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Original Research 

A CNN-aided method to predict glaucoma 

progression using DARC (Detection of 

Apoptosing Retinal Cells) 

 

Abstract 
Objectives: A key objective in glaucoma is to identify those at risk of rapid progression and 

blindness. Recently, a novel first-in-man method for visualising apoptotic retinal cells called DARC 

(Detection-of-Apoptosing-Retinal-Cells) was reported. The aim was to develop an automatic CNN-

aided method of DARC spot detection to enable prediction of glaucoma progression. 

 

Methods: Anonymised DARC images were acquired from healthy control (n=40) and 

glaucoma (n=20) Phase 2 clinical trial subjects (ISRCTN10751859) from which 5 observers manually 

counted spots. The CNN-aided algorithm was trained and validated using manual counts from 

control subjects, and then tested on glaucoma eyes.  

 

Results: The algorithm had 97.0% accuracy, 91.1% sensitivity and 97.1% specificity to spot 

detection when compared to manual grading of 50% controls.  It was next tested on glaucoma 

patient eyes defined as progressing or stable based on a significant (p<0.05) rate of progression 

using OCT-retinal nerve fibre layer measurements at 18 months. It demonstrated 85.7% sensitivity, 

91.7% specificity with AUC of 0.89, and a significantly (p=0.0044) greater DARC count in those 

patients who later progressed.   
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Conclusion: This CNN-enabled algorithm provides an automated and objective measure of 

DARC, promoting its use as an AI-aided biomarker for predicting glaucoma progression and testing 

new drugs.    
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3. Background 
 

Artificial intelligence (AI) is increasingly used in healthcare, especially ophthalmology[1][2]. 

Machine learning algorithms have become important analytical aids in retinal imaging, being 

frequently advocated in the management of diabetic retinopathy, age-related macular degeneration 

and glaucoma, where their utilization is believed to optimise both sensitivity and specificity in 

diagnosis and monitoring[3][4]–[7].  The use of deep learning in these blinding conditions has been 

heralded as an advance to reduce their health and socio-economic impact, although their accuracy is 

confounded by dataset size and deficient reference standards[4].  

Glaucoma is a progressive and slowly evolving ocular neurodegenerative disease that it is 

the leading cause of global irreversible blindness, affecting over 60.5 million people, predicted to 

double by 2040, as the aging population increases[8], [9]. A key objective in glaucoma research over 

the last few years is to identify those at risk of rapid progression and blindness. This has included, 

methods involving multiple levels of data including structural (optical coherence tomography (OCT), 

disc imaging) and functional (visual fields or standard automated perimetry (SAP)) assessments. 

However, several studies have demonstrated there is great variability amongst clinicians in 

agreement over progression using standard assessments including SAP, OCT and optic disc stereo 

photography. [10][11][3][12] However, clinical grading is regarded as the gold standard in real world 

practice. In deep learning datasets, manual grading of retinal images is regarded as the “ground 

truth” and is essential in order to train and test AI strategies  in the automated detection of diseases 

such as glaucoma.  [13]–[19] Moreover, it is recognised that both OCT and SAP change only after 

significant death of a large number of retinal ganglion cells (RGC), [20] and with this the unmet need 

for earlier markers of disease. 

Recently, we reported a novel method to visualise apoptotic retinal cells in the retina in 

humans called DARC (Detection of Apoptosing Retinal Cells)[21]. The molecular marker used in the 
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technology is fluorescently labelled annexin A5, which has a high affinity for phosphatidylserine 

exposed on the surface of cells undergoing stress and in the early stages of apoptosis. The published 

Phase 1 results suggested that the number of DARC positively stained cells seen in a retinal 

fluorescent image could be used to assess glaucoma disease activity, but also correlated with future 

glaucoma disease progression, albeit in small patient numbers. DARC has recently been tested in 

more subjects in a Phase 2 clinical trial (ISRCTN10751859). 

The aim of this study was to devise an automatic method of DARC spot detection using a 

convolutional neural network (CNN). CNNs have shown strong performance in computer vision tasks 

in medicine, including medical image classification.  This CNN-aided algorithm was to be developed 

by training on a control cohort of subjects and then tested on glaucoma patients in the Phase 2 

clinical trial of DARC.  

