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Abstract. App reviews provide a rich source of user opinions that can
support requirement engineering activities. Analysing them manually to
find these opinions, however, is challenging due to their large quantity
and noisy nature. To overcome the problem, automated approaches have
been proposed for so-called opinion mining. These approaches facilitate
the analysis by extracting features discussed in app reviews and identi-
fying their associated sentiments. The effectiveness of these approaches
has been evaluated using different methods and datasets. Unfortunately,
replicating these studies to confirm their results and to provide bench-
marks of different approaches is a challenging problem. We address the
problem by extending previous evaluations and performing a compari-
son of these approaches. In this paper, we present an empirical study
in which, we evaluated feature extraction and sentiment analysis ap-
proaches on the same dataset. The results show these approaches achieve
lower effectiveness than reported originally, and raise an important ques-
tion about their practical use.

Keywords: Mining User Reviews · Requirement Engineering · Feature
Extraction · Sentiment Analysis · Empirical Study

1 Introduction

App reviews is a rich source of user opinions [1, 2, 14, 17]. These opinions can
help developers to understand how users perceive their app, what are users’
requirements, or what are users’ preferences [1,2,14]. Not surprisingly, knowing
user opinions is an important information need developers seek to satisfy [2, 4].
The information can affect different software engineering practices [1, 14].

Analysing app reviews to find user opinions, however, is challenging [14,17];
Developers may receive thousands of reviews per day [1,14,17]. Moreover, these
reviews contain mostly noise [17,19]. Consequently, the possibility of using these
opinions to support engineering activities is obstructed [1, 14].

To address the problem, studies in requirement engineering proposed a few
opinion mining approaches [10, 12, 13, 16]. These approaches facilitate mining
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user opinions by performing two tasks: extracting features discussed in reviews
and identifying their associated users’ sentiments [12,16]. In particular, two ap-
proaches have become adopted in the community [17], GuMa [12]3 and SAFE [11].

Unfortunately, replicating the studies to confirm their results and to compare
their approaches is a challenging problem. In fact, different methods and datasets
have been used. The unavailability of their annotated datasets and evaluation
procedures challenge their replicability even more [11–13,21,22].

The aim of the study is to address the problem by extending previous evalu-
ations and performing comparison of these app review analysis approaches. We
consider the following research questions to answer:
RQ1: What is the effectiveness of feature extraction approaches?
RQ2: What is the effectiveness of feature-specific sentiment analysis approaches?

To answer them, we conducted an empirical study in which we evaluated
three approaches: GuMa [12], SAFE [11] and ReUS [10]. We evaluated them in
performing feature extraction and sentiment analysis tasks using our annotated
dataset.

The primary contributions of the study are: (i) an empirical evaluation ex-
panding previous evaluations of the opinion mining approaches, (ii) a comparison
of the approaches performing feature extraction and feature-specific sentiment
analysis, and (iii) a new dataset of 1,000 reviews annotated with 1,521 opin-
ions [7].

The remainder of the paper is structured as follows: In Sect. 2, we introduce
terminology and the problem, then we give an overview of the opinion mining
approaches we evaluate. In Sect. 3, we present scenarios motivating opinion
mining. In Sect. 4, we present our study design. The results are detailed in
Sect. 5, and the findings are discussed in Sect. 6. In Sect. 7, we provide threats
to validity, then we discuss related works in Sect. 8. Conclusion is given in Sect. 9.

2 Background

This section introduces terminology and the formulation of opinion mining prob-
lem. It also provides an overview of approaches we evaluated.

2.1 Terminology and Problem Formulation

Definition 1 (Feature and Feature Expression) A feature is a user-visible
functional attribute of an app that is intentionally provided. Attributes are typi-
cally functionalities (e.g., “send message”), modules providing functional capabil-
ities (e.g., “user account”) or design components (e.g., “UI”) that can be utilized to
perform tasks. A feature expression is a non-empty set of words f = {w1, ..., wm}
describing a feature in an app review. Further on in the text, we refer to a feature
expression as a feature for the sake of simplicity.
3 We refer to the approach using abbreviations derived from their authors’ surnames.
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Fig. 1: Opinion Mining

Definition 2 (Sentiment) A sentiment s is a user attitude which can be either
positive, negative or neutral.

