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Abstract

Context: Functional Size Measurement (FSM) methods, like Function Points
Analysis (FPA) or COSMIC, are well-established approaches to estimate soft-
ware size. Several approximations of these methods have been recently proposed
as they require less time/information to be applied, however their effectiveness
for effort prediction is not known.
Objective: The effectiveness of approximated functional size measures for es-
timating the development effort is a key open question, since an approximate
sizing approach may miss to capture factors affecting the effort. Therefore,
we empirically investigated the use of approximate FPA and COSMIC sizing
approaches, also compared with their standard versions, for effort estimation.
Method: We measured 25 industrial software projects realised by a single com-
pany by using FPA, COSMIC, two approximate sizing approaches proposed by
IFPUG for FPA (i.e. High Level and Indicative FPA), and three approximate
sizing approaches proposed by the COSMIC organisation for COSMIC (i.e. Av-
erage Functional Process, Fixed Size Classification, and Equal Size Band). Then
we investigated the quality of the regression models built using the obtained
measures to estimate the development effort.
Results: Models based on High Level FPA are effective, providing a prediction
accuracy comparable to the one of the original FPA, while those based on the
Indicative FPA method show poor estimation accuracy. Models based on COS-
MIC approximate sizing methods are also quite effective, in particular those
based on the Equal Size Band approximation provided an accuracy similar to
the one of standard COSMIC.
Conclusion: Project managers should be aware that predictions based on High
Level FPA and standard FPA can be similar, making this approximation very
interesting and effective, while Indicative FPA should be avoided. COSMIC ap-
proximations can also provide accurate effort estimates, nevertheless, the Fixed
Size Classification and Equal Size Band approaches introduce subjectivity in
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the measurement.
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1. Introduction

In the software development domain, project managers need to quantify the
“size” of a software product to be developed, since this is a key indicator of
the development effort/cost expected. Relevant over- or under-estimates of the
software size can have a strong impact on the success of a software project [1].

Functional Size Measurement (FSM) methods have been proposed to derive
the size of a software from its Functional User Requirements (FURs) [2]. FSM
methods have the benefits of being independent from the underlying program-
ming technologies, and being applicable in the early stages of the development
process.

The first FSM method was the Function Point Analysis (FPA) proposed in
1979 [3]. Since then, the method has evolved, being eventually standardized
by ISO as the ISO/IEC 20926:2009. Also, several variants of FPA have been
proposed (e.g., MarkII and NESMA) aiming at improving the accuracy of the
measurements or extending its applicability to particular domains [4]. All these
methods are collectively considered as the 1st generation of FSM. In 1999, a
novel FSM was proposed, i.e. COSMIC, which is considered the first FSM of 2nd

generation, due to significant evolutions in the measurement process over FPA.
COSMIC complies with the fundamental principles of measurement theory and
was designed to be suitable for a broader range of application domains [5, 6, 7, 8].

FSM methods have been extensively applied by practitioners and public
agencies to size software systems. Nevertheless, there are some common man-
agerial scenarios where they turn out to be difficult to apply, like:

• in the early phases of a project, when the FURs have not been specified
yet at the required level of detail for a precise measurement, or when the
documentation is not detailed enough;

• when the size measure is needed but there is insufficient time or resources
to measure it using the standard method [9]. Indeed, FSM methods have
been sometimes criticized to be time consuming in their application. Em-
pirical studies on the productivity of FPA measurers reported that they
proceed at a relatively slow pace, measuring between 200 and 600 Function
Points (FPs) per day [10, 11], where it is not uncommon to have projects
whose size is thousands of FP.

To support measurers in these scenarios, a number of FSM approximate siz-
ing approaches (a.k.a. simplified size estimation methods) have been proposed
(e.g., [4, 12, 13, 14, 15, 16]), with the goal to reduce the time and/or information
needed for their application and, at the same time, able to provide an useful
approximation of the functional size of the software being measured.
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The International Function Points User Group (IFPUG)1 published in 2015
a Usage Tip document dedicated to Early Function Point Analysis and Estima-
tion [17], proposing two approximate sizing methods.The same was done by the
COSMIC organization2 with a first set of approximate sizing methods in 2007
[18], and in a further evolution, in 2015 [9].

Previous studies have investigated the effectiveness of approximate FSM
methods by assessing whether the computed software size is comparable to
the one achievable by the corresponding standard methods (e.g., [14, 19, 20,
21]), and most of the work provided a positive answer. Nevertheless, to the
best of our knowledge, there is no study in the literature assessing the direct
prediction of development effort, starting from approximate measures. Since
correlation may not be always transitive [22, 23], to fill this gap in the literature,
in this paper we investigate to what extent approximate measures can be used to
estimate software development effort compared to those measures obtained using
a standard method. This is a key aspect to investigate, since an approximate
size, considering less information, may fail to measure some crucial aspects of a
software system, thus biasing the development effort estimation [13]. Thus, in
this work we empirically assess the effectiveness of 5 official FSM approximations
in predicting software development effort.

In particular, we considered two approximations for FPA, namely Indicative
FPA and High Level FPA, and three for COSMIC, namely Average Functional
Process, Fixed Size Classification, and Equal Size Bands, plus the original FPA
and COSMIC methods, applied to a dataset of 25 industrial applications devel-
oped by an Italian software company, containing also information on the actual
development efforts. It is worth noting that this is the first study comparing
these measures on a same dataset.

As a first step, we aimed at understanding whether these approximate sizing
methods might be used in the context of an early and rapid development effort
estimation. To this aim, as widely done in previous work, we built some effort
estimation models using the size measures calculated with the 5 approximate
sizing methods, and compared the accuracy of these estimates against some
standard baselines widely used in the literature (e.g., [8, 24, 25, 26]). The
rationale is that a sizing method is considered a good size measure for effort
estimation if it leads to significantly better predictions than techniques which
do not consider the software size as a cost driver [24, 27]. To this aim, we
formulated the following first two research questions:

RQ1: Can FPA approximate sizing methods provide good early size measures
for effort prediction?

RQ2: Can COSMIC approximate sizing methods provide good early size mea-

1IFPUG maintains the definition of FPA and certificates FP measurers:
http://www.ifpug.org

2COSMIC Organization maintains the definitions of the COSMIC method: https://cosmic-
sizing.org/
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sures for effort prediction?

Furthermore, we investigated the differences in effort prediction accuracy
when using approximate functional sizing methods with respect to the stan-
dard FPA and COSMIC. Indeed, we aimed at quantifying how much the use of
approximate sizing measures, rather than an exact counting, might affect the
estimates accuracy, which motivates two further research questions:

RQ3: Are size measures obtained using FPA approximate sizing methods as
effective as Function Points, for effort estimation?

RQ4: Are size measures obtained using COSMIC approximate sizing methods
as effective as COSMIC, for effort estimation?