 

 

 

4. Research design and methods 
 

4.1 Study population and setting 
 

The Phase 2 clinical trial of DARC was conducted at The Western Eye Hospital, Imperial 

College Healthcare NHS Trust, as a single-centre, open-label study with subjects each receiving a 

single intravenous injection of fluorescent annexin 5 (ANX776, 0.4 mg) between 15th February 2017 

and 30th June 2017.  Both healthy and progressing glaucoma subjects were recruited to the trial, 

with informed consent being obtained according to the Declaration of Helsinki after the study was 

approved by the Brent Research Ethics Committee. (ISRCTN10751859). 
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All glaucoma subjects were already under the care of the glaucoma department at the 

Western Eye Hospital. Patients were considered for inclusion in the study if no ocular or systemic 

disease other than glaucoma was present and they had  a minimum of three recent, sequential 

assessments with retinal optical coherence tomography (Spectralis SD OCT, software version 6.0.0.2; 

Heidelberg Engineering, Inc., Heidelberg, Germany) and standard automated perimetry (SAP,  HFA 

640i, Humphrey Field Analyzer; Carl Zeiss Meditec, Dublin, CA) using the Swedish interactive 

threshold algorithm standard 24-2. Patient eligibility was deemed possible if evidence of progressive 

disease in at least one eye of any parameter summarised in Table 1 & 2, was found to be present, 

where progression was defined by a significant (*p<0.05; **p<0.01) negative slope in the rate of 

progression (RoP). SAP parameters included the visual field index (VFI) and mean deviation (MD). 

OCT parameters included retinal nerve fibre layer (RNFL) measurements at three different diameters 

from the optic disc (3.5, 4.1, and 4.7 mm) and Bruch’s membrane opening minimum rim width 

(MRW). Where it was not possible to use machine in-built software to define the rate of progression, 

due to the duration of the pre-intervention period of assessment, linear rates of change of each 

parameter with time were computed using ordinary least squares[22], [23]. Inclusion of these 

features of progression was to ensure that only patients with active disease were included in the 

study, especially as the majority of eyes had early disease, with a diagnosis of glaucoma suspect in 

23 eyes of 12 patients, as indicated in Table 1.   

Healthy volunteers were initially recruited from people escorting patients to clinics and 

referrals from local optician services who acted as Patient Identification Centres (PICs). Healthy 

volunteers were also recruited from the Imperial College Healthcare NHS Trust healthy volunteers 

database. Potential participants were approached and given an invitation letter to participate. 

Participants at PICs who agreed to be contacted were approached by the research team and booked 

an appointment to discuss the trial. Enrolment was performed once sequential participants were 

considered eligible, according to the inclusion and exclusion criteria detailed in Table S1. Briefly, 

healthy subjects were included if: there was no ocular or systemic disease, as confirmed by their GP; 
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there was no evidence of any glaucomatous process either with optic disc, RNFL (retinal nerve fibre 

layer) or visual field abnormalities and with normal IOP (intraocular pressure); and they had 

repeatable and reliable imaging and visual fields.   

 

2.2 DARC Image Acquisition and Study Blinding 
 

All participants received a single dose of 0.4mg of ANX776 via intravenous injection 

following  pupillary dilatation (1% tropicamide and 2.5% phenylephrine), and were assessed using a 

similar protocol to Phase 1[21]. Briefly, retinal images were acquired using a cSLO (HRA+OCT 

Spectralis, Heidelberg Engineering GmbH, Heidelberg, Germany) with ICGA infrared fluorescence 

settings (diode laser 786 nm excitation; photodetector with 800-nm barrier filter) in the high 

resolution mode. Baseline infrared autofluorescent images were acquired prior to ANX776 

administration, and then during and after ANX776 injection at 15, 120 and 240 minutes. Averaged 

images from sequences of 100 frames were recorded at each time point. All images were 

anonymised before any analysis was performed.  For the development of the CNN-algorithm, only 

baseline and 120 minute images from control and glaucoma subjects were used.  

The breakdown of the images analysed are shown in the “Consort” diagram in Figure 1.  For 

the CNN- training, 73 control eyes at baseline and 120 minutes were available for the analysis. 

Similarly, of the 20 glaucoma patients who received intravenous ANX776, images were available for 

27 eyes at baseline and 120 time-points.   

 

 

2.4 DARC Spot Detection 
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2.3.1 Manual observer analysis 
 

Anonymised images were randomly displayed on the same computer and under the same 

lighting conditions, and manual image review was performed by five blinded operators using 

ImageJ® (National Institutes of Mental Health, USA). [24] The ImageJ ‘multi-point’ tool was used to 

identify each structure in the image which observers wished to label as an ANX776 positive spot.  

Each positive spot was identified by a vector co-ordinate. Manual observer spots for each image 

were compared: spots from different observers were deemed to be the same spot if they were 

within 30 pixels of one another. A breakdown of concordance including interobserver agreement is 

provided in Figure S2, with more than 50% of candidate spots having agreement with more than 2 

observers. The criteria for spots used in the automated application   to train and compare the 

systems was when there was concordance of two or more observers.     

 

2.3.2 Automated analysis 
 

 
2.3.2.1         Automated Image Analysis Overview (Figure 2)  

 

To detect the DARC labelled cells, candidate spots were identified in the retinal images, then 

classified as “DARC” or “not DARC” using an algorithm trained using the candidates and the spots 

identified by manual observers. Figure 2 provides an overview of the process. 

