
10

Incorrectness Logic

PETER W. O’HEARN, Facebook and University College London, UK

Program correctness and incorrectness are two sides of the same coin. As a programmer, even if you would

like to have correctness, you might find yourself spending most of your time reasoning about incorrectness.

This includes informal reasoning that people do while looking at or thinking about their code, as well as that

supported by automated testing and static analysis tools. This paper describes a simple logic for program

incorrectness which is, in a sense, the other side of the coin to Hoare’s logic of correctness.

CCS Concepts: · Theory of computation→ Programming logic.

Additional Key Words and Phrases: Proofs, Bugs, Static Analysis

ACM Reference Format:

Peter W. O’Hearn. 2020. Incorrectness Logic. Proc. ACM Program. Lang. 4, POPL, Article 10 (January 2020),

32 pages. https://doi.org/10.1145/3371078

1 INTRODUCTION

When reasoning informally about a program, people make abstract inferences about what might
go wrong, as well as about what must go right. A programmer might ask łwill the program crash
if we give it a large string?ž, without saying which large string. In this paper we investigate the
hypothesis that reasoning about the presence of bugs can be underpinned by sound techniques
in a principled logical system, just as reasoning about correctness (absence of bugs) has been
demonstrated to have sound logical principles in an extensive research literature. We also consider
the relationship of the principles to automated reasoning tools for finding bugs in software.

We explore our hypothesis by defining incorrectness logic, a formalism that is similar to Hoare’s
logic of program correctness [Hoare 1969], except that it is oriented to proving incorrectness rather
than correctness. Hoare’s theory is based on specifications of the form

{pre-condition}code{post-condition}

which say that the post-condition over-approximates (describes a superset of) the states reachable
upon termination when the code is executed starting from states satisfying the pre-condition (the
so-called strongest post). Conversely, we use a specification form

[presumption]code[result]

which says that the post-assertion result be an under-approximation (subset) of the final states that
can be reached starting from states satisfying the presumption.

The under-approximate triples were studied (with a different but equivalent definition) previously
by de Vries and Koutavas [2011] in their reverse Hoare logic, which they used to specify randomized
algorithms. Incorrectness logic adds post-assertions for errors as well as for normal termination, and
these assertions describe erroneous states that can be reached by actual program executions. Dijkstra
[1976] famously remarked that łtesting can be quite effective for showing the presence of bugs, but
is hopelessly inadequate for showing their absence,ž and he made this remark while arguing for the

Author’s address: Peter W. O’Hearn, Facebook and University College London, UK.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART10

https://doi.org/10.1145/3371078

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3371078


10:2 Peter W. O’Hearn

use of mathematical proof to show that bugs don’t occur. Here we obtain a logic where instead one
can prove the presence of bugs but not their absence: Because of under-approximation, reasoning
is arranged to avoid false positives (bug suggestions that are not true). We will attempt to show
that the resulting logic has principles relevant to pragmatic issues in the design of reasoning tools.
The simple shift from over to under has a significant impact on what specifications mean. The

post-condition in correctness logic constrains what happens, ruling out anything that doesn’t
satisfy it, where the result assertion in incorrectness logic indicates the positive fact that certain
states, at least those satisfying it, can occur. But the result assertion does not rule out other final
states, or even that a pre-state might have no successers (i.e., divergence). As a picture:

If the code might be applied to any state satisfying the presumption, then we will be able to reach
any state in the result assertion. Or more briefly, from the presumption we achieve the result.
In colloquial terms we might say that Hoare triples speak the whole truth, where the under-

approximate triples speak nothing but the truth.
Incorrectness logic is so basic that it could have been defined and studied immediately after or

alongside the fundamental works of Floyd [1967] and Hoare [1969] on correctness in the 1960s. It is
the intervening developments in the science and, especially, the engineering of reasoning tools that
motivated us to do so. The work in this paper arose as part of an attempt to re-imagine how static
reasoning about programs might be done, taking the perspective of bug catching instead of (only)
proving absence of bugs. It was motivated, in particular, by work at Facebook on static analysis
[Distefano et al. 2019]. Informal, abstract reasoning about the presence of bugs is a fundamental
part of communication between people during the code review process, and in their deployment
at Facebook mechanized reasoning tools act as bots participating in these conversations: in these
deployments they often use symbolic reasoning to identify regressions rather than to prove than
none can occur, just as human reviewers frequently do.
The paper was also inspired by the use of symbolic execution for testing [Cadar and Sen 2013].

More generally, many practical tools use symbolic reasoning for bug catching, but few of them are
accompanied by soundness arguments, and they have sometimes been considered as unprincipled.
We suggest that static bug catchers could in future be cast in terms of finding logical proofs of
under-approximation in a formal system, analogously to how correctness-oriented tools can be
thought of as finding proofs.

While we appeal to tool-based considerations as we go along, we attempt to keep the presentation
self contained. We give suggestive examples and comments on relevance to automatic program
analysis problems, but don’t delve into any specific analyses or tools.

2 UNIFIED PICTURE

Although our technical focus in this article is on incorrectness, it will be useful first to describe
correctness and incorrectness reasoning in a way that emphasizes their relationship to one another.
Readers who prefer seeing examples first can safely skip forward to the next section.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



Incorrectness Logic 10:3

∧∨ Symmetry: [p]c[q1] ∧ [p]c[q2] ⇐⇒ [p]c[q1 ∨ q2]

{p}c{q1} ∧ {p}c{q2} ⇐⇒ {p}c{q1 ∧ q2}

⇑⇓ Symmetry: p ′ ⇐ p ∧ [p]c[q] ∧ q ⇐ q′ =⇒ [p ′]c[q′]

p ′ ⇒ p ∧ {p}c{q} ∧ q ⇒ q′ =⇒ {p ′}c{q′}

Principle of Agreement: [u]c[u ′] ∧ u ⇒ o ∧ {o}c{o′} =⇒ u ′ ⇒ o′

Principle of Denial: [u]c[u ′] ∧ u ⇒ o ∧ ¬(u ′ ⇒ o′) =⇒ ¬({o}c{o′})

Fig. 1. Correctness and Incorrectness Principles

Figure 1 depicts the two triples. Predicates in the diagram represents the set of subsets of a
collection of program states, and the arrows are binary relations. The relation [−]c[−] relates any
pair (p,q) of predicates when [p]c[q] holds, and similarly for {−}c{−}. post (c ) is actually a function
(a single-valued relation), which maps each input predicate to the set of those states reachable
upon termination; the others are non-functional relations. The picture is a commuting diagram in
the category of sets and binary relations: i.e., [−]c[−] = post (c ); ⊇ and {−}c{−} = post (c ); ⊆, where
‘;’ is sequential composition of binary relations. The diagram can be taken to define [−]c[−] and
{−}c{−} in terms of post (c ). A rigorous semantics of these notions will be given later in Section 5.
post (c )p is often called the łstrongestž post-condition, because it is the smallest set of states

amongst those q satisfying {p}c{q}. This nomenclature reflects the historical accident of focus on
the top triangle, and not the equally (we shall attempt to show) natural bottom. post (c )p is also the
largest q satisfying [p]c[q], what we might call the łweakest under-approximate postž.

Below the diagramwe list several principles. The under-approximate triple part of∧∨ symmetry is
central: it supports sound reasoning covering fewer than all the paths in a program. The correctness
version of the symmetry is true in our framework but the⇒ implication has sometimes been denied
in correctness logics (e.g., [Gotsman et al. 2011]). Both parts of the ⇑⇓ symmetry are important:
these are łrules of consequencež which allow specifications to be adapted to broader contexts.

To understand the Principles of Agreement andDenial is it helpful fo appeal to testing terminology.
In this picture

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



10:4 Peter W. O’Hearn

the regions labelled u and u ′ represent assertions in an under-approximate triple [u]c[u ′] and the
horizontal lines show the transition relation of the program. We think of the post-condition o′

as the łtest oraclež in a putative Hoare triple {o}c{o′}. If the question łis this a member of o′?ž
fails for a final state obtained by executing the program from a start state satisfying o, then the
correctness triple is false. Denial says, as in this picture, that if we have an under-approximate
triple taking a subset u of o to u ′, and part of u ′ lies outside of o′, then our test oracle will fail on it,
denying the putative triple; i.e., ¬({o}c{o′}). Agreement gives conditions under which the oracle
will be happy: the picture would adjust so that u ′ was contained in o′. Note that Agreement and
Denial are logically equivalent. Traditional program testing corresponds to when u and u ′ are both
singleton sets describing a test run. Incorrectness logic uses predicates to describe bigger sets, while
remaining under-approximate.
In this paper we won’t study correctness and incorrectness triples together, and will use a

program statement error() to give the capability of test/verification oracles. This is to keep the
paper contained; ultimately, it does make sense for them to be used together.

There has been important work which uses logical reasoning to help generate test cases [Cadar
and Sen 2013]. Property-based testing uses assertions as test oracles [Claessen and Hughes 2000],
but as in the discussion above of Agreement and Denial, this is essentially as in Hoare logic: the
assertions over-approximate the expected. But, logical principles for showing the presence of
bugs have not been as extensively studied as those for showing their absence. Using logic for
incorrectness potentially has many of the same benefits as it does for correctness.

The essential point is that symbolic, logical reasoning can cover many states at once, even many
program paths. While this does give the alluring in-principle ability to cover all paths, to prove the
absence of errors, even when fewer than all are covered major advantages can accrue; in particular,
it can be the case that symbolically approximating many states can be done more compactly, and
efficiently, than enumerating the individual states, and this is the case whether or not we are in the,
in practice, comparatively rare situation that every possible state and path is covered.

Incorrectness logic is also relevant to specifying interfaces. In the ideal case, assertions describing
correctness conditions at exit points in a program (post-assertions) should be over-approximate,
while for incorrectness they should be under-approximate.

It is important to note that the exact reasoning of the middle line of the diagram is definable
mathematically but not computable (unless highly incomputable formulae are used to describe the
post). Approximating in either direction provides a way to escape undecidability. Over-approximate
reasoning can prove the absence of errors [Cousot and Cousot 1977]: if an over-approximation
claims there are no errors, then (modulo assumptions) there will be none when a program is
executed. Tools based on over-approximation suffer from false positives, reports of bugs that
cannot happen; a state satisfying a post-condition might not be reachable, and apparent errors
that follow from it can be false positives. On the other hand, under-approximation is relevant to

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



Incorrectness Logic 10:5

guaranteeing the presence of errors: if a state leads to an error, and satisfies an assertion describing
an under-approximation of the reachable program states, then it can occur in a real execution.
Under-approximation removes false positives, but opens the way to false negatives (missed bugs).
Finally, the reader might be wondering, why do we need incorrectness reasoning? Can’t we

just negate correctness reasoning? That might be the possible in an ideal world where full formal
specifications were written for all software beforehand, and where there were no decidability or
efficiency issues to contend with. But, the inability to prove an over-approximate spec (whether
found by a tool or specified by a human) does not imply an error in a program, and neither does
not having found a bug imply that there are none: thus, the need for dedicated techniques for each.

3 BEGINNING EXAMPLES

Incorrectness logic provides a perspective on reasoning about programs that, based on our experi-
ence describing it to people, appears to take some getting used to. So, we start with an informal
warm up session before moving on to the formal development.

3.1 Under-approximating Triples

In examples we will use łpresumesž to identify an incorrectness logic pre-assertion and łachievesž
to identify a post-assertion. This is by analogy with the use of łrequiresž and łensuresž in some
tools for correctness reasoning (e.g., https://en.wikipedia.org/wiki/Java_Modeling_Language). Note
that we are not making a concrete recommendation that łpresumesž and łachievesž be used in
a specification language: these terms are used in code mainly to help us explain examples as we
explore the theory.
Consider this program, together with the presumption and result.

1 /* presumes: [z==11] */

2 if (x is even) {

3 if (y is odd) {

4 z=42;

5 } }

6 /* achieves: [z==42] */

Question: is the assertion z==42, the result, an under-approximation of the states reachable by
executing this code starting from the presumption?
We have found that people very often answer yes, initially. Then we point out, it is not. The

reason is that the assertion z==42 is satisfied by states where x is odd or y is even. E.g., the state
[z:42,x:1,y:2] satisfies z==42, but is not reachable starting from the pre. So, we would say that this
is a false under-approximate triple, but that

1 /* presumes: [z==11] */

2 if (x is even) {

3 if (y is odd) {

4 z=42;

5 } }

6 /* achieves: [z==42 && (x is even) && (y is odd) ] */

is a true under-approximate triple. (Similar issues come up for post-conditions associated with
errors cause by error() statements, by division by 0, by use-after-free, etc. The question arises:
what is the post-state when the error occurs?) You might also wonder: why did we include z==11
as the pre in the first triple? What if we replaced it with true. Would z==42 on its own then be a
true under-approximation of the post? The answer is yes.

