figs. 6, 7)
consists of just three convolutional layers with varying
amounts of pooling. The number of parameters for this model
is just over 2 million versus more than 27 million (12 million
trainable) for VGG16. Given the relatively small size of the data
set, we took care to regularize this model in three specific
ways:

1. We used dropout regularization with a percentage of 45%
at the end of all but one of the convolutional and fully
connected layers. Dropout essentially acts during train-
ing on each batch to randomly remove a percentage of
the previous layer’s neurons. Dropout has the effect of
averaging an ensemble of classifiers, which produces
more robust results and resists overtraining.17

2. We used L2 regularization for each of the convolutional
layers, which penalizes very large weights and has the
effect of simplifying the model. Simpler models general-
ize better, which also works to prevent overtraining.

3. We used maxnorm regularization for the dense layers,
which also works to simplify the model by requiring the
norm of a given layer’s weights to be less than a

prespecified value. As above, simpler models are harder
to overtrain.

Figure 7 has a detailed breakdown of the architecture of
AMDnet. We evaluated AMDnet using the exact same 5-fold
cross validation and folds as described above.

Feature Analysis

In an effort to tease out what latent features the classifier is
relying on, and perhaps learn something about the disease
process itself, we also performed an occlusion sensitivity
analysis18 of the outputs of the neural network. The occlusion
analysis shows the regions of the image that are most
discriminative with respect to a specific class. Such visualiza-
tions help interpret the overall results, especially in asking
whether the method makes basic sense and whether artifacts
or irrelevant features are driving the performance. This we
revisit more thoroughly in the discussion.

RESULTS

Traditional Image Processing

The summary results of the SVM analysis are shown in Figure 3
on the left. With AUCs in the range of 0.74 to 0.82 (mean ¼
0.78), these results are consistent with what has been
previously reported for this type of approach.8,11

Another consideration was given to potential bias intro-
duced based on machine type as the two Topcon devices use
different spectrometers, resulting in different axial resolutions.
To investigate this, we added the dimensionality of the scan’s
axial resolution (either 480 or 885 pixels) as a feature, acting as
an instrument flag. All features were scaled to zero mean and
unit variance as part of the training process (test features being
scaled based on the learned ranges). We reran the best-
performing SVM from the previous experiment using this new
feature set and report the results in Figure 3 on the right. The
mean AUC of 0.79 for this experiment suggests that having

TABLE 2. The 32 Features Used to Train the SVM Classifier

Layer RNFL GC-IPL INL OPL ONL PR RPE to Bruch’s TRT Patient-Based

Zones IA,OA,TA IA,OA,TA IA,OA,TA,D IA,OA,TA,D IA,OA,TA,D IA,OA,TA,D IA,OA,TA,D IA,OA,TA,D Age, Sex

Features 3 3 4 4 4 4 4 4 2

The thicknesses were taken as averages with the fovea-centered ETDRS grid: IA, inner annulus (circle of 3-mm diameter, less the central 1-mm
subfield); OA, outer annulus (circle of 6-mm diameter, less the central 1-mm subfield and the IA); TA, total annulus ¼ IA þ OA; D, entire 6-mm-
diameter circle. The layer names follow the APOSTEL recommendations27: RNFL, retinal nerve fiber layer; GC-IPL, ganglion-cellþ inner plexiform
layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; PR, photoreceptor complex; as well as RPE to Bruch’s and the
TRT, total retinal thickness. Foveal thicknesses of the RNFL and GC-IPL were excluded.

TABLE 3. Quantitative Report of 8 of the 32 Features From Table 2

Layer (annulus)

Nonprogressors Progressors

P ValueMean SD Mean SD

TRT 8.23789 0.3796 8.14838 0.501817 0.39494

RNFL 1.139194 0.1038 1.161975 0.170421 0.488885

GC-IPL 1.916145 0.1717 1.759685 0.18552 0.000464

INL 0.980921 0.0669 0.97634 0.078946 0.792206

OPL 0.681369 0.1018 0.624325 0.136326 0.04734

ONL 2.14774 0.1556 2.230325 0.273673 0.113082

PR 1.236373 0.0818 1.247537 0.094527 0.59592

RPE to Bruch’s 0.136155 0.0888 0.148176 0.065638 0.529916

The total annulus thickness features for each layer. Values are in mm3. Statistically significant values with P < 0.05 are in bold italics.
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knowledge of the instrument appears to add little to no
additional information to the classifier’s performance.

Finally, we explore the potential bias of the follow-up
interval on the performance of the classifier. Following the
experiments above, we chose an operating point with a false-
positive rate of 0.25 and looked at the true positives, true
negatives, false positives, and false negatives with respect to
follow-up interval. We conclude, based on Figure 8, that small
variations in the follow-up interval do not introduce a large bias
into the results.