 

2.3.2.2        Image Optimisation 
 

As part of the automated image analysis pipeline, images at 120 minutes were aligned to the 

baseline image for each eye using an affine transformation followed by a non-rigid 

ACCEPTED M
ANUSCRIP

T



transformation.  Images were then cropped to remove alignment artefacts. The cropped images 

then had their intensity standardised by Z-Scoring each image to allow for lighting differences. 

Finally, the high-frequency noise was removed from the images with a Gaussian blur with a sigma of 

5 pixels.   

2.3.2.3      Spot Candidate Detection 
 

Template matching, specifically Zero Normalised Cross-Correlation (ZNCC) is a simple 

method to find candidate spots. 30x30 pixel images of the spots identified by manual observers 

were combined using a mean image function to create a spot template. This template was applied to 

the retinal image producing a correlation map. Local maxima were then selected and filtered with 

thresholds for the correlation coefficient and intensity standard deviation (corresponding to the 

brightness of the spot). These thresholds were set low enough to include all spots seen by manual 

observers. Some of the manual observations were very subtle (arguably not spots at all) and 

correlation low for quite distinct spots due to their proximity to blood vessels. This means the 

thresholds needed to be set very low and produce many more spot candidates than manually 

observed spots (approximately 50-1). 

As can be seen from Figure 3, the spot candidates cover much of the retinal image, however 

this reduces the number of points to classify by a factor of 1500 (compared with looking at every 

pixel). Using local maxima of the ZNCC, each candidate detection is centred on a spot-like object, 

typically with the brightest part in the centre. This means the classifier does not have to be tolerant 

to off-centred spots. It also means that the measured accuracy of the classifier will be more 

meaningful as it reflects its ability to discern DARC spots from other spot-like objects, not just its 

ability to discern DARC spots from random parts of the image.       

2.3.2.4    Spot Classification 
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To determine which of the spot candidates were DARC cells, the spots were classified using 

an established Convolutional Neural Network (CNN) called MobileNet v2[25]–[28]. This CNN enables 

over 400 spot images to processed in a single batch. This allows it to cope with the 50-1 unbalanced 

data since each batch should have about 4 DARC spots.  

Although the MobileNet v2 architecture was used, the first and last layers were adapted. 

The first layer became a 64x64x1 input layer to take the 64x64 pixel spot candidate images (this size 

was chosen to include more of the area around the spot to give the network some context). The last 

layer was replaced with a dense layer with sigmoid activation to enable a binary classification (DARC 

spot or not) rather than multiple classification. An alpha value for MobileNet of 0.85 was found to 

work best, appropriately adjusting the number of filters in each layer 

2.3.2.5    Training 
 

CNN training and validation sets were split by eye then trained at spot level. Training of spot 

identification was performed only on spots from 50% of control eyes; the remaining 50% were then 

used for validation/testing.  Final testing was done on the whole glaucoma dataset to avoid over-

training given the relatively small sample numbers. All training, validation and testing were 

performed at spot level and not image or eye level, although the selection of train/test was done at 

an eye level, again to prevent over-training. Briefly, retinal images were randomly selected from 

baseline and 120 minute images of 50% of the control patients. The CNN was trained using 

candidate spots, marked as DARC if 2 or more manual observers observed the spot. 58,730 spot 

candidates were taken from these images (including 985 2-agree manually observed DARC spots). 

70% of these spots were used to train, and 30% to validate. The retinal images of the remaining 50% 

of control patients were used to test the classification accuracy (48610 candidate spots of which 898 

were 2-agree manually observed).  
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The data was augmented to increase the tolerance of the network by rotating, reflecting and 

varying the intensity of the spot images. The DARC spots class weights were set to 50 for spots and 1 

for other objects to compensate for the 50-1 unbalanced data.  

The training validation accuracy converges, and the matching validation accuracy also shows 

similar accuracy without signs of over training. As the training curves show (see Figure 4 ) a good 

accuracy is achieved in 200 epochs, although training was left for 300 epochs to verify stability.  

 

Three training runs were performed, creating three CNN models. For inference, the three 

models were combined: each spot was classified based on the mean probability given by each of the 

three models.  

 

 

2.3.2.6   Testing on Glaucoma DARC images 
 

Once the CNN-aided algorithm was developed, it was tested on the glaucoma cohort of 

patients in images captured at baseline and 120 minutes. Spots were identified by manual observers 

and the algorithm. The DARC count was defined as the number of a ANX776-positive spots seen in 

the retinal image at 120 minutes after baseline spot subtraction.  

