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ABSTRACT 

Many human activities, such as manufacturing and assembly, are 
sequence-constrained procedural tasks (SPTs): they consist of a 
series of steps that must be executed in a specific spatial/temporal 
order. However, these tasks can be error prone - steps can be missed 
out, executed out-of-order, and repeated. The ability to 
automatically predict if a person is about to commit an error could 
greatly help in these cases. The prediction could be used, for 
example, to provide feedback to prevent mistakes or mitigate their 
effects. In this paper, we present a novel approach for real-time 
error prediction for multi-step sequence tasks which uses a 
minimum viable set of behavioural signals. We have three main 
contributions. The first we present an architecture for real-time 
error prediction based on task tracking and intent prediction. The 
second is to explore the effectiveness of using hand position and 
eye-gaze tracking for task tracking. We confirm that eye-gaze is 
more effective for intent prediction, hand tracking is more accurate 
for task tracking and that combining the two provides the best 
overall response. We show that using Hands and Gaze tracking data 
we can predict selection/placement errors with an F1 score of 97%, 
approximately 300ms before the error would occur. Finally, we 
discuss the application of this hand-gaze error detection 
architecture used in conjunction with head-mounted AR displays, 
to support industrial manual assembly.  
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1.  Introduction 
The assembly of a robot part on a factory floor, or the servicing 

and maintenance of a machine, are both examples of Sequence-
constrained Procedural Tasks (SPTs). These tasks consist of a set 
of steps that must be carried out in a specific temporal order.  
However, following an SPT can be error-prone: steps can be carried 
out in the wrong order, they can be missed out or they can be 
repeated. These errors normally have negative consequences, such 
as reducing efficiency, increasing waste of resources and 
reinforcing negative behaviours such as a sense of frustration. 
Therefore, effective and efficient approaches for real time error 
detection could help many maintenance and assembly tasks. These 
could be used, for example, to provide real-time feedback to inform 
a person if a task has been carried out correctly. More importantly, 
if the system can predict that an error might occur, it could prevent 
that error from occurring in the first place or allow the operator to 
fix the error as soon as it occurs. 

Error prediction in an SPT depends upon three pieces of 
information: the current step the user is working on (step tracking), 
the appropriate set of actions which can be taken in that step 
(predefined sequence of steps), and the action the user is about to 
undertake (user intent prediction).  While some studies [16, 18, 22] 
cover a subset of the real-time error prediction problem, to the best 
of our knowledge there is no study that covers all three of them. 

Our contribution is threefold. First, we develop a new 
architecture for intent tracking and error prediction. Our 
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architecture uses a comprehensive model to describe activities. 
Rather than use a set of heuristics, we use a machine learned 
approach to learn the relationships between signals and both the 
current step and predicted activities. This learned model predicts 
the coordinates where parts will be picked and placed and does not 
depend on a specific action sequence. Second, we explored the 
relative merits of using hand and eye gaze signals to both track the 
step and infer user intent. We compared performance of the system 
using hand signals only, eye signals only, and both hand and gaze 
signals in parallel (I.e. both signals used to track procedural steps 
and infer user intent) or in series (i.e. hand signal used to track 
procedural steps and eye-gaze to infer intent). These results confirm 
the different roles played by different signals and highlight an 
effective configuration for error prediction consisting on the 
combined use of hand and eye-gaze to predict intent and the use of 
hand alone to track the procedure.  

Third, we discuss applications of the proposed system in 
conjunctions with head-mounted AR displays. We highlight how 
the signals of hand and eye-gaze are consistent with signals 
available thought HMD AR.  We outline how such error prediction 
system could be used as an intelligent assistive system to control 
(display/forwarding) of assembly instruction. 

We created an experiment to record eye and hand behaviour 
of participants performing repetitions of a pick-and-place building 
block task. This task has been used in previous research and is 
considered a valid abstraction of industrial assembly task [2, 6, 15, 
20].  Building block number and assembly instructions were 
manipulated across experimental blocks to introduce different 
levels of task complexity / uncertainty, with the assumption that 
greater task difficulty would increase the likelihood of observing 
procedural errors. We used hand and gaze data, labelled according 
to onsets of grasping, picking, placing, releasing hand behaviours, 
to train the LSTM RNNs.   

We provide a real-time prediction architecture which uses a 
minimum viable set of behavioural signals (gaze, hand), to predict 
selection/placement errors with an accuracy of 97%, approximately 
300ms preceding response onset.  

2 Problem Statement  

2.1 The SPT model  
We consider the problem of a user performing an assembly 

task in a manufacturing context. The correct manufacturing 
procedure is the SPT  𝑇. 𝑇 is an ordered set of 𝑛 steps: 

𝑇 = (𝑆ଵ, 𝑆, … , 𝑆)                                                                               (1) 

In each step 𝑆, a worker obtains apart from a resource area 
and places moves it in to an assembly area where an assembly 
operation is carried out. Therefore, each step consists of a single 
retrieve-assembly pair: 

𝑆 = (𝑅 , 𝐴)                                                                                           (2) 

Both are spatially anchored.  For each 𝑅 there is a retrieve 
location  𝑟 which specifies where the part is obtained from; and for 
each 𝐴 the assembly location 𝑎 specifies where the part is placed. 