At this point folks have exclaimed: What is going on? People are sometimes led to an initial łyesž
answer to the question above because they are unwittingly applying the rule of weakening the

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.

https://en.wikipedia.org/wiki/Java_Modeling_Language


10:6 Peter W. O’Hearn

post-condition. This lets us make an inference like

{p}C{q ∧ r }

{p}C{q}

which drops conjuncts. You just can’t do that soundly when reasoning about under-approximation.
In fact, there is a fundamental logic for reasoning about under-approximation. Above, when

concluding a correct under-approximate post-assertion for our program, you might have noticed
that the post-assertion corresponds to only one path through the program: it doesn’t cover them
all. We (silently) applied the incorrectness logic part of the principle of ∧∨ Symmetry from before.
Not only does incorrectness logic deny weakening the post-condition, it supports other rules like

[p]C[q1 ∨ q2]

[p]C[q1]

which allow us to focus on fewer than all the paths, a feature which is a hallmark of under-
approximation. What is more, soundly dropping disjuncts is a useful capability which can be called
upon in order to help a reasoning tool scale.

3.2 Specifying Incorrectness

We can reason about errors by distinguishing result-assertion forms, for normal and erroneous
or abnormal termination. For example, consider the following program, which is a variant of one
used to illustrate buffer overflows by One [1996].

1 void foo(char* str)

2 /* presumes: [*str []==s]

3 achieves: [er: *str []==s && length(s) > 16 ] */

4 { char buf [16];

5 strcpy(buf ,str);

6 }

7

8 int main(int argc , char *argv [])

9 { foo(argv [1]); }

The specification for foo() says that if the length of the input string is greater than 16 then we
can get an error (in this case a buffer overflow). (There, we are writing *str[]==s to indicate that
sequence s held as a null-terminated string starting at address str .)
Remark: it is not necessary that a segmentation fault must occur in C when a buffer overflows

(worse can happen). Incorrectness is an abstraction that a programmer or tool engineer decides
upon to help in engineering concerns for program construction. Logic provides a means to specify
these assumptions, and then to perform sound reasoning based on them, but it does not set the
assumptions.

3.3 Under-approximate Success

Even if we were mainly interested in incorrectness, under-approximate result assertions describing
successful computations can help us soundly discover bugs that come after a procedure is called. In
particular, if we were to have over-approximate assertions only for successful computations, then
our reasoning could go wrong, as the following example illustrates.

1 void mkeven ()

2 /* presumes: [true], wrong achieves: [ok: x==2 || x==4] */

3 { x=2; }

4

5 void usemkeven ()

6 { mkeven (); if (x==4) {error();} }

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



Incorrectness Logic 10:7

We use ok: before an assertion to indicate that it describes a result for normal, not exceptional,
termination of a program. The achieves assertion mkeven() describes an over-approximation of
what the procedure produces, including a possibility (x==4) than cannot occur. If we were to use
this wrong achieves assertion in usemkeven() to conclude that an error is possible then this would
be a false positive warning.
For this reason, our formalism will include under-approximate achieves-assertions for both

successful and erroneous termination. mkeven() achieves "ok: x==2", not "ok: x==2 || x==4".
The possibility of divergence gives rise to many more such examples. If we consider a version of

mkeven() with body while(true){};x=2, then x==4 is an over-approximate post-condition, and
it lines up perfectly with the condition to trip the error, but this would again be a false positive.
Reasoning about termination is needed to be under-approximate; but, as we shall see, what is
needed is not the same as showing termination on all inputs.

4 PROOF SYSTEM

Wewill use a language for simple imperative programs inwhich a statement error() halts execution
and raises a particular error signal, er . error() can be used to define an assert(B) statement
that allows correctness (and hence, incorrectness) conditions to be written, in the same way that
assert() is defined in terms of abort() in the C programming language.
The error() statement leads to abnormal termination, where control never returns to the

statement following it. E.g., in

x=1; error(); x=42

we know that x=42 will not be executed, and so x will be 1 in the final łabnormalž state. Abnormal
control flows impact reasoning about sequential composition, and a standard approach to these
flows is to associate assertions with different exit conditions [Clint and Hoare 1972].

Let ϵ range over a collection of ‘exit conditions’ (or exceptions), to include at least ok (for normal
termination) and er (caused by error()). We will consider a specification form

[p]C[ϵ:q]: q under-approximates the states when C exits via ϵ starting from states in p.

In this paper we are going to concentrate on a single kind of error, er , arising from error(). This
is to concentrate on the essential technical issues. Obviously we could consider and distinguish
different kinds of error (say, for division by zero, null pointer exceptions, etc).
We treat the assertions, the p,q in [p]C[ϵ:q], semantically in this paper. That is, an assertion is

assumed to be a subset of Σ, and we don’t fix a language for describing these subsets. The concept
of a free variable referred to in proof rules is treated semantically by saying that x is free in p

if p is invariant under changing x : i.e., σ ∈ p ⇔ ∀v . (σ |x 7→ v ) ∈ p, where (σ | x 7→ v ) for the
function like σ except that x maps to v . We sometimes equivalently say that p is independent of x .
Substitution, p[e/x], is also understood in the evident way as {(σ | x 7→ JeKσ ) | σ ∈ p} where JeKσ
is the value of expression e in state σ . We use standard logical notation to refer to the complete
Boolean algebra structure of the powerset P (Σ) ś ∧ is intersection, ∨ is union,⇒ is subset inclusion,
∃ is existential quantification, etc. By treating assertions semantically we are essentially appealing
to mathematics (or set theory) as an oracle in our proof theory when we use⇒ in proof rules.

We sometime write a quadruple

[p]C[ok:q][er: r ] as shorthand for [p]C[ok:q] and [p]C[er: r ]

We often write result assertions for normal termination in green and abnormal in red. In cases
where the result could be either, as in [pi ]C[ϵ:qi ] we keep the more neutral blue.

It’s important to note that the existence of a (consistent) error assertion does not indicate a
definite bug in a program. Consider a procedure f(x) = {assert(x!=0);...}, with error spec

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



10:8 Peter W. O’Hearn

Empty under-approximates Consequence Disjunction

[p]C[ϵ: false]

p′ ⇐ p [p]C[ϵ:q] q ⇐ q′

[p′]C[ϵ:q′]

[p1]C[ϵ:q1] [p2]C[ϵ:q2]

[p1 ∨ p2]C[ϵ:q1 ∨ q2]

Unit Sequencing (short-circuit) Sequencing (normal)

[p]skip[ok:p][er: false]

[p]C1[er: r ]

[p]C1;C2[er: r ]

[p]C1[ok:q] [q]C2[ϵ: r ]

[p]C1;C2[ϵ: r ]

Iterate zero Iterate non-zero Backwards Variant (where n fresh)

[p]C⋆[ok:p]

[p]C⋆;C[ϵ:q]

[p]C⋆[ϵ:q]

[p (n) ∧ nat (n)]C[ok:p (n + 1) ∧ nat (n)]

[p (0)]C⋆[ok:∃n.p (n) ∧ nat (n)]

Choice (where i = 1 or 2) Error Assume

[p]Ci [ϵ:q]

[p]C1 +C2[ϵ:q] [p]error()[ok: false][er:p] [p]assume B[ok:p ∧ B][er: false]

whileB doC =def (assume(B); C )⋆; assume(¬B)

ifB thenC elseC ′ =def (assume(B); C ) + (assume(¬B); C ′)

assert(B) =def assume(B) + (assume(¬B); error())

Fig. 2. Generic Proof Rules of Incorrectness Logic

Assignment Nondet Assignment

[p]x = e[ok:∃x ′.p[x ′/x] ∧ x = e[x ′/x]][er: false] [p]x = nondet()[ok:∃x ′p][er: false]

Constancy Local Variable

[p]C[ϵ:q]

[p ∧ f ]C[ϵ:q ∧ f ]
Mod (C ) ∩ Free( f ) = ∅

[p]C (y/x )[ϵ:q]

[p]localx .C[ϵ:∃y.q]
y < Free(p,C )

Substitution I Substitution II

[p]C[ϵ:q]

([p]C[ϵ:q]) (e/x )

(

Free(e ) ∪ {x }
)

∩ Free(C ) = ∅
[p]C[ϵ:q]

([p]C[ϵ:q]) (y/x )
y < Free(p,C,q)

Fig. 3. Rules for Variables and Mutation

[x ==0]f(x)[er:x ==0]. A tool would often choose not to flag an error in f(), instead warning at
call sites that supply 0. We don’t expect error specs necessarily to be ephemeral, to be removed as
bugs are fixed: a spec like this could be kept in cache, even when part of a complete program that
is error free, to be reused to help protect against future regressions when the program is changed.

We give two sets of proof rules. Those in Figure 2 are generic ones that we expect to be valid in
many models, allowing for different models of states or commands themselves. Two such models

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



Incorrectness Logic 10:9

(based on traces and on separation) are mentioned in the last section of the paper. Figure 3 contains
rules which assume that the states are functions of type Variables → Values.
Instead of considering while loops and if statements, we have Kleene iteration C⋆, assume

statements, and nondeterministic choice (+); these let us encode while and if. Kleene iteration does
zero or more iterations of C before exiting, behaving as the recursive equation C⋆ ≡ skip +C;C⋆.
In the assume(B) statement B is a Boolean expression, which we allow can be built up using the
primitives in an otherwise-unspecified first-order logic signature. The commands overall are those
built up from primitive commands using choice, iteration and sequential composition.

We use the notation x = e for assignment and e==e ′ for equality.Mod (C ) is the set of variables
modified by assignment statements in C , and Free (r ) is the set of free variables in an assertion
r . Normal assignment x = e and x = nondet() are distinct syntactic forms. In the former, e is an
expression built up from a first-order logic signature, can appear within assertions, and is side-effect
free. nondet() does not appear in assertions. Incorrectness logic uses Floyd’s forward-running
assignment axiom (see Figure 3) rather than Hoare’s backwards-running one. We actually cannot
use Hoare’s, which substitutes into the pre as [p[e/x]]x = e[ok:p], because it is unsound here; for
example, in [42==y]x = 42[ok:x ==y] the post-assertion does not under-approximate the states
reachable from the pre: a non-reachable state satisfying x ==y is one where both x and y denote 3.

The axioms for assume and skip give the expected assertions for normal termination, but specify
false (the empty set of states) for abnormal. false is a valid result assertion for either normal or
abnormal termination, for any program, and we have included an axiom to that effect.

Incorrectness logic’s rule of consequence lets us enlarge (weaken) the pre and shrink (strengthen)
the post-assertion. As we indicated earlier, this lets us drop disjuncts from the post, using the
implication q ⇒ q ∨ q′. Conversely, we can drop conjuncts in the pre:

[p1 ∧ p2]C[ϵ:q]

[p1]C[ϵ:q] .

Enlarging the pre was used in the Abductor tool ([Calcagno et al. 2011], which led to Facebook
Infer), when guessing pre-conditions in programs with loops. This operation was unsound in the
over-approximating logic used there, and was one of the reasons for a re-execution step which
filtered out unsound pre-conditions. This step would be sound in incorrectness logic.
The first rule for sequencing is for short-circuiting, when error() happens within the first

statement, and the second covers sequencing when the first command terminates normally. The
Iterate zero rule corresponds to immediate exit from the loop. It shows that any assertion is a
valid under-approximate invariant for Kleene iteration; loop invariants don’t play a central role
in under-approximate reasoning like they do for over-approximate. The Iterate non-zero rule uses
C⋆;C rather than C ;C⋆ to help reasoning about cases where an error is thrown inside an iteration:
In that case some number of successful iterations will occur, and the error will be thrown on the last
iteration. To reason about such cases you can first find a result assertion for normal termination,
the łfrontierž before then error-throwing iteration, and then reason about errors that flow from the
frontier in the next step. An example showing this capability will be used in Section 6.1, and this
reasoning pattern will be used in the completeness proof in Section 5.1.
We can derive useful rules for choice and iteration using the disjunction rule.