Definition 3 (Opinion) An opinion is a tuple o = (f, s), where f is a feature
in a review r, s is a sentiment referencing to f in r.

Problem 1 (Opinion Mining) Given a set of reviews R = {r} on an app a,
the opinion mining problem is to find a multi-set of all the opinions O = {o} in
a set of reviews R.

Figure 1 illustrates opinion mining problem. The problem can be decomposed
into two sub-problems, feature extraction and feature-specific sentiment analysis:

Problem 1.1 (Feature Extraction) Let R = {r} be a set of reviews on an
app a. Find a multi-set of all the features F = {f} in a set of reviews R.

Problem 1.2 (Feature-specific Sentiment Analysis) Consider a set of pairs
{(f, r)} where f is a feature in a review r. Find a multi-set S = {s} where s is
a sentiment referring to f in r.

2.2 Approaches For Mining User Opinions

In our study, we selected three approaches: GuMa [12], SAFE [13] and ReUS [10].
We selected GuMa and SAFE as they are state-of-the-art approaches widely
known in RE community [9, 17, 22]. We opted for ReUS [10] as the approach
achieves a competitive performance in the context of opinion mining and senti-
ment analysis research [10,16]. We also have its original implementation.
GuMa performs feature extraction and feature-specific sentiment analysis. These
tasks are performed independently of each other. To extract features, the ap-
proach relies on a collocation finding algorithm. For predicting sentiment, the
approach uses the SentiStrength tool [23]. First, the approach predicts the senti-
ment of a sentence, then assigns sentiments to features in the sentence. Unfortu-
nately, GuMa’s source code and evaluation data set are not available. We have
therefore re-implemented GuMa’s approach using SentiStrength for sentiment
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analysis. We have tested that our implementation is consistent with GuMa’s
original implementation on examples in the original paper.
SAFE supports feature extraction, but not sentiment analysis. The approach ex-
tracts features based on linguistics patterns, including 18 part-of-speech patterns
and 5 sentence patterns. These patterns have been identified through manual
analysis of app descriptions. The approach conducts two main steps to extract
features from a review: text preprocessing and the application of the patterns.
Text preprocessing includes tokenizing a review into sentences, filtering-out noisy
sentences, and removing unnecessary words. The final step concerns the appli-
cation of linguistic patterns to each sentence to extract app features. We used
the original implementation of the approach in our study.
ReUS exploits linguistics rules comprised of part-of-speech patterns and seman-
tic dependency relations. These rules are used to parse a sentence and perform
feature extraction and feature-specific sentiment analysis. Both tasks are per-
formed at the same time. Given a sentence, the approach extracts a feature
and an opinion word conveying a feature-specific sentiment. To determine the
sentiment, the approach exploits lexical dictionaries. We used the original imple-
mentation of the approach, and set up it to identify one out of three sentiment
polarities.

3 Motivating Scenarios

We describe three use cases in which the use of opinion mining can provide ben-
efits. They are inspired by real-world scenarios, which were analysed in previous
research [1, 2, 14].

Use Case 1 (Validation by Users) In any business endeavour, under-
standing customer opinions is an important aspect; app development is no ex-
ception [2,14]. Knowing what features users love or dislike can give project man-
agers an idea about user acceptance of these features [1,2]. It can also help them
draw a conclusion whether invested efforts were worth it [14]. As an example,
imagine the development team changed core features in WhatsApp (e.g. video
call). The team may want to know what users say about these features so that
they can fix any glitches as soon as possible and refine these features. Mining
user opinions could help them discover What are the most problematic features?
or How many users do report negative opinions about a concrete feature (e.g.
video call)?