In many assembly tasks, these locations are fixed – parts are taken 
from a bin or location and fitted to a well-defined point on the 
assembly. Although it is convenient to specify the SPT in terms of 
(𝑅 , 𝐴), this is not sufficient to perform error detection because it 
does not specify the detectable actions a worker will make. Instead, 
we decompose each step further. 

2.2 Step Decomposition  
Each step is decomposed into a set of actions which can be 
measured by the gaze and hand trackers. We use the General 
Assembly Task Model (GATM) proposed by Funk [6]. GATM is a 
general model of assembly tasks and can be used to develop 
standardized experiment for the design and evaluation of assembly 
instructions. Therefore, it offers a solid base to model an error 
prediction system for SPTs. The GATM decomposes each 
assembly step into four phases: 
 

1. Reaching: starts when the worker reaches towards an 
assembly part and ends when the worker touches the part. 

2. Grasping: starts when the worker touches an assembly 
part and ends when the assembly part is about to be lifted 
from the resource area.  

3. Placing: starts with the lift of the assembly part from the 
resource area and ends when the assembly part touches 
the assembled surface. 

4. Releasing: starts when the assembly part touches the 
assembly area and ends the moment the worker’s hand 
detaches from the assembly part. 

 
These phases directly map to the retrieve-assembly pairs. Reaching 
and grasping form the retrieve action while locate and place 
constitute the assembly action. Using this decomposition, we 
represent the current state of an SPT at time 𝑡 as the vector 
𝑥௧ = (𝑠௧ , 𝑝௧), where 𝑠௧ is the step number (an integer in the range 
1, … , 𝑛) and 𝑝௧ is the phase number in the step (an integer 1, … , 4 
corresponding to the four phases above). 

2.3 Predictive Error Detection in the SPT model 
Assembly errors are defined in terms of a mismatch between the 
specified manufacturing procedure 𝑇 and the procedure the user 

actually carried out. Given the GATM, it is impossible for a worker 
to skip a phase (for example, a part cannot be placed in the 
assembly area until it has been grasped). Therefore, errors arise if 
the user performs a retrieve or assembly operation which is 
inconsistent with the spatial location specified by the 
manufacturing procedure. To do this, the system must be able to:  

1. Track the task and estimate 𝑥௧ . 
2. Given 𝑥௧, determine what is the next valid set of actions 

and where they will occur. 
3. Infer the actions the user is undertaking and check if the 

locations are consistent with the current step and phase. 

Predictive error detection extends the third capability by predicting, 
at some future time, the action the user will undertake. We now 
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review the literature associated with error detection and intent 
prediction. 

3 Related Work 
As noted above, detecting an error with an SPT includes both 
tracking the current state 𝑥௧ and predicting future actions. 

3.1 Task Tracking  
Task tracking estimates the current step a user is on. Since 

SPTs are linear sequences, Finite State Machines (FSMs) can be 
used. Sensor data is recorded and, when certain conditions are met, 
the system triggers a transition to a new phase. However, this 
assumes that the phase transitions are detected perfectly. Sensor 
noise and imperfections in the detector mean this not always the 
case. Therefore, Hidden Markov Models (HMMs) are often used 
[3] to model the probability distribution over the phase. Whether 
HMMs are used or not, there are two broad approaches: tagging-
based approaches, and remote monitoring. 

Tagging methods instrument the workers and / or the 
environment with sensors to monitor progress. For example, in [15] 
the environment and all of the tools are tagged with RFID tags 
which detect proximity [23] uses sensors on the worker. The system 
detects discrete events from three sensors: an RFID reader, a force 
reed and an inertial sensor. However, explicit tagging techniques 
have the difficulty that they can become highly intrusive and very 
cumbersome. 

An alternative approach is to use sensors which remotely 
monitor the assembly process without the need for tagging. For 
example, in [15] a web camera was used to detect part and tools 
positions/configuration, and an ultrasound beacon system was used 
to track hand positions. While this approach avoids the need for 
tagging, it relies on recognising each individual part, and the part 
configurations. As a result, for each new assembly task, a new 
system has to be retrained. Therefore, an approach that relies on 
recognition assembly procedure’s common features (humans body 
parts and actions) is potentially more generalizable. Furthermore, 
as noted above, in our manufacturing problems assembly errors are 
defined by errors in location rather than in action. 

One approach is to use body-posture to detect actions in 
manual procedures [18, 22, 24]. However, in many cases, it is likely 
that using full body pose used to predict manual activities contains 
information that is redundant. In the same way, when developing a 
real-time system it is important to optimize the amount of data used 
to make detection/prediction in order to reduce the computational 
effort. We contribute by testing and measuring the effectiveness of 
the hand signal (single joint) as an alternative to the full body pose 
(~15 joints) when predicting user intent or detecting actions within 
a manual task. 