Derived Unrolling Rule Derived Rule of Choice

[p]Ci [ϵ:qi ], all i ≤ bound

[p]C⋆[ϵ:
∨

i≤bound qi ]

[p]C1[ϵ:q1] [p]C2[ϵ:q2]

[p]C1 +C2[ϵ:q1 ∨ q2]

In the Unrolling Rule Ci is the i-fold sequential composition, where C0
= skip and Cn+1

= C;Cn .
The rule says that one of the things that iteration can do is execute its body i times. The Unrolling

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



10:10 Peter W. O’Hearn

Rule gives us a capability similar to symbolic bounded model checking [Clarke et al. 2004]. It is a
simple and surprisingly effective way to discover some post-conditions for a loop, but in general
stronger reasoning is needed (as provided by the Backwards Variant rule).
An important point is that [presumption]c[ϵ: result] expresses a reachability property that in-

volves termination.

Every state in the result is reachable from some state in the presumption.

This reachability property does not imply that a loop must terminate on all executions. Instead,
it establishes that enough paths terminate to cover all the states in the result assertion, while
allowing that other paths might lead to divergence. The Backwards Variant proof rule is designed
with this in mind. p (·) in the rule is a parametrized predicate (a function from expressions to
predicates). The requirement that n be fresh in the rule means that it is a variable not free in
C or p (·). The rule is similar to proof rules for proving program termination which appeal to a
łvariantž that decreases on each loop iteration [Apt 1981; Harel 1980], except that it reflects the
backwards nature of this property: the variant, the parameter to p, goes down when executing
backwards rather than forwards. A forwards variant of the rule is possible to formulate, but is
not very useful in incorrectness logic, since [∃n.p (n) ∧ nat (n)]C⋆[ok:p (0)] is automatically true
without any premises: from a state satisfying the post we can get back to the pre by choosing zero
iterations and using 0 to witness ∃n.

Section 6.1 shows reasoning about a loop which contains both terminating and non-terminating
executions using the Backwards Variant rule.

The reachability property is intuitively related to łlivenessž, which says that łsomething (good)
will eventually happenž [Lamport 1977]. Entertainingly, in our case the łgoodž might be a bug.
We can cast the property as stated in terms of something happening by reading a spec backwards:
for every state in the result, it is possible to eventually reach a state in the pre by executing
backwards. Reading forwards is trickier, but possible: if we explore executions from all the start
states described by a pre, then eventually any given state in the result will be encountered. This
exploration could be relative to an oracle to enumerate the pre-states, and it would dovetail and
backtrack executions on the different states so divergence or nondeterminism from one state
does not block other explorations. Note that the łeventuallyž here does not concern all paths, and
appears related technically to what is known as an łexistential liveness propertyž [Manolios and
Trefler 2001]. In contrast, the over-approximate triple {pre}C{post } describes a safety property, that
łnothing bad will happenž, where łbadž is delivering a final state outside the post, and this does not
require termination of any paths.

The Iterate zero rule can be derived from the Backwards Variant rule together with Consequence
and Empty under-approximates by choosing using p (·) of the form λn. if n > 0 then false elsep. We
have not attempted to formulate a minimal set of proof rules, but in Section 5.1 we shall prove a
completeness theorem indicating that no proof rules are missing.
A version of the Backwards Variant rule is also present in reverse Hoare logic [de Vries and

Koutavas 2011], as are most of our other rules for ok termination. They use a language with an
infinitary syntax, and include an infinitary version of the disjunction rule. While we have not
included an infinitary rule, the expressive power of infinite disjunctions is essentially used in
selecting a variant assertion in the proof of completeness (Theorem 6).
We do not include the dual of the disjunction rule, the rule with ∧ in place of ∨, because it is

unsound for under-approximation. For the program

C = (assume x ==1 ; x = 88) + (assume x ==2 ; x = 88)

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



Incorrectness Logic 10:11

we have [x ==1]C[ok:x ==88] and [x ==2]C[ok:x ==88], but the conjunction x == 1 ∧ x == 2 is
false, and we don’t have [false]C[ok:x ==88] because false is the post of C applied to false, and
x ==88 is not a subset of false.

The rules of Substitution and Constancy, as well as Consequence, are important for adapting
specifications for use in different contexts, as will be seen in examples in Section 6.4. The Local
Variable rule is similar to one from Hoare logic [Apt 1981], except that we have ∃y in the post-
assertion where the Hoare rule omits the ∃y while requiring y < Free(q). In over-approximate
reasoning one can move from q to ∃y.q using the rule of Consequence, but that step is not available
in under-approximate reasoning. If we did not include ∃y then the rule would be too weak in many
examples. The simple

Derived Local Variable Rule

[p]C[ϵ:q]

[∃x .p]localx .C[ϵ:∃x .q]

comes in handy. It can be derived using the Local Variable rule, Consequence, and Substitution II.
We finish this section with an exercise: deriving an axiomatic treatment of assert statements

based on the encoding in Figure 2. The rule for + gives us these two quadruples:

[p ∧ B]assert(B)[ok: (p ∧ B)][er: false]
[p ∧ ¬B]assert(B)[ok: false][er:p ∧ ¬B]

For example,
[x is even]assert(x is even)[ok:x is even][er: false]
[x is odd]assert(x is even)[ok: false][er:x is odd]

In a symbolic execution tool, these sorts of axiom might be used in case we wish to call a theorem
prover at branch points of if statements, in order to prune paths in the search for bugs.
A different derived axiom might be useful in some circumstances, in case we wish to postpone

the theorem prover call. Namely, suppose we have a presumes assertion before an assert statement

[p]assert(B)[??]

and we don’t know if p implies B or ¬B. We can push information to the result assertions, as
follows:

[p]assert(B)[ok: (p ∧ B)][er:p ∧ ¬B].

For example,
[true]assert(x is even)[ok:x is even][er:x is odd].

5 SEMANTIC FOUNDATION

We provide a semantic foundation for the above. Readers who are more interested in seeing the
proof rules in action can skip forward to the examples in the next section.

5.1 Relations

We presume we are given a set Σ of states, and predicates p, q, etc denote subsets of Σ. Much of our
development works for arbitrary Σ, but to interpret the assignment statement we consider states to
be of the form Σ = [Variables → Values] where a state maps variables to values. To reason about
termination we further assume that Values contains the set of natural numbers.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



10:12 Peter W. O’Hearn

Generic Semantics for arbitrary state sets Σ

JCKϵ ⊆ Σ × Σ

JBK : Σ→ Bool

JskipKok = {(σ ,σ ) | σ ∈ Σ} JskipKer = ∅

Jerror()Kok = ∅ Jerror()Ker = {(σ ,σ ) | σ ∈ Σ}

Jassume BKok = {(σ ,σ ) | JBKσ = true} Jassume BKer = ∅

JC⋆Kϵ =

⋃

i ∈Nat JC i Kϵ JC1 +C2Kϵ = JC1Kϵ ∪ JC2Kϵ

JC1;C2Kϵ = {(σ1,σ3) | ∃σ2.(σ1,σ2) ∈ JC1Kok and (σ2,σ3) ∈ JC2Kϵ }

∪
(

if (ϵ = ok) then ∅ else {(σ1,σ2) | (σ1,σ2) ∈ JC1Ker}
)

Semantics of mutation and local variables

Σ = Variables → Values

JeK : Σ→ Values

Jx = eKok = {(σ , (σ | x 7→ JeKσ )) | σ ∈ Σ} Jx = eKer = ∅

Jx = nondet()Kok = {(σ , (σ | x 7→ v )) | σ ∈ Σ, v ∈ Values} Jx = nondet()Ker = ∅

Jlocalx .CKϵ = {((σ | x 7→ v ), (σ ′ | x 7→ v )) | (σ ,σ ′) ∈ JCKϵ, v ∈ Values}

Fig. 4. Relational Denotational Semantics

Definition 1 (Post and Semantic Triples). For any relation r ⊆ Σ × Σ and predicate p ⊆ Σ

define

- The post-image of r , post (r ) ∈ P (Σ) → P (Σ):

post (r )p = {σ ′ | ∃σ ∈ p. (σ ,σ ′) ∈ r }

- The under-approximate triple:

[p]r [q] is true iff post (r )p ⊇ q

- The over-approximate triple (Hoare triple):

{p}r {q} is true iff post (r )p ⊆ q

First, we remark that this semantics validates the discussion in Section 2.

Theorem 2. All of the listed properties in Figure 1 are true of this semantics.

There is an alternate characterization of under-approximate triples in terms of the previously-
stated reachability property, which is in fact an equivalence that is useful when doing semantic
calculations.

Lemma 3 (Characterization). The following are equivalent:

(1) [p]r [q] is true
(2) Every state in the result is reachable from some state in the pre: ∀σq ∈ q. ∃σp ∈ p. (σp ,σq ) ∈ r .

de Vries and Koutavas [2011] take (2) in this lemma as the semantics of triples, rather than the
equivalent from Definition 1.

Relations give a particularly simple denotational (i.e., compositional) semantics of programs, as
in Figure 4. In this semantics each program C is associated with two relations, JCKok and JCKer ,

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



Incorrectness Logic 10:13

describing state transitions for successful and erroneous computations. The semantics of C⋆ is
not literally compositional as presented, but JC iK is defined in terms of JCK so it expands to a
compositional definition. JC⋆K can also be presented as the least fixed-point of a function of the
form λr .skip +C; r using lattices of relations ordered by graph inclusion.
This relational semantics treats divergence in an implicit way, in that there are no explicit ⊥’s.

An always-divergent program such as while(true)do skip denotes the empty relation, and the
semantics satisfies the identityC = C + diverge. For readers familiar with subtleties that arise in the
semantics of nondeterminism [Apt and Plotkin 1986; Cousot 2002], particularly when reasoning
about the liveness property of total correctness (over-approximation plus termination), it might be
surprising that we can use such a simple semantics. The relational semantics is known to work
well for partial correctness, and it turns out that it is also suitable for studying the reachability
property of under-approximate triples.

We can connect the relational semantics to the proof system of incorrectness logic by interpreting
the proof-theoretic specifications in terms of the semantic triples.

Definition 4 (Interpretation of Specifications). [p]C[ϵ:q] is true iff the semantic triple
[p](JCKϵ )[q] holds.

The proofs for the ok cases in the following soundness and completeness results can be as in
reverse Hoare logic [de Vries and Koutavas 2011], and most can also be obtained from arguments
in dynamic logic [Harel 1979]. We will briefly sketch some of these cases along with the er ones to
keep the paper contained.

Theorem 5 (Soundness). The relational semantics in Figure 4 validates all the rules in Figures 2
and 3: each axiom is true and each inference rule preserves truth.

Proof: The soundness of the first two iteration rules follow from the true equivalence C⋆ ≡

skip +C⋆;C . For the Backwards Variant rule we will use the Characterization Lemma. Assuming
we have

σ satisfying ∃n.p (n)

we wish to show that

there is σ ′ satisfying p (0) which (C )⋆ transforms to σ

Starting from σ , let j be a value of n which witnesses the existential. If j = 0 we are done, we
can choose zero iterations of (C )⋆. Otherwise, the premise of the rule says that applying C once
backwards gives us at least one σ0 satisfying p (j − 1). If j − 1 is 0 then we are done. Else, we repeat
this step and iterate again backwards from σ0 to obtain some σ1 where p (j − 2) holds. Continuing
this process will eventually in a finite number of steps deliver p (0).
Amongst the variable rules we give the proof for the Local Variable rule; our rule, which

follows Apt [1981], is slightly different from the one in reverse Hoare logic, which relies on alpha-
renaming bound variables. Suppose [p]C (y/x )[ϵ:q] and (σq | x 7→ v,y 7→ vy ) ∈ ∃y.q. Then
(σq | x 7→ v,y 7→ v2) ∈ q for some v2. We execute C (y/x ) backwards and get (σp | x 7→ v,y 7→

v1) ∈ p by the Characterization Lemma. Since p is independent of y we can set y back to vy
and it will still be in p: (σp | x 7→ v,y 7→ vy ) ∈ p. This sequence of steps can be mimicked in
the semantics of localx .C , stepping from (σq | x 7→ v,y 7→ vy ) via backwards finalization to
(σq | x 7→ v2,y 7→ vy ), then backwards via C to (σp | x 7→ v1,y 7→ vy ), and then via backwards
initialization to (σp | x 7→ v,y 7→ vy ). We already argued above that (σp | x 7→ v,y 7→ vy ) ∈ p, so
this gives us the truth of [p]localx .C[ϵ:∃y.q] by the Characterization Lemma.

