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Suspension rheology of adhesive particles at high shear-rates
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A scaling relationship is developed for the asymptotic approach of the suspension
viscosity of adhesive, rigid, and non-Brownian particles to that of nonadhesive particles
in the limit of high shear-rate where the agglomerates are broken down completely.
The relationship is fitted to experimental data for spherical particles, irregularly shaped
particles, and biconcave, discoid-shaped, hardened red blood cells. The relationship allows
us to extract a proxy for the interparticle adhesion force, which, for the case of the blood
cells, is in qualitative agreement with alternative force measurements in the literature.
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I. INTRODUCTION

It is well known that an adhesive interparticle force F induces the formation of particle
agglomerates [1,2]. At small applied stress, these structures may span the entire domain, and the
material behaves as an elastic solid. When the applied stress exceeds a threshold value, referred to as
the yield stress �∗, the solid disintegrates and the agglomerates continuously break and regenerate,
which corresponds to a viscoelastic fluid. With increasing shear-rate γ̇ , the average agglomerate size
decreases and eventually the agglomerates are completely broken down into the primary, particles
of size a.

In the literature, the yield stress �∗ has been related to the interaction force F as [3,4]

�∗ ∼ φ2 F

a2
, (1)

and similar relations have been postulated that relate F to the elastic modulus [4,5]. These relations
are based on the notion that the yield stress is proportional to the interparticle contact number
density, which in Eq. (1) is assumed to depend quadratically on the particle volume fraction φ.
This scaling assumption is questionable, however, due to the fractal shape of the agglomerates:
the number of contacts in a fractal does not necessarily scale as φ2. Because of this complexity,
there is no single universally valid scaling relationship between the yield stress �∗ and the adhesion
force F .

In the limit of high γ̇ , however, we will show that there is a universal scaling relationship between
the shear stress and the adhesion force F . In this limit, the agglomerates are broken down into the
primary particles, and the effect of the interactions on the rheology is independent of the structural
properties of the agglomerates. In this limit, the effect of the interactions is therefore governed
by the microstructure of the nonaggregating particle suspensions, which is independent of the
adhesion. When the interactions are assumed short-ranged and the volume fraction sufficiently low,
the adhesive interactions act between pairs of primary particles. These conditions imply a universal
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scaling relationship for the suspension viscosity at high γ̇ . This scaling relationship allows us to
extract a proxy for the adhesion force F from rheological data.

II. SCALING RELATIONSHIP

A. Proposed scaling relationship

We consider the nonhydrodynamic part of the relative viscosity in steady shear, which is
sometimes referred to as the virial contribution to the relative viscosity or the “virial viscosity”
for short,

�ηr = ηr − ηr,∞. (2)

Here ηr = �/(γ̇ η) is the suspension relative viscosity, � is the suspension shear stress, η is the
dynamic viscosity of the suspending medium, and ηr,∞ is referred to as the “infinite viscosity” and
denotes the value of ηr at high γ̇ , i.e., where the effect of the adhesion force F is negligible. The
particles are assumed to be rigid and non-Brownian. It is noted that despite high γ̇ , the flow is
assumed to be laminar, i.e., the Reynolds number is assumed to be γ̇ H2/ν � 1. Here H is the gap
height of the rheometer, ν = η/ρ is the kinematic viscosity of the suspending medium, and ρ is
the mass density of the suspending medium. Since in the limits of high γ̇ and low φ the adhesive
interactions occur between pairs of primary particles, the virial viscosity must scale as �ηr ∼ φ2.
We assume a small-particle Reynolds number γ̇ a2/ν � 1 and a large Péclet number Pe � 1:

Pe = 6πγ̇ a3η

kBT
. (3)

Under these assumptions, �ηr is independent of the mass density ρ and of the temperature
kBT , but it only depends on F , a, φ, γ̇ , and η. Dimensional analysis then shows that �ηr =
φ2
[F/(ηγ̇ a2)], where 
[x] is a nondimensional function of x. We make the assumption, which
will be experimentally verified below, that 
[x] is a power-law function, i.e., 
[x] = Cxδ:

�ηr = Cφ2

(
F

ηγ̇ a2

)δ

, (4)

where δ is an unknown exponent and C is an unknown prefactor of order 1.
It is noted that δ and C are unknown functions of particle shape, and these functions cannot

be predicted from scaling arguments. Below, the effects of shape are studied by fitting Eq. (4) to
experimental data for suspensions of spherical particles, irregularly shaped particles, and biconcave,
discoid-shaped, hardened red blood cells.

