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AN INVERSE PROBLEM FOR A SEMI-LINEAR ELLIPTIC

EQUATION IN RIEMANNIAN GEOMETRIES

ALI FEIZMOHAMMADI AND LAURI OKSANEN

Abstract. We study the inverse problem of unique recovery of a complex-valued
scalar function V : M × C → C, defined over a smooth compact Riemannian
manifold (M, g) with smooth boundary, given the Dirichlet-to-Neumann map, in
a suitable sense, for the elliptic semi-linear equation −∆gu + V (x, u) = 0. We
show that uniqueness holds for a large class of non-linearities when the manifold
is conformally transversally anisotropic. The proof is constructive and is based
on a multiple-fold linearization of the semi-linear equation near complex geometric
optic solutions for the linearized operator and the resulting non-linear interac-
tions. These interactions result in the study of a weighted integral transform along
geodesics, that we call the Jacobi weighted ray transform.
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2 A SEMI-LINEAR EQUATION IN RIEMANNIAN GEOMETRY

1. Introduction

Let (M, g) be a smooth compact Riemannian manifold with a smooth boundary
∂M and dim M := n > 3. Let α ∈ (0, 1) and consider an a priori unknown function
V : M × C → C. We make the following standing assumptions.

(i) V (·, z) ∈ Cα(M), ∀z ∈ C,
(ii) V (x, 0) = 0, ∀x ∈ M,
(iii) V is analytic with respect to z in the Cα(M) topology,

where Cα(M) is the space of Hölder continuous complex-valued functions with ex-
ponent α. By analyticity with respect to z ∈ C we mean that the following limit
exists in the Cα(M) topology,

∂zV (x, z) := lim
h→0

V (x, z + h) − V (x, z)

h
.

As a result of analyticity, the function V admits a power series representation in the
Cα(M) topology given by the expression

(1) V (x, z) =
∞∑

k=1

Vk(x)
zk

k!
,

where Vk(x) := ∂k
zV (x, 0) ∈ Cα(M). We additionally impose the following conditions

on the set of admissible functions V (x, z):

(iv) 0 is not a Dirichlet eigenvalue for the operator −∆g + V1(x) on (M, g).

Here, ∆g denotes the Laplace-Beltrami operator on (M, g) given in local coordinates

by the expression ∆g =
∑n

j,k=1
1√
g

∂
∂xj

(√
g g

jk ∂
∂xk

)

.

In this paper, we consider the semi-linear elliptic equation

(2)







−∆gu+ V (x, u) = 0, ∀x ∈ M
u = f ∈ Bα

r0
(∂M), ∀x ∈ ∂M

where Bα
r0

(∂M) := {h ∈ C2,α(∂M) | ‖h‖C2,α(∂M) 6 r0}. In Section 2.1, we show
that, given fixed r0, r1 > 0 sufficiently small, equation (2) admits a unique solution
u ∈ Bα

r1
(M). Moreover, there exists a constant C > 0 depending only on r0, r1 such

that

(3) ‖u‖C2,α(M) 6 C‖f‖C2,α(∂M) ∀f ∈ Bα
r0

(∂M).

We subsequently define the Dirichlet-to-Neumann (DN) map, ΛV , for equation (2)
through the expression

(4) C1,α(∂M) ∋ ΛV f := ∂νu|∂M, ∀f ∈ Bα
r0

(∂M),
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where ν denotes the unit outward normal vector field on ∂M. This paper is concerned
with the following question.

Question 1. Given the map ΛV , can one uniquely determine the function V ?

We will briefly review the history related to inverse problems for non-linear elliptic
equations in Section 1.2. For now, let us recall some facts about the case where
V (x, z) ≡ V1(x)z. In this case, the problem reduces to a version of the Calderón
conjecture [2]. This formulation of the conjecture has been extensively studied but
remains open in general geometries (M, g) with dimension n > 3. Uniqueness of the
coefficient V1 has been proved for analytic metrics with an analytic function V1 [30],
the Euclidean metric [34, 43] and the hyperbolic metric [20]. Beyond these cases, the
most general uniqueness result is obtained in the so-called conformally transversally
anisotropic (CTA) geometries defined as follows.

Definition 1. Let (M, g) be a compact oriented smooth Riemannian manifold with
smooth boundary and dimension n. We say that (M, g) is conformally transversally
anisotropic, if n > 3 and the following embedding holds:

M ⊂ I int ×M int and g(x0, x′) = c(x0, x′)((dx0)2 ⊕ g(x′)),

where I is a finite interval, c(x0, x′) > 0 is a smooth function and (M, g) is a smooth
compact orientable manifold of dimension n − 1 with a smooth boundary ∂M .

In [7] it was proved that in the linear case V (x, z) = V1(x)z, the Dirichlet-to-
Neumann map ΛV uniquely determines a bounded function V1, under the strong
assumption that the transversal manifold is simple, that is to say (M, g) has a strictly
convex boundary and given any two points in M there exists a unique geodesic
connecting them. This result was subsequently strengthened in [9] where the authors
showed that ΛV1

uniquely determines V1, if the geodesic ray transform is injective
on the transversal manifold. The inversion of the geodesic ray transform is open
in general, and has only been proved under certain geometrical assumptions, see
for example the discussion in [9, Section 1]. For a broad review of the Calderón
conjecture, and alternative formulations with the presence of non-linear coefficients,
we refer the reader to survey articles [44, 45].

1.1. Main results. Let us return to Question 1. We will consider only the case
where (M, g) is a CTA manifold. Before stating our results let us briefly review
some notations for geodesic dynamics on (M, g). Let SM ⊂ TM denote the unit
sphere bundle on (M, g) and γ(·, x, θ) be the unit speed geodesic with initial data
(x, θ). For all (x, θ) ∈ SM int, we define the exit times

(5) τ± = sup {r > 0 | γ(±r; x, θ) ∈ ∂M, γ̇(±r; x, θ) /∈ T∂M},
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and subsequently call a geodesic γ to be maximal, if and only if τ± < ∞. Next, we
define an admissibility condition on the transversal manifold (M, g) as follows.

Definition 2. Let (M, g) be a smooth compact Riemannian manifold with boundary.
We say that (M, g) is admissible if there exists a dense set of points T ⊂ M such
that given any point p ∈ T there exists a non-self-intersecting maximal geodesic γ
through p that contains no conjugate points to p.

The first result in this paper can now be stated as follows.

Theorem 1. Let (M, g) be a CTA manifold such that the transversal manifold M is
admissible. Suppose that V (x, z) satisfies conditions (i)–(iv), that V1 is smooth and
that V1, V2 are a priori known. Then, the Dirchlet-to-Neumann map ΛV uniquely
determines the function V .

The proof of this theorem relies on a multiple-fold linearization of (2) that re-
sults in the interaction of the so called complex geometric optic solutions for the
corresponding linearized equation. Since V1 is assumed to be known, the complex
geometric optic solutions will be known as well. The smoothness assumption on V1

is imposed in order to make these solutions smooth and also to simplify the task
of proving suitable decay rates (see Proposition 5). Under the assumption that V2

is assumed to be known, the non-linear interaction of the complex geometric optic
solutions will result in a weighted ray transform along geodesics on the transversal
manifold M . This weighted transform will be shown to be invertible along a single
geodesic (see Proposition 4).

Our second main result is concerned with the recovery of the function V without
imposing the assumption that the coefficient V2 is known, in the cases where the
manifold is three or four dimensional.

Theorem 2. Let (M, g) be a three or four dimensional CTA manifold such that given
any point on the transversal manifold M there exists a maximal non-self-intersecting
geodesic without conjugate points through that point. Suppose that V (x, z) satisfies
conditions (i)-(iv) and that V1 is a priori known and smooth. Then the Dirichlet-to-
Neumann map ΛV uniquely determines the function V .

The proof of this theorem mostly follows the same technique as the previous the-
orem. However, due to the weaker assumption on the coefficient V , namely that
V2 is unknown, the non-linear interaction of the complex geometric optic solutions
results in a different ray transform along geodesics on the transversal manifold M .
The inversion of this transform along a single geodesic is proved when the transversal
manifold is two or three dimensional and left open in higher dimensions (see Propo-
sition 3). We also refer the reader to Remark 1 in Section 3 where the restriction to
three and four dimensions is discussed further.
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1.2. Previous literature. The study of non-linear partial differential equations is
an interesting topic in its own right, due to the complexity of the subject matter and
as such, the corresponding inverse problems also carry significant mathematical inter-
est. However, let us point out that there are applications for these inverse problems
outside the realm of mathematics as well. Indeed, a large class of inverse problems
for elliptic nonlinear equations can be seen as the study of stationary solutions to
nonlinear equations describing physical phenomena. For example, we mention the
nonlinear Schrödinger equation that arises as nonlinear variations of the classical
field equations and has applications in the study of nonlinear optical fibers, planar
wave guides and Bose Einstein condensates [31]. Other examples include nonlinear
Klein-Gordon or Sine-Gordon equations with applications to the study of general
relativity [35] and relativistic super-fluidity [47] respectively.

The majority of the literature dealing with inverse problems for non-linear elliptic
equations is in the Euclidean geometry. The first uniqueness result was obtained
by Isakov and Sylvester in [19] where the authors considered a Euclidean domain of
dimension greater than or equal to three with non linear functions V (x, u) that satisfy
the homogeneity property (ii), and showed that under a monotonicity condition for V
and suitable bounds on V , ∂uV and ∂2

uV , the non-linearity can be uniquely recovered
on a specific subset of M×R. There, it was also proved that under a stronger bound
on V , it could be recovered everywhere. Removing the homogeneity property (ii)
introduces a natural gauge for the uniqueness of the non-linearity. This was studied
by Sun in [42] under similar smoothness and monotonicity assumptions. There, a
similar uniqueness result as in [19] was proved (up to the natural gauge), under the
additional assumption that a common solution exists.

In dimension two, the problem was first solved by Sylvester and Nachman in [18],
where the authors considered a domain in two-dimensional Euclidean space with a
Carathéodory type non-linearity that has a continuous bounded Lp-valued derivative
in the u variable and proved unique recovery of the non-linearity. In [33] uniqueness
is proved for yet another family of admissible non-linearities in two dimensional
Euclidean domains. There, a connection is also made between the theoretical study of
these types of semi-linear inverse problems and the physical study of semi-conductor
devices and ion channels. We also mention the work of Imanuvilov and Yamamoto
in [14] where the authors considered the partial data problem for the operator ∆u+
q(x)u+V (x, u) on arbitrary open subsets of the boundary in two dimensions. There
it was shown that if V (x, 0) = ∂uV (x, 0) = 0, it is possible to uniquely recover q
everywhere and also that it is possible to recover V in certain subsets of the domain,
under suitable bounds on the non-linear function V .