The argument for the other variable rules similarly appeals to the Characterization Lemma. The
arguments for + and ; are immediate from the semantic definitions. For assignment soundness

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



10:14 Peter W. O’Hearn

follows from the fact that Floyd’s axiom expresses the strongest post-condition, which is therefore
also an under-approximation. Similar is true for skip, error(), x=nondet() and assume(B).

Next we need a condition on predicates. A subset p ⊆ Σ(= Variables → Values) might depend on
all variables, but we need to be able to select a fresh variable y not in a given assertion in order to
apply the Local Variable rule in the proof of completeness. So, suppose that Variables is countably
infinite, and define a predicate p to be finitely-supported if it is independent of all but a finite number
of variables. Typically in applications, assertions will be written syntactically as finite expressions
involving finitely many variables, so being finitely-supported is not a drastic restriction.

Theorem 6 (Completeness). Every true triple involving finitely-supported predicates is provable.

This theorem relies on us using semantic (subset of Σ) rather than syntactic predicates, with an
oracle to decide implications. It does not contradict undecidability results, but rather confirms a
sense in which no proof rules for programs are missing. [To cognoscenti: semantic predicates let us
assume (or dodge the issue of) łexpressivenessž [Cook 1978] used in completeness for Hoare logics,
and requiring that Values contains the natural numbers builds in the łarithmeticalž interpretation
idea used in arguments for liveness proof rules [Harel 1979]. Our use of semantic predicates
has precedent, e.g., in the metatheory of separation logic [Calcagno et al. 2007; Yang 2001] and
embeddings of program logics in proof assistants [Nipkow 2002].]

Proof: We need to show that [p]C[ϵ:q] is provable on the assumption that it is true, and we do
this by induction on the structure of C . The base cases for assignment, error and assume follow at
once using the rule of consequence and the fact that the axioms express strongest post-conditions.

For choice, if [p]C1 +C2[ϵ:q] is true then we know that q is a subset of post (JC1 +C2Kϵ )p, which
is equal to post (JC1Kϵ )p ∨ post (JC2Kϵ )p. By induction we know that each [p]Ci [ϵ: post (JC2Kϵ )p] is
provable, and so the provability of [p]C1 +C2[ϵ:q] follows by the disjunction rule and consequence.
For sequencing, in case ϵ = ok the result follows by induction using the first sequencing rule,

consequence, and that post (JC1;C2Kok)p = post (JC2Kok) (post (JC1Kok)p). In case ϵ = er we use
induction, consequence and the rule of disjunction together with the equality post (JC1;C2Ker )p =
(

post (JC2Ker ) (post (JC1Kok)p)
)

∨ post (JC1Ker )p.

For iteration first we do the proof for ϵ = ok. Supposing [p](C )⋆[ok:q] is true, we define

p (n) = {σ | you can get back from σ to some state in p by executing C backwards n times}.

Note that p (0) = p by this definition. From the definition of p (n) it is evident that

[p (n) ∧ nat (n)]C[ok:p (n + 1) ∧ nat (n)]

is true, and hence it is provable by induction hypothesis. We apply the Backwards Invariant rule and
then Consequence using q ⇒ ∃n.p (n), which is a true implication because of the Characterization
lemma. This shows that [p](C )⋆[ok:q] is provable. (We use n to describe the number of iterations
in a similar way to Harel [1979], except that he appeals to Gödel encoding, and to de Vries and
Koutavas [2011], who use an infinitary disjunction.)
Now, for ϵ = er we use the idea is that if an error is thrown then some number of successful

iterations happens first, followed by error happening on thenext (last) iteraiton. We use the rule
Iterate non-zero to deal with this case. So, suppose [p](C )⋆[er:q] is true and define frontier to be
the reachable states for normal termination; i.e., frontier = post (JCKok)p. By the just-proven com-
pleteness case for iteration and normal termination, we know that [p](C )⋆[ok: frontier] is provable.
Now, [frontier]C[er:q] must be true (note the absence of ⋆), or else the beginning assumption that
[p](C )⋆[er:q] could not be. By induction hypothesis we know [frontier]C[er:q] is provable, and we
can use Sequencing (normal) and Iterate non-zero to conclude that [p](C )⋆[er:q] is provable.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



Incorrectness Logic 10:15

Our final case is local variables. Suppose [p]localx .C[ϵ:q] is valid. We pick y independent of p
and not free in C (p being finitely supported guarantees y exists), and claim that

(*) q ⊆ ∃y.post (JC (y/x )Kϵ )p.

Postponing proof of (*), [p]C (y/x )[ϵ: post (JC (y/x )Kϵ )p] is provable by induction hypothesis, and
then we can use the Local Variable Rule together with (*) and the rule of Consequence to conclude
that [p]localx .C[ϵ:q] is provable. [Note: induction hypothesis does not literally apply because
C (y/x ) is not a subterm of localx .C ; to be fully rigorous we would include an additional injective
renaming component ś if [p]C[ϵ:q](y⃗/x⃗ ) is true then it is provable ś to give us a stronger induction
hypothesis; this is standard when doing proofs when substitution is involved (cf., [Apt 1981;
Stoughton 1988]).]
We are left to prove (*). If q is empty we are done. If q is nonempty then the validity of

[p]localx .C[ϵ:q] means that there exists ((σp | x 7→ v0,y 7→ v ), (σq | x 7→ v0,y 7→ v )) ∈

Jlocalx .C )K with (σp | x 7→ v0,y 7→ v ) ∈ p and (σq | x 7→ v0,y 7→ v ) ∈ q. This transition is
witnessed (for some v1,v2) by the steps in the semantics of localx .C from

(σp | x 7→ v0,y 7→ v ) via initialization to (σp | x 7→ v1,y 7→ v ), via C to (σ1 | x 7→

v2,y 7→ v ), and via finalization to (σq | x 7→ v0,y 7→ v ).

Since (σp | x 7→ v0,y 7→ v ) ∈ p and p is independent of y we also have (σp | x 7→ v0,y 7→ v1) ∈ p,
mimicking the initialization step above. We can mimick the remaining steps by moving from

(σp | x 7→ v0,y 7→ v1) via C (y/x ) to (σq | x 7→ v0,y 7→ v2) ∈ post (JC (y/x )Kϵ )p.

This shows (σq | x 7→ v0,y 7→ v ) ∈ ∃y.post (JC (y/x )Kϵ )p, and (*) follows.

The rules of Substitution and Constancy from Figure 3 were not needed for the completeness
proof. They are used in Section 6.4 to adapt specifications to calling contexts. The substitution
rules are suitable for use with parameterless procedures, but additional rules are needed to deal
with parameters. This has been a notoriously subtle problem-area in Hoare logics [Apt 1981; Cook
1978], and a thorough treatment of incorrectness logic with procedures would be worthwhile.

5.2 Predicate Transformers

Predicate transformers, functions that map predicates to predicates, are a fundamental semantic
tool in program logic and analysis. In this section we find that:

(1) forwards transformers, which form the basis for program verification and (especially) program
analysis tools, are well behaved in incorrectness logic;

(2) backwards transformers, which have been used extensively in tools and in program refinement
[Back and von Wright 1998; Dijkstra 1976], do not always exist for incorrectness logic (at
least in standard forms).

Forwards Transformers. The post-condition operator post (r )p can be given an alternate charac-
terization as the strongest predicate satisfying the Hoare triple {p}r {q}. This is usually called the
strongest post-condition, but we will call it strongest-over-approximate post to distinguish from
the opposite notion, the weakest under-approximate post.

Definition 7. For r ⊆ Σ × Σ:

• StrongestOverPost (r )p =
∧

{q | {p}r {q} holds}

• WeakestUnderPost (r )p =
∨

{q | [p]r [q] holds}

Proposition 8. StrongestOverPost (r ) = WeakestUnderPost (r ) = post (r )

This proposition gives a starting point for defining under-approximating program analyses. We
explain this in the key cases of iteration and choice, which encapsulate the issues of undecidability
and path explosion that program analyses need to deal with.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



10:16 Peter W. O’Hearn

The strongest post for iteration can be defined by appeal to loop invariants.

post (JC⋆Kok)p =

∧

{I | p ⇒ I ∧ {I }C{I } is true}

This equation can be proven, in the left-to-right direction, from soundness of the Hoare proof rule
for invariants, and from right-to-left by selecting I to be the set of all states reachable in some
number of executions ofC from p. A different definition is possible with under-approximate triples.

post (JC⋆Kϵ )p =

∨

i ∈Nat {q | [p]C
i [ϵ:q] is true}

That this equation is true can be proven by selecting q = {s} for each of the reachable states s , and
observing that when s is reachable we must get there by some number i of iterations.

These two (equivalent) definitions of the iteration predicate transformer present different compro-
mise possibilities that reasoning tools can take in the face of undecidability. For over-approximation,
if we discover a loop invariant then the first equation tells us that we will over-approximate the
post [Cousot and Cousot 1977]. This is nontrivial, and tends to require the invention of remarkable
abstract domains and widening operators which are generally not yet available in every situation.
For under-approximation, the second equation tells us that the simple option of limiting the loop
unrollings can be used

post (JC⋆Kϵ )p =

∨

i≤bound {q | [p]C
i [ϵ:q] is true}.

This is an alternate predicate transformer semantics where the calculated post is a subset of the
exact one. While blunt, this approach does not require human invention for every new analysis
problem, and presents less of a bottleneck as regards the availability of possibly scarce human
expertise.

The idea that you can under-approximate via bounded loop unrollings is well known. We have
made these points only to exemplify how incorrectness logic’s principles fit well with (under-
approximate) reasoning intuition, in a complementary way to how Hoare logic fits for correctness.
Of course, bounded unrollings are not sufficient in all situations, an issue we will explore in the
Section 6.1.
Turning now to nondeterministic choice, we have

post (JC1 +C2Kϵ )p = post (JC1Kϵ )p ∨ post (JC2Kϵ )p.

Even if loops are bounded to remove infinite executions, we can still obtain an explosion of paths
when + is used to model conditionals.

A standard technique in program analysis is to avoid disjunctions by keeping a single or few
abstract states at each program point. Theoretically, this can be seen as selecting a łjoin operatorž
∨ that over-approximates disjunction: p ∨ q ⇒ p ∨q. For under-approximate reasoning we need to
do the reverse: consider ∨ where p ∨q ⇒ p ∨ q. Then, we can define

post (JC1 +C2Kϵ )p = post (JC1Kϵ )p ∨ post (JC2Kϵ )p

The general point is that a predicate transformer semantics post with just these clauses in place of

the standard ones produces correct under-approximate post-states.
Often in program analysis a set of abstract states is used to represent a disjunction, and a

representation of the disjunction of two of the sets is their union. In this case, a valid implementation
of ∨ is simply to trim the resulting union so that it stays smaller than a given threshold. That is the
approach taken in Infer.Pulse, a program analyzer for object lifetimes in production at Facebook.
There is much more to producing a program analysis than changing the predicate transformer

semantics in this way. In particular, compositional reasoning, where pre- as well as post-assertions
are inferred, is important for scalability and incrementality[Calcagno et al. 2011; Distefano et al.
2019; O’Hearn 2018]. We will not define a compositional analysis method in this paper, but will

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



Incorrectness Logic 10:17

comment on the connection between under-approximate triples and the concept of procedure
summary during our discussion in the next section.

Backwards Transformers. Where the forwards transformers for under-approximation are similarly
well behaved as their over-approximate cousins, the same is not true for backwards.

Fact 9. Valid presumptions need not exist: Given a relation r and assertion q, there need not exist
any p such that [p]r [q].

For example, there is no p making [p]x = 41[ok: true] hold. One might try to remedy this problem
by adding a special predicate (say, ⊤) to assign as the pre when no appropriate state set exists.
However, this simple tack is not enough: even when valid presumptions exist, there need not be a
smallest (strongest) one. The example C = (assume x ==1 ; x = 88) + (assume x ==2 ; x = 88)

from earlier has x ==1 as x ==2 are valid pre’s for result ok:x==88, but their conjunction is not.
While strongest under-approximate presumptions do not exist in general, this does not mean

that backwards reasoning is impossible to use. We can use standard backwards transformers, which
were designed to discover over-approximate triples, to generate pre-assertions, and then reason
forwards to generate sound under-approximate post-assertions. We illustrate with an example in
Section 6.3.

5.3 Other Characterizations

We described the under-approximate triple directly using predicate transformers, and gave an
equivalent characterization which we called the reachability property. de Vries and Koutavas go
the other way around and take the reachability property as the definition [de Vries and Koutavas
2011] . Other equivalent characterizations are possible using a number of logical theories that have
been developed over the years.