It is worth reemphasizing that Eq. (4) is based on the assumptions of high γ̇ and low φ such
that the agglomerates are broken down into the primary particles, and the primary particles interact
pairwise. The adhesive interaction depends on the relative positioning of the particles, and, for high
γ̇ , this microstructure asymptotes toward that for nonadhesive, i.e., shear-rate invariant suspensions.

B. Preexisting scaling relationships

Our scaling relationship [Eq. (4)] is different from scaling relationships found in the existing
literature. For large γ̇ and small φ, Ref. [6] theoretically predicts that

�ηr ∼ φ

(
F

γ̇ ηa2

)δ

. (5)

This theoretical relationship is based on the idea of a shear-rate-dependent effective volume fraction
of fractal-shaped agglomerates, and the exponent δ is argued to depend on the rigidity of the
agglomerates. For completeness, we reproduce the derivation leading to Eq. (5) in the Supplemental
Material [7]. The scaling �ηr ∼ φ [Eq. (5)] disagrees with our scaling �ηr ∼ φ2 [Eq. (4)], which
is supported by experimental observations (Figs. 3, 4, and 5 below) and which is based on the
assumption that adhesive forces act between particle pairs.
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In Ref. [8], discrete element method simulations are conducted of Brownian, adhesive particles.
Their numerical method includes thermodynamics forces and long-ranged hydrodynamic interac-
tions, but it ignores short-ranged lubrication forces. Their results follow Eq. (5) with δ = 0.5 for
relatively strong Brownian motion with Pe � 10 [Eq. (3)], and δ = 1 for relatively weak Brownian
motion with Pe � 10. For completeness, we reproduce these data in the Supplemental Material
[7]. The scaling �ηr ∼ φγ̇ −0.5 suggests that, under these simulated conditions, the virial viscosity
is dominated by interactions between (fractal-shaped) agglomerates, as described by the model
[Eq. (5)] of Ref. [6]. The scaling �ηr ∼ φγ̇ −1 disagrees with experiments using Brownian particles
with 10−2 � Pe � 102 [3]. This suggests that the observed scaling �ηr ∼ φγ̇ −1 is due to the neglect
of lubrication forces. In this regard, it is noted that, although lubrication forces have a negligible
effect on ηr at vanishing φ, they are essential for �ηr since �ηr probes viscosity perturbations due
to adhesion forces between closely separated particles.

III. EXPERIMENTAL DATA

A. Adhesion proxy

The validity of Eq. (4) is verified by fitting it to experimental data. The fitting involves
determining ηr,∞ and δ by minimizing the sum of the squared distance between the measured
[log10(γ̇ ), log10(ηr − ηr,∞)] and a single straight line with a slope of −δ for various φ. Assuming a
relative uncertainty in ηr of εηr , the virial viscosity �ηr has a relative uncertainty ε�ηr of

ε�ηr = εηr

ηr

�ηr
. (6)

From Eq. (4) we see that the interparticle adhesion force F is given by

F = C−1/δηγ̇ a2�η1/δ
r φ−2/δ. (7a)

Since the prefactor C cannot be determined from the scaling analysis, it is assumed that C = 1, and
under this assumption Eq. (7a) is referred to as the “adhesion proxy” F ′:

F ′ = ηγ̇ a2�η1/δ
r φ−2/δ, (7b)

which is an order of magnitude estimate of F . The relative uncertainty εF ′ in the adhesion proxy F ′
due to the relative uncertainty ε�ηr in �ηr reads

εF ′ = δ−1ε�ηr . (8)

Note that this equation only accounts for uncertainties in �ηr , but not in φ or a.