3.2 Intent Prediction with Eye Gaze  
Most work in the literature has explored the related problem of  
predicting user intent from behavioral signals For example, eye 
gaze has been used to anticipate user intent in collaborative tasks 
between teams of humans [11], and between teams of humans and 

robots [1, 10, 21], in digital-screen procedures [16], and to assist 
upper limb amputees with grasp activities [7]. These studies use 
gaze as a proxy to the user’s thinking process.  They can be used to 
identify a user’s mental states (hesitation, confusion, clarity) [11] 
and intention (i.e. which object will be selected) [1, 10, 21]. 
Physiological studies have shown that eye gaze precedes action [4, 
5, 14]. Therefore, several authors have used this fact to predict 
intended action. [4] ran a study about user intention prediction 
using just eye gaze tracking. A set of participants performed a 
screen-based procedure; within it a single action step was observed 
and measured. Eye tracking data was collected and the number of 
eye gaze fixations over the specific screen area was counted; a 
logistic regression was then trained and tested. Results shows a 
75% accuracy of the model in predicting if the user would perform 
a target action. 

[3] ran a study which used eye tracking (gaze signal) as the 
input to a support vector machine (SVM). The SVM predicted user 
intent in a collaborative assembly tasks between humans. A series 
of participants performed a sandwich making task in which a 
“worker” prepared a sandwich by adding the ingredients requested 
by a “customer”; the behavioural data (verbal and gaze) of the latter 
is collected. The data was then segmented into selection segments 
based on verbal behaviour (i.e. customer expressing ingredient 
preferences) and used to train an SVM model. Results shows that 
the model achieved 76% accuracy in predicting customer intended 
request only using gaze features; additionally, such correct 
prediction was made on average 1.8 s before the spoken request. A 
limitation of these two studies is that eye-gaze was used to predict 
user intent in a non-manual task, therefore it might not generalize 
to visually guided manipulation tasks and assembly procedures. A 
second limitation of the approach in [3] is that the system had no 
way to automatically infer end/start of a procedural step. Rather, 
the user manually notified the system. 

Some of these studies [11],[3]–[5], use eye-gaze to predict 
user intent within multiple-action sequences; however none explore 
the tracking of such sequences (i.e. detecting start end of an action 
and recording the sequence). We contribute by testing and 
measuring the effectiveness of the gaze used in isolation to keep 
track of a manual assembly task (i.e. detecting start end of actions 
within a sequence of actions). 

3.3 Intent Prediction over Multiple Steps 
Ravichander et al. [18] [17] ran a study focused on predicting 
multiple action in unconstrained sequences (i.e. without a 
correct/incorrect reference sequence). They collected body-pose 
data from two participants assembling an amplifier. The amplifier 
assembly task has multiple correct assembly sequences, and so it is 
not sequence constrained. Using the body pose data, [18] developed 
and tested the G-MMIE algorithm. This inferred both the target 
object a user was reaching for, as well as detecting the completion 
of the user reaching motion. The end of the reaching motion was 
used to  switch to the next assembly step [17]. A limitation of G-
MMIE is that it is based on a definition of ‘action’ that is limited to 
just the reaching event, and so it does not account for its 
environmental consequence (such as grasping versus not grasping 
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an object and therefore switching to the next procedural steps vs 
remaining in the same step).  

[9] also ran a study focused on intention prediction for 
multiple actions-steps in unconstrained sequences (i.e. without a 
correct/incorrect reference sequence) using both skeletal data and 
eye gaze to predict intent. An intention recognition model was 
developed (six actions classes) using an LSTM RNN. Predictions 
were carried out using an LSTM RNN with an Encoder Decoder 
architecture. The first model (i.e. user intention recognition) was 
trained and tested within a series of single action sequences using 
as input the single body pose as well as a combined body and eye 
tracking pose which results in higher accuracy for the combined 
input. The prediction model was trained and tested on multiple 
action sequences. A limitation of this approach is that it does not 
keep track of the completion of a procedure. 

 

3.4 Knowledge Gap 
 
Within the literature there are a few examples of studies  that 

can be insightful for error detection: such as intention recognition 
within multistage manual assembly procedures using behavioural 
signals [17, 18, 22], and procedures tracking using assembly part 
recognition  [15].  But to the best of our knowledge previous work 
has not attempted to combine procedure tracking with intention 
recognition in the context of a generalizable retrieve-assembly 
procedure. Additionally, no studies exist which uses a common set 
of inputs to achieve both procedure tracking and intention 
recognition. Ultimately there is no example of studies which 
models human assembly errors (HAE) and aims to detect HAE 
within a general assembly task. The challenge is therefore to model 
an error detection system generalizable to most retrieve/assembly 
tasks which parts uses a minimal set of inputs. Such real-time error 
detection is desirable and important as it will allow to trigger a 
feedback to the user in order to mitigate the detected error.  

 
While within literature there are approaches that uses simple 

heuristics [21], we choose to use an AI model because it does not 
require the engineering of specific features for each of the signal 
used (i.e. gaze patterns might be completely different from to be 
recognized). We use the LSTM model as a black-box to capture 
nonlinear variations within and between the behavioural signals in 
order to quantitatively evaluate the efficiency of each signal. Our 
approach uses a set of machines learning algorithms. First, using an 
LSTM-based approach we detect switches between the stages of a 
GATM, and keep track of the assembly procedure by returning the 
current procedural step of an STP.  Second, we implement an 
LSTM-based user intent predictor that infers the location of a target 
part and target assembly-location for that part. Third we develop a 
comparison module between the current intent and the correct 
action for the current step.  