Deep Learning

The results comparing the effect of preprocessing (Fig. 9) are
presented at both the B-scan and volume levels. The prediction
value for the volume level analysis was calculated by taking the
mean of each volume’s individual B-scan predictions. For
VGG16, with preprocessing, the AUC was 0.82 at the B-scan
level and 0.87 at the volume level, whereas the same run
without preprocessing (only scaling to match the VGG16
input) had AUCs of 0.67 and 0.69, respectively. The results for
the same 5-fold validation for AMDnet are shown in Figure 10.
We achieve a marked improvement with AMDnet at the B-scan
level (0.89) and at the volume level (0.91). Of interest, we also
performed simple augmentation of the data (adding small
rotations plus noise) but were unable to improve the
algorithm’s performance. This very clearly demonstrates the
benefits of preprocessing as, regardless of network and
evaluation metric, the performance improves each time.

The results of the feature analysis, shown in Figure 11,
illustrate that the areas around the retinal pigment epithelium

(RPE) and choroid seem to be the most useful to the classifier
in making its predictions. In particular, this analysis shows that
pixels around the RPE have the largest impact on the final
score of the classifier in the case of nonprogressors while
progressors seem to have more sub-RPE choroidal involve-
ment. In addition, we stacked the occlusion sensitivity maps
into volumes looking for a pattern in the en face direction (Fig.
12). These results suggest a stronger response nasally for
nonprogressors, while the progressors rely more on the
temporal region.

DISCUSSION

We have reported on a use of deep learning to predict
conversion to wet AMD using OCT imaging. The results show
clear separation between the progressors and the nonprog-
ressors, and the occlusion sensitivity analysis indicates that
relevant features are brought to bear by the technique. We
considered, as a comparison, a clinical study where retinal
specialists would try, using their clinical experience, to divine
which patients would convert to neovascular AMD. We put this
question to three retinal specialists who indicated that, given
the lack of validated biomarkers for this problem, they would
not feel comfortable making this decision, even for a research
study. In the following, we add context to the findings, discuss
their clinical relevance, present some limitations of the study,
and close with some conclusions.

One of the major challenges in the clinical management of
patients with early/intermediate AMD is the assessment of risk
of conversion, and any metrics supportive of this assessment
are welcome. Structural OCT data have been used to create
anatomical biomarkers such as thickness and volumetric
measures, but despite being researched for several years,
compelling indicators of conversion have yet to emerge.
Instead, interest has turned to OCTA, where subclinical
neovascularization is being observed and studies are being
carried out on how to quantify these observations such that
they can be deployed clinically. OCTA instrumentation is,
however, less widely used, and longitudinal data are less readily
available. In addition, OCTA data have greater dependence on
variations in signal strength across different systems and are
vulnerable to projection artifacts that make it difficult to assess
flow as a reliable biomarker, especially in the case of
neovascularization underneath the RPE (type 1).19 With the
advent of more advanced feature extractors and classifiers

FIGURE 3. The above compares the performance of the SVM classifier (left) with the same data plus instrument type added as a feature (right). This
information appears to offer very little improvement in the classification.

FIGURE 4. Example B-scan showing the automated segmentation (ILM
in red, RPE in blue, and Bruch’s membrane in magenta) used for the
preprocessing. In this example, we clearly see a signal in the choroid,
albeit diminished below the drusen.
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facilitated through deep learning, we have revisited and further
mined the OCT data sets for signals that, akin to OCTA, might
be supportive of the subclinical assessment of nonexudative
neovascularization.

An immediate interpretation of the findings is that the
neural network has discovered specific patterns indicative of
pathologic change. OCT-based features identified in early CNV
have been previously reported.20–23 The analysis we report on,
however, looks at data before any clinically observable signs of
conversion, so consideration must be given to more subtle
features, including textural changes that are perhaps occurring
as a direct result of early physiological changes. Pathology
detection using OCT texture analysis has itself been previously
researched.24 Such approaches failed to gain traction, but in
the advent of better computational resources and the more
sophisticated learning approaches, we envisage a resurgence in
such work. The texture descriptors were examples of
handcrafted features, a technique that has been superseded
by the ability to instead learn the features through deep
learning. Similarly, in the work from de Sisternes et al.,8 Niu et
al.,9 and Schmidt-Erfurth et al.,11 the features were manually
crafted and, through extensive use of regression, applied to
temporal data in their final models. By learning the features in a

systematic way afforded by deep neural networks, more
powerful and better regularized solutions are now possible.
Very important to the method, however, is the preprocessing
of the input data via a segmentation step that (1) gives us some
invariance to instrumentation and (2) allows the network to
concentrate on tissue of interest. This is somewhat akin to the
recent work by De Fauw et al.25 in which their classification
scheme uses a separate segmentation step, here using a U-Net
deep learning architecture,26 and then classifying the homog-
enous tissue regions into referral classes using a second deep
learning architecture, one that is very similar in composition to
that used in this study. In our work, however, we do not
disregard the image intensities and distributions as they are
critical to our method in differentiating the classes.