 

2.4 Glaucoma progression assessment – the comparator 
  

Rates of progression were computed from serial OCTs on glaucoma patients 18 months after 

DARC, where progression was defined by a significant (*p<0.05; **p<0.01) negative slope RoP 

greater than 1 μm/year, based on the  5% lower limit for age-related change of  −0.92 μm/year 

identified by Wu et al [29]  to distinguish between normal aging losses[30][31]. All OCTs were 
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assessed for quality at the time of imaging; where motion artefact or other issues were identified, 

patients were rescanned at the same visit. Those patients with a significant (p<0.05) negative slope 

were defined as progressing compared to those without who were defined as stable. Additionally, 

assessment was performed by 5 masked expert clinicians using visual field (including VFI, MD, and 

PSD), OCT (including RNFL and MRW parameters),  optic disc clinical observations (cup-disc ratio on 

biomicroscopy), and documented treatment changes. 

 

2.5 Main Outcome Measures & Statistical Analysis 
 

Statistical analysis was performed using GraphPad Prism (version 8.01), SPSS (version 25.0) 

and Python. Receiver-operating characteristic (ROC) curves were constructed with the area under 

the curve (AUC), standard errors, maximal sensitivities and specificities generated for CNN training, 

validation and testing data and comparisons with manual observers counts. Interobserver 

agreements were calculated for manual observer DARC counts and clinician progression status using 

Cohen’s kappa coefficient. Rates of progression (RoP) were calculated from serial tests of visual field 

MDs and VFIs, and OCT RNFL and MRW parameters and progression was defined by a significant 

(*p<0.05; **p<0.01) negative slope.  Where it was not possible to use machine in-built software to 

define RoP due to the duration of the pre-intervention period of assessment, linear rates of change 

of each parameter with time were computed using ordinary least squares. Comparisons between 

stable and progressing glaucoma eyes were made with DARC counts, age, CCT, BP, baseline MD, VFI, 

RNFL and corresponding abnormal RNFL and BMO-MRW sectors using the unpaired t-test ((*p<0.05; 

**p<0.01). 
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3 Results 
 

3.1 Patient Demographics 
 

Demographics of glaucoma and control subjects are shown in Table supp2. 60 glaucoma 

patients were screened according to the inclusion/exclusion criteria in Table 1, from which 20 

patients with progressing (defined by a significant (p<0.05) negative slope in any parameter in at 

least one eye) glaucoma underwent intravenous DARC.  Baseline characteristics of these glaucoma 

patients are presented in Table 2.  38 eyes were eligible for inclusion, of which 3 did not have images 

available for manual observer counts, 2 had images captured in low resolution mode and another 2 

had intense intrinsic autofluorescence. All patients apart from 2 were followed up in the Eye clinic, 

with data being available to perform a post hoc assessment of progression.   

 

3.2 Testing of Spot Classification  
 

The results in Figure 4 were achieved when testing the CNN-aided algorithm with the 50% of 

the control eyes that were reserved for test (and so were not used in training). The accuracy was 

found to be 97%, with 91.1% sensitivity and 97.1% specificity. 

The sensitivity and specificity were encouragingly high, especially as the manual observation 

data that it was trained and tested on had been shown to have high levels of inter-observer variation 

(see supplementary data).  Typical examples of images and manual observer/algorithm spots are 

shown in Figure 5  

 

3.3 Testing in Glaucoma Cohort  
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Follow-up data to 18 months after DARC was available for 18 patients, with a mean number 

of 6.11 ± 2.27 (SD) tests each with a range of 3 to 11 tests. Using only the OCT global RNFL rates of 

progression (RoP 3.5 ring) performed at 18 months to define progression, the glaucoma cohort was 

divided into progressing and stable groups.  Clinical agreement was poor between observers, as 

shown in Figure S2, hence, the use of objective, simple and single OCT parameter.  Those patients 

with a significant (p<0.05) negative slope were defined as progressing compared to those without 

who were defined as stable, and are detailed in Table 3.  Of the 29 glaucoma eyes analysed, 8 were 

found to be progressing and 21 stable, by this definition. 

Using this definition of glaucoma progression, a Receiver Operating Characteristic (ROC) 

curve was constructed for both CNN-aided algorithm and manual observer 2-agree and shown in 

Figure 6, to investigate if the DARC count was predictive of glaucoma progression at 18 months. 

Maximal sensitivity (85.7%) and specificity (91.7%) were achieved above a DARC count of 24 with an 

AUC of 0.88 and likelihood ratio of 8.57 with the CNN algorithm as opposed to the manual observer 

with maximal sensitivity (71.4%) and specificity (87.5%) above a DARC count of 11, an AUC of 0.79, 

and likelihood ratios of 4.76, showing the CNN-aided algorithm to be performing superiorly. A 

comparison of the CNN and all agreement states of the manual observers is shown in Supplementary 

Figure S3.  