Aside from the study of inverse problems for semi-linear equations in Euclidean ge-
ometries, let us also mention that there are several works related to inverse problems
for quasi-linear elliptic equations (see for example [3, 10, 17, 32, 39, 40, 41]). It should
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be emphasized that the key idea in all of these results has been a linearization tech-
nique introduced by Isakov in [15] in the context of semi-linear parabolic equations
and developed further in [16, 18, 19, 39, 40]. This linearization technique together
with the uniqueness results for the Calderón conjecture in Euclidean domains leads
to the unique recovery of the non-linear terms.

The main novelty of this paper is to extend uniqueness results for non-linear elliptic
equations to a wider class of Riemannian manifolds, known as conformally transver-
sally anisotropic manifolds (see Definition 1). We consider local solutions about the
trivial solution, but our proof is based on a multiple-fold linearization technique that
differs from most of the previously mentioned works. As already discussed, the re-
sults in the Euclidean setting rely on the fact that uniqueness holds for the linearized
inverse problem. This is no longer the case when M is assumed to be conformally
transversally anisotropic. Indeed, uniqueness results for the linearized problem rely
on injectivity of the geodesic ray transform on (M, g) that is known to be true under
strong geometric assumptions such as simplicity of the transversal manifold (M, g)
or existence of a strictly convex foliation [46]. The strength of our results lies in
removing such strong geometric assumptions. On the other hand, contrary to the
Euclidean cases, the results here assume analyticity of V (x, u) with respect to u.

The multiple-fold linearization technique in this paper is inspired by the study
of similar types of non-linear problems for hyperbolic equations that was developed
by Kurylev, Lassas and Uhlmann in [25, 26] in the context of Einstein scalar field
equations and used in subsequent works in the context of semi-linear wave equations
(see for example [4, 12, 28, 29, 48]). However, these works are based on the study
of propagation of singularities for linear wave equations and the non-linear interac-
tions of these singularities, making it difficult to apply them to an elliptic problem.
Another key difference with all previous works in the hyperbolic setting is that we
study non-linear interaction of localized solutions that correspond to a single geo-
desic. This will lead us to the study of a weighted transform along geodesics that
we call the Jacobi ray transforms of the first and second kind. We show that it is
possible to invert these transforms along a single geodesic (see Propositions 3–4).

We conclude this introductory section by remarking that while writing this paper
we became aware of an upcoming preprint by Matti Lassas, Tony Liimatainen, Yi-
Hsuan Lin and Mikko Salo, which simultaneously and independently proves a similar
result. We agreed to post our respective preprints to arXiv at the same time. See
[27] for their preprint.

1.3. Outline. This paper is organized as follows. Section 2 is concerned with some
preliminary discussions. We show that the Dirichlet-to-Neumann map ΛV (see (4))
is well-defined. We also discuss the linearization method for solutions to equation (2)
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near the trivial solution, in particular showing the appearance of what we call a non-
linear interaction. The rest of Section 2 is concerned with some lemmas and notations
that will be needed throughout the paper. In Section 3 we define the Jacobi weighted
transform of the first and second kind along a fixed geodesic, and subsequently prove
injectivity results for these two transforms, see Propositions 3–4. Section 4 starts
with a review of the well-known Gaussian quasi modes for the linearized operator
following [9]. In the remainder of this section we use this construction, together
with a Carleman estimate to produce a family of complex geometric optic solutions
for the linearized operator. In Section 5, we use an induction argument, based on
the application of our linearization technique near the complex geometric optic so-
lutions, to complete the proof of Theorem 1. Section 6 is concerned with the proof
of Theorem 2.

2. Preliminaries

2.1. Direct problem. In this section we prove the following proposition for the
direct problem (2).

Proposition 1. ∃r0, r1 > 0 depending on (M, g), such that equation (2) admits a
unique solution u ∈ Bα

r1
(M). Moreover, there holds

‖u‖C2,α(M) 6 C‖f‖C2,α(∂M), ∀f ∈ Bα
r0

(∂M),

for some constant C that depends on (M, g), r0 and r1.

Let us define the Schrödinger operator PV1
= −∆g +V1(x), and consider the linear

equation

(6)







PV1
u = F, ∀x ∈ M

u = f ∀x ∈ ∂M
where (f, F ) ∈ C2,α(∂M) × Cα(M). We introduce the solution operators GD

V1
,GS

V1
so

that the function GD
V1
f is the unique solution to (6) subject to F ≡ 0 and GS

V1
F is the

unique solution to (6) subject to f ≡ 0. There is a constant κ > 0 (see for example
[13, Chapter 4.4]) such that

(7) ‖GD
V1

‖C2,α(∂M)→C2,α(M) + ‖GS
V1

‖Cα(M)→C2,α(M) 6 κ.

Let us now define the function Ṽ (x, z) := V (x, z) − V1(x)z. We have the following
lemma.

Lemma 1. Let r ∈ (0, 1). Given any u0, u1 ∈ Bα
r (M), the following estimates hold.

(i) ‖Ṽ (x, u0(x))‖Cα(M) 6 κ̃‖u0‖2
Cα(M),

(ii) ‖Ṽ (x, u1(x)) − Ṽ (x, u0(x))‖Cα(M) 6 κ̃r‖u1 − u0‖Cα(M),

where κ̃ > 0 is independent of r.



8 A SEMI-LINEAR EQUATION IN RIEMANNIAN GEOMETRY

Proof. First, observe that Cα(M) is closed under multiplication and that there exists
a constant C > 0, depending on (M, g), such that for any v, w ∈ Cα(M) there holds

‖vw‖Cα(M) 6 C‖v‖Cα(M)‖w‖Cα(M).

Now, using the fact that Ṽ (x, 0) = ∂zṼ (x, 0) = 0 we write

Ṽ (x, uk(x)) =
1

2

∫

C
∂2

z Ṽ (x, z)(uk(x) − z) dz, k = 0, 1,

where C is a path connecting 0 to u(x) and the integral is in the sense of the Cα(M)
norm limits of the Riemann partial sums. Applying the Cα norm we deduce that

‖Ṽ (x, uk(x))‖Cα(M) 6

(

C1 sup
|z|6r

‖∂2
z Ṽ (x, z)‖Cα(M)

)

‖uk‖2
Cα(M).

Similarly we have,

‖Ṽ (x, u1(x)) − Ṽ (x, u0(x))‖Cα(M) 6

(

C2 sup
|z|6r

‖∂2
z Ṽ (x, z)‖Cα(M)

)

r‖u1 − u0‖Cα(M).

for some C1, C2 > 0. Finally, using smoothness of V (x, z) with respect to z, we
deduce that

sup
|z|6r

‖∂2
z Ṽ (x, z)‖Cα(M) 6 C3,

for some constant C3 > 0 independent of r, since 0 < r < 1. The claim follows
immediately by combining the preceding three bounds. �

Proof of Proposition 1. We start by fixing

r0 < min{ 1

1 + 3κ
,

1

4κ̃κ(1 + κ2)
,

1

κ̃(2κ+ 1)
,

1

κ̃(κ+ 1)2
}, r1 = (κ+ 1)r0.

First we show existence of a solution u ∈ Bα
r1

(M). Write u = GD
V1
f + ũ and observe

that there exists a one to one correspondence between C2,α(M) solutions to equation
(2) and solutions to the integral equation

(8) ũ = −GS
V1

(

Ṽ (x,GD
V1
f + ũ)

)

=: Tf (ũ).

Next noting that r0 < 1, we may apply Lemma 1, and this together with the bound
(7) yields

(9) ‖Tfv‖C2,α(M) 6 2κ̃κ
(

‖v‖2
Cα(M) + ‖GD

V1
f‖2

Cα(M)

)

∀v ∈ Bα
r0

(M).

Applying (7) again and noting that r0 < 1
4κκ̃(κ2+1)

, we deduce that Tf maps the

closed set Bα
r0

(M) to itself. Additionally, one can verify in the same way that Tf

is a contraction mapping on Bα
r0

(M). The Banach fixed point theorem applies and
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we conclude that there exists a solution ũ ∈ Bα
r0

(M) to equation (8). Observe
subsequently that u ∈ C2,α(M) defined above solves (2). Applying (9) we have

‖ũ‖C2,α(M) 6 2κ̃κ
(

‖ũ‖2
Cα(M) + ‖GD

V1
f‖2

Cα(M)

)

6
1

2
‖ũ‖C2,α(M) + 2κ̃κ3‖f‖2

C2,α(∂M),

Thus yielding the continuity estimate ‖u‖C2,α(M) 6 (κ + 1)‖f‖C2,α(∂M). This latter
estimate also shows that u ∈ Bα

r1
(M).

Next we show uniqueness. Suppose for contrary that u1, u2 ∈ Bα
r1

(M) with u1 6= u2

solving equation (2). Define ũk for k = 1, 2 as above and note that ũk = Tf ũk. Since
r1 < 1, Lemma 1 applies to obtain

‖ũk‖C2,α(M) 6 ‖uk‖C2,α(M) + ‖GD
V1
f‖C2,α(M) 6 r2,

where r2 = (1 + 2κ)r0. Finally, since r0 <
1

1+3κ
, we can apply Lemma 1 again to

deduce that Tf is a contraction mapping on the set Bα
r2

(M). Therefore

‖ũ1−ũ2‖C2,α(M) = ‖Tf ũ1−Tf ũ2‖C2,α(M) 6 κ̃(2κ+1)r0‖ũ1−ũ0‖C2,α(M) < ‖ũ1−ũ0‖C2,α(M),

which is a contradiction. �

2.2. Multiple-fold linearization method. We have established that the forward
problem (2) is well-posed, and therefore also the DN map (4) is well-defined. In
order to prove Theorems 1–2, we will work with families of Dirichlet datum f that
will be arbitrarily small with respect to the C2,α(∂M) norm, and are therefore only
interested in the behavior of ΛV near f ≡ 0. To set this idea in motion, let m ∈ N

and consider a parameter ε = (ε1, . . . , εm) ∈ Cm and a family of Dirichlet datum

(10) fε =
m∑

k=1

εkfk,

where fk ∈ C2,α(∂M) are fixed. Clearly, for all |ε| sufficiently small, there exists a
unique solution uε to equation (2) subject to Dirichlet data fε.