Another interesting finding is the difference in the en face
occlusion sensitivity maps between progressors and non-
progressors (Fig. 12). Further investigation is needed, but this
difference could potentially be due to the presence of more
photoreceptors nasally or large arterioles nasally skewing the
choroidal density.

This study is not without some limitations. Although this is
a large and balanced data set, more data would help better
support our conclusions. To address this, unbiased estimates of

FIGURE 5. An example of the preprocessing used to normalize the B-scans. The top row shows B-scans from a Topcon OCT scanner, and the bottom

row shows the corresponding images with normalization applied. The data are cropped between the ILM (red) and a fixed offset (390 lm) (yellow)
from Bruch’s membrane (magenta-dashed), which is itself estimated as a baseline to the RPE (blue-dashed). Normalization in this way greatly
reduces the variance in the training set and allows for robust training of smaller data sets as well as better generalizability. Note that, despite this
being a spectral-domain OCT (SD-OCT) device, the signal in the choroid is apparent and strong in each case.

FIGURE 6. A schematic of the architecture of AMDnet.
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performance are reported, including the cross validation
approach given in the method section, where care was taken
to evenly balance the cohorts in the test and training sets,
ensuring same subject data were not used across data sets. As a
pilot study, however, the findings are compelling.

In addition, the current deep learning model is applied only
on B-scans, and those results are aggregated to make a final

prediction. This is different from the traditional machine

learning approaches that use features derived from consider-

ation of the entire volume. Future work will need to investigate

the application of the deep learning approach directly on the

full volumes as, potentially, a more natural way of finding

patterns of subclinical CNV.

FIGURE 7. A detailed breakdown of AMDnet.

FIGURE 8. A box and whiskers analysis of the SVM results for a specific operating point (FP rate ¼ 0.25). The box represents the 25th and 75th
percentiles, while the whiskers are the 9th and 91st percentiles, respectively. The follow-up interval does not seem to have a marked effect on the
results.
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FIGURE 9. Per B-scan (left) and per patient (right) ROC and AUC results for the fine-tuned VGG16 CNN using segmentation-based preprocessing
(blue) and just simple resizing (red). As expected, preprocessing to reduce the variance of the input data dramatically improves the results.

FIGURE 10. Per B-scan (left) and per patient (right) ROC and AUC results for AMDnet (green) and VGG16 with preprocessing (blue). The simplified
AMDnet architecture shows improvements across both sets.

FIGURE 11. Occlusion sensitivity analysis for progressors (right) and nonprogressors (middle). These images were derived by averaging the
occlusion analysis outputs for all B-scans in their respective groups. The average structure for all B-scans is shown on the left, and the mean location
of Bruch’s membrane in all scans is plotted in magenta. This analysis shows that, in particular, pixels around the RPE have the largest impact on the
final score of the classifier for nonprogressors. It also suggests more sub-RPE or choroidal involvement for progressors.

Deep Learning for Prediction of AMD Progression IOVS j February 2019 j Vol. 60 j No. 2 j 720

Downloaded from iovs.arvojournals.org on 04/23/2020



Another limitation could perhaps also be considered a
strength of the method given the positive results and the
indication that information in the choroid is of importance to
the performance. This is namely the SD-OCT scanner used
(Topcon 3d OCT); it has a light source of 840 nm, which offers
limited depth penetration given its relatively short wavelength.
Longer wavelengths are preferred for resolving detail in the
choroid even if these lose some axial resolution. However,
through simple review of the B-scans (see Figs. 1, 2, for
example), one can see clear choroidal signal in the OCT data.
And conversely, this speaks to the strength of the method as
even with this limited penetration, there is clearly information
in the choroidal regions of the data that is being used to
discriminate progressors from nonprogressors (Fig. 11). We are
currently collecting data to test the method using other
devices, including swept-source OCT as well as depth-
enhanced imaging, a spectral-domain approach that puts the
focal plane (point of greatest signal) lower in the image.

This study is on a population of unilateral neovascular AMD
eyes that have a high risk of conversion. Therefore, studying
the nonprogressors and progressors in this enriched cohort
allowed us to better target the pathologic area. As this is the
case, however, it is not known how the models and results
would generalize to patients with bilateral early/intermediate
AMD, who constitute the majority of the at-risk population.
Again, this is an interesting avenue of research that we would
also like to look at in more detail.

To conclude, we report that a deep learning CNN with layer
segmentation-based preprocessing shows strong predictive
power with respect to the progression of early/intermediate
AMD to advanced AMD. Such adjunct analysis could be useful
in, for example, setting the frequency of patient visits and
guiding interventions.
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