 

3.4 DARC counts as a Predictor of Glaucoma Progression 
 

DARC counts in both stable and progressing glaucoma groups with the CNN-aided algorithm 

are shown in Figure 7a and manual DARC counts (observer 2 agree) in Figure 7b. The DARC 

count, was found to be significantly higher in patients who were later found to be progressing at 18 

months  (mean 26.13 ; 95% CI 9.41 to 42.84) compared to those who were stable (mean 9.71; 95% CI 

5.68 to 13.75 ) using the CNN-aided algorithm (p=0.0044; unpaired t-test). Manual observers (2 
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agree or more) DARC counts, were also significantly higher in those progressing at 18 months (mean 

12.25; ; 95% CI 3.67 to 20.83) compared to stable (mean 4.38; ; 95% CI 2.20 to 6.57 ) glaucoma 

patients (p=0.0084; unpaired t-test). No stable eyes had a CNN DARC count above 30 (dashed line, 

Figure 7a), highlighting this as a threshold that could be confidently used to separate those at risk of 

progression.   

Analyses of baseline age, CCT, BP, visual field MD, VFI and average RNFL thickness (all at the 

time of DARC), were performed in a similar manner to that described for DARC counts, but none 

were found to be significantly predictive of progression. Additionally, we have used a newly  

described structural OCT parameter being  the baseline topographically correspondent abnormal 

sectors on OCT RNFL and BMO-MRW imaging [32]. This interestingly did show a significant (p=0.045) 

difference between stable and progressing groups, as shown in Supplement Figure S5.  

 

  

4 Discussion 
 

The main goal of glaucoma management is to prevent vision loss. As the disease progresses 

slowly over many years, current gold standards of assessing changes not only take a long time to 

develop, but also after significant structural and functional damage has already occurred[21].  There 

is an unmet need in glaucoma for reliable measures to assess risk of future progression and 

effectiveness of treatments[33], [34]. Here, we describe a new CNN-aided algorithm which when 

combined with DARC - a marker of retinal cell apoptosis, is able to predict glaucoma progression 

defined by RNFL thinning on OCT, 18 months later. This method when used with DARC was able to 

provide an automated and objective biomarker. 
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The development of surrogate markers has been predominantly in cancer where they are 

used as predictors of clinical outcome. In glaucoma, the most common clinical outcome measure is 

vision loss followed by a decrease in quality of life for assessing treatment efficacy. Surrogates 

should enable earlier diagnoses, earlier treatment, and also shorter, and therefore more economical 

clinical trials.  However, to be a valid surrogate marker, the measures have to be shown to be 

accurate. For example, OCT, which is in widespread use has been found to have  a sensitivity and 

specificity of 83% and 88% respectively for detecting significant RNFL abnormalities  [35] in addition 

to good repeatability [36][37]. In comparison, our CNN algorithm had a sensitivity of 85.7% and 

specificity of 91.7% to glaucoma progression, with an AUC of 0.88. The CNN algorithm appeared to 

perform better than the manual 2-agree counts in terms of sensitivity, specificity and likelihood ratio 

of predicting progression; nevertheless, the AUCs were not significantly different which could be 

related to the small sample numbers. Despite this, both the manual 2-agree and CNN were able to 

significantly predict progression. The main advantage however, of the CNN lies in its practicality; 

employing manual observers is labour-intensive, time-consuming and expensive compared to an 

automated system, with its scalability enabling wider accessibility in the future. [38] Moreover, 

automated detection being more objective than manual observers, may facilitate the consistency 

and accuracy of DARC as a biomarker in clinical care.   

Although the Phase 1 results suggested there was some level of DARC being predictive, this 

was done on a very small dataset [21] with different doses of Anx776 of 0.1, 0.2, 0.4 and 0.5 mg, 

with a maximum of 4 glaucoma eyes per group, of which there were only 3 in the 0.4 mg group. In 

this present study, all subjects received 0.4 mg Anx776, and 27 eyes were analysed. However, 

moving forwards, we would hope to obtain even more data on glaucoma patients, as this study had 

a small sample size, and also establish repeatability and test-retest metrics, as we were limited to a 

single DARC assessment in this study, as per protocol. Furthermore, we recognise that longitudinal 

studies will be needed to further validate our findings, especially if we are to investigate the 

correlation of disease severity and DARC. In this Phase 2 study, the majority of patients had early 
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disease (MD between -1.61 –2.22 dB) so it was not possible to investigate the full spectrum of 

glaucoma disease severity. 