To answer all these research questions, we used Simple Linear Regression
(SLR) as estimation technique to build the prediction models. To evaluate and
compare the accuracy of these models, we used the Mean of Absolute Residuals
(MAR) [28, 29]. Furthermore, we verified if the differences in the absolute resid-
uals obtained with the different estimation models were statistically significant,
by using both statistical test and the effect size [30].

To answer RQ1 and RQ2, as done in previous work (e.g.: [8, 24, 25, 27]),
we benchmarked the accuracy of the effort estimation models based on the
investigated measures against two widely used baselines, i.e., the mean and
the median of previous project efforts developed by a software company. The
use of mean/median effort of past projects is often used as a baseline, since
it does not require any actual sizing of the software to be developed. Rather,
it relies on the idea that, if the mean/median effort of past projects gives a
good indication of the expected effort of a new software to develop, there is no
need to use more sophisticated methods. In our case, since all the investigated
approximated methods involve a sizing phase of the new system, if they are
not able to overcome the trivial mean/median of past projects, they cannot be
considered good early size measures for effort prediction.

To answer RQ3 and RQ4, we compared the estimation accuracy of the mod-
els based on the approximate sizes against those obtained using the standard
FPA and COSMIC methods.

Summarizing, this paper contributes to the body of knowledge by represent-
ing, to the best of our knowledge, the first study investigating the accuracy
of a large number of different approximate sizing approaches proposed by the
two main international organisations in functional sizing (IFPUG and COSMIC
Organization) when used to directly predict software development efforts.

The rest of the paper is structured as follows: Section 2 provides the reader
with background knowledge on FPA, COSMIC and their approximations, and
on the related work. The design of our empirical study is described in Section
3, while its results and discussion are provided in Section 4. Conclusion and
future work conclude the paper.
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2. Background

In this section we describe the FSM methods compared in our empirical
study (see Section 3) and discuss the related work.

2.1. Function Points Analysis

The Function Point Analysis (FPA) is the first FSM method proposed in the
literature [3] as a measure (the Function Points) to quantify the “functionality”
provided by a software, from the end-user point of view, independently from
the underlying technologies. The original FPA formulation was then revised
in 1983 [31], and in 1986 FPA became managed by the International Function
Point Users Group (IFPUG) [32]. Since then, the method is named IFPUG FPA
(or simply IFPUG, for short) and has been standardized by ISO as ISO/IEC
20926:2009.

More in details, with IFPUG, the size of a software system can be con-
sidered as the (weighted) sum of simple unitary elements (its FURs), whose
measurement is easier than the whole system. In particular, to identify the set
of functionalities provided by the software, each FUR is decomposed into Base
Functional Components (BFC), which can be of the following five types:

• Internal Logical Files (ILF) are logical, persistent entities maintained by
the application to store information of interest.

• External Interface Files (EIF) are logical, persistent entities that are ref-
erenced by the application, but are maintained by another software appli-
cation.

• External Inputs (EI) are logical, elementary business processes that cross
into the application boundary to maintain the data on an Internal Logical
File.

• External Outputs (EO) are logical, elementary business processes that re-
sult in data leaving the application boundary to meet a user requirements
(e.g., reports, screens). To qualify as EO, the processing logic must con-
tain at least one mathematical formula or calculation, create derived data,
change the behaviour of the system, or maintain one or more ILFs [32].

• External Inquires (EQ) are logical, elementary business processes that
consist of a data trigger followed by a retrieval of data that leaves the
application boundary (e.g., browsing of data). The processing logic of an
EQ must not contain mathematical formulas or calculations, nor create
any derived data or change the behaviour of the system, and no ILF is
maintained [32].

The first two types deal with data storage and are called Data BFC. The
other three are referred to as Transactional BFC, dealing with business pro-
cesses.
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As next step, the “complexity” of each BFC is assessed, by characterizing
further attributes, such as the number of Data Element Types (DETs) and
Record Element Types (RETs) handled within each BFC. More in details, a
DET is defined as a “unique user recognizable, non-repeated field” [32], while
a RET is a “user recognizable subgroup of data elements within an ILF or
EIF” [32]. A proper characterization of DETs and RETs is a non-trivial task,
requiring time and experience.

Once these two information have been derived, they must be combined with
a reference table provided in the IFPUG method [32], which indicates the “com-
plexity” of each BFC, like in Table 1. Then, another table provided in the IF-
PUG method provides the correspondences between the complexity of a BFC,
and its size in terms of Function Points (FPs). As an example, an ILF with
Low complexity yields to 7 FPs, a Medium to 10 FPs, and a High complexity
to 15 FPs. The sum of all the FPs for all the identified BFCs gives the total
functional size of the software system.

Table 1: Table to compute the complexity of a ILF/EIF BFCs, given the number of DETs
and RETs

DETs
RETs 1-19 20-50 >=51

1 Low Low Medium
2-5 Low Medium High
>5 Medium High High

For more details about the use of the IFPUG method, readers may refer to
the counting manual [32].

2.2. FPA Approximate sizing methods

Many FPA approximations have been proposed over the years, from different
institutions, companies and researchers. In our investigation we focused on the
two proposals by IFPUG, the organization that endorses the FPA standard.
More in details, in 2015 IFPUG published a guide, including a basic empirical
study, on how to approximate the application of FPA, depending on the amount
of information and time available to the measurer [17]. These two methods are
detailed in the following.

2.2.1. High Level FPA

High Level FPA is suited to be applied in the case where the BFCs to be
sized are identified, but details on their DETs and RETs are not available, due
to time constraints or missing details in FURs. In this case, IFPUG suggest to
proceed as follows:

• determine all the Base Functional Components of the system to be mea-
sured (ILF, EIF, EI, EO, EQ);

• rate the complexity of all the ILFs and EIFs as Low;
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• rate the complexity of all the EI, EO, EQ as Average;

• assign the corresponding Function Points according to the standard IF-
PUG tables, and accumulate.

Thus, the key difference between the High Level FPA and the standard FPA
is that the complexity of each BFC, a time consuming task, is no more computed
on the actual system, but rather it is assigned by default, according to previous
statistical evidence [17].

2.2.2. Indicative FPA

Indicative FPA is meant to be applied when only a very limited amount
of information on the system to be measured is available. Thus, rather than
providing a size of the software, it is more meant to produce very quickly a rough
estimate of its size, to be intended as a ROM (Rough Order of Magnitude) [17].
In this case, IFPUG suggests to proceed as follows:

• determine only all data functions (ILF, EIF);

• the indicative functional size of the software is 35 x number of ILFs + 15
x number of EIFs.

This function has been proposed by IFPUG based on a projected ratio of
Transactional BFC for each Data BFC . According to IFPUG, “experience has
shown that it is a suitable approximation” [17].

2.3. COSMIC

Even if there is a large empirical evidence of the general effectiveness of
FPA, it is worth noting that this method is not compliant with the measurement
theory. Indeed, some steps of the process improperly mix different types of scales
[33], as well as the way the “weights” of the BFCs are defined in the reference
tables has been object of large discussion in the literature (e.g., [34, 35]).