4 Implementation of the Error Prediction System 
The architecture for our error detection system is shown in 

Figure 1. It consists of four main components: measurements, task 

tracking, intention detection and error prediction. We describe each 
component in turn.  

 
4.1.1  Measurements: The measurement system is shown in 

Figure 2. It consists of the input gaze and hand signal 
measurements. The gaze consists of the (𝑥, 𝑦) coordinates of the 
intersection of the gaze ray on a workspace. Similar, the hand 
consists of the (𝑥, 𝑦)   coordinates of the centroid of the hand 
projected onto the workspace. The history of the measurement 
sequence is stored and inference/prediction are carried out over a 
sliding window of the last 2 seconds of measurements. The 2 
seconds time length has been set empirically, and it provide the 
network with enough data for it so that movements features can be 
recognized. The 2s length it is not a time constrain for the 
movement execution (i.e. movements duration does not influence 
their detectability).  

 

Figure 1 - System Architecture on the right containing a) 
Measures b) Task Tracking and c) Intention detection d) 
Error Detection 

4.1.2  Task tracking: The task tracking component estimates 
the state  𝑥௧ = (𝑠௧, 𝑝௧). It is implemented using the phase detection 
LSTM RNN. This recognizes the low-level phases (𝑟𝑐, 𝑔𝑟, 𝑝𝑙, 𝑟𝑙) 
from the measurement window. When the release phase of one step 
is completed, the task tracker moves to the next step in the SPT and 
the reaching phase is started. The phase detector occasionally 
makes mistakes including detecting a phase which does not occur, 
and missing phases which happen. In the case of a missing step the 
task tracker moves to the next step even in the event of sampling an 
incomplete step sequence: for example (𝑝𝑙, 𝑟𝑙, 𝑟𝑐) triggers a move 
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even if the grasp event is missing, another example could be 
(𝑔𝑟, 𝑝𝑙, 𝑟𝑐) or (𝑝𝑙, 𝑟𝑙, 𝑔𝑟) missing respectively the release and reach 
event. In the case of the low-level phase inference of an event that 
does not occur the strategy we adopt is to delete such event: for 
example, (𝑟𝑐, 𝑔𝑟, 𝑝𝑙, 𝑟𝑐, 𝑟𝑙) . This logic holds as our dataset only 
contains complete movements as we constrain it at the experiment 
level. 

 
4.1.3  Intention detection: The LSTM RNN predicts the 

target location of a retrieve/assembly action. Although we initially 
tried to implement a single predictor which could be applied to both 
actions, we found that developing predictors for each phase 
separately gave better performance.  Both predictors use the 
windows of gaze and hand information to predict the spatial 
location where the hand will come to rest when the user is retrieving 
or placing piece. This component starts predicting when the user 
first enters the reaching/placing phase and continues until the end 
of the phase. The predictions can be very noisy over time. 
Therefore, the evaluation window component evaluates the 
sequence of outputs of the picking/placing target position predictor 
over the duration of the phase (reaching/placing phase duration). 
The evaluation is triggered at the end of the reaching/placing phase 
and consist in counting the max predicted location within the phase 
window. 

 
4.1.4  Error prediction: Because the steps and phases are 

constrained, errors arise only if the locations are incorrect. A 
retrieve error happens when the selected part has a different 
location from the correspondent step instruction; while an assembly 
error happens if the block is left on a different position from the one 
specified by the correspondent step instruction. Such comparison is 
triggered once the intention recognition confidence exceeds a 
threshold or, in case the threshold is not exceeded, is triggered at 
assembly time (transition between 𝑟𝑐, 𝑔𝑟 ) or retrieve time 
(transition between 𝑝𝑙, 𝑟𝑙), see Fig. 1. If intention confidence is not 
reached than comparison between predefined/detected steps 
happens at the start of either grasp/release phases. Since such 
comparison happens before the end of retrieve/assembly action (i.e. 
end of grasp/release phase), we can say that if an error happens is 
always detected before the completion of the action (i.e. predicted).  

5 Dataset 
In this section we explain how we generated the dataset used 

to train and test the system and how we manipulated complexity 
and instructions throughout the experiment to generate behavioural 
variability and errors within the dataset. 

5.1 Data Collection 
In order to study people’s performance on manufacturing 

assembly tasks, a number of previous studies have used a lab-based 
Duplo pick-and-place task [2, 6, 15, 20]. This task captures the 
essential cognitive and behavioural components of procedural 
assembly work while requiring a shorter assembly time than an 
industrial retrieve-assembly task [6].  

 

Figure 2 – a) Experiment Set-up. The layout has three areas 
(resource, workspace, area).  A top camera is used to monitor 
activity of the user’s hands and the blocks. The wearable eye-
tracker measures the user’s gaze. 

5.2.1  Participants: 12 participants (7 males) were recruited 
from a university participation pool. Some participants were 
students, and some were teaching staff, and their ages ranged 
between 24-47 (average 32.6 +/- 6.8 years). Each participant was 
compensated with a £7.50 Amazon voucher. All participant had 
normal or corrected-to-normal vision.  