Use Case 2 (Supporting Requirements Elicitation) Imagine now that
WhatsApp receives negative comments about one of their features (e.g. group
chat). It can be intimidating for developers to tackle a problem if they have
to read through a thousand reviews. Using an opinion mining approach, devel-
opers could discover the issue within minutes. App mining tools could group
reviews based on discussed features and their associated user’s sentiment. De-
velopers could then examine reviews that talk negatively about a specific feature
(e.g. group chat). This could help developers understand user concerns about a
problematic feature, and potentially help eliciting new requirements.
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Use Case 3 (Supporting Requirements Prioritization) When added
with statistics, user opinions can help developers prioritize their work [1, 2, 14].
Suppose the team is aware about problems with certain features which are com-
mented negatively. Finding negative opinions mentioning these features could
help them to compare how often these opinions appears, for how long these
opinions have been made, and whether their frequency is increasing or decreas-
ing. This information could provide an evidence of their relative importance from
a users’ perspective. Such information is not sufficient to prioritize issues, but it
can provide useful evidence-based data to contribute to prioritization decisions.

For these scenarios having a tool that (i) mines user opinions and (ii) provides
their summary with simple statistics could help the team to evolve their app.

4 Empirical Study Design

This section describes the empirical study design we used to evaluate the selected
approaches. We provide the research questions we aimed to answer, the manually
annotated dataset and evaluation metrics used to this end.

4.1 Research Questions

The objective of the study was to evaluate and compare approaches mining
opinions from app reviews. To this end, we formulated two research questions:
RQ1: What is the effectiveness of feature extraction approaches?
RQ2: What is the effectiveness of feature-specific sentiment analysis approaches?

In RQ1, we evaluated the capability of the approaches in correctly extract-
ing features from app reviews. In RQ2, we investigated the degree to which the
approaches can correctly predict sentiments associated with specific features. A
conclusive method of measuring the correctness of extracted features/predicted
sentiments is by relying on human judgment. We used our dataset in which
opinions (feature-sentiment pairs) have been annotated by human-coders (see
Section 4.2). We compared extracted features/predicted sentiments to those an-
notated in ground truth using automatic matching methods (see Definition 4.3).
In answering the questions, we report precision and recall.

4.2 Manually Annotated Dataset

This section describes the manually annotated dataset we created to answer RQ1
and RQ2 [7]. To create this datatset, we collected reviews from previously pub-
lished datasets [18, 24] and asked human-coders to annotate a selected samples
of these reviews.
A) Data Collection

We have selected reviews from datasets used in previous review mining stud-
ies [18, 24]. We selected these datasets because they include millions of English
reviews from two popular app stores (i.e., Google Play and Amazon) for different
apps, categories and period of times. We selected 8 apps from these datasets, 4
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Table 1: The overview of the subject apps
App Name Category Platform #Reviews

Evernote Productivity Amazon 4,832
Facebook Social Amazon 8,293
eBay Shopping Amazon 1,962
Netflix Movies & TV Amazon 14,310
Spotify Music Audio & Music Google Play 14,487
Photo Editor Pro Photography Google Play 7,690
Twitter News & Magazines Google Play 63,628
Whatsapp Communication Google Play 248,641

Fig. 2: The Method for Ground Truth Creation

apps from Google Play and 4 from Amazon app stores. For each subject app, we
also collected their description from the app store. Table 1 illustrates the sum-
mary of apps and their reviews we used in our study. We selected subject apps
from different categories to make our results more generalizable. We believe that
the selection of popular apps could help annotators to understand their features,
and to reduce their effort during the annotation.
B) Annotation Procedure

The objective of the procedure was to produce an annotated dataset that we use
as ground truth to evaluate the quality of solutions produced by feature extrac-
tion and sentiment analysis approaches [20]. Figure 2 illustrates the overview of
the procedure. Given a sample of reviews, the task of human-coders was to label
each review with features and their associated sentiments.