The COSMIC method is a FSM method proposed in 1999 to overcome
some of the limitations of FPA. Indeed, the basic idea underlying the COSMIC
method is that, for many types of software systems, the most of the development
efforts are due to the implementation of proper functions to move data from/to
persistent storage and from/to users. Thus, the number of data movements can
be a meaningful predictor of the final system size [5], expressed in COSMIC
Function Point (CFP), the COSMIC measurement unit. More in details, the
sizing process defined by the COSMIC method consists of the three following
phases:

1. The Measurement Strategy phase defines the purpose of the measurement,
the scope (i.e., the set of FURs to measure), the functional users of each
piece of software (i.e., the intended senders/recipients of data to/from the
software to be measured), and the level of granularity of the available
artefacts.
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2. The Mapping Phase is a crucial process, where each FUR is expressed in
the form required by the COSMIC Generic Software Model. This model,
needed to identify the key elements of a FUR to be measured, assumes that
(I) each FUR can be mapped into a unique functional process, meant as a
cohesive and independently executable set of data movements, (II) each
functional process consists of sub-processes, and (III) each sub-process
may be either a data movement or a data manipulation. As an approx-
imation for measurement purposes, data manipulation sub-processes are
not separately measured; the functionality of any data manipulation is
assumed to be accounted for the data movement associated with it. More-
over, to measure data movements, three other concepts have to be identi-
fied: (I) a Triggering Event, i.e., an action of a functional user triggering
one or more functional processes, (II) a Data Group, i.e., a distinct set of
data attributes, where each attribute describes a complementary aspect
of the same object of interest, and (III) a Data Attribute, i.e., the smallest
piece of information, within an identified data group, carrying a meaning
from the perspective of the interested functional user. Data movements
are defined as follows:

• An Entry (E) moves a data group from a functional user across the
boundary into the functional process where it is required.

• An Exit (X) moves a data group from a functional process across the
boundary to the functional user that requires it.

• A Read (R) moves a data group from persistent storage within each
of the functional process that requires it.

• A Write (W) moves a data group lying inside a functional process to
persistent storage.

3. The Measurement Phase identifies and counts the data movements of each
functional process. Each E, X, R or W is counted as 1 COSMIC Function
Point (CFP). Thus, the size of the application within a defined scope is
given by the sum of the sizes of all the functional processes within the
scope.

For more details about the COSMIC method, readers are referred to the
COSMIC Measurement Manual [5].

2.4. COSMIC Approximate sizing methods

As for FPA, also for COSMIC some Approximate sizing methods have been
proposed in the literature (e.g. [36]). In our analysis we focused on three
approximations proposed by the COSMIC Organization in the official COSMIC
method documentation [37], i.e., the Average Functional Process (AFP), the
Fixed Size Classification (FSC), and the Equal Size Bands (ESB). They are
detailed in the following.
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2.4.1. Average Functional Process

Average Functional Process (AFP) is the first approximation suggested by
the COSMIC community to obtain early size estimations of the software. It is
a data-driven approach, requiring information from a set of previous projects
measured with the full COSMIC method to speed up the measurement of a
new project, whose actual requirements are known only in terms of functional
processes, but not of data movements. It consists of two macro steps, as follows:

1. Sampling and calculation of the size of an average functional process
(a) Identify a sample of requirements of past projects, already measured

with the standard COSMIC method, whose characteristics are sim-
ilar to the actual requirements of the software to be approximately
measured.

(b) Identify the functional processes of these sample requirements, and
determine their average size in CFP (e.g., average size = 8 CFPs. 8
is then the scaling factor for this approach).

2. Approximation using the calculated average of the sample
(a) Identify and count all the functional processes of the actual require-

ments of the software to be measured (e.g., = 40 functional pro-
cesses).

(b) The approximate functional size of the software to be measured is
approximated by number of functional processes x scaling factor (e.g.,
40 × 8 = 320 CFPs).

Let us remark that this approximate sizing method requires that some pre-
vious projects have been fully measured using the standard COSMIC method
within the same company and the same domain.

2.4.2. Fixed Size Classification

The AFP approximation assumes that all the functional processes have the
same size, equal to the average size of the functional processes of similar require-
ments in past projects. The Fixed Size Classification (FSC) approximation is an
evolution of AFP, letting the measurer to subjectively specify a size class (e.g.,
Small, Medium, or Large) for each functional process to be measured. Since
a corresponding size in CFP, or scaling factor, is assigned to size class, like in
Table 2 [37], it is very fast to derive an approximate total size of the software
system to be measured. As an example, using Table 2, once a functional process
has been classified by the Measurer as “Small”, it is assigned a scaling factor of
5, so that its size is 5 CFP.

The COSMIC manual suggests that, to support the Measurer in making a
conscious choice of size, the step between the classes should be taken to be fairly
wide, like 5 CFP [37]. When well calibrated, this approach should give a more
accurate functional size than the AFP method [37].

According to the COSMIC manual, the FSC approach has been extensively
and successfully used by a large business organization in the Netherlands, but
no public information on the accuracy of this approximation is available in the
literature [37].
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Table 2: List of Size Classes of Functional Processes, with corresponding Size in CFP. If
necessary, the table may be extended with one or more additional sizes, such as very large of
20 CFPs, and so on [37].

Functional Process Classification Size in CFP

Small 5
Medium 10
Large 15

2.4.3. Equal Size Bands

The Equal Size Bands (ESB) approximation can be seen as an improvement
of FSC when sufficient size information from past project is available for an
accurate calibration relevant to the new measurement. Like the FSC approach,
also ESB classifies each functional process into one of a small number of size
classes, or bands. The difference is that ESB choses the reference sizes of the
bands in a calibration process based on past data, so that the total size of all the
functional processes in each band is the same. As an example, if we define to
have three bands, then the total size of all the functional processes in each band
will be the 33% of the total size of the software being measured. Thus, also ESB
is a data-driven method, requiring a set of previous projects developed by the
same company in the same domain and measured with the standard COSMIC
method.

According to the COSMIC manual, the ESB approach can lead to more
accurate result than FSC, if sufficient size data is available for an accurate
calibration [37]. Vogelezang and Prins did a deep investigation on this approach,
discussing the distribution of functional processes over different classes with
calibration using measurements on 37 business applications, each of total size
greater than 100 CFP [15].

2.5. Further Related Work

In the literature, several studies have investigated the effectiveness of FSM
methods to predict software development effort. The results in general show
that FSM are correlated with effort, thus being effective predictors of the de-
velopment effort. Another common result is that usually COSMIC can provide
better estimates than FPA (see e.g., [8][38][39][40][41][42][43][44]).