 
5.2.2  Task and Layout: the experiment layout is modelled 

after [14]. It is shown in Figure 2 and consists of three areas: a 
resource area (from which blocks were retrieved), a workspace 
area (in which blocks were placed), and the model area (where the 
sequence instructions were displayed). The resource area is 
additionally divided into specific Bins (Fig 3) and the work area is 
also additionally subdivided by a coordinates grid (Fig 3).  

 The experiment task consists on a Duplo block pick-and-
place tasks by following instructions (step-by-step pictorial 
depiction of steps). Instructions are shown for each step on the LCD 
Instructions Area, blocks are initially placed into specific Bins in 
the Resource Area. Participants follows instructions and moves a 
specific block (unique combination of colour and size) from the 
Resource Area to a specific coordinate in the Work Area (Fig 2 and 
Fig 3). Instructions are shown alternated across even and odds trials 
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so to induce errors (see paragraphs 5.2). Easy Task consists in a 4-
block sequence and the complex task in a 8-block sequence.      

 

Figure 3 – Video feed of the A) “top reference frame” and 
below B) “head reference frame” with the registered eye-gaze 
and hand signals. A) “8 Resource Bins” can be seen, each one 
of them contains a building block at the beginning of every 
task, “workspace coordinates” can be seen on the left side of 
the picture which (black dotted lines), “remapped gaze” can 
be seen in green “hand signal” can be seen in red. B) the 
below image shows the user point of view taken from the head 
mounted pupil lab eye-tracker, as well as the detected gaze 
signal in green. On both A) and B) is possible to see the 
markers (black dots on white background) these are placed on 
the left and right side of the resource and assembly areas. 
Markers are used to remap the gaze signal from the user 
reference frame to the top reference camera where the block 
detection system and hand detection system are. 

5.2.3  Procedure: The experiment procedure consists in the 
participant routinely perform the Duplo block pick-and-place tasks 
by following instructions (step-by-step pictorial depiction of steps). 
The instructions were delivered on the first three trials, and 
successively alternated across even and odd trials (no instructions 
on the 4th trial, instructions available on the 5th, etc). Emphasis 
was placed on remembering the procedure in the correct order and 
executing it as quickly as possible, but without sacrificing 
accuracy. After completing each procedure, we reset the blocks by 
repositioning them randomly on the resource area (so that the 
blocks’ initial positions changed across the trials). Resetting of the 
blocks was done as quickly as possible to minimise any potential 

memorising activity that participants could carry out by observing 
the final block configuration. Subsequently, subjects were asked to 
perform the next experimental block. The entire experiment took 
approximately 40 min. The total Number of usable trials collect 
was 118 with a comprehensive number of steps of 797.   

 
5.2.4  Materials: During the experiment the gaze (eye 

tracking data) and videos of the working area were recorded. A 
building block detection system and a hand detection system were 
implemented using the Open Computer Vision (OpenCV) library. 
Using the video feed from the top view stationary webcam shown 
in Figure 3, the block detection systems reconstructed participant’s 
assembling behaviours labelling the dataset with the correct step 
number, while the hand detection system recorded the hand motion. 
The camera has a resolution of 640x480px, a latency of 65ms and 
the block detection algorithm has a precision of 5 pixels rms. Eye 
tracking data was collected by a head mounted Pupil Labs eye 
tracking system (https://pupil-labs.com/) recording eye-gaze 
position at 90Hz with an angular accuracy 0.6 degree and a 
temporal latency of 45ms. Markers were used to spatially register 
the coordinate frames of the over-head camera and the eye gaze 
cameras. The collected dataset was resampled with a linear 
interpolation at a frequency of 25Hz. Behaviour was recorded as 
four-dimensional trajectories over the experiment area (hand/gaze 
signal timeseries). Gaze and hand behaviour were represented as 
times-series of fixation and hand barycentre positions in 2D space.  

5.2 Inducing retrieve/assembly errors 
We used two independent variables to vary the difficulty of 

the task: presence of instructions and level of complexity. We 
manipulated presence/absence of instructions to generate two 
fundamentally different modality of procedure execution. In the 
presence of instructions, a participant performed the procedure 
using an external model/reference; whereas without instructions a 
participant had to rely on their internal mental model of the 
procedure.  

During the experiment procedure we interweaved (across 
procedure repetitions) presence/absence of instructions. This made 
it possible for the participant to build (across repetitions) an internal 
mental model of the procedure. When a participant used his/her 
internal mental model while this was not yet complete/solid he/she 
committed procedural errors.  

Each experimental section consisted of 10 trials. In each trial 
the participant had to fully assemble the block configuration. 
Easy/hard experimental sections were counterbalanced across 
participants to remove skill learning artefacts (e.g., learning layout 
anchor points).  

Complexity and instruction levels were manipulated to induce 
differences and variability of participant performance measures and 
hand/gaze signal timeseries. Greater task complexity and absence 
of instructions introduce uncertainty in task performance, task 
sequence internalization and greater chances of procedural errors. 

For the 4 different combinations of Complexity and instruction 
we outline the average percentage of errors measured: easy task 
with instructions 5%, easy task without instructions 25% errors, 
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difficult task with instructions 1.25%, difficult task without 
instructions 50%. The total number of movements recorded is 1200 
movements of which 26.5% -318 errors (incorrect movements) and 
73.5% - 882 correct. 

