
Unravelling the forces underlying urban industrial agglomeration

Neave O’Clery, Samuel Heroy, François Hulot, and Mariano Beguerisse-Díaz

Mathematical Institute, University of Oxford

Tuesday 14th May, 2019

A B S T R A C T

As early as the 1920’s Marshall suggested that firms co-locate in cities to reduce the
costs of moving goods, people, and ideas. These ’forces of agglomeration’ have given
rise, for example, to the high tech clusters of San Francisco and Boston, and the au-
tomobile cluster in Detroit. Yet, despite its importance for city planners and industrial
policy-makers, until recently there has been little success in estimating the relative im-
portance of each Marshallian channel to the location decisions of firms.

Here we explore a burgeoning literature that aims to exploit the co-location patterns of
industries in cities in order to disentangle the relationship between industry co-agglomeration
and customer/supplier, labour and idea sharing. Building on previous approaches that
focus on across- and between-industry estimates, we propose a network-basedmethod
to estimate the relative importance of each Marshallian channel at a meso scale. Specif-
ically, we use a community detection technique to construct a hierarchical decomposi-
tion of the full set of industries into clusters based on co-agglomeration patterns, and
show that these industry clusters exhibit distinct patterns in terms of their relative re-
liance on individual Marshallian channels.

Keywords: Community detection, agglomeration economies, Marshallian externalities,
regional diversification, labour pooling, value chains

1 Introduction

Globally, a consensus has emerged that emphasises the role of cities, rather than coun-
tries, as key engines of economic growth (Jacobs, 1961; Glaeser, 2011). Yet, what are the
drivers of urban success in the face of high costs arising from factors such as congestion,
density, crime, and pollution?

Leading scholars have argued that it is the diversity of cities, and in particular the way
cities facilitate and foster a diverse ecology of social interactions, that gives rise to new
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activities, opportunities and innovations (Jacobs, 2016; Bettencourt et al., 2007). This
view aligns with a growing literature that emphasises the role that larger cities have in
better facilitating matching between employers and employees, knowledge spillovers
between firms and innovation opportunities (Friedrichs, 1993; Duranton and Puga, 2001,
2004; Rosenthal and Strange, 2006).

Yet, for all their diversity at an individual or worker level, cities tend to specialize at
an industry level (Beaudry and Schiffauerova, 2009). In other words, industries are geo-
graphically concentrated: examples range from the tech cluster of Silicon Valley to the
automobile cluster of ”motor city” (Detroit). This phenomenon of clustering of similar
firms is thought to arise mainly via three channels of cost-sharing: transport costs as-
sociated with customers and suppliers, labour costs, and learning or knowledge costs
(Marshall and Marshall, 1920; Glaeser et al., 1992; Henderson et al., 1995).

However, until recently there has been little success in estimating the relative impor-
tance of each of these channels to the location decisions of firms. This chapter will ex-
plore and extend a burgeoning literature (Ellison et al., 2010a; Diodato et al., 2018) that
aims to exploit the co-location patterns of industries in cities in order to unravel the re-
lationship between industry co-agglomeration and customer/supplier, labour and idea
cost-sharing.

1.1 Urban agglomeration patterns

The benefits of firm agglomeration have long been proposed. In 1920, Marshall argued
that firms locate in close proximity in order to reduce costs: firms can save shipping costs
by locating near suppliers or customers, searching andmatching costs via labour market
pooling, and benefit from knowledge spillovers (Marshall and Marshall, 1920). For ex-
ample, chemical and pharmaceutical companies might rely on access to a similar labour
pool, whereas car manufacturers might be more sensitive to transport costs associated
with suppliers of parts. Industries at the forefront of innovation such as biotechnology
firms might benefit from a combination of skilled labour and knowledge spillovers from
locating close to other similar firms. In a well-known instance of this type of location de-
cision, Amazon was set up in Seattle to benefit from the local talent pool (i.e., Microsoft
and other tech firms).

Other benefits of geographical clustering of firms identified in literature are compe-
tition, which drives productivity (Porter, 2011), and local demand effects (Fujita et al.,
2001).

While it has been long understood that it is these ’externalities’ that drive urban indus-
try agglomeration patterns, measuring their impact, and modelling their behaviour and
dynamics, remains a challenge. In particular, until quite recently there has been little
success in estimating the relative importance of each Marshallian channel to firms’ de-
cisions - not least because each channel predicts an identical agglomeration pattern
(Duranton and Puga, 2004).
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In response to this challenge, a pioneering study by Ellison et al. (2010a) proposed to
exploit the co-location patterns of industries in cities in order to estimate the relation-
ship between industry co-agglomeration and each of the three Marshallian channels:
customer/supplier, labour and idea sharing. In other words, they were interested in
whether pairwise patterns of industry co-agglomeration were strongly correlated with,
for example, labour pooling (which can be constructed from an estimate of skill-overlap
between industries, see next section). If co-agglomeration patterns are most correlated
with labour pooling (compared to the other channels), then, this study proposes, the
labour channel is the most important reason for firm location decisions across all in-
dustries. Hence, Ellison et al. (2010a) argue that comparing co-agglomeration patterns
to each of the three channels enables us to estimate the relative importance of each
channel (across all industries).

In practice, this means constructing a pairwise industry-industry measure of co-location
(e.g., the propensity of firms from two industries to be located in the same cities), and
corresponding pairwise estimates for each industry-industry ’proximity’ or similarity for
each of the three Marshallian channels. There are a variety of ways to measure these
similarities as discussed below.