As for approximate FSM methods, many proposals have been done in the
past. A comprehensive review of the literature was done by Morrow et al.
[20], where the authors also empirically assessed the effectiveness of two sim-
plifications of the NESMA variant of FPA, in terms of correlation with the full
NESMA method. In general, only very few studies have empirically investigated
the use of approximate size measures for the managerial task to estimate the
development effort of a software system. Popovic et al. [45], investigated the
effectiveness of several FSM to predict effort estimation on 30 software projects,
including also an approximation of NESMA. However, the main aim of this pa-
per was to show the great potential of using functional measurement for effort
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prediction, able to achieve an estimate accuracy close or even better than ac-
curacies found in the practice [45]. Ohiwa et al. [46] used a data set containing
data from 36 projects collected by the Economic Research Association from 2008
through 2012, finding that there was a good correlation between development
effort and size estimates provided by a NESMA approximation. On the other
hand, most of the papers dealing with variants of FSM methods focus on eval-
uating the accuracy of these measurements, by comparing these sizes with the
ones calculated using the original methods [47]. Furthermore, in the majority
of cases the accuracy of the proposed approaches has been documented mainly
by the researchers who defined the approximate methods. For example, van
Heeringen et al. [14] verified the accuracy of Estimated NESMA and Indicative
NESMA methods and the results of their analysis revealed that the NESMA
estimated approach and the COSMIC Equal Size Bands approach provided ac-
curacy results that are comparable with those achieved fully applying the same
FSM method [14].

Other two studies assessed functional size estimation techniques like FP
Prognosis [48] and Early & Quick Function Point method [49]. As a conse-
quence, there is a lack of independent evaluations of approximate FP estima-
tion methods. Lavazza and Liu performed an empirical study to compare the
accuracy of some approximate estimation methods [47] showing that only a few
of them (i.e., NESMA indicative, Early & Quick Function Points and ISBSG
average weights) provide size estimations characterized by a 10% sizing errors
on average.

Regarding the use of approximate COSMIC methods, to the best of our
knowledge there is only one study investigating their accuracy in correlation
with estimating the development effort [36], where the authors empirically val-
idated the AFP approximation on the same dataset we use herein, revealing
that AFP led to significantly worse effort estimates than those obtained by
using the COSMIC method [36]. Other studies have evaluated the effective-
ness of COSMIC approximations for estimating the COSMIC functional size of
an application versus measuring it [50, 51]. As an example, recently Lavazza
and Morasca have assessed the Average Functional Process and the Equal Size
Bands methods as well as two new approaches for defining bands in the Fixed
Size Classification method [50]. The methods were evaluated on a set of ap-
plications previously measured according to the COSMIC method, so that the
information to apply approximations was available. The results of the performed
analysis show that the method using bands provide good estimations and the
level of their accuracy can be obtained based on the number of bands used and
by quantifying the ability to classify each functional process in the correct band.
Differently, for Average Functional Process method the analysis revealed that
its estimation errors are too large to be acceptable [50].

There is also a line of work investigating how to obtain model-based early
and rapid estimation of COSMIC functional size as the work by del Bianco et
al. [52] and by De Vito and Ferrucci [16].

As a consequence, the present paper is the first study empirically assessing
the effectiveness of a number of official FSM approximations in predicting the
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software development effort.

3. Empirical Study Design

In this section we describe the design of the empirical study. We present the
dataset and the estimation technique used. Then, we formalize the null hypothe-
ses for our research questions, followed by details on the validation method and
evaluation criteria, and describe the main threats to the validity of the study.

3.1. Dataset

The data used in our study was obtained from an Italian medium-sized soft-
ware company, which mainly develops enterprise information systems for local
and central government (e.g., health organizations, research centres, industries,
and other public institutions). In particular, this software company is special-
ized in the design, development, and management of solutions for Web portals,
enterprise Intranet/Extranet applications (such as Content Management Sys-
tems, e-commerce, work-flow managers, etc.), and Geographical Information
Systems. It has about fifty employees, it is certified ISO 9001, and it is also
a certified partner of Microsoft, Oracle, and ESRI. From this company, we ob-
tained information on 25 Web applications they developed in the past years,
such as e-government, e- banking, Web portals, and Intranet applications. The
technologies exploited for the development were SUN J2EE or Microsoft .NET
technologies. Oracle was the most commonly adopted DBMS, but also SQL
Server, Access and MySQL were employed in some of these projects.

In order to collect the data we needed, time sheets were used to keep track
of the Web application development effort. In particular, for each project and
every day, each team member annotated the information about his/her devel-
opment effort, and weekly each project manager stored the sum of the efforts
for the team. Furthermore, we defined a template to be filled in by the project
managers, to obtain from the company all the significant information needed to
calculate the values of the size measure in terms of FPA, COSMIC and their ap-
proximations. To avoid misunderstandings, the project managers were trained
on the use of the questionnaires. To cross-check the provided data, one of the re-
searchers involved in this experimentation analysed the filled templates and the
software documentation of the involved projects. The same researcher calculated
the values of the size measure in terms COSMIC method and its approximations.
With regard to the calculation of the size in terms of FPA, the project man-
agers of the software company are highly skilled on this method, having always
applied this size to measure their applications. One of the researchers involved
in this experimentation calculated the approximate FPA sizes, using documen-
tation and information provided by the project managers. In the threats to
validity section further considerations about the collection of the data will be
done.

In Table 3 we report some summary statistics for the 25 software systems we
used in the experiments, in terms of development effort and the seven considered
size measures.
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Table 3: Descriptive statistics of variables

Variable Content Min Max Mean Median St.Dev.

EFF
Total actual development effort,
in person-hours

782 4537 2577 2686 988.136

FP
Size in Function Points by applying the standard
FPA method

110 973 399.96 336 216.366

HLFPA
Size in Function Points by applying the High Level FPA
approximate sizing method

123 1043 442.2 360 235.649

IFPA
Size in Function Points by applying the Indicative FPA
approximate sizing method

105 1610 311.2 190 345.499

CFP
Size in COSMIC by applying the standard
COSMIC method

163 1090 602.04 611 268.473

CFPafp
Size in COSMIC by applying the AFP approximate
sizing method

183 1417 610.8 545 299.676

CFPfsc
Size in COSMIC by applying the Fixed Size
Classification approximate sizing method

180 1335 650.6 640 295.481

CFPesb
Size in COSMIC by applying the Equal Size Bands
approximate sizing method

133 942.5 518.5 513 232.041

3.2. Estimation Technique

To build the effort prediction models based on the considered size measures,
we employed as an estimation technique the Simple Linear Regression (SLR),
which is a model-based approach widely and successfully employed in the indus-
trial context and in several research work to estimate development effort (see
e.g., [8][38][43][53][54])3.

SLR allows us to build models explaining the relationship between the inde-
pendent variable, i.e. the employed size measure, and the dependent variable,
i.e. the development effort. Thus, SLR allows us to obtain models of this type:

EFF = a+ b× Size (1)

where EFF is the dependent variable, Size is the independent variable (e.g.,
CFP), b is the coefficient that represents the amount the variable EFF changes
when the variable Size changes 1 unit, and a is the intercept.

Once such a model is obtained from a dataset of past projects, given a new
software project for which an effort estimation is required, the manager has to
size it using the same unit of measure of the model, and to use this value in the
regression equation to get the effort prediction.