B. Spherical and irregularly shaped particles

First we focus on spherical silica particles and on irregularly shaped precipitated silica particles,
both suspended in mineral oil, with a viscosity of η = 3.1 × 10−2 Pa s. The interaction forces
between the hydrophilic silica particles are mediated by hydrogen bonding between their surface
silanol (OH) groups [9]. When suspended in a nonpolar liquid with no hydrogen-bonding capacity,
such as mineral oil, the interactions between the silica particles become attractive and the system
gels at small shear stress. The silica-mineral oil gel is used in various technologies, including
lubricating greases, heat transfer fluids, and filling compounds in fiber-optic cables [9].

The size distributions of the spherical and irregularly shaped particles are measured using laser
diffraction, and they are shown in Fig. 1(a). The spherical and the irregularly shaped particles have
a somewhat similar mean and standard deviation in the radius of a = (6 ± 4) and (8 ± 7) μm,
respectively. Particle morphologies are shown in scanning electron microscope (SEM) images in
Figs. 1(b) and 1(c).

The sheared suspension is visualized in an optical shearing cell, i.e., in the 100 μm gap between
one steady and one rotating quartz plate (CSS-450, Linkam Scientific). Prior to imaging at a certain
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FIG. 1. (a) Particle radius distribution measured by laser diffraction for spherical particles and irregularly
shaped particles. (b) SEM image of spherical particles. (c) SEM image of irregularly shaped particles.

desired shear-rate, the suspension is sheared for 2 min at 1000 s−1 to disintegrate the agglomerates.
Thereafter, the suspension is sheared at the desired shear-rate for 10 min to reach fully developed
agglomerate statistics. After these preshearing steps, the suspension is sheared at the desired shear-
rate, illuminated using a fiber optic light emitting diode (SugarCube Ultra, Edmund Optics), and
imaged using a high-speed camera (IDT XS-3 CMOS) with a resolution of 1280 × 1024 pixels and a
10× objective, resulting in 0.5 μm/pixel, while the temperature is maintained at 20 ◦C. Figures 2(a)
and 2(b) show images at low and high shear-rate for the spherical particles, and Figs. 2(c) and 2(d)
show images for the irregularly shaped particles. In both systems, agglomerates are observed at low
shear-rate and these are broken down into the primary particles at high shear-rate (γ̇ = 500 s−1). It
is also noted that the agglomerates at the low shear-rate are larger for the irregularly shaped particles
than for the spherical ones. To properly visualize the agglomerates in both systems, Figs. 2(a) and
2(b) and Figs. 2(c) and 2(d) correspond to different image sizes.

For both systems, we study the scaling relationship between the virial viscosity �ηr , the volume
fraction φ, and the shear-rate γ̇ . To this end, their shear viscosities are measured as functions of
the shear-rate γ̇ at various volume fractions φ [Fig. 3(a)]. The measurements are conducted at 20◦C
using a hybrid stress controlled rheometer (DHR-3, TA Instruments), employing a stainless steel
parallel plate geometry, sandblasted with a roughness of 2 μm and a gap width of 650 μm. To correct
for the heterogeneous shear rate in the parallel plate geometry, we apply the Rabinowitch correction
[10]. The relative measurement uncertainty in ηr (upon repeating the experiment) is εηr ∼ 10−2.
We consider shear-rates between γ̇ = 10 and 103 s−1. By comparing upward and downward shear
sweeps in the Supplemental Material [7], we confirm that, in this range, the viscosity is independent
of the shear history. For both particle suspensions, �ηr is extracted from the rheological data using
the protocol that is described in Sec. III A.