1.2 Industry similarity and networks

For each of the studies we focus on in this chapter, data on industries and employment
from the USA (predominantly from 2002) is used. Technical definitions and information
on data sources are provided in Section 2. Following Ellison et al. (2010a), our task is
to develop pairwise industry-industry measures of co-agglomeration, labour pooling,
custom-supplier and knowledge sharing.

Geographic co-agglomeration of industries is typically estimated using data on the dis-
tribution of employment by industry and city (Ellison et al., 2010a; Hausmann et al.,
2014).

Two industries are ’proximate’ in terms of the first channel, labour pooling, if they have
similar skill requirements. Hence, one method to estimate shared labour needs is to
compute a measure of occupational similarity (e.g., using data on industry employment
by occupation) (Farjoun, 1994; Chang, 1996). Alternatively, labour flows (job switches)
between industry pairs is an excellent proxy for shared skills (Neffke and Henning, 2013).
Unfortunately, sufficiently dis-aggregated data on industry-industry labour flows is un-
available for the USA at this point.

Two industries are similar in terms of the second channel if they share customers and
suppliers. In order to capture buyer-seller relationships between industry pairs (Fan and
Lang, 2000), we can make use of Input-Output matrices, built by national statistics of-
fices worldwide, which capture monetary flows between industries (normally with great
precision).
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Finally, a pair of industries is similar in terms of the third channel if they commonly ex-
change ideas and know-how (often via some sort of R&D collaboration). This type of
knowledge sharing between industries is typically captured using patent data - more
specifically, the extent to which technologies associated with industry i cite technolo-
gies associated with industry j, and vice versa. However, only a select fewmanufacturing
industries are active in patenting (Diodato et al., 2018) and hence this third channel is
omitted from much of the analysis below.

It is instructive to think about each type of industry proximity (co-agglomeration, labour
pooling, customer-supplier and knowledge sharing) in terms of a network, where nodes
(industries) are connected via edges with weight equal to the corresponding proximity.
In section 1.5 we will see that industry networks of this type are frequently used tomodel
diversification paths, whereby places (e.g., cities) branch into new economic activities
that are similar to existing strengths (Frenken et al., 2007; Hidalgo et al., 2007). Later, in
Section 4, we will propose a network-based method to estimate the relative importance
of each Marshallian channel at an industry-cluster scale.

Network models are increasingly used to understand the role that interconnected struc-
tures play in economic and innovation-related processes, including research clusters
(Catini et al., 2015), the inter-industry propagation of supply and demand shocks (Ace-
moglu et al., 2015), and banking crises (Battiston et al., 2012).

1.3 Relative importance of Marshallian channels

Using the pairwise proximity matrices introduced in the previous section, Ellison et al.
(2010a) estimated the contribution of labour, customer-supplier linkages, and knowl-
edge spillovers to co-location using 1987 manufacturing data from the US. The tech-
nical details of this estimation are provided in Section 3.1. The authors find that each
channel is a significant factor in industry co-location patterns, with a particular emphasis
on customer-supplier linkages.

Diodato, Neffke, and O’Clery (2018) reproduced the Ellison et al. (2010a) study using
data for US manufacturing industries from 2002, confirming a strong role for labour
and input output linkages in co-agglomeration patterns. Evidence for the importance
of knowledge spillovers was less apparent. These studies however focus on manufactur-
ing industries and neglect services, an increasingly dominant component of advanced
urban economies. Services, much like high and low skilled manufacturing, may favour
labour linkages (services are often labour intensive) or customer-supplier linkages (many
services are non-traded). Extending the earlier study, Diodato et al. (2018) found a stronger
role for labour linkages when a larger set of industries including services were consid-
ered.

Investigating further the strengthening role of labour linkages for co-agglomeration pat-
terns, using data from 1950 to 2010 Diodato et al. (2018) showed that the importance
of customer-supplier linkages has steadily decreased over the past century while labour
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linkages have strengthened. This result corresponds to a well-documented shift from
value chain based manufacturing to a specialised service driven economy.

The framework proposed by Ellison et al. (2010a) assumes a homogeneous contribution
of each Marshallian channel to co-agglomeration patterns for all industries. Intuitively,
however, it is highly likely that individual industries will rely on each Marshallian chan-
nel in different combinations. For example, as discussed above, one might expect that
high tech manufacturing relies on the availability of skilled labour whereas heavy man-
ufacturing prioritizes proximity to suppliers and customers. Diodato et al. (2018) adapt
the framework proposed by Ellison et al. (2010a), and estimate the relationship between
co-agglomeration patterns and each of the three Marshallian channels for individual in-
dustries. Their results highlight remarkable heterogeneity across industries, with arts,
media and scientific industries showing a strong preference for labour linkages, while
farming and manufacturing co-locate according to customer and supplier linkages. This
study is one of a number of studies to investigate heterogeneity in agglomeration forces
across industries (Faggio et al., 2014; Howard et al., 2015; Behrens, 2016).

1.4 Agglomeration drivers for industry clusters

We can view previous approaches to measuring the relative importance of Marshallian
channels as ‘local’ approaches, which inherently do not take into account network struc-
ture. Specifically, previous approaches have sought to relate the whole network (e.g.,
all of the edges) or individual nodes (e.g., all of the edges connected to a single node)
to patterns corresponding to each of the Marshallian channels. Each of these methods
have neglected to consider intermediate scales which emerge naturally from the struc-
ture of the co-agglomeration network.