Relational and Kleene Algebra. We can describe the under-approximate triple using the theory of
binary relations, and the dual of an encoding of over-approximate triples suggested by Hoare in
work on Concurrent Kleene Algebra [Hoare et al. 2011]: he suggested to read {p}r {q} as p; r ⊑ q,
and we will reverse ⊑. Instead of working at the algebraic we will stick with the particular model
of relations.
To formulate the connection we use the following mapping of predicates to binary relations.

Definition 10. If p ⊆ Σ then let make(p) = {(σ ,σ ′) | σ ′ ∈ p}.

Fact 11. Let ł;ž denote composition of binary relations in diagrammatic order. Suppose r ⊆ Σ × Σ

is a relation and p,q ⊆ Σ are predicates.

• {p}r {q} holds iff make(p); r ⊆ make(q).
• [p]r [q] holds iff make(p); r ⊇ make(q).

Based on this characterization we can make a further connection to the theory of Kleene Algebra
with Tests (KAT, [Kozen 2000]). A model of KAT is an algebraic structure (an idempotent semiring
with additional axioms) including operations for sequential composition and nondeterministic
choice, and equipped with an embedding of a Boolean algebra that sends disjunction to + and
conjunction to sequential composition. A standard model of KAT takes binary relations on a state
space Σ as the carrier of the algebra, and embeds the Boolean algebra P (Σ) into it via a mapping
assume(·) that sends a predicate p to the subset of the identity relation with domain p. Then
make(p) corresponds to the sequential composition ⊤; assume(p), where ⊤ is the everywhere-true
binary relation. The under-approximate triple can then be represented in KAT as ⊤; assume(p); r ⊒
⊤; assume(q), where a ⊒ b is defined as a + b = a.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



10:18 Peter W. O’Hearn

Dynamic Logic. Dynamic logic is a modal logic with an operator ⟨C⟩p which says that, from the
current state, it is possible to transition via program C to a state satisfying p [Harel et al. 2000].
The dual, [C]p, says that all ways of transiting via C satisfy p. In terms of our relational semantics:

Definition 12. Suppose r ⊆ Σ × Σ is a relation and p ⊆ Σ is a predicate.

• ⟨r ⟩p is true in state σ iff ∃σ ′ ∈ p. (σ ,σ ′) ∈ r .
• [r ]p = ¬⟨r ⟩¬p.
• r−1 denotes the reversal of relation r .

r−1 gives us an alternate way to describe the post () predicate transformer, and this provides
another way to describe the over-approximate and under-approximate triples.

Fact 13. • ⟨r−1⟩p = post (r )p
• {p}r {q} holds iff q ⇐ ⟨r−1⟩p holds (iff p ⇒ [r ]q holds)
• [p]r [q] holds iff q ⇒ ⟨r−1⟩p holds

Dynamic logic is a general logic that includes negation, conjunction, nestings of modal operators,
etc. The principles of Figure 1 can be seen as true formulae of dynamic logic.

There has been work on reasoning about incorrectness using dynamic logic [Rümmer and Shah
2007], but it is quite different to that here. They focus on disproving total correctness statements
for deterministic programs, which is to say proving formulae of the form ¬(pre ⇒ ⟨r ⟩post ), rather
than on under-approximation and on the connection to problems of program analysis.

It seems likely that most if not all of our proof rules for ok termination, as well as soundness and
completeness results (and incidentally those of de Vries and Koutavas [2011]), could be derived by
embedding into dynamic logic. In particular, dynamic logic gives a pleasant explanation for the
backwardness in the proof rule for variants. Harel [1979] formulates existential reasoning with
formulae like p (n + 1) ∧ nat (n) ⇒ ⟨r ⟩p (n) ∧ nat (n). In terms of the encoding of total correctness
for deterministic programs as pre-cond⇒ ⟨r ⟩post-cond, this describes how a variant decreases on
each forwards loop iteration. But if we replace the r by r−1, and regard the left-hand side of the
implication as the result assertion and the right as the presumption, then the formula for decreasing
n is equivalent to the premise of the Backwards Variant rule. Harel [1979] does not include r−1, but
it is studied elsewhere where it is called the łconversež operator [Harel et al. 2000].
From this perspective, the main technical contribution of the present article would seem to be

the treatment of error assertions. Of course, the larger contribution is conceptual, involving the
relevance to proving the presence of bugs as well as connections to principles in static analysis
tools, including the work in the next section.

6 REASONINGWITH THE LOGIC

In this section we investigate reasoning patterns that can be expressed with incorrectness logic.
We consider examples motivated by existing tools such as DART, KLEE, CBMC and Infer, as well
as ones that might lead in future to increased expressiveness or efficiency in reasoning. We stress,
though, that we are not claiming at this time that incorrectness logic leads to better practical results
than these mature tools; this is an exploration to give insight into the theory, and a basic test of a
potential foundational formalism is how it expresses a variety of patterns that have arisen naturally.
We do not include a formal treatment of procedures in this paper, but we will use the proof

system in a way that lets us reason from hypotheses for parameterless procedures, as in

[p]foo()[ok:q][er: s] ⊢ [p ′]C[ok:q′][er: s ′]

where calls to foo() can occur within C . Where we reason about the body of foo() to establish a
spec, we don’t need to revisit its body at call sites. This principle of reuse is fundamental in program

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



Incorrectness Logic 10:19

logics, and also in summary-based program analysis [Reps et al. 1995]. (To people with a program
analysis background, when you see a presumes/achieves spec you might think: łsummaryž!)

6.1 Reasoning about Loops

Figure 5 contains several loops, and client programs that use them. The first loop, loop0(), is a
variant on an example testme_inf of Cadar and Sen [2013], which was used there to demonstrate
a loop with an indeterminate number of iterations.

When we omit mention of a presumes assertion, as throughout this figure, the understanding is
that it defaults to true.
We have given an achieves result for loop0(). Postponing for a moment discussion of how

we can actually prove this result assertion, we can use it during reasoning about client0().
Immediately after the call to loop0() on line 14 we use incorrectness logic’s rule of consequence
with an implication backward from the if condition

[true]loop0()[ok:x >=0] x >=0 ⇐= x ==2, 000, 000

[true]loop0()[ok:x ==2, 000, 000]

and we use the sequencing rule to conclude that an error is reachable, which is recorded in the
achieves of client0() at line 13.
But how can we obtain the spec of loop0()? It is very easy: we unwind the loop once. Here is

the unrolling, with assertions at intermediate points to hint at how to construct a proof.

1 [x==0]

2 if (n>0) {

3 [x==0 && n>0] x=x+n; n=nondet (); [x>0]

4 } else

5 { [x==0 && n<=0] skip;

6 }

7 [x>0 || (x==0 && n<=0)]

8 assume (n<=0);

9 [(x>0 && n<=0) || x==0 && n<=0)]

10 [ok: x>=0 && n<=0]

The disjunction at line 9 of this proof outline contains one assertion for each branch of the if, and
the assertions at lines 9 and 10 are logically equivalent; they follow the condition for loop exit at
line 8. If we put this together with the first two statements in loop0(), then existentially quantify
n using the local variable rule, we obtain the triple [true]loop0()[ok:x >=0] using the Unrolling
Rule plus plus the Rule of Consequence to strip ∃n.
Now, incorrectness logic tells us that [ok: x>=0] is a correct under-approximate result, but

how do we know how many paths our reasoning covers? After all, we only considered one loop
unrolling before reaching our conclusion. In this case, we happen to be in the lucky situation where
the post-assertion is also true for over-approximation. That is, we have

[true]loop0()[ok:x >=0] and {true}loop0(){ok: x >=0}

and it would not be difficult for a tool to discover an invariant x >= 0 sufficient to prove the
over-approximate triple. So, the under-approximate result assertion covers all terminating paths.

Cadar and Sen [2013] use this example to illustrate the challenge of needing to cover potentially
infinitely many paths, and they rightly say łIn practice, one needs to put a limit on the search, e.g.,
a timeout, or a limit on the number of paths, loop iterations, or exploration depth.ž Interestingly,
for this example we have shown a precise sense in which we can get a post that is as general
as can be by reasoning in incorrectness logic with one loop unrolling (though we do appeal to
over-approximate reasoning to confirm that this general assertion does indeed cover all paths).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



10:20 Peter W. O’Hearn

1 int x;

2

3 void loop0()

4 /* (default presumes is "true" when not specified)

5 achieves: [ok: x>=0 ] */

6 { int n = nondet (); x = 0;

7 while (n > 0) {

8 x = x+n;

9 n = nondet ();

10 } }

11

12 void client0 ()

13 /* achieves: [err: x==2 ,000 ,000 ] */

14 { loop0();

15 if (x==2 ,000 ,000) {error();}

16 }

17

18 void loop1()

19 /* achieves1: [ok: x==0 || x==1 || x==2 || x==3 ]

20 achieves2: [ok: x>=0] */

21 { x = 0;

22 Kleene -star{

23 x = x+1;

24 } }

25

26 void client1 ()

27 /* achieves: [er: x==2 ,000 ,000] */

28 { loop1();

29 if (x==2 ,000 ,000) {error();}

30 }

31

32 void loop2()

33 /* achieves: [er: x==2 ,000 ,000] */

34 { x = 0;

35 Kleene -star{

36 if (x==2 ,000 ,000) {error();}

37 x = x+1;

38 } }

Fig. 5. Iteration Examples

We can’t always be so lucky as to get such a general result after one iteration. Consider loop1() in
the figure, which starts with x=0 and then increments x an arbitrary number of times before exiting.
We use Kleene-star(..) instead of the (.)⋆ notation when showing code. There are infinitely
many paths through loop1(), and the loop is not guaranteed to terminate. Using the Unrolling rule
we can obtain post-conditions for any of the finite unrollings of the program. achieves1 shows the
obtained result for three unrollings. While it does not cover all of the behaviours of the program, it
is indeed a sound under-approximation.
We can think of the pair true/achieves1 as a procedure summary for loop1(). This way of

reasoning about individual paths to obtain an under-approximate assertion is related to the method
of Godefroid [2007] to produce procedure summaries for the purpose of scaling symbolic execution.
Next let’s consider the function client1() that calls loop1(). The assertion achieves1 is

not enough to prove that an error can occur. We could boundedly unroll the loop 2, 000, 000

times to prove the bug in client1(), but then this unrolling would not cover a different client
program where the bug happens at 4, 000, 000. If, however we are lucky enough to have the more

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



Incorrectness Logic 10:21

general achieves2: [ok: x>=0] for loop1(), then we can strengthen it using the implication
x ==2, 000, 000 =⇒ x >=0, as we did with client0() above, to prove the error.

We can obtain the better under-approximate assertion x>=0 for loop1() using the following
instance of the Backwards Variant rule where p (n) is x ==n.

[x ==n ∧ nat (n)]x = x + 1[ok:x ==n + 1 ∧ nat (n)]

[x ==0](x = x + 1)⋆[ok:∃n.x ==n ∧ nat (n)]
n fresh

The premise can be derived using the assignment axiom and the rule of consequence,
The use of the result assertion achieves2 to prove client1() is related to the use of under-

approximation to obtain faster counterexamples in CBMC [Kroening et al. 2015].
The Backwards Variant rule does not describe cases where an error occurs during execution of a

loop body. But, as describe before, we can use it to describe the łfrontierž, the states obtained by
some number of iterations before a last, erroneous, one, and then use the Iterate non-zero.

For example, suppose we move the assert statement inside the loop, as in the function loop2()

in Figure 5. We can prove this in two stages. First, we show

[x ==0](Body)⋆[ok: 0<=x <=2, 000, 000].

This can be proven using the Backwards Variant rule takingp (n) to be 0<=x <=2, 000, 000&&x ==n.
We then use the rule of consequence to shrink the post-assertion, giving

[x ==0](Body)⋆[ok:x ==2, 000, 000].

Next, the assert rule plus the short-circuiting rule for Sequencing give us

[x ==2, 000, 000]Body[er:x ==2, 000, 000].

These specs line up for sequential composition, to give us

[x ==0](Body)⋆; Body[er:x ==2, 000, 000]

and then Iterate non-zero yields

[x ==0](Body)⋆[er:x ==2, 000, 000].

This proves loop2() from Figure 5.
Reasoning with loop variants sometimes allows more compact and general under-approximate

assertions to be derived than would be obtained by taking posts for each of many individual paths.