Note that when variables were highly skewed they were transformed in order
to comply with the assumptions underlying linear regression [68] (i.e., linearity
between dependent and independent variable, normality and statistical inde-
pendence of error terms, constant variance of error terms). In particular, we
applied a log-transformation (i.e., natural log [69]), thus introducing a variable
Log(X) if the original variable was X.

3We did not use other estimation techniques, such as machine learners [55, 56], search-
based approaches [57, 58, 59, 60, 61, 62, 63, 64] and their combination [65, 66, 67], since this
work aims at comparing FSM methods rather than estimation techniques.
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To evaluate the goodness of fit of a regression model, several indicators
can be used. Among them, we considered the square of the linear correlation
coefficient, R2, shows the amount of the variance of the dependent variable
explained by the model related to the independent variable.

The coefficient of determination normally ranges from 0 to 1 and the higher
the value the higher the goodness of fit of the model. Other useful indicators we
used, are the F value and the corresponding p-value (denoted by SignF ), whose
high and low values, respectively, denote a high degree of confidence for the
prediction (i.e., there is a relationship between our independent and dependent
variables) [68] [70]. A practical interpretation is that if R2 is big, i.e., near
1 (meaning that a linear model fits the data well) then the corresponding F
statistic should be large, meaning that we should have a strong evidence that
the coefficient of the independent variable is non-zero [71]. The further the F
value is from 1 the better it is. However, how much larger the F-value should
be depends on both the number of predictors (in our case 1) and the number
of data points (in our case 25). Generally, when the number of data points is
large, an F-statistic that is only a little bit larger than 1 is already sufficient
[70] [72].

We also verified the stability of each SLR model, by analysing the presence
of influential data points (i.e., extreme values which might unduly influence
the models obtained from the regression analysis). As suggested in [27], we
further analysed the residuals plot and used Cook’s distance to identify possible
influential observations. In particular, the observations in the training set with
a Cook’s distance higher than 4/n (where n represents the total number of
observations in the training set) were removed to test the model stability, by
observing the effect of their removal on the model. If the model coefficients
remained stable and the adjusted R2 improved, the highly influential projects
were retained in the data analysis. This is a common procedure applied in
previous work (e.g., [42] [66] [73]).

3.3. Baselines

Regarding the baselines, we used two constant models, as done in several
previous studies (e.g., [24, 66, 74, 75, 76, 77]). The first constant model, Mean-
EFF, considers the mean of the previous 24 project efforts (namely, EFFo1 , ...,
EFFoi−1

, EFFoi+1
, ..., EFFo25) as the predicted effort, for each observation oi

in the dataset (for i = 1, ...25), while the second model, MedianEFF, exploits
the median of the previous 24 project efforts.

This was done because, as suggested by Mendes and Kitchenham [69] [27],
if an estimation method does not outperform the results achieved by using very
naive benchmarks, such MeanEFF and MedianEFF, it cannot be transferred
to industry. Indeed there would be no value for a company in dealing with
sophisticated estimation methods to predict development effort compared to
simply using the average effort of its own past projects as the estimated effort
for a new project.

All the models employed in our study are summarized in Table 4.
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Table 4: Estimation Models Compared in Our Empirical Study.

Model Name Brief Description Equation

MFP Model based on the size computed with FPA EFF = a + b × FP
MHLFPA Model based on the size computed with HLFPA EFF = a + b × HLFPA
MIFPA Model based on the size computed with IFPA EFF = a + b × IFPA

MCFP Model based on the size computed with COSMIC EFF = a + b × CFP
MCFPafp Model based on the size computed with AFP EFF = a + b × CFPafp
MCFPfsc Model based on the size computed with FSC EFF = a + b × CFPfsc
MCFPesb Model based on the size computed with ESB EFF = a + b × CFPesb

MeanEFF Model based on mean of effort of previous projects EFF = Mean{EFFo1 , ..., EFFo25}
MedianEFF Model based on median of effort of previous projects EFF = Median{EFFo1 , ..., EFFo25}

3.4. Null Hypotheses

The first two research questions have been defined to perform a sanity check,
by verifying that the models based on the approximate sizes provide significantly
better effort estimations than the simple baselines described in Section 3.3. To
this end, we formulated the following null hypotheses for each considered models
X∈{MHLFPA, MIFPA, MCFPafp, MCFPesb, MCFPfsc}:

Hn1X : The effort predictions obtained with X are not statistically significantly
better than those achieved with MeanEffort.

Hn2X : The effort predictions obtained with X are not statistically significantly
better than those achieved with MedianEffort.

The alternative hypotheses are:

Ha1X : The effort predictions obtained with X are statistically significantly
better than those achieved with MeanEffort.

Ha2X : The effort predictions obtained with X are statistically significantly
better than those achieved with MedianEffort.

Thus, given a model X, we can positively answer to RQ1 (RQ2, respectively)
if can reject Hn1X and Hn2X for X.

The third and fourth research questions have been defined to verify the
effectiveness of the approximations with respect to their standard methods.
Thus, we formulated the following null hypotheses:

Hn3Y : There is not statistically significant difference between the effort pre-
dictions obtained with MFP and Y.

Hn4Z : There is not statistically significant difference between the effort pre-
dictions obtained with MCFP and Z.

where Y∈{MHLFPA, MIFPA} and Z∈{MCFPafp, MCFPfsc, MCFPesb}
The alternative hypotheses are:

Ha3Y : There is statistically significant difference between the effort predictions
obtained with MFP and Y.
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Ha4Z : There is statistically significant difference between the effort predictions
obtained with MCFP and Z.

Thus, we can positively answer to RQ3 (RQ4, respectively) when:

• we cannot reject Hn3Y (Hn4Z , respectively).

• we can reject Hn3Y (Hn4Z , respectively) and the errors in the predictions
obtained using Y (Z) are less than the ones achieved with MFP (MCFP,
respectively).

We cannot positively answer the third (and forth) research question if the model
based on a FPA (COSMIC) approximation provides significantly worse effort
estimations than the model based on standard FPA (COSMIC).

3.5. Validation Method and Evaluation Criteria

To verify whether the values obtained with the prediction models are use-
ful estimates of the actual development effort, we carried out a cross validation,
which means that the original dataset was divided into different subsets of train-
ing and validation sets. Training sets are used to build SLR estimation models,
and the corresponding validation sets are used to validate these models. In
particular, we applied a leave-one-out cross validation, which means that the
original data set of 25 observations was divided into 25 different training sets
(containing 24 data points each) and 25 different validation sets (containing one
data point each).

For each validation set i (for i=1...25), we calculated the absolute residual
as follow:

AbsoluteResidual(AR)oi = |EFFoi − Predictedoi | (2)

where EFFoi is the actual development effort of the observation oi in the vali-
dation set i, and Predictedoi is the predicted effort for oi, using the estimation
model built on the training set i.