Intuitively, one might expect that clusters of industries co-located across many cities
may exhibit a similar dependence on each of the Marshallian channels. We can identify
such clusters via an analysis of connectivity patterns in the co-agglomeration network.
Then, building on the framework established by Ellison et al. (2010a) and Diodato et al.
(2018), we will show that industry clusters exhibit heterogeneous dependence on each
of the Marshallian channels.

In order to identify industry clusters, we will focus on uncovering densely connected
groups of nodes (known as communities) in the co-agglomeration network. This ap-
proach is connected to work on detecting and defining industrial clusters for the US
(Porter, 1998; Delgado et al., 2015) and Ireland (O’Clery et al., 2019). More broadly,
community detection has been used extensively to study the structure and dynamics
of biological and social networks (Girvan and Newman, 2002).

Although there exist a wide range of approaches to community detection (see Fortu-
nato (2010) for a review), we will employ a method called Markov Stability based on
diffusion dynamics (Delvenne et al., 2010). Intuitively, we let a random walker wander
on the network, jumping from node to node. If the random walker remains in the same
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group of nodes over a long period of time, there is high connectivity between the group
of nodes and a community has been discovered.

While the classical problem of community detection is to find a single node partition un-
der a particular optimisation strategy (e.g., modularity from Newman (2004)), it is more
natural to consider a range of partitions on different scales (from many small node clus-
ters to few larger clusters). Within the prism of the Stability approach, this information
can be extracted by analysing the patterns of random walkers on a network at differ-
ent timescales (Delvenne et al., 2010). Longer time-scales correspond to larger node
aggregations, and fewer communities.

We apply the Stability method to the co-agglomeration network, extracting a range
of network partitions at different scales. Although not strictly nested, these partitions
form a hierarchical decomposition of the co-agglomeration network into industry clus-
ters of different sizes. For each of these partitions, we analyse the relationship between
the edge weights within co-agglomeration communities and the corresponding edge
weights in the customer-supplier and labour networks. We uncover regions of the co-
agglomeration network - clusters of co-located industries - dominated by labour and/or
value chain agglomeration channels. This result has implications for network based di-
versification models, introduced in the next section, which simulate dynamics on a co-
agglomeration network in order to describe economic branching processes.

As a final validating step, we investigate the relationship between the mean number
of years of education (averaged across industries within a cluster) and our cluster esti-
mates for reliance on labour and customer-supplier linkages. It is expected that labour-
dominated clusters would employ workers with a higher level of education. In agree-
ment with this hypothesis, we find that years of education correlate positively with our
estimates for the labour-sharing channel, and correlate negatively with our estimates for
the IO channel.

1.5 Industrial growth and diversification models

An emerging perspective sees diversification as a path dependent process, whereby the
growth and appearance of new economic activities (industries) in a place is dependant
on the local availability of relevant capabilities (Nelson and Winter, 1982; Frenken et al.,
2007; Hidalgo et al., 2007). These capabilities include, but are not constrained to, skilled
labour, physical infrastructure and other necessary inputs for production.

This perspective has emerged from the (recently converging) fields of economic com-
plexity and evolutionary economic geography, and particularly focuses on the role of
local capabilities (often in the form of worker know-how) in growth and diversification
process (Nelson and Winter, 1982; Frenken et al., 2007; Hidalgo et al., 2007). Hence,
quantifying local capabilities or know-how (termed ‘economic complexity’ by Hidalgo
and Hausmann (2009)), and identifying new activities that are ‘proximate’ in terms of
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their capability requirements (Frenken et al., 2007; Hidalgo et al., 2007), is key to the
development of diversification and development strategies and models.

Within this framework, cities move into new economic activities that share existing ca-
pabilities in a path dependent manner. This process can be modelled using an industry
network, where edges represent capability-overlap (Hidalgo et al., 2007; Neffke et al.,
2011). This network can be seen as an economic ‘map’ or ‘landscape’: the position of
a city (i.e., the subgraph of its industries) constrains its future development path. More
specifically, the diversification of a city into new industries can be modelled by a diffu-
sion process on the industry network with initial condition governed by the initial set
of industries in the city (Hidalgo et al., 2007; Neffke et al., 2011; Hausmann et al., 2014;
O’Clery et al., 2016). Hence, while centrally located cities share capabilities with many
potential new industries, peripheral cities have fewer options.

This network approach tomodelling diversification processes was pioneered byHidalgo
et al. (2007), and focused on describing the diversification paths of countries as they
develop and move into new, more sophisticated products. The underlying network of
products (the Product Space) is a product-country analogue of the (industry-city) co-
agglomeration network introduced in the previous section. In other words, in the di-
versification literature, the co-agglomeration network has been proposed as a general
measure of capability overlap or ‘industry relatedness’ (Hidalgo et al., 2007; Hausmann
et al., 2014), which does not distinguish between different types of linkage, and forms
the ‘landscape’ on which to model growth and diversification dynamics. Hence, our
approach to uncovering the relationship between co-agglomeration patterns and the
channels of labour sharing and customer/supplier linkages at an industry cluster scale
has clear implications for this class of diversification models. We expect that diversifica-
tion dynamics will be better captured by skill linkages in some regions of the network (as
uncovered by our analysis), and better modelled by IO linkages in other regions of the
network. Diodato et al. (2018) provide evidence that employment growth dynamics at
the city-industry level can be improved by incorporating industry-level heterogeneous
linkages, but there remains future work with respect to our cluster estimates.