2.2.1. Analytic dependence on ε. Next, we prove that uε is analytic in a neighborhood
of ε = 0, that is to say uε admits a power series representation with respect to the
parameter ε in the C2,α(M) topology. It suffices to show that uε is analytic with
respect to each εk for k = 1, . . . , m (see for example [38, Theorem 1.2.25]). To this
end we prove that given a fixed family {fk}m

k=1 and any fixed ε in a sufficiently small
neighborhood of the origin in Cm, the limit

(11) lim
h→0

uε+hel
− uε

h

exists in the C2,α(M) sense, where h ∈ C and el denotes the lth unit vector in Cm

with l = 1, . . . , m.
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As a first step, we proceed to prove that for all |ε| small enough and all |h| < |ε|
there holds

(12) ‖uε+hel
− uε‖C2,α(M) 6 C|h|,

where C > 0 is independent of ε and h. We begin by observing that for |ε| small
and all |h| < |ε|, we can apply Proposition 1 to obtain the estimate

(13) ‖uε‖C2,α(M) + ‖uε+hel
‖C2,α(M) 6 C|ε|,

for some constant C > 0 independent of ε and h. Next, we use equation (8) to write

uε = GD
V1
fε − GS

V1
(Ṽ (x, uε)),

uε+hel
= GD

V1
fε+hel

− GS
V1

(Ṽ (x, uε+hel
)).

Subtracting these two equations and applying (ii) in Lemma 1 together with (13), it
follows that

‖uε+hel
− uε‖C2,α(M) 6 C

(

|h|‖fl‖C2,α(∂M) + |ε|‖uε+hel
− uε‖C2,α(M)

)

,

where C > 0 is independent of h and ε. Finally, the bound (12) follows from this
estimate for ε sufficiently small.

Next, we proceed to show the main claim that the limit in (11) exists. Since 0 is
not a Dirichlet eigenvalue for PV1

, it follows that the same is true for the operator
P∂zV (·,uε), given that |ε| is sufficiently small. We subsequently define GD

ε and GS
ε

analogously to GD
V1

and GS
V1

, corresponding to equation (6) with potential ∂zV (·, uε)
in place of V1. We write

ũh := uε+hel
− uε − hGD

ε fl.

The function ũh satisfies the equation

ũh = −GS
ε

(

Ṽε,h(x)
)

where

Ṽε,h(x) = V (x, uε+hel
(x)) − V (x, uε(x)) − ∂zV (x, uε(x))(uε+hel

− uε).

Using the smoothness of V (x, z) with respect to z and analogously to Lemma 1 we
deduce that there exists Cε > 0 such that

(14) ‖Ṽε,h(x)‖Cα(M) 6 Cε‖uε+hel
− uε‖2

Cα(M).

Thus, for h sufficiently small, by using the bounds (7), (12) and (14), we obtain

‖ũh‖C2,α(M) 6 Cε|h|2

for some C > 0 independent of h. Hence,

(15) lim
h→0

uε+hel
− uε

h
= GD

ε fl
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holds in the C2,α sense, proving that uε depends analytically in each of its parameters
εl in a neighborhood of ε = 0 in Cm.

2.2.2. Non-linear interaction of linearized solutions. Let us now use this linearization
technique to first show that ΛV determines the Dirichlet to Neumann map Λlin

V1
asso-

ciated to the linear operator PV1
. Of course this is a somewhat redundant argument

as V1 will be assumed to be known for us, but nevertheless this simple case will shed
some light on the higher order linearization arguments. Let m = 1 so that ε ∈ C

and write fε = εf for some f ∈ C2,α(∂M). By (15) there holds ∂εuε|ε=0 = GD
V1
f .

Moreover, since uε ∈ C2,α(M) and since ∂νuε |∂M is determined through the map
ΛV , we can simply write

∂νGD
V1
f = ∂ν∂εuε|ε=0 = ∂ε ΛV fε |ε=0,

which shows that Λlin
V1
f = ∂εΛV (εf) |ε=0.

We can also use this linearization technique to identify interactions for solutions
to the linearized equation PV1

u = 0. Indeed, let us consider ε ∈ Cm with m > 2 and
{fk}m

k=1 ⊂ C2,α(∂M). Since uε solves equation (2) with Dirichlet data fε given by
(10) and since the dependence on ε is analytic, it follows that given any multi-index
β ∈ {0, 1, . . .}m with |β| = β1 + . . .+ βm > 1, the function ∂β

ε uε|ε=0 solves

PV1
(∂β

ε uε|ε=0) = Fβ

with homogeneous Dirichlet boundary conditions, where Fβ depends on V1, . . . , V|β|
and ∂β′

ε uε|ε=0 with |β ′| = 1, . . . , |β|−1. Using a simple induction argument it follows
that ∂β

ε uε|ε=0 only depends on V1, . . . , V|β| and f1, . . . , fm.
We now consider a particular term in the power series expansion of uε near ε = 0

associated to the multi-index β = (1, 1, . . . , 1) and define

Lf1,...,fm := − ∂m

∂ε1 . . . ∂εm

uε |ε=0.

It follows that the function Lf1...fm satisfies the equation

(16)







PV1
Lf1...fm = Vm

∏m
k=1 GD

V1
fk +Hf1,...,fm , ∀x ∈ M

Lf1...fm = 0 ∀x ∈ ∂M
where Hf1,...,fm ∈ C2,α(M) is a function that only depends on V1, . . . , Vm−1 and
∂β′

ε uε|ε=0 with |β ′| = 1, . . . , m− 1. Using the argument in the previous paragraph, it
follows that Hf1,...,fm only depends on V1, . . . , Vm−1 and f1, . . . , fm. In the particular
case m = 2, we have Hf1,f2

≡ 0. Finally, let us emphasize that since the Dirichlet-to-
Neumann map, ΛV , determines ∂νuε |∂M, it will also uniquely determine the values
∂νLf1,...,fm |∂M.
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2.3. Reduction to the case c ≡ 1. This subsection is concerned with showing that
one can without any loss in generality consider the case where c(x0, x′) ≡ 1 on M.
Let us define ĝ = (dx0)2 + g(x) so that g = cĝ. Using the transformation law of the
Laplace-Beltrami operator under conformal rescalings of the metric, we write

(17) c
n+2

4 (−∆gu+ V (x, u)) = −∆ĝv + V̂ (x, v),

where v = c
n−2

4 u and V̂ (x, v) = c
n+2

4 V (x, c− n−2

4 v) − (c
n−2

4 ∆g c
− n−2

4 )v. It can be easily

checked that conditions (i)−(iv) also hold for the function V̂ (x, z). Moreover, if V1

is smooth then so is the function V̂1.
Let r′

0, r
′
1 > 0 and consider solutions v ∈ Bα

r′

1
(M) to equation

(18)







−∆ĝv + V̂ (x, v) = 0, ∀x ∈ M
v = f ∈ Bα

r′

0
(∂M) ∀x ∈ ∂M

It can be easily verified that for (r′
0, r

′
1) small depending on (r0, r1) and ‖c‖C3(M),

equation (18) has a unique solution given by v = c
n−2

4 u where u is the unique

solution to equation (2) subject to Dirichlet data c− n−2

4 f . We can therefore uniquely
determine the DN map ΛV̂ for equation (18) from the DN map ΛV for equation (2)

and henceforth consider the problem of determining V̂ from ΛV̂ . Finally note that

once uniqueness is proved for V̂ , we can immediately deduce uniqueness for V . Thus,
without loss of generality we will make the standing assumption throughout the rest
of the paper that c ≡ 1.

2.4. A Carleman estimate. This section is concerned with providing a right in-
verse for the following differential operator

Lλ· := e−λx0

(−∆g + V1) (eλx0 ·),
where λ ∈ R and |λ| is sufficiently large, with suitable continuity estimates in Hk(M)
norm for any fixed k ∈ N (see Proposition 2).

We start by introducing some notation. Choose an arbitrarily small auxiliary
extension of the manifold M into a smooth closed manifold M̂ without boundary, and
smoothly extend the metric g(x′) to M̂ . We also extend V1 smoothly to T̂ = I × M̂

so that V1 ∈ C∞
c (T̂ ). Here, I is the interval in Definition 1. Next, for any m ∈ Z,

let E be a bounded linear Sobolev extension operator E : Hm(M) → Hm(T̂ ) and
denote by {ψl}l∈N, the set of orthonormal eigenfunctions for the Laplace operator on

(M̂, g), so that −∆gψl = µlψl with {µl}l∈N denoting the eigenvalues.
We have the following proposition.

Proposition 2. Let k ∈ N and suppose that (M, g) is a CTA manifold as above and
that V1 ∈ C∞(M). Then there exists λ0 > 0, depending on (M, g), V1 and k, such
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that for all |λ| > λ0 with λ2 /∈ {µn}n∈N, the equation

(19) Lλr = f, f ∈ Hk(M),

admits some solution u ∈ Hk(M), satisfying the estimate

‖r‖Hm(M) 6 Cλ−1‖f‖Hm(M) for m = 0, . . . , k,

where the constant C > 0 is independent of λ.

Let us remark that in the case k = 0, this is well-known, see for instance [7,
Proposition 4.4] and [37, Theorem 4.1]. We will present the proof here, as we need
existence results with control on the Hk(M) norm with k large. The proof here

will be based on first extending to the infinite cylinder T̂ and then applying Fourier
mode analysis with respect to the tranversal manifold (M, g). This is similar to the
case k = 0 as presented in [37, Chapter 4]. Let us remark that it is also possible to
use the Carleman estimates for the adjoint operator L−λ shifted to negative Sobolev
spaces (see for example [7, Lemma 4.3] and [24, Section 4]) and a standard duality
argument to obtain similar right inverses. However, the estimates obtained using
this approach will be in semi-classical norms. The estimates that we obtain by using
the Fourier analysis approach are slightly stronger due to the fact that the operator
Lλ has constant coefficients with respect to the x0 variable.

Proof of Proposition 2. We only provide the proof for the case V1 ≡ 0. For the case
that V1 is smoothly supported in T̂ , the proof here together with the exact arguments
as in [37, Theorem 4.1] yields the result. We begin by introducing an operator Sa

defined for any non-zero a ∈ R , and any h ∈ Hk(R), as follows.

(Sah)(x) = F −1

(

(Fh)(ξ)

iξ + a

)

,

where F denotes the Fourier transform on R. Using similar arguments as in [37,
Proposition 4.4], we have that for all m = 0, 1, . . . , k and all δ > 1

2
:

(20)
‖Sah‖Hm(R) 6 Ca−1‖h‖Hm(R), ∀|a| > 1.

‖Sah‖Hm
−δ

(R) 6 C‖h‖Hm
δ

(R) ∀a 6= 0,

with C independent of the parameter a and ‖h‖2
Hm

δ
(R) :=

∑m
j=0 ‖(1 + |x|2) δ

2∂k
x h‖2

L2(R).