In clinical practice, glaucoma patients are assessed for risk of progression based on 

establishing the presence of risk factors including: older age, a raised intraocular pressure (IOP, too 

high for that individual), ethnicity, a positive family history for glaucoma, stage of disease, and high 

myopia [39]. More advanced disease risks included a vertical cup:disc ratio > 0.7,  pattern standard 

deviation of visual field per 0.2 dB increase, bilateral involvement and disc asymmetry, as also the 

presence of disc haemorrhages and pseudexfoliation [40]–[44]. In this study, we assessed baseline 

age, CCT, BP, visual field MD, VFI,  average RNFL thickness and topographically correspondent 

abnormal sectors on OCT RNFL and BMO-MRW imaging [32]. Only the OCT RNFL and BMO-MRW 

sector parameter was found to be predictive of progression, and emphasizes the importance of this 

new parameter.  Compared to the CNN DARC count however, there was overlap between the stable 

and progressing groups, with no clear threshold in the number of abnormal sectors that could be 

used to define those at greatest risk of progression, and therefore difficult to apply in practice as a 

biomarker. However, the presence of predictive structural changes in the same eyes where the CNN 

DARC count is higher does provide some confidence in the validity of our results. 

Objective assessment is increasingly recognised as being important in glaucoma, as there is 

variable agreement between clinicians, even with technological aids. Poor agreement has been 

shown with respect to defining progression in patients using visual fields, OCT and 

stereophotography [10][3][45][11].  Indeed, for this study, we asked five masked senior glaucoma 

specialists (co-authors) to grade for progression of patients using their clinical judgement based on 

optic disc assessment, OCT, visual fields and management history; unfortunately, there was variable 

agreement between them although three of the more senior clinicians  (OBS 1, 2 and 3, 

Supplementary Figure S4), did appear to agree more than the more junior experts (OBS 4 and 5). For 
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this reason,  a single, objective metric [46] [29] of rate of progression was used to define the groups 

used to test the CNN-aided algorithm. 

The analysis of progression was post-hoc, and there was no protocol guiding treating 

clinicians during the 18 month period of follow-up. Similar to the oral memantine trial, [47] 

management of patients, especially with regard to IOP lowering, was left to the discretion of the 

glaucoma specialist, and following normal standard of care. As a result, there was a wide range in 

the number of OCT scans each patient had in the 18 month period from n=3 to n=11 scans per eye. 

However, despite this and using the OCT global RNFL 3.5 ring RoP, 8 of 29 eyes were progressing at 

18 months. To compensate for ageing losses and high false positive rates of progression, we defined 

a significant RoP only when the negative slope was  greater than 1 μm/year to distinguish between 

normal aging losses. [29]   It would be interesting in the future to compare DARC to conventional risk 

factors such as IOP using a multivariable analysis, though this will require a larger, prospective, 

longitudinal trial with a strict protocol regarding patient management.  

We recognise that it is debatable to include both right and left eyes of patients as individual 

study eyes, although this was not a treatment trial [48]. Indeed, there are several published clinical 

studies that have recorded different rates of glaucoma progression between the  right and left eyes 

of the same individuals [49]–[53]. However, we do see this as a limitation of our own study, and will 

address this in the future, especially with the opportunity of larger trials.    

The poor agreement between clinicians identifying progression has generated great interest 

in the last few years in the use of artificial intelligence to help aid glaucoma diagnosis and prognosis 

using AI with  optic disc photographs[17][54][19], visual fields[27][14] and OCT [55][56]. A recent 

study by Medeiros et al described an algorithm to assess fundus photographs based on predictions 

of estimated RNFL thickness, achieved by training a CNN using OCT RNFL thickness 

measurements[56]. At specificity of 95%, the predicted measurements had a sensitivity of 76% 

whereas actual SD OCT measurements had sensitivity of 73%. For specificity at 80%, the predicted 
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measurements had sensitivity of 90% compared to OCT measurements which had sensitivity of 90%. 

The authors suggest their method could potentially could be used to extract progression information 

from optic disc photographs, but comment that further validation on longitudinal datasets is 

needed, in the same way we are suggesting from this work. 

Template matching is routinely used for tracking cells in microscopy with similar assessment 

needed to analyse single cells in vivo longitudinally in this study. For template matching here, a 

30x30 pixel template was used, for the CNN a 64x64 pixel image was used. The reason for this size 

difference is template matching is sensitive to blood vessels and so a small template is beneficial to 

reduce the likelihood of a blood vessel being included. For the CNN a larger image is useful to give 

the CNN more context of the area around the spot which may be useful in classification. As 

mentioned previously, there was some unbalanced data between the template-matching and the 

training of the CNN algorithm. We compensated for this by setting the DARC spots class weights to 

50 for spots and 1 for other objects, but we believe our method for template matching could be 

improved to reduce the number of candidate spots. 

Although the algorithm performs well, providing a viable method to detect progressive 

glaucoma 18 months ahead of alternative methods, we believe there are areas where it can be 

optimised, some of which are described below.  