Modelling diversification paths using industry networks is well-established in the ‘related
diversification’ literature, and has been deployed to model growth and diversification
processes across a range of spatial scales (Frenken et al., 2007; Neffke et al., 2011; Neffke
and Henning, 2013), and study a wide range of questions around local growth paths,
including employment and formality rates, and firm and sector entry (Hausmann et al.,
2014; O’Clery et al., 2016).

2 Data and Metrics

Here we will briefly review the technical definitions of the industry similarity metrics used
by Ellison et al. (2010a) andDiodato et al. (2018) as introduced in Section 1.2, and provide
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information on data sources. For the new analysis presented in Section 4, we will use the
same data as the latter study.

Co-agglomeration

As proposed by Ellison and Glaeser (1997), we define a co-agglomeration index for
industries i and j:

EGij =

∑R
r=1(sir − xr)(sjr − xr)

1−
∑R

r=1 x
2
r

, (1)

where sir is the employment share of industry i in region r, and xr is the mean share
of employment in region r1. As shown by Ellison et al. (2010b), EG has the advantage
of not being affected by the size distributions of firms in various industries nor by the
level of spatial aggregation. This latter issue affects a similar measure of industry co-
location proposed by Porter (2003) based on a correlation of employment shares across
locations:

LCij = corr(sir, sjr). (2)

For the analysis undertaken by Ellison et al. (2010a), 1987 employment data from the US
Census Bureau’s Census ofManufacturing (122 three-digit SICmanufacturing industries)
was used. In the case of Diodato et al. (2018), 2003 employment data from the US Bureau
of Labour Statistics (283 four-digit NAICS industries including both manufacturing and
services, and 939 metropolitan areas) is used.

Labour pooling

Next, we measure industry similarity with respect to labour pooling using occupational
data as proposed by Farjoun (1994). If Ei is a vector of employment by occupation for
industry i, we compute the Pearson correlation between Ei and Ej :

Lij = corr(Ei, Ej). (3)

Observe that this metric is symmetric with respect to i and j and does not depend on
the sizes of the respective industries.

For the analysis undertaken by Ellison et al. (2010a), 1987 industry-occupation employ-
ment datawas taken from theNational Industrial-Occupation EmploymentMatrix (NIOEM)
published by the US Bureau of Labor Statistics (277 occupations). In the case of Diodato
et al. (2018), 2002 industry-occupation employment data was taken from the US Occu-
pational Employment Statistics (734 occupations).

Customer-supplier linkages

In order to study customer-supplier relationships between industry pairs, we use an
Input-Output matrix with entries i, j corresponding to the value of goods and services
that industry j sources from industry i. Normalising in both directions to account for

1 The measure becomes simply a rescaling of cov(sir, sjr) when the sum of regional employment share
is equal across regions
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the relative importance of industries as a buyer and seller, we create a symmetric IO
proximity matrix:

IOij = max
( IOij∑

k IOkj
,

IOji∑
k IOkj

,
IOij∑
k IOik

,
IOji∑
k IOik

)
. (4)

For the analysis undertaken by Ellison et al. (2010a), the 1987 Benchmark Input-Output
Accounts published by the Bureau of Economic Analysis (BEA) was used. In the case of
Diodato et al. (2018), analogous tables provided by the BEA for the year 2002 are used.

Knowledge spillovers

Wecan estimate inter-industry knowledge similarity using cross-industry patent citations
- specifically, the extent to which technologies associated with industry i cite technolo-
gies associated with industry j, and vice versa. Using a similar approach to Eq. 5, we
compute:

Kij = max
( Xij∑

k Xkj
,

Xji∑
k Xkj

,
Xij∑
k Xik

,
Xji∑
k Xik

)
. (5)

where Xij is the number of citations from patents associated with industry i to patents
associated with industry j.

Both Ellison et al. (2010a) andDiodato et al. (2018)make use of theNBERpatent citations
dataset (Hall et al., 2001) to compute this matrix.

Education

Finally, in Section 4.5 we use USmicro-data (2002) from the Integrated Public Use Micro-
data Series (IPUMS), the world’s largest individual-level population database, to com-
pute the mean number of years of education for workers in US industries.

3 Dependence of industrial co-location on Marshallian channels

In this section, we explore the methodological approach and results of Ellison et al.
(2010a) andDiodato et al. (2018). In summary, Ellison et al. (2010a) show that input-output
linkages are the dominant channel for manufacturing industries using data from 1987.
Using more recent data, Diodato et al. (2018) show that labour sharing has become over
time an increasingly important channel, and the dominant channel in service industries.
Additionally, while the earlier study views these channels as homogeneous across all
industries, the latter finds significant heterogeneity between industries.

3.1 Homogeneous forces (Ellison et al., 2010a)

Using manufacturing data from the US (1987), Ellison et al. (2010a) sought to study the
relationship between industry co-location, and shared labour, customer-supplier and
knowledge requirements via estimation of the coefficients βZ of a simple linear model:

EGij = α+ βZZij + ϵij , (6)
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Table 1. OLS univariate regressions from EGK and DNO (Eq. 6)

EGK (manu) DNO (manu) DNO (serv) DNO (all)
L 0.106 0.164 0.275 0.175

(0.016) (0.018) (0.037) (0.007)
N 7381 3655 5360 16836
R2 0.011 0.035 0.018 0.034
IO 0.167 0.177 0.171 0.138

(0.028) (0.032) (0.028) (0.015)
N 7381 3655 5360 16836
R2 0.028 0.060 0.016 0.022
K 0.100 0.109 – –

(0.016) (0.013) – –
N 7381 3655 – –
R2 0.010 0.022 – –

across all pairs i, j for channels Z ∈ {L, IO,K}. Table 1 shows a much stronger (> 50%)
relationship between co-agglomeration patterns and value chain linkages as compared
to labour or knowledge linkages.