We started by elaborating a guideline describing the annotation procedure,
the definition of concepts and examples. We then asked two human-coders4 to
label a random sample of reviews using the guideline [7]. We evaluated the
reliability of their annotation using the inter-rater agreement metrics F1 and
Fleiss’ Kappa [5, 6]. F1 is suitable for evaluating text spans’ annotations such
as feature expressions found in reviews; Fleiss’ kappa is suitable to assess inter-
rater reliability between two or more coders for categorical items’ annotations
such as users’ sentiment (positive, negative, or neutral). We evaluated inter-rater
agreement to ensure the annotation task was understandable, unambiguous, and
could be replicated [20]. When disagreement was found, the annotators discussed
to adjudicate their differences and refined the annotation guidelines. The process
4 The first author and an external coder who has no relationship with this research.

Both coders have an engineering background and programming experience.
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Table 2: Statistics of the ground truth for 1,000 reviews for 8 subject apps.
App Name
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No. reviews 125 125 125 125 125 125 125 125 1,000
Avg. review length 48.30 37.90 32.54 43.46 23.62 12.38 15.79 14.47 28.59

No. sentences 367 327 294 341 227 154 183 169 2,062
Avg. sentence length 16.45 14.49 13.84 15.93 13.00 10.05 10.79 10.70 13.85
Sentence per review 2.94 2.62 2.35 2.73 1.82 1.23 1.46 1.35 2.06

S
en

ti
m

en
t No. sentiments 295 242 206 262 180 96 122 118 1,521

No. positive 97 49 95 79 32 39 5 20 416
No. neutral 189 168 102 159 122 47 93 84 964

No. negative 9 25 9 24 26 10 24 14 141

F
ea

tu
re

s

No. features 295 242 206 262 180 96 122 118 1,521
No. distinct features 259 204 167 201 145 80 99 100 1,172

No. single-word features 82 80 78 94 69 39 39 49 530
No. multi-word features 213 162 128 168 111 57 83 69 991

Feature per review 2.36 1.94 1.65 2.10 1.44 0.77 0.98 0.94 1,52

A
gr

m
t. F1 measure 0.76 0.73 0.77 0.75 0.67 0.78 0.79 0.83 0.76

Fleiss’ Kappa 0.64 0.77 0.77 0.55 0.75 0.86 0.69 0.80 0.73

was performed iteratively, each time with a new sample of reviews until the
quality of the annotation was at an acceptable level [6]. Once this was achieved,
annotators conducted a full-scale annotation on a new sample of 1,000 reviews
that resulted in our ground truth.
C) Ground truth

Table 2 reports statistics of our ground truth. These statistics concern sub-
ject app reviews, annotated opinions (feature-sentiment pairs) and inter-rater
reliability measures. The average length of reviews and sentences is measured in
words. Statistics of opinions are reported separately for features and sentiments.
The number of features has been given for all the annotated features, distinct
ones, and with respect to their length (in words). The number of sentiments has
been described including their number per polarity.

The ground truth consists of 1,000 reviews for 8 subject apps. In total, 1,521
opinions (i.e., feature-sentiment pairs) have been annotated. Their sentiment dis-
tribution is unbalanced: most feature-sentiment pairs are neutral. Among 1,521
annotated features, 1,172 of them are distinct (i.e. mentioned only once).

The feature distribution in app reviews can be found in Figure 3a. A large
number of reviews do not refer to any specific feature. 75% of reviews refers to
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(a) Feature distribution in app reviews. (b) Distribution of feature length.

Fig. 3: Feature distribution in app reviews, and Feature length distribution.

no feature or to only one or two features. Figure 3b provides the feature length
distribution. The median length for a feature is 2 words, 75% of features has
between 1 and 3 words, and nearly 5% has more than 5 words.