As for the evaluation criteria, we employed the Mean of the Absolute Resid-
uals (MAR) obtained for the 25 observations in the dataset, as done in many
similar works (e.g., [24][25][26]).

To answer our research questions, we tested the null hypotheses by apply-
ing the T-test on the distributions of the obtained absolute residuals and the
Wilcoxon signed rank test when absolute residuals were not normally distributed
[78]. To verify the normality of distributions, we used the Shapiro Wilk Test
[79], by considering as a null hypothesis the normality of error terms. So, to test
Hn1X (Hn2X , respectively) we applied the statistical test on the distribution
of the 25 absolute residuals obtained with X∈{MCFPafp, MCFPesb, MCFPfsc,
MHLFPA, MIFPA} and the distribution of the 25 absolute residuals achieved
with MeanEFF (MedianEFF, respectively). Similarly, to test Hn3Y and Hn4Z
we applied the Wilcoxon test.
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Table 5: Effect size classification

Effect size A12 statistics

small over 0.56
medium over 0.64
large over 0.71

For all the statistical tests performed in our analysis, we decided to accept a
probability of 5% of committing a Type-I-Error, as customary in Software En-
gineering empirical studies [80]. Furthermore, since we formulated different hull
hypotheses for answering each of the research questions (and thus performed
multiple statistical tests, e.g., four in case of RQ1), we have applied a Bon-
ferroni correction in order to classify the p-values as significant (i.e., to reject
the null hypotheses and positively answer the research question) [78, 81]. As
a consequence, if n is the number of tests performed, the correction applied is:
αcor = 0.05

n (e.g., 0.05
4 = 0.0125 in case of RQ4).

To have also an indication of the practical/managerial significance of the
results, we verified the effect size. Effect size is a simple way of quantifying the
standardized difference between two groups. In our analysis we considered the
Vargha and Delaney’s Â12 statistics as non-parametric effect size measure [82].
According to Vargha and Delaney, a difference between two populations can be
classified in small, medium, and large as in Table 5; an effect size lower than
or equal to 0.56 can be considered negligible. Since we are interested in any
improvement in predictive performance, no transformation of the Â12 is needed
[26, 58, 83, 84].

3.6. Threats to Validity

The way the measurement of the functional size is accomplished represents a
crucial task in studies similar to ours. Indeed, the collection of the information
to calculate FPA (and its approximations), COSMIC (and its approximations),
and Effort can bias the construct validity.

As mentioned in Section 3.1, the software company involved in our study
has always applied FPA to measure its applications. So, we obtained all the
information for the single BFCs (i.e., ILF, EIF, EI, EO, and EQ) of the FPA
analysis and computed HLFPA and IFPA sizes as explained in Section 2.

Concerning the use of COSMIC approximations, a possible threat can be
related to the way we applied the AFP. Indeed, for each step of the leave-out
cross validation, we took into account all the requirements of the projects in
the training set, rather than choosing only those more similar to the ones to be
measured. However, in this way we did not introduce subjectivity issues due
to an arbitrary selection. ESB and FSC measure the functional processes by
classifying them in three classes, i.e., small, medium, or large. Thus, a possible
threat can be related to this classification. In our case, we have verified that we
misclassified slightly more than 10% of the functional processes in the applica-
tion of ESB and FSC. Furthermore, we are aware that some measurements were
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not performed as part of the company projects but for the research purpose by
the authors.

We only consider those functional size measurement methods familiar to
either the project managers of the company and the researchers involved in this
study. Other FSM methods, such as NESMA, can be taken into account in
future work in order to consolidate the results achieved here.

Another possible threat regards the subjectivity introduced when perform-
ing the measurement. As described in Section 3.1, a single researcher involved
in this experimentation calculated the values of size measure in terms of COS-
MIC method and its approximations as well as the values of size measure in
terms of FPA approximations (using documentation and information provided
by the project managers). Thus, his level of expertise may have influenced the
comparisons between approximate methods, particularly for the approximate
COSMIC methods. Since the project managers of the company involved in
our study did not have previous experience for these kinds of measurement we
could not involve them in this task. Assessing the impact of subjectivity in
measurement could be subject of future investigation. To this end a number of
developers/managers can be involved to perform the measurement task, with
the aim of analysing the variation of their size estimations on a given project
and of quantifying the impact of subjectivity on comparing different of FSM
methods (and their approximations).

Regarding the collection of the effort data, each project team member an-
notated the information about his/her development effort every day, while each
project manager stored the sum of the efforts for the team weekly. Thus, pos-
sible threats to effort data collection have been mitigated by the procedure in
place.

With regard to conclusion validity, we verified all the required assumptions
and carefully applied the linear regression analysis to built the estimation models
and the statistical tests to analyze differences in the distributions of errors. We
are aware that the number of observations in our dataset is not so high and it
could represent another threat to conclusion validity. Nevertheless, we want to
point out that some researchers have proposed: “A rule of thumb in regression
analysis is that 5 to 10 observations are required for every variable in the model”
[53]. On the other hand, the fact we did not reject some null hypothesis could
be the result of the low power of the tests as the number of observations is small.
However, as widely recognized in the empirical research field, replications, using
also larger datasets, should be performed to confirm results of a study.

To mitigate possible threats to internal validity, we did not applied particular
selections of the Web applications from the software company. With the aim
of dealing with the reliability of the data and lack of standardization, the same
questionnaires were used to collect the information to calculate the sizes in
terms of the considered measures and the development efforts for all the Web
applications in our dataset. Furthermore, we instructed the project managers
on how to fill them in and correctly report the information required.

With regard to external validity, we think that the type of analyzed Web
applications did not bias validity of the achieved results. Indeed, taking into
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account their functionality and complexity the Web applications considered in
our study can be seen as representative sample. However, it is recognized that
the results obtained for a given software company might not hold in others since
each company might be characterized by some specific project and human fac-
tors, such as development process, developer experience, application domain,
tools, technologies used, time, and budget constraints [71]. We want also to
observe that the historical data of a given company and the way it was col-
lected can impact the variability of the effort data as well as of the calculated
approximated functional sizes, which can differ from those characterizing other
companies. Thus, the application of measurement methods and effort collec-
tion of the specific company can influence the relationships between size and
effort. Another threat could be related to the fact that our results cannot be
generalized to those datasets collecting data from multiple different companies
(i.e., cross-company datasets) [85]. To mitigate this possible threat we advo-
cate replications of our study using data collected by other (single- and cross)-
companies.

4. Empirical Study Results

In this section we present the results of the empirical analysis we carried out
to answer our research questions.

4.1. RQ1: FPA approximate sizing methods vs. Baselines

The first results are about the comparison of the effort predictions obtained
by the SLR models built on the approximations of FPA (MHLFPA and MIFPA,
respectively) with those achieved by the constant models MeanEFF and Medi-
anEFF.