Let F := Ef with F compactly supported in T̂ . We begin by writing F in terms
of the eigenfunctions of M̂ as follows

F (x0, x′) =
∑

l∈N

Fl(x
0)ψl(x

′).
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In [37, Proposition 4.6], it was proved that the function

R(x0, x′) :=
∑

l∈N

Rl(x
0)ψl(x

′),

with

Rl = Sλ+
√

µl
Sλ−√

µl
Fl

solves the equation (19) on the larger set T̂ and satisfies the estimate

‖R‖H2
−δ

(T̂ ) . λ‖F‖L2
δ
(T̂ ),

where we are using the notation

‖ · ‖2
Hm

δ
(T̂ )

:=
m∑

j=0

‖(1 + |x0|2) δ
2Dm · ‖2

L2(T̂ )
.

Now defining r := IMR, with IM denoting the characteristic function of M, it is
clear that r ∈ H2(M) solves equation (19) on M.

Let us proceed to prove the claimed bound in the statement of the proposition.
We start by noting that given any p = 0, . . . , k and m = 0, . . . , p, there holds

‖
∑

l∈N

(∂m
x0Rl)µ

p−m
2

l ψl‖2
L2

−δ
(T̂ )

=
∑

l∈N

µp−m
l ‖S−λ+

√
µl
Sλ+

√
µl
∂m

x0Fl‖2
L2

−δ
(T̂ )

. λ−2
∑

l∈N

µp−m
l ‖∂m

x0Fl‖2
L2(T̂ )

,

where in the last step, we have used the bound (20), the fact that |λ− √
µn| > 0 and

that F is compactly supported in T̂ . Observing that

∂m
x0Fl(x

0) =
∫

M̂
∂m

x0F (x0, x′)ψl(x
′) dVg,

together with the fact that M̂ is closed, we deduce that

‖
∑

l∈N

(∂m
x0Rl)µ

p−m

2

l ψl‖L2
−δ

(T̂ ) . λ−1‖∂m
x0(−∆g)

p−m
2 F‖L2(T̂ ).

To complete the proof, we write

‖r‖Hk(M) 6 ‖R‖Hk(T̂ ) .
k∑

p=0

p
∑

m=0

‖
∑

l∈N

(∂m
x0Rl)µ

p−m

2

l ψl‖L2(T̂ )

. λ−1‖F‖Hk(T̂ ) . λ−1‖f‖Hk(M).

�
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3. The Jacobi weighted ray transform

This section is concerned with the introduction of a geometrical data related to
the transversal manifold (M, g) that will appear later in the proof of Theorem 1–2.
Before proceeding, let us introduce some notation, following [5, Section 1.2]. Given
a maximal unit speed geodesic γ(t) ⊂ M with t ∈ [τ−, τ+], we define the orthogonal
complement, γ̇(t)⊥, at the point γ(t) as the set

γ̇(t)⊥ := {v ∈ Tγ(t)M | g(γ̇(t), v) = 0}.
We also define the (1, 1)-tensor Πγ(t) = Πj

i (t)
∂

∂xj ⊗ dxi to be the projection from

Tγ(t)M onto γ̇⊥(t). Finally, we say that a (1, 1)-tensor L(t) along γ is transversal if
Πγ LΠγ = L. Transversal (1, 1)-tensors can be viewed as linear maps from γ̇⊥(t) to
itself. Now, given such a tensor L, we consider the complex Jacobi equation

(21)
D2

dt2
L(t) −K(t)L(t) = 0,

with the initial condition

L(0) = L0, L̇(0) = L1.

Here,

K = Ki
j

∂

∂xi
⊗ dxj , Ki

j = gikRkj

where R denotes the Ricci tensor. We recall from [5] that if a complex (1, 1)-tensor L
solves the complex Jacobi equation and L0, L1 are transversal, then L(t) is transversal
along γ(t) for all t ∈ [τ−, τ+].

For each maximal geodesic γ in M , we let Yγ denote the set of all transversal
(1, 1)-tensors Y (t) that solve equation (21) subject to the additional constraint that

(22)
Y (τ0) is non-degenerate, Ẏ (τ0)Y (τ0)

−1 is symmetric

and ℑ(Ẏ (τ0)Y (τ0)−1) > 0 for some τ0 ∈ [τ−, τ+].

Here, ℑ denotes the imaginary part and we recall that [τ−, τ+] is the interval of
definition associated to the maximal unit speed geodesic γ(t) in M . We now define,

for all Y ∈ Yγ , the Jacobi weighted ray transform of the first and second kind, J (1)
Y

and J (2)
Y , as follows.

(23)

J (1)
Y f : =

∫ τ+

τ−

f(γ(t)) (det Y (t))− 1

2 dt ∀ f ∈ C(M),

J (2)
Y f : =

∫ τ+

τ−

f(γ(t)) | detY (t)|−1 dt ∀ f ∈ C(M).

The following lemma guarantees that J (j)
Y , j = 1, 2 is well-defined.
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Lemma 2. For all Y ∈ Yγ we have that Y (t) is non-degenerate, Ẏ (t)Y (t)−1 is
symmetric and ℑ(Ẏ (t)Y (t)−1) > 0 for all t ∈ [τ−, τ+].

We refer the reader to [21, Lemma 2.56] for the proof of this lemma. In the
following subsections, we will study the injectivity of the Jacobi ray transforms of
the first and second kind along a single maximal geodesic γ. Before presenting the
main results and their proofs, let us give a heuristic discussion to shed some light
on the approach. Recall that the matrices Y (t) solve second order ODEs along the
geodesics. Therefore it is possible to choose weights in the Jacobi transform that have
a limiting singular behavior at any fixed point p. We will see that this singularity
will also appear at all points that are conjugate to p on γ.

In the case of the Jacobi transform of the second kind, the transform will have
a limiting singularity at p and its conjugate points and local information can be
obtained in all dimensions under the admissibility assumption (Proposition 4). In
the case of the Jacobi ray transform of the first kind, the proof is more delicate as
there is no limiting singularity in the transform. Here, the imaginary part of the
transform can be localized to deduce injectivity. We have presented injectivity of
the Jacobi transform of the first kind along a single geodesic, only in dimensions two
and three and left the higher dimensional cases open (Proposition 3). This will be
further discussed in Remark 1.

3.1. Inversion of Jacobi weighted ray transform of the first kind. This sub-
section is concerned with the following injectivity result.

Proposition 3. Suppose (M, g) is a two or three dimensional compact smooth Rie-
mannian manifold with boundary. Suppose that γ is a maximal geodesic in M that
contains no conjugate points. Let f ∈ C(M ;R). The following injectivity result holds:

J (1)
Y f = 0, ∀Y ∈ Yγ =⇒ f(γ(t)) = 0 ∀ t ∈ [τ−, τ+].

Proof of Proposition 3. For consistency of notation, we will denote the dimension of
M by n− 1 with n ∈ {3, 4} throughout this proof.

Let us first consider the case when n = 3. In this case the Jacobi matrices will
simply be complex valued scalar functions along the geodesic, that solve (21) on the
maximal interval [τ−, τ+]. It is in fact possible to consider this equation on a slightly
larger interval [τ ′

−, τ
′
+] after choosing a smooth extension of K. We consider a family

of solutions Y ǫ : [τ ′
−, τ

′
+] → C to (21) with ǫ > 0, subject to the initial data

(24) Y ǫ(τ ′
−) = −iǫ and Ẏ ǫ(τ ′

−) = 1.

Observe that Y ǫ ∈ Yγ since condition (22) is satisfied for τ0 = τ ′
− for all ǫ > 0. Note

also that

Y ǫ = X − iǫZ
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where X and Z are real-valued solutions to (21) subject to X(τ ′
−) = 0, Ẋ(τ ′

−) = 1

and Z(τ ′
−) = 1, Ż(τ ′

−) = 0. We also record that since γ contains no conjugate points
on [τ−, τ+], it follows that X(t) is strictly positive for t ∈ [τ−, τ+].

Recall that by the hypothesis of the proposition,

J (1)
Y ǫ f = 0

for all ǫ > 0. This equation reduces to
∫ τ+

τ−

f(γ(t))X(t)− 1

2 (1 − iǫX̃)− 1

2 dt = 0,

where X̃(t) = Z(t)X(t)−1. Applying the Taylor series approximation of (1 − iǫX̃)− 1

2

near ǫ = 0 we deduce that

(25)
∫ τ+

τ−

f(γ(t))X(t)− 1

2 X̃(t)k dt = 0, for k = 0, 1, . . ..

We claim that X̃(t) is strictly decreasing on [τ−, τ+]. To see this, observe that

˙̃X(t) = (Ż(t)X(t) − Ẋ(t)Z(t))X(t)−2 = WZ,X(t)X(t)−2,

where WZ,X(t) denotes the Wronskian corresponding to the Jacobi equation (21) and
as such satisfies

WZ,X(t) = WZ,X(τ ′
−) = −1, t ∈ [τ−, τ+]

where we are using the fact that X,Z are scalar functions that solve a second order
ODE and therefore their Wronskian is constant. Using this observation, we conclude
that

˙̃X(t) < 0, ∀ t ∈ [τ−, τ+],

implying that X̃ is strictly decreasing on [τ−, τ+]. We can consequently define the
new variable t̃ = X̃(t) and rewrite (25) in terms of t̃ as

∫ X̃(τ−)

X̃(τ+)
f(γ(X̃−1(t̃)))

X(X̃−1(t̃))− 1

2

X̃ ′(X̃−1(t̃))
t̃k dt̃ = 0, for k = 0, 1, . . ..

Finally, using the Stone-Weierstrass theorem, and since f ∈ C(M), we conclude that
f must identically vanish along γ, thus concluding the proof for the case n = 3.

Let us now consider the case that n = 4. We consider an arbitrary point p ∈ γ
and assume without loss of generality that p = γ(0). Let {v1, v2} ⊂ γ̇⊥(0) be an
orthonormal basis for γ̇(0)⊥ and for each ǫ > 0, consider the unique transversal
(1, 1)-tensor Y ǫ solving the Jacobi equation (21) subject to initial conditions

(26) Y ǫ
k (0) = −iǫ vk and Ẏ ǫ

k (0) = vk for k = 1, 2,
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where Y ǫ
k is the kth column of the tensor Y ǫ at the point p with respect to the basis

{v1, v2}. Observe that condition (22) holds at t = 0 for each ǫ > 0, implying that
Y ǫ ∈ Yγ. By the hypothesis of the proposition, we have

(27) J (1)
Y ǫ f = 0, ∀ ǫ > 0.

We can write Y ǫ = X − iǫZ where X,Z solve (21) subject to the initial conditions

Xk(0) = 0, Zk(0) = vk and Ẋk(0) = vk, Żk(0) = 0, for k = 1, 2.