Following the approach of Ellison et al. (2010a), Diodato et al. (2018) investigated the
contribution of labour pooling and customer-supplier relationships to co-location using
more recent data from the US (2002). This study does not include knowledge spillovers,
and natural resource availability, as was incorporated into previous work. The authors
showed, using the same estimation model, that labour sharing is increasingly an equal
driver of agglomeration in manufacturing industries, and a more significant driver of
agglomeration in services (see Table 1).

Applying this approach to time-series data (1910-2010), the same authors showed that
the influence of value chain linkages has consistently decreased over time since before
the 1940s. Furthermore, their analysis showed that while the importance of labour to firm
co-location has declined somewhat in recent years, it is still significantly higher than it
was in 1950. If previous trends are to persist, this study suggests that value chain linkages
will continue to lose importance, while labour pooling will remain a driving factor of co-
agglomeration.

3.2 Heterogeneous forces (Diodato et al., 2018)

As discussed above, it is intuitive that the relative importance of each Marshallian chan-
nel will be different for each industry. Diodato et al. (2018) explore this idea, allowing
the relationship between co-location and shared labour as well as value chain linkages
to vary by industry. Specifically, they estimate the coefficients βi

Z for each industry i via
univariate regressions of the form:

EGij = αi + βi
ZZij + ϵij (7)
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Fig. 1. Average estimates of labor pooling effects (βi
L) and value chain effects (βi

IO) from Eq. 7 are displayed
for 27 sectors, demonstrating wide variation in the importance of each of theseMarshallian channels across
different types of industries. Estimates for services are shown using triangles, while those for manufacturing
industries are shown using circles.We observe that service industries tend to bemore labour pooling driven
than value chain driven.

across all industries j for channels Z∈ {L, IO}. Essentially, these coefficients capture
the relationship between co-location and labour/value chain similarities for linkages be-
tween an industry i and all other industries j.

Using this approach, it is possible to estimate labour and value chain coefficients for
each industry, enabling us to assess the relative contribution of these channels for in-
dividual industries. We plot the estimated coefficient pairs βi

IO and βi
L (averaged for

27 sectors) in Figure 1. This figure is a reproduction - with permission - of Figure 3 in
Diodato et al. (2018).

We observe a distribution of coefficients such that knowledge-intensive industries such
as design and accounting rely on specific labour availability, whereas industries that rely
on physical inputs such as agriculture, construction andmanufacturing dependmore on
value chain sharing (Fig. 1). Moreover, we observe more generally that service industries
tend to have higher labour sharing dependence than value chain dependence (βL >
βIO), whereas manufacturing industries have quite varying ratios of βL to βIO.
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Hence, by calculating industry-specific Marshallian agglomeration forces, Diodato et al.
(2018) showed that labour-sharing is the most important motive behind contemporary
location choices of services, although value chain linkages still explain much of the co-
location patterns in manufacturing.

4 Industry clusters exhibit heterogeneous dependence on Marshallian
channels

In this section, we explore the idea that industry clusters - that is, groups of industries
co-located across many cities - represent a natural intermediate scale at which to exam-
ine heterogeneous drivers of agglomeration patterns. Specifically, we identify industry
clusters in the co-agglomeration network which exhibit heterogeneous dependence on
each of the Marshallian channels, captured via labour and customer-supplier linkages
as before.

4.1 The co-agglomeration network

A network is defined by a set of pairwise interactions or edges between nodes, which
can represent individuals (Girvan and Newman, 2002), cities (Neal, 2011), or industries or
products (Hidalgo et al., 2007; O’Clery et al., 2016), etc. Analysis of the structure of such
networks can elucidate important insights into complex social, economic and physical
processes.

Here, we define a network describing industry-industry co-agglomeration relationships,
where nodes represent industries and weighted edges represent the strength of pair-
wise co-agglomeration patterns. We encode this structure into a weighted adjacency
matrix, in which an entryEGij (given precisely by Eq. 1) corresponds to the edge weight
between nodes i and j.

Within our framework, co-agglomeration patterns (e.g., the network structure) are a
composite of analogous labour, customer-supplier and knowledge sharing patterns -
measured via occupation similarity, input-output linkages and patent citations respec-
tively. Figure 2 schematically illustrates this idea. In the next section we identify industry
communities in the co-agglomeration network, which are clusters of tightly knit nodes
which are frequently co-located across cities. We later investigate the dependence of
each of these communities with respect to each of the Marshallian channels.

4.2 The Markov Stability framework for community detection

The general task of community detection is to find a node partition (i.e., a split of the
nodes into communities) such that nodes in the same community havemore edges than
would be expected in a random graph with the same degree distribution. Here, we use
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Fig. 2. Pairwise industrial co-agglomeration patterns can be represented as a network, with edges esti-
mated via the co-location patterns of industries in cities. Schematically, co-agglomeration patterns are a
composite of labour, customer-supplier and knowledge sharing patterns - measured via occupation simi-
larity, input-output linkages and patent citations respectively.

the Markov Stability algorithm (Delvenne et al., 2010) to perform this task on the co-
agglomeration network. Below we briefly review the Markov Stability framework, and
refer readers to the original paper for more details.