4.3 Evaluation Metrics

We used precision and recall metrics [6] to answer RQ1 and RQ2. We used them
because feature extraction is an instance of information extraction problem [6],
whereas sentiment analysis can be seen as a classification problem [16].
A) Evaluation Metrics For Feature Extraction

In answering RQ1, precision indicates the percentage of extracted features
that are true positives. Recall refers to the percentage of annotated features that
were extracted. An extracted feature can be true or false positive. True positive
features correspond to features that were both extracted and annotated; False
positives are features that were extracted but not annotated; Annotated but not
extracted features are called false negative. To determine whether an extracted
feature is true or false positive, we compared them with annotated features in
the ground truth. To this end, we used the following feature matching method:

Definition 4 (Feature Matching) Let � be the set of words in a review sen-
tence and fi ✓ � be the set of words used to refer to feature i in that sentence.
Two features f1, f2 ✓ � match at level n (with n 2 N) if and only if (i) one of the
feature is equal to or is a subset of the other, i.e. f1 ✓ f2 or f2 ✓ f1, and (ii) the
absolute length difference between the features is at most n, i.e. ||f1|� |f2||  n.

B) Evaluation Metrics For Feature-Specific Sentiment Analysis

In answering RQ2, precision indicates the percentage of predicted sentiments
that are correct. Recall refers to the percentage of annotated sentiments that
are predicted correctly. To determine whether predicted sentiments are correct,
we compared them with annotated ones in the ground truth.

We measured precision and recall for each polarity category (i.e. positive,
neutral and negative). We also calculated the overall precision and recall of all
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Table 3: RQ1. Results for feature extraction at varied levels of feature matching.
Exact Match (n=0) Partial Match 1 (n=1) Partial Match 2 (n=2)

App Name
GuMa SAFE ReUS GuMa SAFE ReUS GuMa SAFE ReUS

P R P R P R P R P R P R P R P R P R
Evernote 0.06 0.13 0.07 0.08 0.07 0.08 0.15 0.35 0.22 0.24 0.19 0.20 0.17 0.39 0.32 0.35 0.27 0.29
Facebook 0.03 0.07 0.03 0.03 0.09 0.09 0.10 0.28 0.15 0.17 0.15 0.14 0.13 0.36 0.23 0.26 0.20 0.19
eBay 0.04 0.07 0.04 0.05 0.06 0.06 0.14 0.26 0.22 0.26 0.14 0.14 0.17 0.32 0.34 0.39 0.22 0.21
Netflix 0.03 0.13 0.03 0.03 0.06 0.07 0.11 0.45 0.19 0.21 0.18 0.21 0.13 0.55 0.27 0.29 0.25 0.29
Spotify 0.05 0.10 0.05 0.04 0.15 0.13 0.18 0.37 0.24 0.23 0.23 0.20 0.21 0.43 0.36 0.34 0.29 0.26
Photo Editor 0.12 0.11 0.12 0.09 0.14 0.13 0.26 0.25 0.34 0.27 0.23 0.21 0.29 0.27 0.38 0.30 0.27 0.25
Twitter 0.06 0.19 0.06 0.07 0.02 0.02 0.16 0.49 0.23 0.24 0.11 0.11 0.18 0.58 0.35 0.36 0.27 0.26
WhatsApp 0.05 0.21 0.11 0.11 0.06 0.06 0.14 0.56 0.32 0.33 0.19 0.20 0.16 0.64 0.39 0.40 0.24 0.25
Mean 0.05 0.13 0.06 0.06 0.08 0.08 0.15 0.37 0.24 0.24 0.18 0.18 0.18 0.44 0.33 0.34 0.25 0.25

three sentiment polarities. To this end, we used the weighted average of precision
and recall of each polarity category. The weight of a given polarity category was
determined by the number of annotated sentiments with the sentiment polarity.

5 Results

RQ1: What is the effectiveness of feature extraction approaches?