Alternative classification algorithms to MobileNetV2 such as Support Vector Machines 

(SVMs) or Random Forests require “hand-crafted” features which are difficult to produce as they 

need to account for complexities caused by the image capture such as non-linear intensity variation, 

optical blur, registration blur and low light noise, as well as biological complexities such as the 

patterning in the choroidal vasculature, blood vessels, blur due to cataracts etc. The network has 

some biases to do with the intensity of the original retinal image. We believe we can improve results 

by looking at the intensity standardisation and augmenting the data by varying the intensity in ways 

more realistic with a larger dataset. The performance of other networks such as VGG16 were 
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evaluated, at the time of writing MobiNetV2 was found to perform best. We are continuing to 

evaluate if this network is optimum for this need. In comparison, VGG16, an alternate CNN, would 

be limited to 64 spots in a batch which could mean a batch has no DARC spots in it which hinders 

training. We have an alternative method that detects and classifies spots in a single step using the 

detection and segmentation algorithm, YOLO3. We believe this may be a more efficient and 

effective method with more data, however at this stage the highest accuracy we have achieved with 

YOLO is not as good as the method outlined in this document. 

 

 

5 Conclusion 
 

This study describes a CNN-aided algorithm to analyse DARC as a marker of retinal cell 

apoptosis in retinal images in glaucoma patients. The algorithm enabled a DARC count to be 

computed which when tested in patients was found to successfully predict OCT RNFL glaucoma 

progression 18 months later. Further validation with longitudinal studies is needed, but this data 

supports use of this method to provide an automated and objective biomarker with potentially 

widespread clinical applications. 
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Figure Legends 

 

Figure 1 Consort Diagram Showing Glaucoma and Control Cohorts Subjects and DARC Image 
Analysis 

* 3 screen failures, 37 declined        ** 24 screen failure, 36 were ineligible from pre-screening GP 
letter, 50 declined 

 

Figure 2 CNN-aided Algorithm Flowchart showing Analysis Stages of DARC Images 

 

Figure 3 Representative Retinal Image of the Possible Spot Candidates 

Candidate spots were detected using template matching and a correlation map. Local maxima were  
selected and filtered with thresholds for the correlation coefficient and intensity standard deviation 
(corresponding to the brightness of the spot). These thresholds were set very low and produce many 
more spot candidates than manually observed spots (approximately 50-1).  

 

Figure 4 CNN Training and Validation Stages 

CNN training (A) and validation (B) curves.  A good accuracy is achieved in 200 epochs (training 
cycles) although training was left for 300 epochs to verify stability. The matching validation accuracy 
also shows similar accuracy without signs of over training.  The accuracy was found to be 97%, with 
91.1% sensitivity and 97.1% specificity. 

 

Figure 5 Representative Comparison of Manual Observer and CNN-algorithm DARC Spots 

Spots found by the CNN and spots found by at least 2 manual observers shown on an original retinal 
image. (A) Patient 6, left eye. Progressive glaucoma (as measured by OCT global RFNL 3.5 ring) (B) 
Patient 31, left eye. Stable glaucoma. Green circles: manual observers only (False negative); Blue 
circles: CNN-aided algorithm only, (False Positive); Turquoise circle: Algorithm and manual observers 
agree (True Positive)  

 
  
 

Figure 6 ROC Curves of Glaucoma Progression of  Manual Observer and CNN-algorithm analysis 

Receiver Operating Characteristic (ROC) curves were constructed for both the CNN-aided algorithm 
(A) and manual observer 2-agree or more (B), to test predictive value of glaucoma progression at 18 
months. The rate of progression (RoP) was calculated from the Spectralis OCT global retinal nerve 
fibre layer (RNFL) measurements at 3.5 mm from the optic disc at 18 months follow up of glaucoma 
subjects after DARC. Those patients with a significant (p<0.05) negative slope were defined as 
progressing compared to those without who were defined as stable.   Maximal sensitivity (90.0%) 
and specificity (85.71%) were achieved at a DARC count of 23 with the AUC of 0.89 with the CNN 
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algorithm as opposed to the manual observer count with maximal sensitivity (0.85%) and specificity 
(71.43%) at DARC count of 12, with the AUC of 0.79, showing the CNN-aided algorithm to be 
performing superiorly.  