5.3 Implementation and Training  
The architecture in Figure 1 uses three RNNs: Low-Level 

Action Inference, Picking Target Position and Placing Target 
Position. Each of these maps a sequence of input features to a single 
categorical output:  𝑝௧, 𝑟௧ , 𝑎௧  for every value of 𝑡 ; where:  𝑝௧ 
consists in the detected phase at time 𝑡, 𝑟௧ consists in the predicted 
target retrieval area at time t. and  𝑎௧  consists in the predicted 
assembly target area at time t.  Each network is implemented using 
a Many-to-One architecture and all take a inputs which consist of 
Hand, Gaze or Hand+Gaze. Both the Picking Target Position and 
Placing Target Position taken an additional 16 dimensions (8 𝑥, 𝑦 
tuples, where 8 is the max number of blocks) defining either the 
initial position of the blocks (for picking) or the target location of 
the blocks (for placing). Such information was explicitly passed to 
the RNN as block initial location was randomized at every trial and 
because the assembly target location changed across the easy-
complex task (experiment manipulation section 5.2). 

The Low-Level Action Inference LSTM RNN was 
implemented using Keras and TensorFlow. The chosen optimizer 
was RMSProp (Root Mean Square Propagation) and the loss 
function was categorical cross entropy. To validate the model, we 
used a leave-one-participants-out cross validation: the training set 
consisted of the data of 9 participants (800 block movements of 
which 212 errors and 588 correct) while the validation set consisted 
of the remaining 3 participants data (400 blocks movement of 
which 80 errors and 320 correct). The training dataset contained 
45,846 samples (moving windows) and was validated using 13,941 
samples. Picking and Placing target position were trained using a 
dataset of 16,695 samples and validated using 2,800 samples. The 
layers consisted of: 

 
1. Input Layer: The input layer dimension varies accordingly 

to the measure used (Hand, Gaze or Hand+Gaze) In general 
the input looked like (n of timestep, sequence-size, features 
dimensions). Where the timestep number represent the 
duration of the task, the sequence size consists in the moving 
window dimension (50 sample equal to 2 sec@25hz) and the 
features dimension depend on the combination of hand or 
gaze signal used. When either gaze or gesture data was used, 
the dimension is 2. When both are used together, the 
dimension is 4. 

2. LSTM Layer: has a memory component that carried 
information across the window timesteps. The many-to-one 
architecture consist in the output to loses the time dimension 
(return sequence = false). The output space dimension of this 
layer is 128. 

3. Dropout Layer: dropped 20% of the LSTM output to 
prevent the model from overfitting. 

4. Dense Layer: a fully connected layer with a linear activation 
and an output space dimension of 64. 

5. Dense Layer: a fully connected layer with a linear activation 
and an output space dimension of 12. 

6. Output Dense Layer: a fully connected layer with a SoftMax 
activation and an output dimension equal to the number of 
classes. This is either 4 (low-level phases recognition) or 8 
(intention recognition). 

 
We measured the computational cost of the RNNs to 

understand its impacts on prediction time. We did so by measuring 
its execution time running the 3 RNN’s with a NVIDIA TITAN X 
GPU. The average inference time recorded was 11ms (8ms, 14ms, 
11ms). 

6 Results  

6.1 Choice of Inputs for Each Network 
In order to define a minimal set of input signals for the system 

and its subcomponents we trained the LSTMs for both Task 
tracking and Intent detection with Hand only, Gaze only or 
Hand+Gaze. To test the performance, we used the measurement: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑_𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙_𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

 
Since the purpose of Task tracking is to support the detection of 
retrieve and assembly errors, we defined total samples to be the 
total number of times the system triggered the comparison between  
inferred retrieved/assembly location and correct location (end of 
grasp and place phase). While the correctly identified samples as 
the number of times the samples were labelled with the correct step 
number. Accuracy for Intent detection has been calculated by 
defining the correctly identified samples as any correctly labelled 
output of the Intent detection at any timestep of time t while total 
samples as the number of timesteps t of the dataset. 

The best results for Task tracking were achieved using Hand 
(fig 5a) while best results for intention recognition were achieved 
by Hand+Gaze (fig 5b). Error detection performances were also 
evaluated using with Hand or Gaze and their combination as well 
as the best combination of the best performing Task tracking 
(Hand) and Intent detection (Hand+Gaze) fig 5c. For both task 
tracking (Figure 4a) and Intention recognition (Figure 4b) model 
performance was assessed with an accuracy proportional score. 

6.2 Step, Intention and Error Recognition  

6.2.1 Task tracking results shows that hand signal was the 
most reliable signal for step recognition (99% accuracy). The 
results also show that, to an extent, the gaze signal on its own can 
be used to keep track of the manual procedure (72% accuracy). 
Additionally, the effectiveness of the Gaze signal seemed to be 
affected by both independent variables, as accuracy decreased with 
increased task complexity (number of blocks) and task uncertainty 
(presence of instruction). When both signals (eye + hand) were 
used, accuracy for step recognition was 97%. 
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Figure 4 – Results. For each plot, the x-axis is the 
configuration of the experiment independent variable. Each of 
column is accuracy using Hand, Gaze or Hand+Gaze. Figure d 
displays a grey bar plot of the participants aggregated 
“Average Number of Errors per procedure”, for each 
combination of the independent variables (complexity and 
instructions). While the stripped red-blue bars describe the 
number of errors recognized by the system using the 
combination of signals (Hand, Hand+Gaze). Error bars 
represent the standard error deviation across participants. 