Our aim now is to study the behavior of J (1)
Y ǫ f as ǫ approaches zero. Observe that

Y ǫ with ǫ = 0 is singular at t = 0. This singularity will allow us to obtain information
about the value of f at the point p. However, Y ǫ is analytic with respect to ǫ and
studying the asymptotic behavior of JY ǫ itself will not contain any local information
about f on γ. To remedy this issue, we define

Sǫf = J (1)
Y ǫ f − J (1)

Y ǫ f,

and note that by the hypothesis of the proposition, and since f is real valued we have
Sǫf = 0. We now choose a small positive parameter ζ and assume that 0 < ǫ < ζ .
In what follows, we will study the limiting behavior of Sǫ f as ǫ approaches zero
while ζ is fixed.

Writing {e1(t), e2(t)} to denote the parallel transport of the orthonormal basis
{v1, v2} along γ, it is easy to see that Y ǫ(t) can be thought of as a two by two matrix
with respect to the basis {e1(t), e2(t)}. Next, using the Taylor series approximation
for the matrix Y ǫ near t = 0, we deduce that given any |t| < ζ and all ǫ < ζ , there
holds

(28)







|Y ǫ
ij(t)| 6 C0t

2 for i 6= j and i, j = 1, 2

|Y ǫ
jj(t) − (t− iǫ)| 6 C0t

2, for j = 1, 2,

where C0 > 0 is independent of ζ and ǫ. Here, we are considering the matrix Y ǫ

with respect to the basis {e1, e2}. Applying these estimates to the expression for
det Y ǫ, and noting that |t− iǫ| > |t|, we deduce that there exists a constant C1 > 0
independent of ǫ, ζ , such that

det Y ǫ(t) = (t− iǫ)2(1 + rǫ(t)) with |rǫ(t)| 6 C1|t|,
for all t ∈ (−ζ, ζ). Consequently, there exists a constant C2 > 0 independent of ǫ, ζ
such that

(29)
∣
∣
∣
∣(det Y ǫ)− 1

2 − (det Y ǫ)− 1

2 − 2iℑ((t− iǫ)−1)
∣
∣
∣
∣ 6 C2,

for all t ∈ (−ζ, ζ).
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Let us now consider the interval [τ−, τ+] \ (−ζ, ζ). First, note that detX(0) = 0
and that by Definition 2, no point on γ(t) is conjugate to γ(0) for t 6= 0 (see for
example [6, Section 5.5]). We deduce that

detX 6= 0 on [τ−, τ+] \ (−ζ, ζ).

Note also that by applying the point-wise bounds in (28) for ǫ = 0, it follows that,

| detX(t) − t2| 6 Ct3, for all |t| 6 ζ,

for some C independent of ζ . Together with the fact that X is non-degenerate away
from the origin, we conclude that

detX(t) > 0 ∀ t ∈ [τ−, τ+] \ {0}.
Using this observation, we write

det Y ǫ = detX det(I − iǫZX−1) = detX − iǫ detX Tr(ZX−1) + O(ǫ2)

where we applied the expansion formula for the characteristic polynomial of matrices
in the last step. Since detX is strictly positive away from the origin, we can conclude
that there exists a constant Cζ > 0 only depending on ζ , such that

(30)

∣
∣
∣
∣(det Y ǫ)− 1

2 − (det Y ǫ)− 1

2

∣
∣
∣
∣ 6 Cζ ǫ for t ∈ [τ−, τ+] \ (−ζ, ζ).

Let us now analyze the limiting behavior of Sǫ f as ǫ approaches zero. To this end,
we begin by writing

0 = Sǫ f = A
(1)
ζ,ǫ + A

(2)
ζ,ǫ + A

(3)
ζ,ǫ ,

where

(31)

A
(1)
ζ,ǫ =

∫ ζ

−ζ
f(γ(0))

(

(det Y ǫ)− 1

2 − (det Y ǫ)− 1

2

)

dt,

A
(2)
ζ,ǫ =

∫ ζ

−ζ
(f(γ(t)) − f(γ(0)))

(

(det Y ǫ)− 1

2 − (det Y ǫ)− 1

2

)

dt

A
(3)
ζ,ǫ =

∫

[τ−,τ+]\(−ζ,ζ)
f(γ(t))

(

(det Y ǫ)− 1

2 − (det Y ǫ)− 1

2

)

dt.

For the term A
(1)
ζ,ǫ , we use the bound (29) together with the estimate

(32)
∫ ζ

−ζ
ℑ
(

(t− iǫ)−1
)

dt =
∫ ζ

−ζ
|ℑ
(

(t− iǫ)−1
)

| dt = π + O(ǫ),

to write ∣
∣
∣A

(1)
ζ,ǫ − 2πi f(γ(0))

∣
∣
∣ 6 C3 ‖f‖L∞ζ + C4(ζ)‖f‖L∞ǫ,

for some C3 > 0 independent of ζ , ǫ and C4(ζ) > 0 independent of ǫ. Here, we are
using the fact that (29) is uniformly bounded in ζ . The appearance of ζ in the first

term above is due to the length of the interval of integration in A
(1)
ζ,ǫ .
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For the term A
(2)
ζ,ǫ , we use the bounds (29) and (32) again to obtain
∣
∣
∣A

(2)
ζ,ǫ

∣
∣
∣ 6 C5 (ωf(ζ) + ‖f‖L∞ζ) + C6(ζ) ‖f‖L∞ǫ,

for some C5 independent of ζ , ǫ and C6(ζ) independent of ǫ, where ωf denotes the

modulus of continuity for the function f at the point γ(0). Finally, for the term A
(3)
ζ,ǫ ,

we use the bound (30) to write

lim
ǫ→0

A
(3)
ζ,ǫ = 0.

We now return to Sǫ f , letting ǫ approach zero. Using the last three estimates for

A
(k)
ζ,ǫ , k = 1, 2, 3, we deduce that

|f(γ(0))| 6 (C3 + C5) ‖f‖L∞ζ + C5 ωf (ζ).

Finally, letting ζ converge to zero, it follows that f(p) = 0. Since p ∈ γ is arbitrary,
it follows that f(γ(t)) = 0 for all t ∈ [τ−, τ+]. �

Remark 1. The restriction on the dimension is mainly due to two technical difficulties.
One has to do with the parity of the dimension. Namely, when the dimension of M
is odd, an equation of the form (30) will no longer be valid. This is due to the fact
that detX will change sign at the origin and the imaginary part of detY ǫ will not
become small in ǫ away from the region (−ζ, ζ). This is the reason that we have
pursued a different approach for proving the proposition when dimM = 2. Another
general issue with higher dimensions seems to be the fact that the bound (29) will
no longer hold.

3.2. Inversion of Jacobi weighted ray transform of the second kind. This
section is concerned with the proof of the following proposition.

Proposition 4. Suppose (M, g) is a smooth compact Riemannian manifold with
boundary. Let p ∈ M and γ be a maximal geodesic passing through p that contains
no conjugate points to p. Let f ∈ C(M ;C). The following injectivity result holds:

J (2)
Y f = 0, ∀Y ∈ Yγ =⇒ f(p) = 0.

Proof of Proposition 4. We will again denote the dimension of M by n−1 with n > 3.
We consider the unit-speed parametrization γ : [τ−, τ+] → M with γ(0) = p. Let
{v1, . . . , vn−2} ⊂ γ̇⊥(0) be an orthonormal basis and for each ǫ > 0 sufficiently small,
consider the unique Y ǫ ∈ Yγ subject to

(33) Y ǫ
k (0) = −iǫvk, and Ẏ ǫ

k (0) = vk,

where Y ǫ
k is the kth column of the tensor Y ǫ at the point p with respect to {vk}

with k = 1, 2, . . . , n − 2. Writing {ek(t)}n−2
k=1 to denote the parallel transport of the
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orthonormal basis {vk} along γ, it is easy to see that Y ǫ(t) can be thought of as a
(n− 2) × (n − 2) matrix with respect to the basis {ek(t)} and that

Y ǫ(t) = X(t) − iǫ Z(t)

where
Ẍ −KX = 0, Z̈ −KZ = 0,

X(0) = 0, Z(0) = Id and Ẋ(0) = Id Ż(0) = 0.

Here, we have realized the (1, 1)-tensors K(t), X(t) and Z(t) as matrices with respect
to the basis {ek(t)}n−2

k=1. As in the proof of Proposition 3 we remark that since there
are no conjugate points γ(t) to γ(0) away from the origin t = 0, it follows that X(t)
is non-degenerate on [τ−, τ+] away from t = 0.

Let ζ > 0 be a small parameter. We assume that 0 < ǫ < ζ . In what follows, we

will study the asymptotic behavior of J (2)
Y ǫ f as ǫ approaches zero while ζ is fixed.

We start by writing

(34) J (2)
Y ǫ f =

∫ ζ

−ζ
f(γ(t))| detY ǫ(t)|−1 dt

︸ ︷︷ ︸

Aζ,ǫ

+
∫

[τ−,τ+]\(−ζ,ζ)
f(γ(t))| detY ǫ(t)|−1 dt

︸ ︷︷ ︸

Bζ,ǫ

.

First, we analyze the term Aζ,ǫ. Recall that this corresponds to the small neigh-
borhood (−ζ, ζ). The following point-wise estimates are analogous to (28) and hold
on the set t ∈ (−ζ, ζ),

(35)







|Y ǫ
ij(t)| 6 C0t

2 for i 6= j and i, j = 1, 2, . . . , n− 2

|Y ǫ
jj(t) − (t− iǫ)| 6 C0t

2, for j = 1, . . . , n− 2,

where C0 > 0 is independent of ζ and ǫ. Applying these estimates to the expression
for det Y ǫ, we deduce that

∣
∣
∣| detY ǫ| − |t− iǫ|n−2

∣
∣
∣ 6 C1





n−2∑

j=1

t2j |t− iǫ|n−2−j



 ,

for some C1 independent of ǫ, ζ which can be rewritten as

∣
∣
∣1 − | detY ǫ| |t− iǫ|−(n−2)

∣
∣
∣ 6 C1





n−2∑

j=1

t2j |t− iǫ|−j



 6 C1





n−2∑

j=1

|t|j


 .