In general, we can describe a (discrete) random walker diffusion process on a graph
under the updating rule:

pt+1 = ptM (8)

where pt is the (normalized) probability vector (pt(i) is the probability a random walker
is on node i at time t), M = D−1EG is the transition matrix (D is a zero matrix with the
vector of node degrees of EG - denoted deg(EG) - on the diagonal). The stationary
distribution of this process is given by π =deg(EG)/sum(deg(EG)).

We want to quantify the clustering of these dynamics for nodes within communities.
We can encode a node partition in a matrix H such that H(i, c) = 1 if node i is in
community c (and otherwise H(i, c) = 0). The clustered autocovariance matrix of the
diffusion process is defined as:

R(t) = HT [ΠM t − πTπ]H, (9)

where Π = diag (π). Observe that (ΠM t)uv represents the probability that a random
walker who started in community u ends up in community v at time t, and (πTπ)uv is the



14 Neave O’Clery, Samuel Heroy, François Hulot, and Mariano Beguerisse-Díaz

probability that two independent random walkers are in u and v at stationarity. The di-
agonal entries of R(t) therefore represent the probability that a random walker remains
in their initial community after t time-steps, and hence the stability of a partition at time
t is defined as:

r(t) = Trace(R(t)). (10)

If a network’s community structure is well-defined, then a random walker is highly likely
to remain in the community in which it started - therefore, we seek a partition matrix Ĥ
that maximises r(t, Ĥ) on the set of all the possible partitions. This problem is NP-hard,
and we therefore we use the heuristic Louvain method to solve it.

Louvain’s method (Blondel et al., 2008) works as follows. The method first assigns each
node to its own community. Then, for each node, it considers merging it with each of its
neighbours (e.g., merging their communities) one by one. Merging occurs if this results
in an increased value of the optimization criteria, in this case stability as given by Eq. 10.
The process is repeated until no increase in stability can be achieved.

This algorithm is stochastic in the sense that it does not have a unique solution, and will
not necessarily return the same partition on each run. Hence, for each Markov time t,
we run Louvain’s algorithm 1000 times. We then compare each pair of partitions found
using the variation of information (Meilă, 2007), and take the average across all pairs. If
the mean variation of information is low at some t, the obtained partitions are similar,
signalling robustness.

4.3 Community structure in the co-agglomeration network

We apply the Markov stability framework for community detection on the network of in-
dustrial co-agglomeration. Communities in the co-agglomeration network correspond
to groups of industries that tend to co-locate across a large number of cities.

We find (Fig. 3 A) multiple Markov times at which the computed partition is robust (e.g.
times corresponding to local minima in the variation of information, VI). These corre-
spond to node partitions on a range of scales, from many small communities to few
large communities. In order to explore the network’s community structure, we examine
in more detail the partition corresponding to the local V I minimum at t = 0.55. This par-
tition, which we call P14, contains 14 distinct communities, of which 10 have ≥ 5 nodes
(Fig. 3 C and D). At this Markov time, many communities have intermediate size, with 8
having between 15 and 32 industries, while one community is quite large (75 industries).

Community B contains 38 industries, most of which are different types of services - in
particular healthcare, education, and finance. Because of the tendency of service indus-
tries to require specialised labourers, we might expect that the observed co-location
patterns are driven by labour linkages. On the other hand, communityE contains seven
industries involved in plastics manufacturing or machinery, and four industries related
to motor vehicle manufacturing/repair. In this case, wemight hypothesise that customer
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Fig. 3. [A] As the Markov time increases, the number of communities decreases (communities become
larger). The Variation of Information (VI), a measure of partition robustness, exhibits a number of lo-
cal minima. We compare these metrics for the co-agglomeration network, and 4 shuffled networks (the
co-agglomeration network with edges randomly shuffled). The vertical line corresponds to the partition
P14 visualised in subfigures C and D. [B] Stability, a measure of partition quality, is shown for the co-
agglomeration network and a partition corresponding to 23 official NAICs 2-digit sectors. The stability
method identifies more robust communities compared to the official industry grouping. [C] Heatmap
of the co-agglomeration network adjacency matrix, organized according to the partition P14. Paler en-
tries correspond to higher edge weights. Community structure is apparent via the relative density of
within-community edges (diagonal blocks). [D] Visualisation of the co-agglomeration network, with nodes
coloured according to the partition P14, and labels assigned frommanual inspection of industries. The top
2% of edges are displayed.

supplier relationships drive co-location patterns, as manufacturing/repair of motor ve-
hicles may co-locate with plastic/metal manufacturing firms that supply necessary com-
ponents. In the next section we will investigate these hypotheses.

In order to visualise the multi-scale community structure of the co-agglomeration net-
work, we choose seven representative partitions (for Markov times greater than t = 0.55)
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to construct a dendrogram (Fig. 4). These range from the whole network (top) to the ten
community partition (leaves) discussed above (P14). Because our partitions aren’t strictly
hierarchical, we employ a simple majority voting scheme to assign communities to a
’parent’ community in a coarser partition.