6.2.2 Intent detection results show that best detection 
performance was achieved pooling both signals (Hand+Gaze), 
with a 93.5% accuracy. Interestingly, in the case of user intent the 
worst detection performance was observed when the hand signal 
was used with 75% accuracy while gaze signal related 
performances were closer to the best performance with an overall  
91% accuracy. Similar to step recognition, it is interesting to notice 
how the experimental independent variable complexity (number of 
blocks) yielded highest performance scores. 

 
6.2.3 Error prediction: relied on comparing both results of 

step recognition and intention recognition. Since error detection 
relies on both step and intention recognition, different signal 
combinations were tested with the following logic: a configuration 
for each signal combination (Hand, Gaze, Hand+Gaze) and a 
configuration with the best performing signal from both step and 
intention (Hand + Hand-Gaze). To asses performances for this 
component we choose an F1 score [19]. 

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
  

The best performing error detection results came from using 
Hand signal as step recognition and Hand + Gaze as intention 
recognition ~97%. Interestingly, Hand model ~59% performed 
worse than the Gaze model ~62%.  

The average prediction time (i.e. duration between the 
prediction and the occurrence of the predicted event) is of 300ms. 
Prediction time is calculated from the moment the error comparison 
is triggered (i.e. confidence of the intention prediction or at the start 
of the detected 𝑔𝑟  or 𝑟𝑙  , see paragraph 4.1.4) to the end of the 
assembly or retrieve phase (i.e. detected end of  𝑔𝑟 or 𝑟𝑙). 

 
6.2.4 Behavioural results: Whenever a participant selected 

a building block from the resource area in an order that differed 
from the predefined sequence, the behaviour was labelled as an 
error. Accuracy (number of errors) scores were submitted to a 2x2 
Repeated Measures ANOVA, with factors: Complexity (8 blocks 
vs. 4 blocks), Instructions (with vs. without instructions) (Figure 
4d). A 2X2 Mixed ANOVA was performed on the dependent 
variable, with factors: Complexity (8 blocks vs. 4 blocks), 
Instructions (with vs. without instructions). The analysis revealed a 
main effect of Instruction (F(1, 7)=8.452, p= 0.02), a main effect of 
Complexity (F(1, 7)=6.886, p= 0.034), and an Instruction x 
Complexity interaction of (F(1, 7)=8.690, p= 0.021).  As evidenced 
in Fig 4d, costs in performance induced by manipulations of task 
difficulty (Complexity and instruction availability) were reliably 
captured by the error detection algorithm.  

7 Discussion 

7.1 Error prediction  
Error prediction relies on comparing the currently expected 

procedural step with the step the user intends to perform. Previous 
studies suggest that the richer the set of signals, the more reliable 
the intent prediction is [22]. Our findings are consistent with this: 
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we find best intent recognition performance is achieved with 
Hand+Gaze 93.5% followed by single Gaze signal 91% and then 
Hand signal 75%. However, the same conclusion does not apply to 
step recognition; the accuracy for Hand is 99% whereas for 
Hand+Gaze it is 97%. This can be explained by hand position 
being a closer representation of assembly states, whereas eye 
position reflects internal state such focus of attention and action 
intention [4, 5, 14]. 

Results shows that best performance of error detection are 
obtained when using Hand+Gaze, yielding a ~97% error detection 
accuracy ~300ms prior action completion (retrieve/assembly). Just 
using Gaze reduces the accuracy to 65% approximately 100ms in 
advance of action completion. Although this is much worse, it is 
still significantly better than chance performance of 12.5%.  

7.2 Applications and use case scenarios  
This system could be highly valuable in the context of factory 

assembly work, for example in scenarios where operators are 
required to accurately assemble parts in a specific sequence. 
Furthermore, it could be used in conjunction with state-of-the-art 
AR HMDs such as (HoloLens2). Hololens2 provide “out of the 
box” behavioural signals of Head, Eye-gaze as well as Hand 
position (tracking of both hand poses) which are required by our 
system to predict errors. Additionally, the headset’s simultaneous 
localization and mapping (SLAM) enable to locate such signals 
onto a detected space (i.e. workspace) and therefore keep track of 
the relative position of the procedure station. AR HMDs could 
support the operator during the assembly process by displaying 
spatially-aligned-to-the-task instructions.  

Our proposed architecture could drive an intelligent assistive 
system that by observing user behaviour (hand, eye-gaze) controls 
the displaying of AR instructions. For example, the automatic 
procedure tracking could be used to forward AR instructions as 
soon as a user complete a step (i.e. end of the step detected by the 
system). User intent and error prediction could trigger specific 
interventions aimed at mitigating error effects (i.e. such as 
displaying warnings or further instructions).  