We deduce that for t ∈ (−ζ, ζ), there holds
∣
∣
∣1 − | detY ǫ| |t− iǫ|−(n−2)

∣
∣
∣ 6 C2ζ,

for some C2 > 0 independent of ζ and ǫ. This latter bound implies that

(36)
∣
∣
∣1 − | detY ǫ|−1 |t− iǫ|(n−2)

∣
∣
∣ 6 Cζ,
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for all t ∈ (−ζ, ζ) where C > 0 independent of ǫ and ζ .
We now write

Aζ,ǫ =
∫ ζ

−ζ
f(γ(t)) |t− iǫ|−(n−2)dt

︸ ︷︷ ︸

I

+
∫ ζ

−ζ
f(γ(t)) |t− iǫ|−(n−2)(−1 + |t− iǫ|(n−2)| detY ǫ|−1)

︸ ︷︷ ︸

II

dt

and

I = f(γ(0))(
∫ ζ

−ζ
|t− iǫ|−(n−2) dt) +

∫ ζ

−ζ
(f(γ(t)) − f(γ(0))) |t− iǫ|−(n−2) dt

︸ ︷︷ ︸

III

.

For the term II, we use the bound (36) to write

(37) |II| 6 C ζ

(
∫ ζ

−ζ
|t− iǫ|−(n−2) dt

)

,

where the constant C is independent of ǫ, ζ . For III, we use continuity of f to write

(38) |III| 6 Cωf(ζ)

(
∫ ζ

−ζ
|t− iǫ|−(n−2) dt

)

,

where C > 0 is independent of ζ , ǫ and ωf is a modulus of continuity for f .
Next, we proceed to give a bound on Bζ,ǫ in the expression (34). To this end,

recall that X(t) is non-degenerate on away from t = 0 and therefore | detX| has a
positive lower bound on [τ−, τ+] \ (−ζ, ζ) that depends on ζ . Since Y ǫ converges to
X as ǫ approaches zero, we can write

(39) |Bζ,ǫ| < Cζ,

for some Cζ that only depends on ζ .
We will now divide the entire expression (34) by the normalization factor

(40)
∫ ζ

−ζ
|t− iǫ|−(n−2) dt

and study what happens as ǫ tends to zero. Let us first observe that
∫ ζ

−ζ
|t− iǫ|−(n−2) dt =

∫ τ+

τ−

|t− iǫ|−(n−2) dt−
∫

[τ−,τ+]\(−ζ,ζ)
|t− iǫ|−(n−2) dt

and that

(41)







∫ τ+

τ−
|t− iǫ|−(n−2) > Cn| log ǫ| for n = 3

∫ τ+

τ−
|t− iǫ|−(n−2) > Cnǫ

3−n, for n > 4.

and

(42)







∫

[τ−,τ+]\(−ζ,ζ) |t− iǫ|−(n−2) 6 C ′
n| log ζ | for n = 3

∫

[τ−,τ+]\(−ζ,ζ) |t− iǫ|−(n−2) 6 C ′
nζ

3−n, for n > 4.
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where Cn, C
′
n are positive constants that are independent of ζ and ǫ. Combining

(39)−(42) we deduce that

lim
ǫ→0

|Bζ,ǫ|
(
∫ ζ

−ζ
|t− iǫ|−(n−2) dt

)−1

= 0.

Thus, by dividing (34) with the normalization factor (40), using the bounds (37)–
(38), and letting ǫ converge to zero, we conclude that

|f(γ(0))| 6 C(ζ + ωf(ζ)),

for some C > 0 independent of ζ . Finally, by taking the limit ζ → 0, the proposition
follows. �

4. Complex Geometric Optics

The main aim of this section is to construct a pair of so called complex geometric
optics solutions U±

ρ , with

ρ = λ+ iσ, λ > λ0 > 0,

for the equation

(43) PV1
U±

ρ = 0 on T = I ×M.

Here, we have smoothly extended the known function V1 from M to the larger set
T = I × M such that V1 ∈ C∞

c (T ). Recall from Section 2 that we have assumed
without loss of generality that c ≡ 1. We construct solutions that take the form

(44) U±
ρ (x) = e±λx0

(

eiσx0V±
ρ (x0, x′) + R±

ρ (x0, x′)
)

.

Here, the functions V±
ρ are directly related to Gaussian quasi modes for the transver-

sal manifold (M, g) and will be supported near the two dimensional sub-manifold
R × γ with γ denoting a maximal non-self-intersecting geodesic in M . It should be
remarked that the Gaussian quasi mode construction is well-known and is analogous
to Gaussian beams for the wave equation (see for example [1, 22, 36]). The pre-
sentation here follows [9, 23] with some modifications. The correction term R±

ρ will
asymptotically converge to zero for any fixed non-zero σ ∈ R, as λ → ∞ with an
arbitrary a priori fixed rate of decay s:

(45) ‖R±
ρ ‖C3(M) . λ−s, ∀λ > λ0 > 0 and |σ| 6 σ0.

These statements will be made precise in Proposition 5.
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4.1. Gaussian quasi modes. Fix a unit speed maximal non-self-intersecting geo-
desic γ(t) ∈ M with t ∈ [τ−, τ+] and extend it as a geodesic to the larger manifold

M̂ (see Section 2.4) so that it is defined on an interval [τ ′
−, τ

′
+] with τ ′

− < τ− and

τ+ < τ ′
+. Let q be a point on γ ∩ (M̂ \ M). We define {vα}n−1

α=2 ⊂ TqM̂ such that
{γ̇(q), v2, . . . , vn−1} forms an orthonormal basis and denote by {eα(t)}, the parallel
transport along γ of {vα} to the point γ(t). We define

y0 := x0 and y1 := t,

and for each y′′ = (y2, . . . , yn−1) define the smooth map

F(y) = F(y0, y1, y′′) =

(

y0, expγ(y1)

(
n−1∑

α=2

yαeα(y1)

))

.

We use the notation y = (y0, y′) with y′ = (y1, y′′) and recall the following lemma
(see [9, Lemma 3.5]).

Lemma 3 (Fermi coordinates). Given any sub-interval [τ ′′
−, τ

′′
+] of (τ ′

−, τ
′
+) containing

(τ−, τ+), the coordinate system above is a smooth diffeomorphism in a neighborhood
U of I × γ([τ ′′

−, τ
′′
+]), and the following statements hold.

(i) F−1(U) = I×(τ ′
−, τ

′
+)×B(0, δ′), where B(0, δ′) is the ball of radius δ′ centered

at the origin in R
n−2.

(ii) F−1(y0, γ(y1)) = (y0, y1, 0, . . . , 0
︸ ︷︷ ︸

n − 2 times

) for all y1 ∈ (τ ′
−, τ

′
+).

Moreover, g(y0, y′) = (dy0)2 + g(y′) and gjk(y1, 0) = δjk,
∂gjk

∂yi (y1, 0) = 0 for 1 6

i, j, k 6 n − 1.

Let us now return to the task of constructing solutions of the form (44). Let

(46) Nγ = {y ∈ T̂ | y1 ∈ [τ ′′
−, τ

′′
+], |y′′| < δ},

for some 0 < δ < δ′. This is the neighborhood where the Gaussian quasi modes Vρ

will be compactly supported. We make the ansatz

(47) V+
ρ (y0, y′) = eiρΘ(y′)a+

ρ (y) and V−
ρ (y0, y′) = e−iρ̄Θ̄(y′)a−

ρ (y)

The functions Θ, a±
ρ are called the phase and amplitude functions respectively. We

observe that

(48)
PV1

(eρx0V+
ρ ) = eρ(y0+iΘ(y′))

(

−ρ2(SΘ)a+
ρ − ρT +a+

ρ + PV1
a+

ρ

)

,

PV1
(e−ρ̄x0V−

ρ ) = e−ρ̄(y0+iΘ̄(y′))
(

−ρ̄2(SΘ̄)a−
ρ + ρ̄T −a−

ρ + PV1
a−

ρ

)

,

where

(49) SΘ := 1 − 〈dΘ, dΘ〉g.
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and

(50)
T +a+

ρ : = 2∂y0a+
ρ + 2i〈dΘ, da+

ρ 〉g + i(∆gΘ)a+
ρ

T −a−
ρ : = 2∂y0a−

ρ + 2i〈dΘ̄, da−
ρ 〉g + i(∆gΘ̄)a−

ρ .

Here, we would like to apply the WKB method with respect to the parameter ρ in a
neighborhood of I × γ ⊂ M̂. More specifically, we start by constructing Θ(y′) such
that the function SΘ(y′) vanishes up to N th order on the geodesic γ, that is to say

(51)

(

∂βSΘ

∂y′β

)

(y1, 0) = 0, ∀y1 ∈ (τ ′′
−, τ

′′
+),

for all multi indices β ∈ {0, 1, . . .}n−1 with |β| 6 N . We make the following ansatz,

(52) Θ(y1, y′′) =
N∑

k=0

Θk(y1, y′′),

where Θk(y1, y′′) is a homogeneous polynomial of degree k in the transversal variables
y′′. Following [9, Section 3], we can choose

(53) Θ0(y
1, y′′) = y1, Θ1(y

1, y′′) = 0, Θ2(y1, y′′) =
n∑

i,j=2

1

2
Hij(y

1)yiyj,

where H := (Hij)
n
i,j=2 solves the following Riccati equation,

(54) Ḣ(t) +H(t)2 +D(t) = 0, t ∈ (τ ′′
−, τ

′′
+) H(τ0) = H0.

Here, τ0 ∈ (τ ′′
−, τ

′′
+), D = 1

2
(∂2

ijg
11|γ)n

i,j=2 and H0 is any symmetric matrix with
ℑH0 > 0. The subsequent terms Θk(y′) can be constructed by solving linear systems
of ODEs and prescribing initial values at the point t = τ0 and we refer the reader to
[9] for the details.

Let us now analyze the Riccati equation further as this term dictates the Gaussian
type decay away from the two dimensional sub-manifold R×γ. Applying [21, Lemma
2.56]), we deduce that given any symmetric H0 with ℑH0 > 0, there exists a unique
solution to equation (54). Moreover,

(55) ℑ(H(t)) > 0 ∀t ∈ [τ ′′
−, τ

′′
+]

and there holds

(56) det(ℑ(H(t)) · | det Y (t)|2 = c,

where c > 0 is a constant independent of t and Y = (Yij)
n
i,j=2 is the unique solution

to the second order ODE

(57) Ÿ (t) +D(t)Y (t) = 0, Y (τ0) = Y0, Ẏ (τ0) = Y1.
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with Y0 any non-degenerate matrix and Y1 = H0Y0. We note that H(t) and Y (t) are
related through the expression

H(t) = Ẏ (t)Y −1(t).

Applying arguments analogous to [11, Section 3.5] one can show that the matrix D(t)
is equal to the (1,1)-Riccci tensor K defined in Section 3. Therefore, the matrix Y (t)
solving (57) above coincides with Y in Section 3, namely that it solves the complex
Jacobi equation (21) (see also [5]) and satisfies the condition (22).