Figure 3(b) shows the resulting infinite viscosity ηr,∞ where the error bars give the standard
deviation of four shear-sweeps (two up-sweeps and two down-sweeps using two different samples).
We note that per sweep the uncertainty in ηr,∞ (obtained by curve fitting) is negligible (<1%),
and we emphasize that the error bars in Fig. 3(b) represent variability between different sweeps
corresponding to different samples. For the spherical particles ηr,∞ roughly follows the Batchelor
relation ηr,∞ = 1 + 2.5φ + 5.2φ2, which confirms the physical significance of ηr,∞. For the
irregularly shaped particles, ηr,∞ deviates from Batchelor’s equation, which may be attributed to
nonsphericity and to the uncertainty in φ of these porous particles [see Fig. 1(c)].

Figure 3(c) shows the resulting virial viscosity �ηr where the error bars are the corresponding
relative uncertainties ε�ηr [Eq. (6)], which are large for small φ and large γ̇ . We note that the data
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FIG. 2. Photograph of (agglomerates of) spherical silica particles for φ = 0.01 in mineral oil, sheared at
γ̇ = 50 s−1 (a) and at 500 s−1 (b) and of irregularly shaped silica particles for φ = 0.01 in mineral oil, sheared
at γ̇ = 20 s−1 (c) and at 500 s−1 (d).

in Fig. 3(c) correspond to single sweeps and are found by subtracting from ηr [Fig. 3(a)] the value
for ηr,∞ for a single sweep. Unlike the large variability in ηr,∞ upon repeating sweeps [Fig. 3(b)],
the uncertainty in a single ηr,∞ is negligibly small. Therefore, the error in Fig. 3(c) is not affected
by the variability in ηr,∞ [Fig. 3(b)], but it is solely due to the 1% measurement error in ηr which
is propagated by Eq. (6) into the error of �ηr . The data in Fig. 3(c) are very well fitted over two
decades of shear-rate by �ηr ∼ γ̇ −δ with δ = 0.5 (dashed lines), which confirms the presupposed
power-law dependence [Eq. (4)].

In Fig. 3(d) the resulting adhesion proxy F ′ [Eq. (7b) using δ = 0.5] is plotted as a function of γ̇

for both particle suspensions and for various φ where the error bars correspond to Eq. (8). For both
suspensions, the data agree well with Eq. (7b) using δ = 0.5 (dashed lines). The observed �ηr ∼ φ2

scaling reflects the dominant contribution of pairwise interactions to �ηr , which is expected in the
limit of vanishing φ.

From the fit of the horizontal lines in Fig. 3(d), it is found that F ′ = 4.5 × 10−6 and 6.0 × 10−5 N
for the spherical particles and for the irregularly shaped particles, respectively. These results confirm
that the adhesion force between irregularly shaped particles is larger than that between spherical
particles since there are more contact points per particle-particle interaction. It is emphasized that the
actual adhesion force F differs from the adhesion proxy F ′ by an unknown dimensionless constant
of order 1 which depends on the particle shape. This constant cannot be determined from scaling
arguments.
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FIG. 3. (a) Relative viscosity, (b) infinite viscosity, (c) virial viscosity, and (d) adhesion proxy F ′ [Eq. (7b)
using δ = 0.5]. The open symbols are the spherical particles for φ = 0.02 (◦), 0.03 (�), 0.04 (�) and the filled
symbols are the irregularly shaped particles for φ = 0.02 (•), 0.03 (�), 0.05 (�). The error bars in (a) are
smaller than the marker sizes. The dashed line in (b) is the Batchelor relation ηr,∞ = 1 + 2.5φ + 5.2φ2. The
dashed lines in (c) have slopes of −0.5 and represent Eq. (4) with δ = 0.5. The horizontal dashed lines in
(d) indicate Eq. (7b) with δ = 0.5.

C. Monodisperse, spherical particles

Next Eq. (4) is fitted to experimental data from Ref. [11], concerning monodisperse, spherical
silica particles in mineral oil with viscosity η = 0.12 Pa s. Two data sets are analyzed, involving
spherical particles with diameters of 110 ± 10 nm and 21 ± 3 μm, which are referred to as “silica
110 nm” and “silica 21 μm,” respectively. The scaling relationship is studied between the virial
viscosity �ηr , the volume fraction φ, and the shear-rate γ̇ . �ηr is extracted from the rheological
data using the protocol that is described in Sec. III A.