6.2 Conditionals, Expressiveness and Pruning

Conditional statements cause challenges for reasoning tools. The use of Boolean conditions that
are difficult for current theorem provers to deal with causes expressiveness issues, and the number
of paths that can occur through the code, even without loops or recursion, can lead to inefficiency.

Conditions that are Difficult for Symbolic Reasoning. Consider the code for client() in Figure 6.
The function difficult() is assumed to be difficult for a reasoning tool to treat precisely. Cadar
and Sen [Cadar and Sen 2013] present an example using multiplication, which goes beyond the
decidable subsets of arithmetic encoded in automatic theorem provers. Other examples might be
hash functions, unknown or binary code, or code that is obfuscated in a way that purposely makes
automated analysis difficult. How can we obtain a correct under-approximate post?
Dynamic symbolic execution, as represented by DART, EXE, and KLEE [Cadar and Sen 2013],

takes a particularly pragmatic approach based on the principle: when symbolic reasoning is difficult,
replace a symbolic variable with a concrete value. In the example above, let’s consider replacing
x by the number 7. By this tack, we can obtain achieves1: [y==49 && x==1], and we do this
by shrinking the post-assertion. That is, the assume statement corresponding to the true branch

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



10:22 Peter W. O’Hearn

39 int x,y;

40

41 int difficult(int y)

42 { return (y*y); /* or, return hash(y) ... or, unknown code */

43 }

44

45 void client ()

46 /* achieves1: [ok: y==49 && x==1]

47 achieves2: [ok: exists z. (y== difficult(z)&& x==1) ||(y!= difficult(z)&& x==2)]

48 achieves3: [ok: x==1 || x==2] */

49 { int z = nondet ();

50 if (y == difficult(z))

51 {x=1;}

52 else

53 {x=2;}

54 }

55

56 void test1()

57 /* achieves2: [ok: exists z. (y== difficult(z)&& x==1) ||(y!= difficult(z)&& x==2)]*/

58 { client ();

59 if (x==1 || x==2) { error(); }

60 }

61

62 void test2()

63 { client ();

64 if (x==2) {error();}

65 }

Fig. 6. Conditional Examples

of the if statement is assume(y==difficult(z)) with post-assertion [y==z*z], and we have an
implication y == z ∗ z ⇐= y == z ∗ z ∧ z == 7 so using the incorrectness logic consequence
rule we obtain a post with y == 49. Thus, the logical principle of shrinking the post gives us sound
triples corresponding to the pragmatic analyzer principle of concretizing symbolic values.
Another sound approach to difficult-to-reason-about Booleans is to record information lazily,

in the post-assertion, in the hopes that the code might be used in contexts where the difficulty is
immaterial. achieves2 on line 47 does this, and can be used in test1() to prove an error.

A final approach is to record disjuncts for both branches while discarding the difficult bits, as in
achieves3. This is unsound: we need to keep information correlating y with x as, e.g., the final
state (x 7→ 1,y 7→ 3) is not reachable but satisfies x==1 || x==2. Further, if we use achieves3
when reasoning about test2, then we would wrongly conclude that there could be an error.

Though unsound, this approach has been used for pragmatic reasons in SMART [Godefroid
2007], descendant of DART and a precursor of SAGE [Godefroid et al. 2008] at Microsoft, and in
Infer.RacerD, a data race detector in production at Facebook [Blackshear et al. 2018]. SMART trips
a flag indicating this unsoundness when it occurs, and then uses procedure summaries that no
longer under-approximate when generating further test cases. Overall soundness is rescued by
appeal to concrete execution. RacerD on the other hand adjusts its soundness claim [Gorogiannis
et al. 2019]: it is an under-approximation of an over-approximation, where the over-approximation
arises by replacing Booleans it doesn’t understand with nondeterministic choice. So the reasoning
is sound when if is replaced by +. It seems as if the same under-of-over approach could be taken
theoretically to prove an additional result about SMART’s summaries.
So, an unsound choice, achieves3, is not unreasonable. Localized unsound decisions might be

made by a tool, which represent assumptions that can be used as input to further sound steps which

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



Incorrectness Logic 10:23

are justified by logic. From this perspective, the role of logic is not to produce iron-clad unconditional
guarantees, but is to clarify assumptions and their role when making sound inferences.

Dropping disjuncts. We have described earlier how removing a disjunct is a sound step in in-
correctness logic. Infer.Pulse takes the blunt approach of having two limits, the number of loop
unrollings and the number of disjunctions; it simply drops disjuncts when they exceed the limit.
Jules Villard communicated a recent example of running Pulse on a C++ codebase inside Facebook
with 100s of thousands of lines, comparing a 20 disjunct limit against 50 disjuncts; in both cases
with the unrolling limit was set to 5. The result was that the 20 disjuncts case was ∼2.75x wall clock
time faster, ∼3.1x user time faster, and it found 97% of the issues that the 50 disjuncts case found.
The point is that engineering and not only philosophical considerations are relevant to the

question of when it is worth the energy cost, computer time or human time to address the other
3%. The choice is not a a binary one between fast and slow; e.g., we we might deploy them at
different times, the fast as part of code review and the slow later in the software development
process (and run less frequently). The specific numbers such as ∼2.75x are not important, and we
caution the reader not to read too much into them. But, the method of dropping disjuncts should
not be dismissed as unprincipled; it gives engineers a knob to turn when considering how and
when to deploy a tool.

While setting a limit can be useful, sometimes one can manage to always keep exactly one
disjunct, obtained in a smarter way than by pruning. Our looping examples earlier did this for
specific programs, by manually-provided assertions that cover infinitely many paths. Automatic
reasoning in over-approximate tools often aim for a join operator that produces a single state
over-approximates a disjunction. The Infer.RacerD data race detector [Blackshear et al. 2018] has
an example for under-approximate joining.
RacerD assumes that the code it runs on will mostly use locking and unlocking in a bracketed

way. It exploits this by keeping track of the number of times a (re-entrant) lock has been locked,
and then taking the maximum of lock counts at join points (e.g., at the end of conditionals). This
decision leads to false negatives, missing bugs when code of the form maybe_lock; write(x) can
race with lock; read-or-write(x), but it does not lead to false positives.
An example like this is in Figure 7. There, the achieves of maxing() is such that reasoning

with it will not reveal the error in false_negative(), but it is sufficient to find the error in
true_positive(). We can obtain the achieves assertion instead of [locked==0 || locked==1]

using the typical incorrectness logic reasoning that shrinks the result assertion.
Aside:While the ability to drop disjuncts allows one of the practical difficulties of over-approximate

reasoning ś the need to cover all paths ś to be avoided, one might wonder whether the converse
inability to drop conjuncts when reasoning along a path might lead to practical difficulties. This is
a legitimate question, but there are a number of remediations. First, localization via the Constancy
and Local Variable rules lets us limit the information in the post. This is (implicitly) used in SMART,
where under-approximate summaries are represented concisely by tracking modified values with-
out explicitly writing the full post. Second, one can consider doing under-approximation after an
over-approximation step, as in RacerD and Infer.Pulse. Over lets you ignore values, and then reason
under, leading to underapproximate-modulo-assumptions. The theoretical restriction on dropping
information along a path is not an ultimate blocker for under-approximate reasoning.

6.3 Symbolic Reasoning and Flakey Tests

A łflaky testž is one that, due to nondeterminism, can give different answers on different test runs.
Conversely, we call a test łsturdyž if gives the same answer on all runs of a program. Flakiness

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



10:24 Peter W. O’Hearn

66 int locked;

67

68 void maxing ()

69 /* achieves: [ok: locked ==1] */

70 { int z=nondet ();

71 if (z)

72 {locked =0;}

73 else

74 {locked =1;}

75 }

76

77 void false_negative ()

78 /* achieves: [er: false] and [ok: locked ==1] */

79 { maxing ();

80 if (locked ==0) { error(); }

81 }

82

83 void true_positive ()

84 /* achieves: [er: locked ==0] */

85 { maxing ();

86 if (locked >0) {locked=locked -1;};

87 if (locked ==0) { error(); }

88 }

Fig. 7. Maxing Out

1 void foo()

2 /* sturdy presumes [x is even] , sturdy achieves [er: x is even],[ok: false]

3 flaky presumes [x is odd] , flaky achieves [er: x is odd],[ok: x is odd] */

4 { if (x is even) {error();}

5 else { if (nondet ()) { skip;} else {error();}

6 }

7 } }

8

9 void flaky_client ()

10 /* flaky achieves: [er: x==3 || x==5] */

11 { x = 3;

12 foo();

13 x = x+2;

14 assert(x==4);

15 }

Fig. 8. Sturdy and Flaky

is increasingly considered to be a problem in deployments of testing in industry [Harman and
O’Hearn 2018]. We develop an example illustrating a logical account of sturdy and flaky tests.

We are going to use classic notions from backwards reasoning. If π is a path in a program, then

• wp (π )q describes states for which execution of π is guaranteed to terminate and satisfy q;
• wpp (π )q describes states for which execution of π is possible to terminate and satisfy q.

wp is Dijkstra’s weakest pre-conditon [Dijkstra 1976].wpp is the weakest possible pre-conditon, a
predicate transformer described by Hoare [1978] for what he referred to as łpossible correctnessž.
(Note:wp cannot be defined using the relational model of this paper.) We will use these ideas to
obtain pre-assertions, followed by forwards reasoning to obtain under-approximate post-assertions.

Procedure foo() in Figure 8 contains three paths, andwp (assume x is even))true for the path
prefix of the first of them gives us an input conditionwhich forces execution to reach error() on line

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



Incorrectness Logic 10:25

4. We install this as the (sturdy) presumes. Forward reasoning obtains this as the under-approximate
error post as well. The sturdy presumes assertion catches one bug but misses two others: the second
error() statement at line 5 in foo(), and the assert at line 14 in flaky_client().

The other two paths in in Figure 8 end in skip and error(), and each has a prefix π equivalent
to assume(x is odd); b = nondet(); assume b for a variable b considered local to the trace.
wp (π )true is false, indicating that there is no input state which can force execution down either
path. So, we appeal to the weakest possible pre-condition, which describes the pre-states that can
possibly lead to the post, and we find thatwpp (π )true = x is odd. We install this as what we label
the flaky pre, and forwards reasoning then gives us the two achieves assertions. The flaky error
assertion reveals the potential bug of the second error() in foo(), and the ok assertion is used in
flaky_client() to reveal that the assert statement can fail.
Note that even though we started reasoning backwards from true, we did not keep true as the

achieves assertion (the post). The reason is that true is not a sound under-approximate post. The
effect of this could be seen if we replaced the statement assert(x==4) by assert(x==5) and
simultaneously the flaky achieves [ok: x is odd] with [ok:true]. Then, we would wrongly
conclude that assert(x==5) in the altered flaky_client() could fail. When we use backwards
reasoning to generate a pre starting from a given post, we need also to be careful to update that
post if we are to re-use the reasoning in other contexts.
Test runs starting from inputs satisfying the flaky presumes are not reproducible, unless our

testing engine were to record all nondeterministic choices; an expensive matter for a testing tool.
From a logical point of view there is an interesting possibility: even if we have nondeterminism at
runtime, a proof of incorrectness can be checked again and again in a deterministic fashion. We
wonder whether symbolic proofs of bugs might help with the practical problem of flaky tests.