Next, we consider the construction of the amplitude functions a±
ρ . We write

(58)
a+

ρ (y0, y′) =
(

v0(y′) + ρ−1v+
1 (y0, y′) + . . .+ ρ−Nv+

N(y0, y′)
)

χ(
|y′′|
δ

),

a−
ρ (y0, y′) =

(

v̄0(y′) + ρ̄−1v−
1 (y0, y′) + . . .+ ρ̄−Nv−

N(y0, y′)
)

χ(
|y′′|
δ

),

where δ is as in the definition of Nγ and χ : R → R is a smooth non-negative function
with χ = 0 for |t| > 1 and χ = 1 for |t| < 1

2
. We require that

(59)

(

∂βT +v0

∂y′β

)

(y0, y1, 0) = 0, ∀(y0, y1) ∈ I × (τ ′′
−, τ

′′
+),

and that

(60)

(

∂β(∓T ±v±
k + PV1

v±
k−1)

∂y′β

)

(y0, y1, 0) = 0, ∀(y0, y1) ∈ I × (τ ′′
−, τ

′′
+)

for k = 1, . . . , N and all multi indices β ∈ {0, 1, . . .}n with |β| 6 N . The study of
equation (59) is presented in [9, Section 3]. There, it is showed that if we write

(61) v0(y′) =
N∑

j=0

v0j(y
1, y′′),

with v0j denoting a homogeneous polynomial of degree j in y′′, then one can take

(62) v00(t) = (detY (t))− 1

2 ,

and that the subsequent terms v0j(t, y
′′) with j = 1, . . . , N can be uniquely deter-

mined by solving first order ODEs along the geodesic γ subject to some prescired
initial conditions at the point γ(τ ′′

−).
Let us now study equation (60). Here, we deviate from [9] due to the presence of

y0-dependence in vk, k > 1. This comes from the fact that we consider PV1
with a y0-

dependent V1, whereas the case V1 = 0 is considered in [9]. Proceeding analogously
to the study of (59), we write

v±
k (y0, y′) =

N∑

j=0

v±
kj(y

0, y1, y′′),
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where v±
kj is a homogeneous polynomial in the y′′ variables of degree j. Using the

definition of T ±, the form of the metric g(y′) near y′′ = 0, (60) reduces to

(∂y0 + i∂y1) (det Y (y1)
1

2 v±
kj(y)) = Q±

kj(y), (y0, y1) ∈ I × (−τ ′′
−, τ

′′
+), j = 0, . . . , N

where the functions Q±
kj(y

0, y1, y′′) is a homogeneous polynomial in the variables y′′

of degree j only depending on V1 and the preceding terms in the expansion of the
amplitude functions.

To solve for the functions v±
kj we can proceed with an iterative process by solving

at each step, an equation of the form

(∂y0 + i∂y1)r = F ∀(y0, y1) ∈ I × (−τ ′′
−, τ

′′
+).

To solve such an equation, we simply extend F (y0, y1) smoothly to R2 in such a way
that F ∈ C∞

c (R2). Let

Γ(y0, y1) :=
1

2πi
(y0 + iy1)−1,

and pick

(63) r = II×(−τ ′′

−
,τ ′′

+
) (Γ ∗ F ),

where IA is the characteristic function of the set A. Note that r ∈ C∞(I×(−τ ′′
−, τ

′′
+)).

By using this method, we can iteratively determine the coefficients v±
kj and thus

complete the construction of the amplitude functions a±
ρ ∈ C∞(T ).

We have completed the task of constructing the Gaussian quasi modes V±
ρ . Let us

point out that for the phase function Θ(y′), we have prescribed the initial conditions
for all the ODEs at the point τ0. This will be later exploited in Section 5. To
summarize the construction, we state the following key lemma.

Lemma 4. Let ρ = λ+ iσ and let V±
ρ ∈ C∞(M) be constructed as above. Then, for

any |σ| < σ0 and all λ > λ0 with λ2 /∈ {µn}n∈N, we have the estimates

‖V±
ρ ‖Lp(M) . λ− n−2

2p , ‖V±
ρ ‖Ck(M) . λk, for all p > 1 and k = 0, 1, . . .

and

‖L±λ(eiσx0V±
ρ )‖Hk(M) . λ2+k− N

2
− n−2

4 ,

where Lλ and {µn}n∈N are as defined in Section 2.4.

Proof. We will show how to prove these bounds for V+
ρ . The bounds for V−

ρ will then
follow analogously. First, observe that using equations (52)–(53) together with (55),
we have

(64) |eiρΘ(y′)| . e−C0λ|y′′|2 , ∀y′ ∈ Nγ,
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where Nγ is as defined in (46). Using the Fermi coordinate system together with
expressions (44) and (58), it follows that

‖V+
ρ ‖p

Lp(M) .
∫

I×Nγ

e−C0pλ|y′′|2 dx0 dy1 dy′′ . λ− n−2

2

thus proving the first claim. For the second claim, we observe that

‖V+
ρ ‖Ck(M) . λke−C0λ|y′′|2 . λk.

We now derive the bound for Lλ(eiσx0V+
ρ ). Let us first use the fact that equations

(51), (59) and (60) are satisfied together with (58) to obtain the point-wise bounds
on the set I × Nγ ,

∣
∣
∣∂l

y

(

ρ2(SΘ)a+
ρ − ρT +a+

ρ + PV1
a+

ρ

)∣
∣
∣ . λ2 |y′′|N−|l| + λ |y′′|N−|l| + λ−N ,

∣
∣
∣∂l

ye
iρΘ
∣
∣
∣ . λ|l| e−C0λ|y′′|2

for multi-indices l with |l| = 0, 1, . . . , k, where we are using the notation ∂l
y to stand

for derivatives of order l with respect to the Fermi coordinates. Next, we recall from
(48) that

Lλ(eiσx0V+
ρ ) = eiρΘeiσx0

(

−ρ2(SΘ)a+
ρ − ρT +a+

ρ + PV1
a+

ρ

)

.

Using the previous point-wise bounds we write

‖L±λ(eiσx0V±
ρ )‖2

Hk(M) .

k∑

|l|=0

∫

I×Nγ

(

λ2 |y′′|N−|l| + λ |y′′|N−|l| + λ−N
)2
λ2(k−|l|)e−C0λ|y′′|2 dx0 dy1 dy′′

. λ4λ2kλ−N− n−2

2 .

�

4.2. The remainder term. In this section we complete the construction of the
complex geometric optic solutions to (43) of the form (44). More specifically, we will
determine the asymptotically small correction terms R±

ρ .

Proposition 5. Let s ∈ N, ρ = λ+ iσ with |σ| 6 σ0, N = 13 + n
2

+ 2s and consider
the functions V±

ρ as above. There exists solutions U±
ρ ∈ C3(M) to equation (43) of

the form (44) satisfying the following estimate,

‖R±
ρ ‖C3(M) . λ−s,

for all λ > λ0, λ
2 /∈ {µl}l∈N.
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Proof. Let us start by noting that the correction term R±
ρ satisfies the equation

LλR+
ρ = −Lλ

(

eiσx0V+
ρ

)

, L−λR−
ρ = −L−λ

(

eiσx0V−
ρ

)

.

Now, combining the bounds given in Lemma 4 together with Proposition 2 we observe
that there exists a solution R±

ρ such that

‖R±
ρ ‖Hk(M) . λ2+k− N

2
− n−2

4 .

Now pick k = n
2

+ 4. Using the Sobolev embedding C3(M) ⊂ H
n
2

+4(M), we obtain
that

‖R±
ρ ‖C3(M) . ‖R±

ρ ‖Hk(M) . λ−s.

�

5. Proof of Theorem 1

This section is concerned with the proof of Theorem 1. The proof will be built on
an induction argument based on m, where m is the order of the linearization method
discussed in Section 2.2. As the first step of induction and also to shed some light
on the methodology, we start with a proposition.

Proposition 6. Let the assumptions of Theorem 1 hold. Then the DN map ΛV

uniquely determines the function V3(x).

Proof. We start by choosing a point p ∈ T and choose γ to be an admissible geodesic
passing through p in the sense of Definition 2. Let ρ = λ + iσ with σ fixed and
construct a family of complex geometric optic solutions U±

ρ (see (44)) with λ > λ0 and
a decay rate for the correction terms R±

ρ given by an integer s > n
8

(see Proposition 5).
Here, we have assigned the initial values for the ODEs that govern the phase function
Θ(y′) at the point p. Let us now define

f±
ρ = U±

ρ |∂M.

Recall that U±
ρ ∈ C3(M) are defined by (44) and that U±

ρ |∂M is explicitly known since
V1 is assumed to be known. By using the definition of f±

ρ together with the arguments
in Section 2.2 we deduce that we know ∂νLf+

ρ ,f+
ρ ,f−

ρ
|∂M for Lf+

ρ ,f+
ρ ,f−

ρ
solving the

equation

(65)







PV1
Lf+

ρ ,f+
ρ ,f−

ρ
= V3 (U+

ρ )2U−
ρ +Hf+

ρ ,f+
ρ ,f−

ρ
, ∀x ∈ M

Lf+
ρ ,f+

ρ ,f−

ρ
= 0 ∀x ∈ ∂M

We note that Hf+
ρ ,f+

ρ ,f−

ρ
is known as it only depends on V1 and V2. Let dσg denote

the volume form on ∂M. Applying Green’s identity together with (43) and (65), we
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write

(66)

−
∫

∂M
f−

ρ (∂νLf+
ρ ,f+

ρ ,f−

ρ
) dσg +

∫

∂M
(∂νU−

ρ )Lf+
ρ ,f+

ρ ,f−

ρ
dσg

=
∫

M
U−

ρ (PV1
Lf+

ρ ,f+
ρ ,f−

ρ
) dVg −

∫

M
(PV1

U−
ρ )Lf+

ρ ,f+
ρ ,f−

ρ
dVg

=
∫

M
V3 (U−

ρ U+
ρ )2 dVg +

∫

M
Hf+

ρ ,f+
ρ ,f−

ρ
U−

ρ dVg.

Thus we can conclude that for all λ > λ0 with λ2 /∈ {µl}l∈N, the knowledge of the
DN map ΛV uniquely determines the expression

S = lim
λ→∞

λ
n−2

2

∫

M
V3 (U−

ρ U+
ρ )2 dVg

= lim
λ→∞

λ
n−2

2

∫

M
V3(x

0, x′)e4iσx0

(V+
ρ + R+

ρ )2(V−
ρ + R−

ρ )2 dx0 dVg.

Applying Proposition 5 and Lemma 4 we have the bounds
∫

M
|V3||R+

ρ |2|R−
ρ |2 dVg . |λ|−4s . |λ|− n−2

2 λ−1,
∫

M
|V3||V±

ρ |k|R±
ρ |j dVg . λ− n−2

2 λ−js.