In order to further demonstrate the robustness of the communities we detect in the
co-agglomeration network, we compare these to communities detected in random net-
works derived from shuffling the edges in the co-agglomeration network. Fig. 3 A shows
that for sufficient Markov time, the V I for the co-agglomeration network is significantly
lower than for the shuffled networks. Note that in subsequent analysis, we only consider
partitions for t ≥ 0.55.

Finally, we ask whether our communities correspond to a better partition of the co-
agglomeration network than administrative “communities” given by two-digit NAICS
subsector classification. This latter comparison is particularly important as it validates to
some extent the need for community detection to identify ’exogenous’ industry clusters.
We see in Fig. 3 B that the stability (quality) of the detected co-agglomeration commu-
nities greatly exceeds that of the NAICS sector partitions, especially for t ≥ 0.55.

4.4 Industry clusters display heterogeneous preferences for labour and value chain
agglomeration channels

Previous analysis has been limited to measuring the relative importance of Marshallian
channels either at the individual industry level or at the whole network level. Here, we
argue for a meso-scale approach, with the intuition that dependence on each of the
Marshallian channels varies not by individual industries but by clusters of co-located
industries, which can also be conceptualized as regions in a capability ’landscape’ (see
Section 1.5).

Specifically, we seek to quantify the dependence of each community on the labour and
value chain agglomeration channels. That is, in place of Eq. 7, we let the respective
channel coefficients vary by community c (instead of industry) via the regression:

EGij = αc + βc
ZZij + ϵij , (11)

for industry pairs i, j ∈ c, and channels Z ∈ {IO,L}. Essentially, the coefficients βc
L and

βc
IO capture the relationship between co-location and labour similarities/value chain

linkages between industry pairs i and j within community c.

We estimate the coefficients in the OLS regression (Eq. 11) for various Markov times. We
can visualize the progression from homogeneity to heterogeneity in the channel coef-
ficients via the dendrogram in Fig. 4. From this analysis, we see (from top to bottom)
a shift from the simple labour vs. input output community partition to a more complex
structure composed of heterogeneous network regions. At the first split, the network
decomposes into two communities, one driven by input/output linkages (left) and the
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Fig. 4. Dendrogram of hierarchical community structure for seven partitions of the co-agglomeration net-
work, starting from the whole network in one community (root) to partition P14 of size 10 communities
(leaves). The size of the square corresponds to community size, and colour corresponds to dependence on
the labour and/or IO agglomeration channel (as shown in legend). We observe at the coarsest division one
community dominated by labour sharing and another dominated by value chain linkages. As the partitions
become finer, we see a wide distribution in the importance of the two channels in different communities
(open boxes represent communities in which neither βc

IO nor βc
L are significant).

other driven by labour sharing (right). The input/output branch then splits into two sub-
branches which are also input/output dominated, but a series of splits reveals hetero-
geneous channel importance at high resolution. For instance, we see that community
E is dominated by input/output linkages (in line with our expectations), whereas com-
munity F (sophisticated chemical manufacturing and energy production) is dominated
by labour sharing. The labour branch (top right) also splits into two sub-branches, one
dominated by input/output and the other dominated by labour sharing. This latter com-
munity (driven by labour linkages), is communityB, which is composed of service indus-
tries as explored earlier.
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L and βc

IO vs mean years of education for 11 different community partitions (points
sized by community size). Pale lines correspond to weighted least squares fits for each partition (see Eq. 12),
while the dark line corresponds to a weighted fit across all partitions (column three of Table 2). We observe
a clear tendency for communities that are more biased towards the labour sharing agglomeration chan-
nel to have more educated workers. Communities that are more biased towards the value chain sharing
agglomeration channel tend to have less educated workers.

4.5 Preference for labour pooling correlates with education level of workers

Here, we seek to investigate the relationship between the strength of labour pooling
in co-agglomeration patterns and years of worker education at the cluster level. We
expect that clusters dominated by service industries which tend to co-locate based on
shared skill requirements will also tend to employ more highly educated workers.

Employing data from IPUMs, we calculate for each industry the average number of years
of education for workers - and then for each community the average number of years
across industries (denoted edc). Then, we examine the relationship between edc and the
community-level coefficients βc

IO, β
c
L. Specifically, we perform regressions of the form,

βc
Z = α+ bZedc + ϵc, (12)

for all communities c in some partition and Z ∈ {L, IO}.

We perform this regression for many different partitions, corresponding to a range of
Markov times. Specifically, we denote by Pk the partition corresponding to the earliest
Markov time at which k communities are detected, and (independently) perform regres-
sion (12) for partitions P2, P3, ..., P14. Rather than performing an ordinary least squares
regression (or slope calculation in the P2 case), we take a weighted least squares ap-
proach to account for community size (i.e., the diagonal entries of the errors covariance
matrix are given by the relative sizes of the communities).



Unravelling the forces underlying urban industrial agglomeration 19

Table 2. Relationship between community-level L/IO estimates and mean years of education.