6.4 Composition and Procedural Abstraction

This section discusses reasoning that chains several procedure calls together.
If we have a path without procedure calls ś say a sequential composition of assignment, assume

and assert statements ś then we can perform strongest post-condition reasoning, which is also
therefore under-approximate. Collecting together such pre/post pairs for a number of paths can
allow us to form an under-approximate summary for a procedure. But then reasoning with a path
containing a procedure call should use these summaries, and there is subtlety in doing so soundly.
We illustrate with the specs in Figure 9. x>0 is the strongest post of x=x+1 given pre x>=0, and

so is therefore under-approximate too. Let’s try to reason about the sequential composition in
client() using presumes1/achieves1 from line 2. In Hoare logic we could do this with the rule
of Consequence and x > 0⇒ x >=0, giving {x >=0}inc();inc(){x > 0}. The post here is a correct
over-approximation, but it is not the strongest post of the sequential composition, and it is not a
correct under-approximation. If we were to use this wrong achieves 1 at line 9 while reasoning
about test() then we would wrongly conclude that an error is possible.
What is happening here is that there is a discrepancy between the strongest post-condition

of the code for inc();inc() and what can be inferred from the specs, even though achieves1

at line 2 is the strongest post of a single call. That is, wrong achieves1 is the strongest post for
the composition r ; r for greatest relation r satisfying {i >=0}r {x > 0}, but it is not for x=x+1: the
greatest relation, what we know from the spec, does not under-approximate the code for inc().
The moral of this story is that when proving that bugs can occur we need to be careful about

what strongest post-condition reasoning gives us in the presence of procedures. Incorrectness logic
provides this care. When faced with the above scenario, it tells us not to make the problematic
inference, that we should insist instead on an implication in the reverse direction. That is, we ask for
x > 0⇐ x >=0 and when we see it is false, we block reasoning about the sequential composition.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



10:26 Peter W. O’Hearn

1 void inc()

2 /* presumes1: [x>=0] , achieves1: [ok: x>0]

3 presumes2: [x==m && m>=0] , achieves2: [ok: x==m+1 && m>=0] */

4 { assert(x>=0);

5 x=x+1;

6 }

7

8 void client ()

9 /* presumes1: [x>=0] , wrong achieves1 :[x>0]

10 presumes2: [x==m && m>=0] , achieves2: [ok: x==m+2 && m>=0] */

11 { inc();

12 inc();

13 }

14

15 void test()

16 /* wrong achieves1: [er: x==1]

17 achieves2: [er: false] */

18 { x = 0;

19 client ();

20 assert(x>=2);

21 }

Fig. 9. Specs for Composition

So, incorrectness logic prevents the unsound (for bug catching) inference. Furthermore, it shows
that we need a different spec to draw useful conclusions about the composition.
A different spec of inc(), given by presumes2/achieves2 on line 3, lets us reason about the

composition inc();inc() in client()more positively, to obtain presumes2/achieves2 as stated
for client() on line 10. The reasoning leading to these specs uses the rules of Substitution and
Constancy from Figure 3. Note that to apply these rules, a procedure spec or summary should carry
information about free variables and modified ś here, that x is both free and modified, and that
m is not free in the procedure body (m functions as a łlogical variablež or a łghost variablež.) An
instance of Substitution I, substitutingm + 1 form, is

[i==m&&m>=0]inc()[ok: i==m + 1&&m>=0]

[i==m + 1&&m + 1>=0]inc()[ok: i==m + 1 + 1&&m + 1>=0]

Next, we apply Constancy usingm>=0 as the invariant, to give us

[i==m + 1&&m + 1>=0&&m>=0]inc()[ok: i==m + 1 + 1&&m + 1>=0&&m>=0]

and this is equivalent to

[i==m + 1&&m>=0]inc()[ok: i==m + 2&&m>=0]

Now we have a triple for inc() whose pre exactly matches the given achieves2 for inc() on line
3 in Figure 9, and we can use the sequencing rule to infer i==m+2&&m>=0 as the result assertion
for inc();inc() and the achieves2 for client() at line 10. When reasoning about test() using
this spec we will not wrongly trip the assertion at line 20 because the Boolean condition x>=2 does
not imply the post-assertion false for the call to client() at line 19.

There is a general pattern to this reasoning. Let’s say that a symbolic state is of the form

x1==m1 && · · · &&xk ==mk ∧ F

where themi are łlogical variablesž, variables that do not occur in any program, and F is expressed
in terms of logical variables only. We can make the pre-assertion of one procedure imply the

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



Incorrectness Logic 10:27

post-assertion of another by using the Substitution I together with conjoining the F parts using
Constancy. Patterns of this form could be taken advantage of in automated tools.
Finally, the reader might have recognized a lack of generality of the specs given in examples

previously, e.g., for the loops in Figure 5. There, we used true for the (default) presumes assertions,
and this prevents reasoning about programs that chain several calls together. If we try to reason
about client1(); client1() then because the pre of the second call does not imply the post of
the first we have a problem. The reader might enjoy adjusting the specs to allow such reasoning .

7 CONTEXT

The ideas leading to this paper have been stewing for some time. Since the Infer tool was deployed
at Facebook in 2014 it has seen over 100,000 reported issues fixed by developers before reaching
production [Distefano et al. 2019]. This impact is based on two factors. First, Infer uses a com-
posiitonal algorithm that is crucial to its deployment on a rapidly changing codebase with 10s of
millions of lines. Second, it is used to find regressions on code modifications as part of the code
review process. The theory Infer was based on originally [Calcagno et al. 2011] gave rise to the
compositional algorithm, but was formulated as a correctness theory that does not match its use to
find bugs rather than to prove their absence.
This mismatch led to a focus on under-approximation in the design of the RacerD program

analyzer in work with Sam Blackshear, Nikos Gorogiannis and Ilya Sergey [Blackshear et al. 2018],
an idealized version of which enjoyed a łno false positives theoremž [Gorogiannis et al. 2019]. By
this point the author was becoming convinced that, perhaps contrary to prevailing opinion, design
decisions favouring reduction of false positives over false negatives could be taken in a principled
way, not based only on heuristics such as alarm filtering.

These considerations led to the decision to base a new analyzer ś Pulse, developed principally by
Jules Villard ś on the idea: łwhat if we go back to the original design of Infer, but take bug-catching
instead of proving absence as the aim?ž. Discussions between Jules and the author led to design
decisions that were incompatible with the over-approximate theory of the original Infer:

• bound loops to escape the quagmire of over-approximating loops (i.e., depending on łmagicalž
abstract domains that do not yet and may never exist, e.g., for memory properties);
• be disjunctive to enable precision, but prune disjuncts to maintain scalability.

Yes, it would be wonderful to have the magical abstract domains capable of automatically proving
absence of all bugs in large codebases (e.g., linux, the 100s of millions of LOC at Facebook [Distefano
et al. 2019], the billions of LOC at Google [Potvin and Levenberg 2016]), while also keeping up with
the rapid pace of change of such codebases. No such domains have been demonstrated as of yet, so
bug catching remains important.

Next, in a discussion in Lisbon at POPL’19, Derek Dreyer and Ralf Jung suggested that the aims
of Pulse might be understood in terms of a logic tor proving presence of faults. At that time Derek
coined the term łincorrectness logicž. They proposed a model of triples with finding faults in mind,
but it turned out not to fit with Pulse (e.g., it did not allow dropping disjuncts). Then, based on my
extended ruminations on under-approximation, I discovered the under-approximate triples, and
was surprised to find a smooth proof theory for them. It was clear that the ideas were much more
general than the specific analysis problems that prompted them and I decided to try to develop the
simplest version of the theory I could think. I toyed with the name łunder-approximation logicž,
but Derek’s term łincorrectness logicž has a nice ring so I used it (with his permission).

After completing the work in the paper, but fortunately before publication, I learned of the paper
of de Vries and Koutavas [2011] on reverse Hoare logic (thanks to Emanuele D’Osualdo for pointing
this out). They include a proof system and completeness theorem for normal termination for what

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



10:28 Peter W. O’Hearn

I call under-approximate triples, and I was amazed to see that they had almost the same rules for
triples with ok conclusions. This coincidence suggests that the rules are natural or perhaps even
inevitable. They do not include error specs or make the connection to proving the presence of bugs,
the main topic of the present paper. But, I acknowledge the priority of de Vries and Koutavas in
their discovery of the under-approximate triple.
I also acknowledge that many if not all the rules for triples with ok post-assertions can be

obtained via compilation into dynamic logic; see Section 5.3.
There has been important related research on test-case generation by symbolic execution, as

in the pioneering work of King [1976]. This whole area (see Cadar and Sen [2013] for a survey)
provided inspiration for the current article. We were particularly motivated by compositional
methods for symbolic execution [Godefroid 2007], which shows cases where under-approximate
summaries can be computed in a way that helps the reasoning to scale to larger programs.

The concept of necessary preconditon [Cousot et al. 2013] is related. A necessary precondition for
a program is a predicate which, whenever falsified, leads to divergence or an error, but never to
successful termination. If p is a necessary pre-condition, then ¬p need not be a presumption which
leads to an error in incorrectness logic, because the possibility of divergence from a necessary pre-
condition leads to false positives. Additionally, when [presumption]C[er: result] holds it can be that
C delivers successful states as well as erroneous ones when starting from the presumption. Finally,
there are programs for which no non-trivial necessary pre-condition exists (e.g., skip + error()),
but where perfectly fine presumptions exist for incorrectness logic.
Another related work is on the Thresher tool [Blackshear et al. 2013], which includes a proof

system for refuting spurious counterexamples. They have a reversed rule of consequence but their
post-assertions do not under-approximate, allowing for unreachable states. Where our triple is
defined by under-approximating the strongest postcondition, theirs can be thought of as over-
approximating the weakest possible precondition wpp (C )q, which describes the states that can
possibly lead to q (i.e., ⟨C⟩q) in dynamic logic) . Thresher makes use of the capability of enlarging
the pre-assertion, by dropping conjuncts in a bid to over-approximate a loop going backwards, and
it may be that such a facility could prove useful for incorrectness logic as well.
Another backwards transformer, the weakest liberal preconditon wlp (C )q (‘liberal’ allowing

for divergence), can be used to characterize Hoare’s triple: p ⊆ wlp (C )q and post (C )p ⊆ q give
equivalent characterizations of {p}C{q}. Curiously, flipping the subset relation gives two inequiva-
lent notions, p ⊇ wlp (C )q and post (C )p ⊇ q. Replacingwlp with the weakest possible preconditon
wpp (C )q leads to a relationship p ⊇ wpp (C )q which is as in Thresher and in necessary precondi-
tions, the difference being that in Thresher q describes error states where Cousot et al. [2013] use
q to describe success states. I am grateful to Benno Stein for discussions on Thresher, necessary
preconditions, andwpp.

8 CONCLUSION AND OPEN PROBLEMS

Techniques for reasoning about program correctness have been extensively developed. Turing
[1949], used logical assertions to reason about a particular program. and in the 1960s Floyd [1967]
and Hoare [1969] created systematic methods for reasoning about classes of programs. In all these
cases the assertions were arranged to over-approximate the reachable program states. Further
developments in verification, including temporal logic [Pnueli 1981] and separation logic [O’Hearn
2019; Reynolds 2002], have expanded the techniques available for proving absence of errors.

In this paper we have suggested that reasoning about program incorrectness (or, the presence of
bugs) can be placed on a logical footing, related to but different from the well developed foundations
for showing correctness (or, the absence of bugs). Each form of reasoning is as fundamental as the

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



Incorrectness Logic 10:29

other, they just have different principles, as illustrated by the following fundamental duality which
has been highlighted in the paper.

For correctness reasoning, you get to forget information as you go along a path, but you
must remember all the paths.
For incorrectness reasoning, you must remember information as you go along a path,
but you get to forget some of the paths.

In the paper we: (1) described how the under-approximate triple is relevant to proving the
presence of bugs, and why assertions covering successful termination are needed even if our
concern is with errors; (2) designed a specific logic, which we called incorrectness logic, along with
a semantics and proof theory; (3) explored reasoning idioms, including making connections to
concerns in automatic program analysis. We have tried to argue and show via the examples that
the principles exposed in (1) and (2) are germane to the problem of proving the presence of bugs.
There are many problems for further work, including the following.

Other Models. There are models worth exploring other than where states denote functions from
variable to values and where commands denote relations. Particularly important are models taking
into account executions and not only initial and final states. The model in this paper describes
existence of executions leading to errors, but not the traces themselves.

An interesting proposal in this direction has been made by Hoare (see, e.g., [Hoare et al. 2011]).
He describes an approach to over-approximating triples, where {p}c{q} is interpreted as q ⊒ p; c ,
and it makes sense as well to interpret the under-approximate triple [p]c[q] as q ⊑ p; c . In Section 5.3
we considered such an interpretation when p, c and q denote relations, but Hoare envisages a wider
range of models, including ones where they denote sets of traces. The Hoare triple can be read as
saying that q over-approximates the composition of program c with an assertion describing traces
up to the point before the program starts. Likewise, it would be appealing to consider a traces model
of incorrectness logic and show that it forms a useful basis for (especially, automatic) reasoning.
The conceptual appeal of a traces model is possibly even stronger for under-approximating than
over-approximating logic: the traces would show actual executions, leading to actual bugs.

In order to reason about pointer manipulation, one might consider an under-approximate version
of separation logic. This extension is not at all trivial, as the standard heap model of separation logic
does not mesh well with under-approximation (separation logic’s frame rule can become unsound),
but in work with colleagues at MPI-SWS and Facebook we have shown that local reasoning based
on the frame rule can be preserved in an alternate model; investigations continue.