We also recall the point-wise bound (64) to obtain that

λ
n−2

2

∫

I×Nγ

λ−1e−4λℑΘ dx0 dt dy′′ . λ−1.

Using this bound together with the latter two bounds, the expression for S simplifies
to

S = lim
λ→∞

λ
n−2

2

∫

I

∫

Nγ

V3(x
0, t, y′′)e4iσx0

e−4λℑΘe−4σℜΘ|v0(t, y′′)|4 dx0 dVg

where we have extended V3 to all of I × M through setting it to zero outside M.
Next, and by using the estimate

λ
n−2

2

∫

I×Nγ

|y′′|e−4λℑΘ dx0 dt dy′′ . λ− 1

2

we can further simplify S to obtain

S = lim
λ→∞

λ
n−2

2

∫

I×Nγ

V3(x0, t, 0)e4iσx0

e−4σte−4λℑΘ|v00(t)|4 dx0 dt dy′′.

Finally, applying stationary phase together with equations (56) and (62), we conclude
that the Dirichlet-to-Neumann map ΛV uniquely determines the expression

(67)
∫ τ+

τ−

eξtFV3(ξ, γ(t)) | detY (t)|−1 dt, for all |ξ| < σ0

4
,
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with FV3 denoting the Fourier transform of V3 with respect to x0 variable. Here
we have extended the function V3 to the set R × M by setting it to zero outside of
M. We can summarize the analysis thus far as follows. For each point p ∈ T and
each admissible geodesic γ passing through p, we have shown that the Dirichlet-to-
Neumann map ΛV uniquely determines the expression (67). Now, recall from (57)
that the (n − 2) × (n − 2) matrix Y solves the complex Jacobi equation (21) along
γ subject to the initial condition

Y (τ0) = Y0, and Ẏ (τ0) = Y1 = H0Y0,

where H0 is symmetric and satisfies ℑH0 > 0 and Y0 is non-degenerate. This implies
that Y ∈ Yγ .

Returning to (67) and applying Proposition 4 together with the fact that σ0 is
arbitrary, we conclude that

FV3(ξ, p) = 0,

for all ξ ∈ R and all p ∈ T . The theorem now follows using the density of T in M
and applying the inverse Fourier transform. �

Before presenting the proof for the more general case m > 4, we need a lemma.

Lemma 5. Given any point p ∈ M , there exists a smooth solution Wp to the equation

PV1
Wp = 0

with the additional property that Wp(p) 6= 0.

Proof. Let us consider G(x; y) to denote the Dirichlet Green’s function associated to
the operator PV1

on M. For each fixed y ∈ M, G(x; y) is the unique distributional
solution to

(68)







PV1
G(x; y) = δ(x; y), ∀x ∈ M

G(x; y) = 0 ∀x ∈ ∂M
For each fixed y, G(x; y) is smooth away from y. Moreover, since δ(x; y) ∈ H− n

2
−ǫ(M)

for any ǫ > 0 and any fixed y ∈ M, it follows from elliptic regularity that G(x; y) ∈
H2− n

2
−ǫ(M) for any ǫ > 0. Let h ∈ C∞(∂M) be arbitrary and choose w such that

PV1
w = 0 subject to w|∂M = h. Applying Green’s identity we have

w(x) =
∫

M
PV1

G(x; y)w(y) dVg −
∫

M
G(x; y)PV1

w(y) dVg = −
∫

∂M
∂νG(x; y)h(y) dσg

If the claim fails to hold, that is w(p) = 0 for all h ∈ C∞(∂M), then clearly we
must have ∂νG(p; y) = 0 for all y ∈ ∂M. Since G(p; y) also vanishes there, by the
elliptic unique continuation principle, that G(x; p) must vanish away from p implying
that it is supported at the point {p}. Subsequently, it must be a linear combination
of δ(x; p) and its derivatives at the point {p}. But as already mentioned in the
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beginning of the proof G(x; p) is smoother than δ(x; p), and whence it must vanish
everywhere which is a contradiction with (68). �

Proof of Theorem 1. We use an induction argument on m > 4 to show that Vm can
be uniquely determined from the DN map ΛV . We have already proved this for
m = 3. Now let m > 3 and assume that Vj has been determined for all j < m. We
consider a point p ∈ T with an admissible geodesic γ passing through p. Similar to
the proof of Propostion 6, we pick s > n

8
and consider the solutions U±

ρ and define
f±

ρ analogously. We also choose the function Wp as in Lemma 5 and let h be its trace
on the boundary ∂M.

Following Section 2.2 we define

Lm := L
f+

ρ ,f+
ρ ,f−

ρ ,h, . . . , h
︸ ︷︷ ︸

m − 3 times

and Hm := H
f+

ρ ,f+
ρ ,f−

ρ ,h, . . . , h
︸ ︷︷ ︸

m − 3 times

.

Applying (16) we note that Lm solves the equation

(69)







PV1
Lm = Ṽm (U+

ρ )2(U−
ρ ) +Hm, ∀x ∈ M

Lm = 0 ∀x ∈ ∂M

where

Ṽm(x) = Vm(x)Wp(x)m−3.

Recall from Section 2.2 thatHm is explicitly known as it only depends on V1, . . . , Vm−1

and these functions are known from the induction hypothesis. Applying Green’s
identity we observe that

(70)

−
∫

∂M
f−

ρ (∂νLm) dσg +
∫

∂M
(∂νU−

ρ )Lm dσg

=
∫

M
U−

ρ (PV1
Lm) dVg −

∫

M
(PV1

U−
ρ )Lm dVg

=
∫

M
Ṽm (U−

ρ U+
ρ )2 dVg +

∫

M
Hm U−

ρ dVg.

We deduce that the map ΛV uniquely determines the expression
∫

M
Ṽm (U+

ρ )2(U−
ρ )2 dVg.

Thus using the same asymptotic analysis as in the proof of Proposition 6, together
with Proposition 4, we conclude that ΛV uniquely determines Ṽm(p) and consequently
by Lemma 5 it determines the function Vm at the all points (x0, p) ∈ M with p ∈ T .
The proof is completed by noting the density of T in M . �
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6. Proof of Theorem 2

Proof of Theorem 2. It suffices to prove that V2 can be uniquely reconstructed from
the knowledge of ΛV . Indeed, the recovery of the higher order derivatives Vm with
m = 3, 4, . . ., follows by using induction as in the proof of Theorem 1.

We start by choosing an arbitrary point p ∈ M and assume that γ is a maximal
non-self intersecting geodesic passing through p. Let ρ = λ + iσ with σ fixed and
construct a family of complex geometric optic solutions U±

ρ and U±
2ρ as in Section 4

with a decay rate given by an integer s > n
6

where we recall that n ∈ {3, 4}. Here, we
have assigned the initial values for the ODEs that govern the phase function Θ(y′)
at the point p. Let us now define

f±
ρ = U±

ρ |∂M.

Recall that U±
ρ ∈ C3(M) and that U±

ρ |∂M are explicitly known. By using the def-
inition of f±

ρ together with the arguments in Section 2.2, we deduce that we know
∂νLf+

ρ ,f+
ρ

|∂M for Lf+
ρ ,f+

ρ
solving the equation

(71)







PV1
Lf+

ρ ,f+
ρ

= V2 (U+
ρ )2, ∀x ∈ M

Lf+
ρ ,f+

ρ
= 0 ∀x ∈ ∂M

Let dσg denote the volume form on ∂M. Applying Green’s identity we observe that

(72)

∫

∂M
f−

2ρ (∂νLf+
ρ ,f+

ρ
) dσg −

∫

∂M
(∂νU−

2ρ)Lf+
ρ ,f+

ρ
dσg

=
∫

M
U−

2ρ(PV1
Lf+

ρ ,f+
ρ

) dVg −
∫

M
(PV1

U−
2ρ)Lf+

ρ ,f+
ρ
dVg

=
∫

M
V2 U−

2ρ(U+
ρ )2 dVg.

Thus we can conclude that for all λ > λ0 with λ2 /∈ {µl}l∈N, the knowledge of the
DN map ΛV uniquely determines the expression

(73) S1 = lim
λ→∞

λ
n−2

2

∫

M
V2 U−

2ρ(U+
ρ )2 dVg.

Applying Proposition 5 and Lemma 4, we have the bounds
∫

M
|V2||R+

ρ |2|R−
2ρ| dVg . |λ|−3s . |λ|− n−2

2 λ−1,
∫

M
|V2||V+

ρ |2|R−
2ρ| dVg . λ− n−2

2 λ−s,
∫

M
|V2||V−

2ρ||V+
ρ ||R+

ρ | dVg . λ− n−2

2 λ−s,
∫

M
|V2||V−

2ρ||R+
ρ |2 dVg . λ− n−2

2 λ−2s.
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Next and by using the form of the phase function and the amplitude functions given
by equations (52) and (58) together with the previous four bounds, we write

S1 = lim
λ→∞

λ
n−2

2

∫

I

∫

Nγ

V2e
4iσx0

e−4λℑΘe−4σℜΘ|v00|2 v00 dx
0 dVg

where it is to be understood that V2 is extended to I × M by setting it to zero
outside M. Finally, applying stationary phase together with equations (56) and
(62), we deduce that the Dirichlet to Neumann map determines the expression

(74)
∫ τ+

τ−

eξtFV2(ξ, γ(t)) (detY (t))− 1

2 dt, ∀ |ξ| < σ0

4
,

with FV2 denoting the Fourier transform of V2 with respect to x0 variable. Here,
we have extended the function V2 to the entire R × M by setting it to zero outside
of M. We can summarize the analysis thus far as follows. For each point p ∈ M
and each admissible geodesic γ passing through p, we have shown that the Dirichlet-
to-Neumann map ΛV uniquely determines the expression (74). Repeating the same
analysis, this time with the dual choices Lf−

ρ ,f−

ρ
and U+

2ρ we can similarly determine

the expression

(75)
∫ τ+

τ−

eξtFV2(ξ, γ(t)) (detY (t))− 1

2 dt, ∀ |ξ| < σ0

4
.

Finally, combining the expressions (74)–(75) we deduce that the map ΛV uniquely
determines the expressions

(76) S =
∫ τ+

τ−

eξtf(ξ, γ(t)) (detY (t))− 1

2 dt, |ξ| < σ0

4
,

where f ∈ {ℜFV2,ℑFV2}.
Applying Proposition 3 to the real-valued function f together with the fact that σ0

is arbitrary, it immediately follows that f(ξ, p) can be uniquely determined from ΛV

for all ξ ∈ R and all p ∈ M . We conclude that f(ξ, x′) can be uniquely determined
from ΛV for all x′ ∈ M . Using the inverse Fourier transform, it follows that ΛV

uniquely determines the function V2 everywhere in M. �
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