We started by verifying the assumptions underlying SLR, namely the exis-
tence of a linear relationship between the independent variable and the depen-
dent variable (linearity), the constant variance of the error terms for all the
values of the independent variable (homoscedasticity), the normal distribution
of the error terms (normality), and the statistical independence of the errors,
in particular, no correlation between consecutive errors (independence).

All the tests performed (intended as statistically significant at 95% confi-
dence level) and analysis are reported in the Appendix. Then, as designed (see
Section 3.2), we verified the presence of influential observations by using the
residuals plot and Cook’s distance. In particular, the observations in the train-
ing set with a Cook’s distance higher than 4/n (where n represents the total
number of observations in the training set) were removed to test the model
stability, by observing the effect of their removal on the model. If the model
coefficients remained stable and the adjusted R2 improved, the highly influential
projects were retained in the data analysis. From the results of this analysis,
no observations were removed from the original data set.

The models obtained are reported in Table 6, together with the values of
the indicators used to assess the model. We can observe that MHLFPA and
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Table 6: Results of SLR for RQ1 and RQ3

Model Equation R2 F Sign. F

MHLFPA EFF = 74.9×HLFPA0.58 0.501 23.1 <0.001
MIFPA EFF = 539.99×IFPA0.272 0.17 4.701 <0.001

MFP EFF = 87.42×FP0.56 0.472 20.55 <0.001

Table 7: Results in terms of MAR for RQ1 and RQ3

MHLFPA MIFPA MeanEFF MedianEFF MFP

561 760 843 872 580

MHLFPA MIFPA MeanEFF MedianEFF MFP
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Figure 1: Boxplots of absolute residuals for RQ1 and RQ3.

MIFPA are characterized by a Sign F value lower than 0.05, that is, the models
are significant. However, the R2 and F values are quite low.

To compare FPA approximations and the constant models MeanEFF and
MedianEFF, we performed a leave-one-out cross-validation as described in Sec-
tion 3.5, whose results, in terms of MAR, are reported in Table 7. We can
observe that MHLFPA provided good results. Indeed, the obtained MAR is
much lower than the one achieved by the baselines. The scenario is different for
MIFPA, as it provides only marginally better results than the baselines.

These trends are graphically confirmed by the boxplots of absolute residuals,
shown in Figure 1. Indeed, on one hand, the boxplot of MHLFPA is much
smaller, has a median closer to zero, and the box length and tails are shorter than
the ones of the baselines. On the other hand, the box length and tails of boxplot
for MIFPA are quite similar to the ones of the baselines, thus confirming that
the difference in terms of effort predictions between MIFPA and the baselines
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Table 8: Wilcoxon test p-values (and effect size between brackets) for RQ1 and RQ3

MeanEFF MedianEFF MFP

MHLFPA vs
0.009 0.004 0.325
(small) (small) (negligible)

MIFPA vs
0.474 0.339 0.101
(negligible) (negligible) (negligible)

is small.
Also the statistical significance tests of the distribution of absolute residu-

als confirm the above findings. In particular, the tests reveal that Hn1X and
Hn2X can be rejected for X=MHLFPA, i.e., the residuals of HLFPA are sig-
nificantly smaller than MeanEFF and MedianEFF (i.e., p-values are less than
0.05/4=0.013), however with a small effect size (see Table 8). Differently, Hn1X
and Hn2X cannot be rejected for X=MIFPA, since the Wilcoxon test p-values
are greater than 0.013 (see Table 8). The effect size in this case is negligible.
Concluding, we cannot positively answer our first research question for both
FPA based approximations:

RQ1: Only HLFPA approximate sizing approach provided good early size
estimations, for effort prediction.

4.1.1. Discussion

From these findings, the main conclusion is that HLFPA is able to provide
significantly better predictions than the models used as baselines yet with small
effect size, thus it can be used to measure the projects delivered by the company
in our investigation.

On the other hand, IFPA led to poor results on our dataset, with errors in
the effort predictions that are comparable to those of the basic constant mod-
els. Thus, its adoption is not advisable for the company in our investigation. A
possible explanation for these poor results might be found in the components of
a software system that are measured by the IFPA approximate sizing method.
Indeed, this approximation requires only to count the Data BFC (i.e., ILF and
EIF), with a strong emphasis on the first one (i.e. ILFs managed by the applica-
tion), that are multiplied by a factor of 35. In our dataset, seven projects were
providing forms and reports only for external data (i.e., EIF), without having
any local database or file. For these applications, the estimations provided us-
ing the Indicative FPA approximate sizing method were really unsatisfactory,
with an error of the predicted effort over the actual one ranging from 20% to
77% (avg. 44%). If we remove these seven projects without ILF, the results are
slightly better, but still there is no statistically significant difference between
Indicative FPA and the constant models.

From this experience, given the type of software projects of our dataset, there
are no practical benefits in using the Indicative FPA sizing method, not even

21



Table 9: Results of SLR for RQ2 and RQ4

Model Equation R2 F Sign. F

MCFPafp EFF = 771.798 + 2.955×CFPafp 0.80 93.96 <0.001
MCFPfsc EFF = 583.796+ 3.064×CFPfsc 0.839 120.1 <0.001
MCFPesb EFF = 22.8×CFPesb0.76 0.852 132.4 <0.001

MCFP EFF = 512.43 + 3.429×CFP 0.87 151.3 <0.001

Table 10: Results in terms of MAR for RQ2 and RQ4

MCFPafp MCFPfsc MCFPesb MeanEFF MedianEFF MCFP

387 336 295 843 872 276

to get a Rough Order of Magnitude, since its results are comparable with the
trivial mean or median of past efforts of the projects developed in the software
company.

4.2. RQ2: COSMIC Approximate sizing methods vs. Baselines

This research question investigates whether the approximate sizing methods
of a more modern functional size, as is COSMIC, are able to outperform the
naive baselines in terms of development effort predictions.

Again, we started by verifying the assumptions underlying SLR: linearity,
homoscedasticity, residual normality, and independence (details are reported in
the Appendix). As result of the analysis, no transformation of the original data
was performed. Furthermore, we verified the presence of influential data points
and no observation was removed.

The regression equations obtained are shown in Table 9 together with the
values of the indicators used to evaluate them. We can observe that the models
obtained using the three approximations of COSMIC, namely MCFPafp, MCF-
Pesb, and MCFPfsc, are characterized by a Sign F-value lower than 0.05, that
is, the models are significant. The values of R2 and F for the models are quite
high. In particular, R2 is greater than 0.8 for all the models.

To compare the prediction accuracy of MCFPafp, MCFPesb, and MCF-
Pfsc against the baselines, we performed a leave-one-out cross-validation, whose
results are reported in Table 10. From these numbers, we can see that the
MAR values obtained with the COSMIC approximate sizing methods are by
far smaller than those achieved with the baselines. This means that the COS-
MIC approximations provide much better development effort predictions than
the constant models. These results are confirmed by the boxplots of absolute
residuals shown in Figure 2. Indeed, the boxplots of MCFPafp, MCFPesb,
and MCFPfsc have a median closer to zero and their box lengths and min-max
ranges are shorter than those of MeanEFF and MedianEFF.