 

 

Figure 7 CNN DARC counts significantly increased in glaucoma patients who go on to progress 
compared to those who are stable  

Violin plots illustrating the distribution of data in glaucoma eyes with and without significant RoP as 
measured by OCT global RFNL 3.5 ring at 18 months follow-up.  (A) The CNN DARC count was 
significantly higher in patients progressing at 18 months  (mean 26.13) compared to those who were 
stable (mean 9.71 ) using the CNN-aided algorithm (p=0.0044). The DARC count was defined as the 
number of  ANX776-positive spots seen in the retinal image at 120 minutes after baseline spot 
subtraction. No stable eyes had a CNN DARC count above 30 (dashed line), highlighting this as a 
threshold that could be confidently used to separate those at risk of progression.   (B) A similar trend 
was found with manual observers (2 agree or more) DARC counts, although counts were lower 
compared to the CNN. Again, a significant difference was found between those progressing at 18 
months (mean 12.25) compared to stable (mean 4.38) glaucoma patients (p=0.0084). Asterisks 
indicate level of significance by unpaired t-test. Horizontal lines indicate medians and interquartile 
ranges with minimum and maximum points. 
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Table 1a. Glaucoma Eligibility (Exclusion/Inclusion Criteria Glaucoma) 

Subject ID Eligible eye Diagnosis 

6 Both  Primary Open Angle Glaucoma 

7 Both  Glaucoma suspect 

9 Both  Glaucoma suspect  

11 Both  Glaucoma suspect 

13 Both  Glaucoma suspect 

17 Both  Glaucoma suspect 

18 Both  Glaucoma suspect 

21 Both  Primary Open Angle Glaucoma 

23 Both  Primary Open Angle Glaucoma 

25 Both  Glaucoma suspect 

31 Left Primary Open Angle Glaucoma 

32 Both  Primary Open Angle Glaucoma 

38 Both  Primary Open Angle Glaucoma 

39 Both  Glaucoma suspect 

44 Both  Primary Open Angle Glaucoma 

45 Both  Glaucoma suspect 

52 Both  Glaucoma suspect 

61 Both  Primary Open Angle Glaucoma 

72 Left Glaucoma suspect 

74 Both  Glaucoma suspect 

  

 

Table1b. Glaucoma characteristics on study entry 

Diagnosis n (%) 

Glaucoma 8 (40) 

Glaucoma suspect 12 (60) 

Ocular hypertension 0 (0) 

Total 20   
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Table 2. Baseline and Qualification Progression parameters Glaucoma Patients,  where progression 
was defined by a significant (p<0.05) negative slope in the rate of progression. 

Subject Eye 

OCT   SAP 

RNFL 3.5 
µm/year 

RNFL 4.1 
µm/year 

RNFL 4.7 
µm/year 

MRW 
µm/year   MD 

dB/year 
VFI   

%/year 

6 
R + +   
L   

7 
R   
L + +   

9 
R +   
L +   

11 
R   
L + +   

13 
R + + + 
L +   

17 
R +   
L +   

18 
R + + +   
L   

21 
R + +   
L +   

23 
R +   
L + + +   

25 
R   
L + +   

31 
R +   
L   

32 
R +   
L +   

38 
R + + + +   
L + + +   

39 
R + +   
L   

44 
R +   
L +   

45 
R +   
L   

52 
R + +   
L + +   

61 
R + + + 
L + + + +   

72 
R + +   
L + +   

74 
R + +   
L + + + +       
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Table 3a:  Progression classification per glaucoma eye (OCT global RNFL 3.5 ring) 18 months after DARC 

 

Category Number of eyes  
Progressing  8 
Stable 21 
Unknown 4 
N/A 5 
Total 38 

 

 

 

Table 3b. Clinical findings of eyes meeting the inclusion criteria 

 

  

  Glaucoma 
 

Healthy volunteer 
 

p 

   mean  (SD)  mean (SD)  
Age 61.1 (13.7) 47.6 17.1 <0.005 
Females 
Males 

6 
14 

 21
18

  

Systolic BP 140 (17.0) 129 (14.5) <0.05 
Diastolic BP 77.9 (10.3) 75.8 (9.0) NS 
BCVA, logmar 0.01 (0.08) -0.03 (0.08) <0.05 
IOP, mmHg 18.90 (2.61) 13.63 (2.50) <0.005 
Corneal pachimetry (CCT) 555.58 (33.21) 529.99 (25.60) <0.005 
MD (dB) -1.7 (2.1) -0.3 (0.1) <0.005 
OCT RNFL (um) 80.0 (17.4) 100.1 (10.7) <0.005 
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Figure 1 

* **
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Figure 2 
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Figure 3 
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Figure 4 

A B

Accuracy 97.0% Total candidate spots 48610

Sensitivity 91.1% Total manual 2-agree spots 898

Specificity 97.1%

True Positives 818 False Positives 1395

False Negatives 80 True Negatives 46317

C
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Figure 5 
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Figure 6 

A B

Algorithmic Count Manual Observers Count (2 agree)

AUC: 0.88 (95% CI 0.67 – 1.00) AUC 0.79 (95% CI 0.49 – 1.00)

Sensitivity: 85.7%, Specificity: 91.7% Sensitivity: 71.4%, Specificity: 87.5%

Likelihood ratio: 8.57 Likelihood ratio: 4.76

C

Figure 7 

A B

✱✱  p=0.0044 ✱✱  p=0.0084
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