Concurrency. Correctness logics for concurrency attempt to go beyond themethod of enumerating
interleavings to obtain more efficient means of program proof [Brookes and O’Hearn 2016; Hayes
and Jones 2017]. Techniques that they use (e.g., resource invariants) were designed with over-
approximation in mind, and do not immediately carry over to under-approximation. RacerD
[Blackshear et al. 2018; Gorogiannis et al. 2019] gives one pragmatic example of what a concurrency
logic for under-approximation might seek to cover or explain.

Compositional and Incremental Static Bug Catching. The theory of summary-based and composi-
tional program analysis has assumed over-approximation [Calcagno et al. 2011; Cousot and Cousot
2001; Reps et al. 1995]. But, often, tools whose architecture resembles that prescribed by theory are
deployed as bug catchers [Blackshear et al. 2018; Bush et al. 2000; Distefano et al. 2019; McPeak
et al. 2013]. Some tools borrow ideas from interprocedural static analysis, but fall back on concrete
execution for their soundness [Godefroid 2007]. It would be worthwhile to adapt the analysis that
led to Facebook Infer [Calcagno et al. 2011], and the recent bounded version [Santos et al. 2019], to
refer to under-approximation. Pulse is one attempt in this direction.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



10:30 Peter W. O’Hearn

In addition to providing a foundation for further development of static and mixed static/dynamic
bug catchers, it is hoped that theory can help expand the effectiveness of such tools.

Termination Proving. The under-approximate triple [p]c[q] does not guarantee termination on all
inputs, but nevertheless guarantees existence of some terminating paths. A variety of techniques
have been developed for automatically inferring loop variants and other forms of termination
argument [Cook et al. 2011]. We speculate that such techniques might be brought to bear on
automatic reasoning about incorrectness, both to accelerate reasoning techniques within one
procedure and to infer more general summaries for under-approximate inter-procedural analysis.

Abstract Interpretation. Abstract interpretation is a general theory of semantics which can in
principle be used to describe under-approximation as well as over [Cousot and Cousot 1977]. There
have been papers on under-approximation (e.g., [Ranzato 2013; Rival 2005; Schmidt 2007]), but
the vast majority of work has concentrated on over-approximation. We hope that incorrectness
logic can be neatly characterized in abstract interpretation terms, perhaps adapting the account for
over-approximate logics of Cousot [2002]. More generally, we expect that abstract interpretation
can eventually play a guiding and explanatory role for a wide range of static and dynamic under-
approximate tools for bug catching, similar to what it already does for over-approximate analyses.

Testing. We described the relationship with testing at a high level in the discussion of the
Principle of Denial in Section 2. We wonder whether logic might be used to make testing faster,
perhaps in a similar way to how symbolic model checking achieved striking gains over explicit
state [Burch et al. 1992]. Another avenue to explore is to attack the problem of flaky tests using
logic. Generally, it seems that there is muchmore that can be done to exploit logic in program testing.

In summary, there is a rich variety of problems for both experimental and theoretical work to
bring the foundations of reasoning about program incorrectness onto a par with the extensively
developed foundations for correctness.

ACKNOWLEDGMENTS

I’m sure that I would never have developed incorrectness logic were it not for the experience
of moving from academia to Facebook engineering [Constine 2013]: trying to deploy reasoning
to production forced me to grapple with problems I otherwise wouldn’t have encountered. I’m
indebted both to my teammates on the Infer team and to the engineers in the product teams we
serve for teaching me so much about applying reasoning tools in real world. Special thanks to Mark
Harman and Tony Hoare for discussions on the specific content and the broader picture for this
work. Finally, thanks to all the colleagues mentioned in Section 8 for discussions that influenced
my thinking.

REFERENCES

K. R. Apt. 1981. Ten Years of Hoare’s Logic: A Survey - Part 1. ACM Trans. Program. Lang. Syst. 3, 4 (1981), 431ś483.

K. R. Apt and G. D. Plotkin. 1986. Countable nondeterminism and random assignment. J. ACM 33, 4 (1986), 724ś767.

R.-J. Back and J. von Wright. 1998. Refinement Calculus - A Systematic Introduction. Springer.

S. Blackshear, B.-Y. Evan Chang, and M. Sridharan. 2013. Thresher: precise refutations for heap reachability. In PLDI.

S. Blackshear, N. Gorogiannis, P. W. O’Hearn, and I. Sergey. 2018. RacerD: Compositional static race detection. PACMPL 2,

OOPSLA (2018), 144:1ś144:28.

S. Brookes and P. W. O’Hearn. 2016. Concurrent separation logic. SIGLOG News 3, 3 (2016), 47ś65.

H. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. 1992. Symbolic Model Checking: 10ˆ20 States and

Beyond. Inf. Comput. 98, 2 (1992), 142ś170.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



Incorrectness Logic 10:31

W. R. Bush, J. D. Pincus, and D. J. Sielaff. 2000. A static analyzer for finding dynamic programming errors. Softw., Pract.

Exper. 30, 7 (2000), 775ś802.

C. Cadar and K. Sen. 2013. Symbolic execution for software testing: three decades later. Commun. ACM 56, 2 (2013), 82ś90.

C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. 2011. Compositional Shape Analysis by Means of Bi-Abduction. J.

ACM 58, 6 (2011), 26. Preliminary version in POPL’09.

C. Calcagno, P. W. O’Hearn, and H.Yang. 2007. Local Action and Abstract Separation Logic. In LICS. 366ś378.

K. Claessen and J. Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell programs. In ICFP.

E. Clarke, D. Kroening, and F. Lerda. 2004. A Tool for Checking ANSI-C Programs. In TACAS. 168ś176.

M. Clint and C. A. R. Hoare. 1972. Program Proving: Jumps and Functions. Acta Inf. 1 (1972), 214ś224.

J. Constine. 2013. Facebook acquires assets of UK mobile bug-checking software developer Monoidics. (2013). Techcrunch.

B. Cook, A. Podelski, and A. Rybalchenko. 2011. Proving program termination. Commun. ACM 54, 5 (2011), 88ś98.

S. A. Cook. 1978. Soundness and Completeness of an Axiom System for Program Verification. SIAM J. Comput. 7, 1 (1978).

P. Cousot. 2002. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor.

Comput. Sci. 277, 1-2 (2002), 47ś103.

P. Cousot and R. Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by

Construction or Approximation of Fixpoints. In POPL. 238ś252.

P. Cousot and R. Cousot. 2001. Compositional Separate Modular Static Analysis of Programs by Abstract Interpretation. In

Proceedings of SSGRR.

P. Cousot, R. Cousot, M. Fähndrich, and F. Logozzo. 2013. Automatic Inference of Necessary Preconditions. In VMCAI.

E. de Vries and V. Koutavas. 2011. Reverse Hoare Logic. In SEFM. 155ś171.

E. W. Dijkstra. 1976. A Discipline of Programming. Prentice-Hall.

D. Distefano, M Fahndrich, F Logozzo, and P.W. O’Hearn. 2019. Scaling Static Analyses at Facebook. Commun. ACM 62, 8

(2019).

R. W. Floyd. 1967. Assigning meanings to programs. In Proc. of the Symposium on Applied Mathematics. 19ś32.

P. Godefroid. 2007. Compositional dynamic test generation. In POPL. 47ś54.

P. Godefroid, M. Y. Levin, and D. A. Molnar. 2008. Automated Whitebox Fuzz Testing. In NDSS.

N. Gorogiannis, P. W. O’Hearn, and I. Sergey. 2019. A true positives theorem for a static race detector. POPL (2019).

A. Gotsman, J. Berdine, and B. Cook. 2011. Precision and the Conjunction Rule in Concurrent Separation Logic. Electr. Notes

Theor. Comput. Sci. 276 (2011), 171ś190.

D. Harel. 1979. First-Order Dynamic Logic. Lecture Notes in Computer Science, Vol. 68. Springer.

D. Harel. 1980. Proving the Correctness of Regular Deterministic Programs: A Unifying Survey Using Dynamic Logic. Theor.

Comput. Sci. 12 (1980), 61ś81.

D. Harel, J. Tiuryn, and D. Kozen. 2000. Dynamic Logic. MIT Press, Cambridge, MA, USA.

M. Harman and P. W. O’Hearn. 2018. From Start-ups to Scale-ups: Opportunities and Open Problems for Static and Dynamic

Program Analysis. In Source Code Analysis and Manipulation. 1ś23.

I. J. Hayes and C. B. Jones. 2017. A Guide to Rely/Guarantee Thinking. In SETSS. 1ś38.

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (1969), 576ś580.

C. A. R. Hoare. 1978. Some Properties of Predicate Transformers. J. ACM 25, 3 (1978), 461ś480.

T. Hoare, B. Möller, G. Struth, and I. Wehrman. 2011. Concurrent Kleene Algebra and its Foundations. J. Log. Algebr. Program.

80, 6 (2011), 266ś296.

J. C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19, 7 (1976), 385ś394.

D. Kozen. 2000. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Log. 1, 1 (2000), 60ś76.

D. Kroening, M. Lewis, and G. Weissenbacher. 2015. Under-approximating loops in C programs for fast counterexample

detection. Formal Methods in System Design 47, 1 (2015), 75ś92.

L. Lamport. 1977. Proving the Correctness of Multiprocess Programs. IEEE Trans. Software Eng. 3, 2 (1977), 125ś143.

P. Manolios and R. J. Trefler. 2001. Safety and Liveness in Branching Time. In LICS. 366ś374.

S. McPeak, C.-H. Gros, and M. K. Ramanathan. 2013. Scalable and incremental software bug detection. In ESEC/FSE.

T. Nipkow. 2002. Hoare Logics in Isabelle/HOL. In Proof and System-Reliability, H. Schwichtenberg and R. Steinbrüggen

(Eds.). Kluwer, 341ś367.

P. W. O’Hearn. 2018. Continuous Reasoning: Scaling the impact of formal methods. In LICS. 13ś25.

P. W. O’Hearn. 2019. Separation logic. Commun. ACM 62, 2 (2019), 86ś95.

Aleph One. 1996. Smashing the Stack for Fun and Profit. Phrack 7, 49 (November 1996).

A. Pnueli. 1981. The temporal semantics of concurrent programs. (1981). Theoretical Computer Science, 13(1), 45ś60.

R. Potvin and J. Levenberg. 2016. Why Google Stores Billions of Lines of Code in a Single Repository. Commun. ACM 59

(2016).

F. Ranzato. 2013. Complete Abstractions Everywhere. In VMCAI. 15ś26.

T. W. Reps, S. Horwitz, and S. Sagiv. 1995. Precise Interprocedural Dataflow Analysis via Graph Reachability. In POPL.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.



10:32 Peter W. O’Hearn

J. C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In LICS. 55ś74.

X. Rival. 2005. Understanding the Origin of Alarms in Astrée. In SAS. 303ś319.

P. Rümmer and M. A. Shah. 2007. Proving Programs Incorrect Using a Sequent Calculus for Java Dynamic Logic. In TAP.

J. F. Santos, P. Maksimovic, G. Sampaio, and P. Gardner. 2019. JaVerT 2.0: Compositional symbolic execution for JavaScript.

PACMPL 3, POPL (2019), 66:1ś66:31.

D. A. Schmidt. 2007. A calculus of logical relations for over- and underapproximating static analyses. Sci. Comput. Program.

64, 1 (2007), 29ś53.

A. Stoughton. 1988. Substitution Revisited. Theor. Comput. Sci. 59 (1988), 317ś325.

A. M. Turing. 1949. Checking a Large Routine. In Report of a Conference on High Speed Automatic Calculating Machines,

Univ. Math. Lab., Cambridge. 67ś69.

H. Yang. 2001. Local Reasoning for Stateful Programs. Ph.D. Dissertation. University of Illinois.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.


	Abstract
	1 Introduction
	2 Unified Picture
	3 Beginning Examples
	3.1 Under-approximating Triples
	3.2 Specifying Incorrectness
	3.3 Under-approximate Success

	4 Proof System
	5 Semantic Foundation
	5.1 Relations
	5.2 Predicate Transformers
	5.3 Other Characterizations

	6 Reasoning with the Logic
	6.1 Reasoning about Loops
	6.2 Conditionals, Expressiveness and Pruning
	6.3 Symbolic Reasoning and Flakey Tests
	6.4 Composition and Procedural Abstraction

	7 Context
	8 Conclusion and Open Problems
	Acknowledgments
	References