To answer RQ1, we compared extracted features to our ground truth using
feature matching at levels 0, 1 and 2 (see Definition 4). We selected these levels as
extracted and annotated features may differ by a few words but still indicating
the same app feature. We then computed precision and recall at these levels.
Table 3 reports precision and recall for each approach at different matching
levels (best in bold). The results show the approaches achieved low precision,
recall given Exact Match. For all three approaches, precision and recall increase
when we loosen the matching criteria to partial matching with n = 1 or 2. The
growth can be attributed to the changed numbers of true positives (TPs), false
positives (FPs) and false negatives (FNs) when n increases. Figures 4 shows their
behavior as the matching level n increases; �TPs = ��FPs = ��FNs when
n increases.
RQ2: What is the effectiveness of feature-specific sentiment analysis

approaches?

In answering RQ2, we report the effectiveness of ReUS and GuMa in feature-
specific sentiment (see Section 4.3). To this end, we compared predicted and
annotated sentiments, and exploited a subset of the ground truth with opinions
(feature-sentiment pairs) we used to answer RQ1. Indeed, since ReUS predicts
sentiments only for extracted features, we considered only true positive features
obtained in answering RQ1 and formed three datasets, each corresponding to
true positive features (and their sentiment) from Exact Match, Partial Match1
and Partial Match2. Table 4 reports for each dataset the total number of opin-
ions, and their breakdown to polarity categories. We also evaluated GuMa with
these datasets and with all the annotated opinions in our ground truth.



10 J. Dąbrowski et al.

(a) SAFE (b) GuMa (c) ReUS

Fig. 4: RQ1. No. TPs, FPs and FNs as the level of features matching changes.

Table 4: RQ2. Dataset used for evaluating feature-specific sentiment analysis.
Dataset # opinions # positive # neutral # negative

Exact Match 122 56 52 14
Partial Match 1 271 97 149 25
Partial Match 2 384 120 226 38
All Annotated 1521 416 964 141

The answer to RQ2 can be given at two levels of details, the overall effec-
tiveness of predicting a sentiment, and the effectiveness of predicting a specific
polarity (e.g., positive). We report our results at both levels of details.
Overall effectiveness. Table 5 reports the number of correct predictions, and
weighted precision/recall for inferring overall sentiment (best in bold). We can
observe that ReUS achieves higher precision and recall than GuMa for Exact
Match dataset, whereas both approaches have similar performances on the Par-
tial Match1 and Partial Match2 datasets.
Specific effectiveness. In Table 6, we report the metrics showing the effectiveness
of the approaches in predicting specific polarities (best in bold). The results show
that on positive opinions ReUS achieves higher precision while suffering from
lower recall. Conversely, on neutral opinions GuMa provides better precision
but lower recall than ReUS. When looking at the approaches, the analysis of
the results revealed that none of the approaches was able to reliably assess the
sentiment of negative options. Both approaches were good at discriminating
between positive and negative opinions. Most incorrect predictions were caused
by misclassifying positive/negative sentiment with neutral one and vice versa.

6 Discussion

The results indicate that the approaches have limited effectiveness in mining
user opinions. Our findings bring into question their practical applications.
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Table 5: RQ2. Results for feature-specific sentiment analysis (overall).
Dataset Approach

# correct

prediction
Precision Recall

Exact Match
ReUS 85 0.74 0.70

GuMa 77 0.65 0.63

Partial Match 1
ReUS 184 0.69 0.68

GuMa 176 0.72 0.65

Partial Match 2
ReUS 265 0.69 0.69

GuMa 252 0.73 0.66

All Annotated
ReUS - - -
GuMa 958 0.73 0.63

Table 6: RQ2. Results for feature-specific sentiment analysis (per each polarity).
Positive Neutral Negative

Dataset Approach
# correct

prediction
Precision Recall

# correct

prediction
Precision Recall

# correct

prediction
Precision Recall

Exact Match
ReUS 35 0.90 0.62 45 0.60 0.87 5 0.62 0.36
GuMa 47 0.68 0.84 21 0.68 0.40 9 0.41 0.64