Dependent variable: βL OLS WLSI WLSII OLS† WLSI† WLSII† OLS†† WLSI†† WLSII††
Mean yrs education 0.0715 0.0794 0.0959 0.0770 0.0780 0.1130 0.0705 0.0712 0.1037

(0.0218) (0.0221) (0.0185) (0.0184) (0.0193) (0.0197) (0.0174) (0.0183) (0.0185)
N 80 80 80 80 80 80 80 80 80
R2 0.1212 0.1420 0.2553 0.1837 0.1728 0.2960 0.1743 0.1629 0.2867

Dependent variable: βIO OLS WLSI WLSII OLS† WLSI† WLSII† OLS†† WLSI†† WLSII††
Mean yrs education -0.1657 -0.1536 -0.1795 -0.1675 -0.1580 -0.0959 -0.1659 -0.1567 -0.0939

(0.0304) (0.0298) (0.0304) (0.0297) (0.0294) (0.0259)) (0.0301) (0.0297) (0.0263)
N 80 80 80 80 80 80 80 80 80
R2 0.2757 0.2538 0.3090 0.2896 0.2707 0.1491 0.2799 0.2630 0.1401

Dependent variable: βL − βIO OLS WLSI WLSII OLS† WLSI† WLSII† OLS†† WLSI†† WLSII††
Mean yrs education 0.2372 0.2330 0.1973 0.2445 0.2360 0.2089 0.2363 0.2279 0.1976

(0.0280) (0.0288) (0.0244) (0.0301) (0.0309) (0.0264) (0.0310) (0.0315) (0.0268)
N 80 80 80 80 80 80 80 80 80
R2 0.4797 0.4558 0.4558 0.4583 0.4279 0.4451 0.4277 0.4015 0.4098

In Fig. 5, we plot fits of the weighted regression for Z = L (left) and Z = IO (right).
In isolation, each of the fits (pale lines) are not terribly meaningful (especially for high
Markov time given the small number of communities). However, we note that for all
partitions the computed values of bL are positive, and all computed values of bIO are
negative except in one case (P7).

In order to pool the results of these partition-level fits, we perform a second set of re-
gressions that considers all communities across all partitions. We first perform an OLS
regression (column 1 of Table 2) - in which all communities are weighted equally - and
find a significant positive estimate for bL as well as a significant negative estimate for bIO
(p < .01 for both). That is, we see a strong relationship between the strength of labour
pooling in co-agglomeration patterns and years of worker education, as expected, and
as well a strong negative relationship between the strength of customer/supplier re-
lationships in co-agglomeration patterns and years of education. Moreover, we find a
particularly good linear fit (R2 > 0.4) for the relationship between βc

L − βc
IO and edu-

cation level. Hence, industry communities that tend to have a very strong dependence
on labour pooling relative to input/output linkages on average require more years of
education.

We also perform a weighted version (WLSI) of this regression that equalizes the total
error weights of each partition, and a second weighted version (WLSII) in which error
weights are proportional to community size (partitions again have equal total weight),
again finding significance at the 1% level in both cases (columns 2-3 of Table 2). This
latter pooled fit is shown via a dark line in Fig. 5 A-B.

Someof our estimates for βc
L and βc

IO were statistically insignificant (i.e., we cannot reject
the null hypothesis that these coefficients are zero). These insignificant estimates occur
mainly in small communities in the finer partitions of the network (P14), as seen in Fig. 3.
In order to address this issue, we perform versions of these three regressions (OLS,
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WLSI, WLSII) for the cases in which statistically insignificant values of βc
IO and βc

L are set
to zero. For columns 4-6 (7-9) in Table 2, we set the coefficients that were statistically
insignificant at the 10% (5%) level to zero. We find significant and comparable results
across all cases.

5 Conclusion

Efforts to disentangle the relative importance of Marshallian channels to the location
decisions of firms and industries in cities are building pace. In this chapter we reviewed
two important studies which, in turn, sought to unravel the impact of individal agglom-
eration channels across all industries (Ellison et al., 2010a), and for individual industries
(Diodato, Neffke, and O’Clery, 2018).

Building on these studies, we constructed a hierarchical decomposition of the full set
of industries into clusters based on co-agglomeration patterns, and estimated the rel-
ative importance of individual agglomeration channels for each cluster. We observe a
transition from two clusters - one strongly related to the labour channel and the other
to the customer-supplier channel - to a wide distribution of channel impacts at a finer
partition. Finally, we find robust evidence that clusters exhibiting strong dependence
on the labour channel employ more educated workers.

Our decomposition of the co-agglomeration network into regions dominated by one or
another agglomeration channel has implications for diversification models using similar
networks. There is evidence (Diodato et al., 2018) that such estimates can improve the
predictive power of these models, and so we expect this to be an future avenue worth
pursuing. From a policy perspective, a city seeking to diversify into ’related’ industries
might use our cluster estimates to decide whether to focus on labour-oriented policies
(e.g., building up the local skill base), or facilitating inter-firm transactions (e.g., policies
aimed at promoting local value chains).

Much of this analysis focused on two of the three Marshallian channels, labour shar-
ing and customer-supplier linkages. The third, knowledge spillovers, is more difficult to
capture across a wide range of industries as patenting activity (normally used to cap-
ture R&D interaction between firms and industries) is concentrated in few industries.
Future work might seek to investigate alternative methods and data sources for captur-
ing knowledge spillovers across a broader range of industries and activities.

Finally, this analysis has been conducted using relatively recent data from the USA.
Diodato et al. (2018) investigated the relative importance of labour and value chain link-
ages across all industries between 1950-2010, observing a decrease in the strength of
value-chain linkages over time. We would expect that over time, our framework might
yield increasingly stronger relationships between labour linkages and agglomeration
patterns (particularly within services clusters). Finally, while much academic study of ur-
ban economies focuses on highly developed cities (particularly US cities), little is known



Unravelling the forces underlying urban industrial agglomeration 21

about whether these patterns are similar or substantially different for developing cities,
where employment is often primarily informal (O’Clery et al., 2016).
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