This intelligent assistive system could be used in scenarios 
such as operators training. Operator training (i.e. learning of new 
assembly procedures in industrial settings) is carried out using a set 
of instructions, with the supervision of an experienced operator [7, 
8]. The proposed error detection system could work by providing 
automatic supervision in relation to the correct/erroneous execution 
of the procedure. For example, previous studies [7, 8] have 
highlighted how during the training process of new operators 
AR/superimposed instructions should be displayed up to a certain 
learning stage, and then removed as operators become acquainted 
with the procedure. However, while these studies do not offer 
insight about how and when to display or remove instructions, the 
concept of faded scaffolding [12] could be used. Faded scaffolding  
is a technique used in education to help beginners in acquire new 
skill while keeping them in their proximal zone of development 
(learning zone) [13]. Such concept would allow the operator to be 
in control of what information “fade” by essentially enabling him 
to turn on/off specific levels of instructions. Furthermore, our error 

detection system could extend the Faded Scaffolding by enabling a 
multimodal control for the display of the instruction, where both 
the user and the system can turn instructions on/off. Therefore, the 
proposed multimodal control would allow the operator to turn 
on/off the instructions (i.e. when instruction are perceived as 
overwhelming) but at the same time the system can trigger specific 
augmentations (i.e. display of instructions) when a user make a 
mistake (i.e. when the system detects an error). A predicted benefit 
for such system would be that it may require none or lower level of 
human supervisor during the training process. 

On a final note, the proposed signals set, could be further 
tailor-suited signals available to specific headset units: for example, 
while some headsets (HoloLens2 and Magic leap) offer eye 
tracking natively, others do not (HoloLens). Given however that 
head position and eye gaze covariate within the context of manual 
tasks [4, 5, 14], head posture (position and orientation) could be a 
valid substitute for gaze directional signals. 

7.3 Limitations and future directions 
Our dataset does not cover incomplete steps as we ruled them 

out experimentally, (i.e. user grasping an object from a resource 
area and place it back immediately), however within assembly 
procedures this might happen and therefore future work should be 
addressing this behaviour. 

Manual procedures are often characterized by a subset of steps 
that can be performed in variable order (e.g. when preparing a cup 
of tea, you might add sugar in the cup before or after pouring water 
in the cup, however you must boil water before you pour water in 
the cup). With our approach such flexibility is not handled and one 
potentially correct sequence amongst alternatives, would still be 
identified as incorrect. The definition of the SPT could be extended 
to support for multiple predefined sequences with minor adjustment 
to the logic of the error detection component. 

Another limitation potentially relates to constraints in 
workspace layout. By reducing the layout size, the resulting step 
segmentation and user intent identification might be harder to 
extract, given limitations in spatial resolution of behavioural signal 
capture devices. For example, certain assemblies have a very small 
workspace layout (i.e. assembly a clock mechanism) for this type 
of procedure the signals of hand and eyes may not reveal a great 
deal of information. 

While the system architecture has been developed to predict 
errors using real-time data (for example by ruling out bidirectional 
LSTM) the system has not been tested with real time data from an 
AR headset (i.e. HoloLens). It would be possible to connect the 
system to an AR headset via network (for example via web socket) 
in this case the computational cost of the RNNs would stay the 
same however costs related to the behavioural signals collections 
(i.e. hand posture tracking and eye tracking) and information 
transfer trough the network will have to be subtracted from the 
prediction time. 

8 Conclusion  
In this paper we presented a system architecture for error 

detection within SPTs. The challenge introduced by multi-stage 
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procedures consists in accurately segmenting the behavioural data 
into steps for which user intent can be compared to predefined 
action steps. To our knowledge there are no examples of a system 
that tackles real time error detection in the context of SPTs.  
We present an automated Eye-Hand action identification and error 
detection system in the context of complex, order-constrained 
manual assembly procedures. Using Hand and Gaze position, the 
system can detect assembly errors with 97% accuracy. 

As part of the study we also evaluate different combinations 
of behavioural signals as inputs for the error detection system. We 
show an error detection accuracy of ~65% when eye-gaze signal is 
used alone, underling that eye-gaze can offer a substantially 
accurate depiction of procedure/step completion especially when 
the procedure complexity is minimal (accuracy of ~75% when the 
independent variable complexity is low). While overall results 
agree with literature suggesting that larger sets of signals provide 
best the handles over procedure representation, we found this 
untrue for the performance of specific system components: the 
subtask recognition component shows a drop-in performance when 
eye-gaze signal is added to the input signal set. 
We extensively explored the tradeoffs between different 
combinations of measurements. We evaluated to what extent error 
detection performance varied as a function of combinations of 
behavioral signal inputs for the system’s task tracking and intention 
detection components (Hand+Gaze-Hand+Gaze, Hand-Hand, 
Gaze-Gaze, Hand-Hand+Gaze,). We ultimately found that Gaze 
negatively impacted step recognition but increased the 
performance of intention recognition. 

Finally, we focused on signals that are natively supported by 
current generation AR HMD units. Such units (i.e. Hololens2) offer 
all ingredients (eye-tracking and hand pose, and head pose relative 
to the space) required to implement our error detection system. 
Such integration could allow for an increased assistance 
encompassing “just in time” mitigation (i.e. alerts on predicted 
errors) as well as smart interface behaviour (i.e. assembly 
instructions display based on step recognition).  
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