Partial Match 1
ReUS 47 0.80 0.48 131 0.66 0.88 6 0.43 0.24
GuMa 86 0.61 0.89 73 0.85 0.49 17 0.40 0.68

Partial Match 2
ReUS 53 0.80 0.44 205 0.68 0.91 7 0.41 0.18
GuMa 107 0.59 0.89 122 0.86 0.54 23 0.38 0.61

All Annotated
ReUS - - - - - - - - -
GuMa 355 0.52 0.85 510 0.87 0.53 93 0.36 0.66

A) Feature Extraction

In our experiment, feature extraction methods have lower precision and recall
than previously reported [10,12,13]. SAFE was reported with 0.71 recall [13]. Our
results show the approach achieves 0.34 recall for the least rigorous evaluation
strategy. The majority of features extracted by GuMa are incorrect. Although
GuMa initially reported precision and recall of 0.58 and 0.52 [12], our experiment
found lower figures of 0.18 precision and 0.44 recall.

Although the difference may be due to our re-implementation of the GuMa
method, we have taken great care in implementing the method as described in
the paper as rigorously as possible. Unfortunately, the original Guma imple-
mentation was not available for comparison. We believe ReUS suffered from low
precision and recall because it was designed to extract features from product
reviews in an online commerce website (Amazon) rather than from app reviews
in app stores [16]. Our findings support a conjecture that the original evaluation
procedures of SAFE and GuMa led to over-optimistic results. The limitations of
these procedures have been questioned recently [21,22]. These procedures did not
define a feature matching strategy [21], relied on a subjective judgment [13,22],
and used a biased dataset [12, 21, 22]. We hope our new annotated dataset and
description of our evaluation method will contribute to improving the quality of
feature extraction techniques and their evaluations.
B) Feature-Specific Sentiment Analysis

Our investigation of results (RQ2) concludes that the overall effectiveness of the
approaches is promising (see Table 5). However, it reveals that their precision and
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recall differ considerably by sentiment class (positive, negative, or neutral). The
approaches provide satisfactory performance for predicting positive and neutral
sentiments. But they suffer from inaccurate predictions for negative sentiments.
Overall, we are surprised by the comparable effectiveness of both approaches. We
expected ReUS to outperform GuMa. ReUS exploits a sophisticated technique
to detect an opinion word in a sentence that carries a feature-specific sentiment;
GuMa makes predictions based on a simplified premise that a feature-specific
sentiment corresponds to the overall sentiment of a sentence.
C) Implication on Requirement Engineering Practices

Identifying what precision and recall app review mining techniques should have
to be useful for requirements engineers in practice is an important open ques-
tion [3]. In principle, a tool facilitating opinion mining should synthesize reviews
so that the effort for their further manual analysis would be negligible or at least
manageable. Clearly, this effort depends on a scenario the approach intends to
support. Given a scenario of prioritizing problematic features, a developer may
seek for information about the number of specific features that received negative
comments, for example to understand their relevance. To this end, both informa-
tion about extracted features and their predicted sentiments should be accurate
and complete. Our results, however, show that feature extraction techniques gen-
erate many false positives. Given the large number of extracted features, filtering
out false positives manually may not be cost-effective. We may imagine that the
problem could be partially addressed using a searching tool [8]; Requirements
engineers could use the tool to filter out uninteresting features (including false
positives) and focus on those of their interest.

However, other issues remain unsolved. Feature extraction techniques fail
to identify many references to features (they have low recall), and sentiment
analysis techniques perform poorly for identifying feature-specific negative sen-
timents.