In Fig. 4 the adhesion proxy F ′ [Eq. (7b) using δ = 0.5] is plotted as a function of the shear
rate, for both silica 110 nm and silica 21 μm and for various volume fractions where the error
bars correspond to Eq. (8). It is noted that ηr is extracted from the printed figures in Ref. [11] “by
hand” with a (relative) uncertainty εηr ≈ 0.02, which introduces large (relative) uncertainties in �ηr

[Eq. (6)] and in F ′ [Eq. (8)] at the lower φ and the higher γ̇ where �ηr is small. Also note that, for
εF ′ > 1 [Eq. (8)], the lower half of the error bars is not displayed.

The collapse in Fig. 4 of F ′ for various φ at high γ̇ supports Eq. (4) with an exponent of δ =
0.5, i.e., �ηr ∼ φ2γ̇ −0.5. Surprisingly, the �ηr ∼ φ2 scaling is observed even at relatively high
φ = 0.3 where multibody, short-ranged interactions could be expected, but apparently these are
subdominantly affecting �ηr in this system. It is further noted that the agreement between the
experimental data and Eq. (4) is better for the larger silica 21 μm particles than for the smaller silica
110 nm particles. For the latter there are deviations for low γ̇ and the data collapse only at high γ̇ .
These discrepancies may be attributed to Brownian motion. For silica 110 nm, the Péclet number
Pe [Eq. (3)] varies between 7 × 10−1 � Pe � 7 × 101 for 101 s−1 � γ̇ � 103 s−1. This confirms
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FIG. 4. Adhesion proxy F ′ [Eq. (7b) using δ = 0.5] as a function of the shear-rate γ̇ at different particle
volume fractions φ. Open symbols are 110 nm diameter silica spheres in mineral oil for φ = 0.05 (◦), 0.1 (�),
and 0.15 (�) [11]. Filled symbols are 21 μm diameter silica spheres in mineral oil for φ = 0.15 (•), 0.2 (�),
0.25 (�), and 0.30 (�) [11].

the hypothesis that the deviations in Fig. 4 from Eq. (4) for silica 110 nm at the lower shear-rates
are due to Brownian motion, while the agreement with Eq. (4) at the higher shear-rates corresponds
to negligible Brownian motion. For silica 21 μm, on the other hand, Brownian motion is negligible
over the entire γ̇ -range as Pe varies between 6 × 106 � Pe � 6 × 108 for 101 s−1 � γ̇ � 103 s−1.

From Fig. 4(b), it is seen that F ′ = 4.5 × 10−10 and 9 × 10−8 N for silica 110 nm and silica
21 μm, respectively. It is reemphasized that the actual adhesion force F differs from the apparent
adhesion force F ′ by an unknown dimensionless constant of order one. The relative values of F ′
for silica 110 nm and for silica 21 μm, however, support the theoretical relationship F = 2πsa
between the adhesion force F , the particle radius a, and the surface energy s [12] which, in this
case, is mediated by hydrogen bonding between the surface silanol groups [9].

D. Red blood cells

Red blood cells (RBCs) are biconcave discoids with a diameter of approximately 7 μm, a
thickness at the thickest point of approximately 2 μm, and a minimum thickness in the center
of approximately 1 μm, which correspond to a surface area of A ≈ 136 μm2, an equivalent radius
of a = √

A/(4π ) ≈ 3 μm, and an aspect ratio of around 3. The non-Newtonian behavior of blood
arises from RBC deformability and aggregation. Aggregation between RBCs is driven by attractive
forces that are the result of an osmotic pressure gradient due to the depletion of large plasma
proteins, primarily fibrinogen, in the narrow intercellular regions [13].

In the RBC suspension experiment in Ref. [6], cell deformability was inhibited by treating the
cells with glutaraldehyde. The hardened cells were suspended in Boger fluids, which consist of
aqueous solutions of salt and the neutral polysaccharide dextran that induces adhesive depletion
forces. Two different dextran polymers were used with a molecular weight of Mw = 75 and
150 kg/mol. These systems are referred to as “RBC 75” and “RBC 150,” respectively. In both
systems, the dextran concentration is fixed at 2 g/dL.