7 Threats to Validity

Internal Validity. The main threat is that the annotation of reviews was done
manually with a certain level of subjectivity and reliability. To overcome the risk
we followed a systematic procedure to create our ground truth. We prepared an
annotation guideline with definitions and examples. We conducted several trial
runs followed by resolutions of any conflicts. Finally, we evaluated the quality of
the annotation using inter-rater agreement metrics.
External Validity. To mitigate the threat, we selected reviews for popular
apps belonging to different categories and various app stores. These reviews are
written using varied vocabulary. We, however, admit that the eight apps in our
study represent a tiny proportion of all the apps in the app market. Although
our dataset is comparable in size to datasets in previous studies [10, 12, 13], we
are also exposed to sampling bias.
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Table 7: The summarized differences between our study and related works.
Criterion Our Study SAFE [13] GuMa [12] ReUS [10]

E
va

lu
at

io
n No. Approaches 3 2 1 1

Feature Extraction Yes Yes No Yes

Sentiment Analysis Yes - Yes Yes

Method Automatic Manual Manual Automatic

G
ro

u
n
d

T
ru

th Released Yes No No No
No. Apps 8 5 7 -
No. Reviews 1000 80 2800 1000
No. App Stores 2 1 2 -
Dataset Analysis Yes No No Yes

Construct Validity. To mitigate the threat, we used precision and recall met-
rics that are extensively used for evaluating the effectiveness of information ex-
traction and classification techniques.

8 Related Works

Previous work have proposed benchmarks for app review analytics (e.g. [15,21])
but with objective different than ours.

Table 7 shows the differences between our study and previous works, pointing
out the different criteria that guided the evaluations, which are grouped into
Evaluation and Ground Truth categories. The first includes criteria such as the
number of evaluated approaches, evaluated tasks and a method type used for
their evaluation. The latter includes characteristics of datasets.

In our study, we evaluated three approaches: SAFE, GuMa and ReUS. We
assessed them in addressing problems of feature extraction and sentiment anal-
ysis. Johann et al [13] also compared SAFE to GuMa [12]. Our study extends
their evaluation by including ReUS [10]. Unlike the original study [12], we eval-
uated GuMa in performing a feature extraction rather than modeling feature
topics. We also compared the approach to ReUS in inferring a feature-specific
sentiment.

We used a different methodology for evaluating SAFE and GuMa [12, 13];
The correctness of their solutions has been evaluated manually [12, 13]. The
judgement criteria, however, has not been defined. Such a procedure suffered
from several threats to validity such as human error, authors’ bias and the lack
of repeatability [22]. To address the limitations, we adopted automatic matching
methods and defined explicit matching criteria.

The ground truth in our study differs from that used in previous works. Unlike
Dragoni et al [10], we evaluated ReUS using app reviews. The authors used a
dataset composed of comments for restaurant and laptops. As Johann [13] and
Guzman [12], we created an annotated dataset for the evaluation. We, however,
used a systematic procedure and assessed the quality of ground truth using
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acknowledged measures [16, 20]. Previous studies did not report a systematic
annotation procedure [13] nor measured the quality of their annotation [12].
Their datasets were not analyzed nor made public [12,13].

9 Conclusion

Mining user opinions from app reviews can be useful to guide requirement engi-
neering activities such as user validation [1,2,19], requirements elicitation [1,2],
or requirement prioritization [1]. However, the performance of app review mining
techniques and their ability to support these tasks in practice are still unknown.

We have presented an empirical study aimed at evaluating existing opin-
ion mining techniques for app reviews. We have evaluated three approaches:
SAFE [13] relying on part-of-speech parsing, GuMa [12] adopting a collocation-
based algorithm, and ReUS [10] exploiting a syntactic dependency-based parser.
We have created a new dataset of 1,000 reviews from which 1,521 opinions are
specific features were manually annotated. We then used this dataset to evaluate
the feature identification capabilities of all three approaches and the sentiment
analysis capabilities of GuMa and ReUS.

Our study indicates that feature extraction techniques are not yet effective
enough to be used in practice [9,21] and that have lower precision and recall than
reported in their initial studies. Our study also indicates that feature-specific
sentiment analysis techniques have limited precision and recall, particularly for
negative sentiments. We hope our novel annotated dataset [7] and evaluation
method will contribute to improving the quality of app review mining tech-
niques.
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