�ηr is extracted from the data in Ref. [6] using the protocol that is described in Sec. III A.
Figure 5 shows the resulting adhesion proxy F ′ [Eq. (7b)] using δ = 0.55 for RBC 75 and δ = 0.6
for RBC 150 as a function of γ̇ for various φ. The viscosity of the dextran solutions is taken to be
η ≈ 1.4 × 10−3 Pa s for RBC 75 and η ≈ 1.6 × 10−3 Pa s for RBC 150 [14]. It is noted again that
ηr is extracted from the printed figures in Ref. [6] “by hand” with a (relative) uncertainty εηr ≈ 0.02,
which introduces large (relative) uncertainties in �ηr [Eq. (6)] and in F ′ [Eq. (8)] at the higher γ̇

where �ηr is small. Also note that, for εF ′ > 1 [Eq. (8)], the lower half of the error bars is not
displayed.
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FIG. 5. Adhesion proxy F ′ [Eq. (7b)] using δ = 0.55 for RBC 75 (open symbols) and δ = 0.6 for RBC
150 (filled symbols) as a function of the shear-rate γ̇ for different RBC volume fractions φ = 0.13 (◦ and •)
and 0.21 (� and �) [6].

The larger exponents δ = 0.55 for RBC 75 and δ = 0.6 for RBC 150 than δ = 0.5 for spheres
might indicate a shape effect. The irregular particles in Fig. 3(d) (filled symbols), however, have
a “sphere-like exponent” δ = 0.5. Moreover, the dependence of δ on the polymer weight suggests
that the larger exponent is due to the non-Newtonian rheology of the suspending medium. Although
the dextran solutions are Boger fluids, the rheology in the squeeze films between the RBCs may be
non-Newtonian, due to extensional flow topologies.

From the fit of the horizontal lines in Fig. 5, it is found that F ′ = 6 × 10−12 and 3 × 10−11 N
for RBC 75 and RBC 150, respectively. These results are compared to the force measurements of
Ref. [15]. These authors measured the force that is required to separate two deformable RBCs
where one is attached to a flat surface and the other is attached to the cantilever of an atomic
force microscope (AFM). The suspending medium is a solution of salt and dextran with molecular
weights of Mw = 70 and 150 kg/mol, which are very close to the values used in [6]. At a dextran
concentration of 2 g/dL, the measured adhesion forces are F = 6 × 10−11 and 1.5 × 10−10 N for
Mw = 70 and 150 kg/mol, which are ten and five times as large as our findings.

These discrepancies are attributed to the unknown dimensionless constant C−1/δ in the definition
of the adhesion force F in Eq. (7a) as well as to differences in cell treatment, resulting in different
surface chemistry and membrane deformability. The cells of Ref. [15] interact via deformable
contact surfaces, while in Ref. [6] the hardened cells interact via contact points. Despite these
sources of uncertainty and differences in material properties, which are inherent when dealing with
biological samples, both results are in the same range, which supports the validity of Eq. (4).

IV. CONCLUSION

The scaling relationship is studied between the virial viscosity �ηr = ηr − ηr,∞, the shear-rate
γ̇ , and the particle volume fraction φ in the limits of high γ̇ and low φ. Here ηr is the relative
suspension viscosity and ηr,∞ denotes the value of ηr at high γ̇ (while remaining laminar),
which when subtracted from ηr gives a power law: �ηr ∼ φ2γ̇ −δ at high γ̇ , i.e., a straight line
on [log10(γ̇ ), log10(�ηr )] coordinates. The scaling relationship is fitted to experimental data for
spherical particles, irregularly shaped particles, and biconcave, discoid-shaped, hardened red blood
cells. The relationship allows us to extract a proxy for the interparticle adhesion force that, for
the case of the blood cells, is in qualitative agreement with alternative force measurements in the
literature.
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