Finally, also the statistical significance tests confirm these finding. Indeed,
the results shown in Table 11 reveal that Hn1X and Hn2X can be rejected
for all the COSMIC approximations, i.e., MCFPafp, MCFPesb, and MCFPfsc
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Figure 2: Boxplots of absolute residuals for RQ2 and RQ4.

Table 11: Wilcoxon test p-values (and effect size between brackets) for RQ2 and RQ4

MeanEFF MedianEFF MCFP

MCFPafp vs
<0.001 <0.001 0.016
(large) (large) (small)

MCFPfsc vs
<0.001 <0.001 0.011
(large) (large) (small)

MCFPesb vs
<0.001 <0.001 0.692
(large) (large) (negligible)

provide significantly smaller absolute residuals than MeanEFF and MedianEFF
(i.e., p-values are less than 0.05/6=0.008) with a larger effect size. Thus, we
can positively answer our second research question:

RQ2: All the COSMIC approximate sizing methods provided good early
size estimations for effort prediction.

4.3. RQ3: FPA Approximations vs. FPA

The third research question aims at comparing the prediction accuracy of
the models based on FPA approximate sizing methods against the standard
FPA method. From the results shown in Table 7, we can note that, surpris-
ingly, the MAR value obtained with MHLFPA is marginally lower than the one
achieved with the standard FPA. Furthermore, the Wilcoxon test revealed that
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the differences in the absolute residuals are not significant (see Table 8), with a
very small effect size (i.e., we cannot reject Hn3MHLFPA).

Thus, we confirm the general findings of previous works (e.g., [14, 19, 20])
investigating the HLFPA method (being focused on its correlation with FPA
rather than with the development effort), with the conclusion that the HLFPA
and standard FPA methods achieve comparable results.

On the other hand, MIFPA provided by far worse effort predictions than the
original method, since its MAR value is about 30% higher. As for the statistical
significance of the distribution of the residuals, we can see that the p-value is
0.101 and the effect size is negligible. Thus, if we consider a 95% confidence
level, we cannot reject the hypothesis Hn3MIFPA of a statistically significant
difference between prediction errors of MIFPA and those of MFP.

The boxplots of absolute residuals shown in Figure 1 confirm these results.
Indeed, even if the medians of MHLFPA and MIFPA boxplots are quite close,
the box length and tails of the MHLFPA boxplot are shorter than those of the
MIFPA boxplot.

Taking into account our study design, from the above analysis we can posi-
tively answer our third research question since there is no statistically significant
difference between effort prediction errors of FPA approximation based models
and FPA based model. Nevertheless, we note that the effort prediction errors
obtained with MIFPA are by far higher than HLFPA. In conclusion:

RQ3: FPA approximate sizing methods are as effective as Function Points,
for effort estimation.

4.4. RQ4: COSMIC Approximate sizing methods vs. COSMIC

The last research question aims at comparing the prediction accuracy of
the models based on COSMIC approximate sizing methods against those of the
original COSMIC method.

From the results reported in Table 10, we can observe that there is a clear
difference among the three approximations, with the AFP method providing
the worse results and the ESB method the best ones. Anyhow, none of these
methods was able to provide a MAR smaller than the standard COSMIC.

More in details, the AFP provided an error about 40% bigger than the origi-
nal method, FSC about 22%, and ESB 7%. This trend is graphically confirmed
by the boxplots of absolute residuals, shown in Figure 2, where the boxplot of
COSMIC has a median closer to zero than boxplots of MCFPafp and MCFPfsc.
As for the comparison between absolute residuals of MCFP and MCFPesb, we
can note that the boxplots are quite similar, even if the tails of the MCFP
boxplot are less skewed.

The results of the statistical significance tests (see Table 11) suggest that
we can reject Hn4MCFPafp and Hn4MCFPfsc because there is a significant
difference for MCFPafp and MCFPfsc (i.e., p-values are less than 0.05/3=0.017)
yet with a small effect size, while Hn4MCFPesb cannot be rejected because no
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significant difference is found for the case of MCFPesb against the standard
method. These results highlight that the use of the standard COSMIC method
can be preferred to its AFP and FSC approximations, but not to the ESB one.
Consequently, we can answer our fourth research question:

RQ4: Size measures obtained using COSMIC approximate sizing methods
are not always as effective as COSMIC, for effort estimation.

4.4.1. Discussion

It is worth noting that the COSMIC approximations present two aspects
deserving attention in their application:

1. AFP and ESB are data-driven, meaning that, to be applied, they require
some projects previously measured with the standard COSMIC method;

2. FSC and ESB require a subjective classification of the size of each func-
tional process.

In our empirical study, the researcher who labelled the processes based on
the project documentation, on average misclassified slightly more than the 10%
of the processes. Measurers with different skills might lead to different rates
of misclassification, with important impacts on the achievable results. Further
investigations on the impact of subjective misclassification should be carried
out.

5. Conclusions

Even if FSM methods, like FPA or COSMIC, are widely adopted in the
software development industry, there are some managerial scenarios where they
cannot be fully applied, due to lack of time and/or project information. Many
FSM approximate sizing methods have been defined in the past to help mea-
surers in these scenarios, requiring less time and information to be applied.

In this paper, we have assessed the use of five official approximate sizing
methods, two for FPA proposed by IFPUG [17] and three for COSMIC pro-
posed by the COSMIC Organization [37]. In particular, we investigated their
effectiveness when used as a predictor of the software development effort, to
the best of our knowledge, the first study of this kind for FSM approximate
sizing methods. To perform our empirical analysis we used a dataset of 25
software systems developed by a single company, comparing the absolute resid-
uals obtained by using the regression models based on the approximate sizes,
against some standard baselines used in literature, and the absolute residuals
of the models based on the measures obtained by using the standard FPA and
COSMIC methods.

The results of the investigation show that the High Level FPA approach
was able to significantly overcome the baselines, and to provide results that are
comparable (and slightly but not significantly better) to the standard method.
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Thus, as found also in previous study [19], the use of this approximation seems
to be highly advisable. On the other hand, the Indicative FPA approach was
not able to beat the baselines, being thus, in our opinion, not advisable to use
for a software company, not even to get a Rough Order of Magnitude of the size
of the system to be developed.

Regarding COSMIC, in the official manual, the three considered approx-
imations are presented as subsequent improvements (i.e., FSC requires more
effort to be applied than AFP, but should provide more accurate sizes, and the
same for ESB over FSC). Our results fully confirm this trend. Indeed, AFP
leads to good effort predictions, which are improved by FSC, and then by ESB.
Nevertheless, AFP and FSC lead to significantly worse effort predictions than
the standard COSMIC method, while ESB provides comparable accuracy. On
the other hand, COSMIC approximate sizing methods have two criticalities: (I)
AFP and ESB require some previous projects measured with the full method
to carry out some calibrations, while (II) FSC and ESB involve a subjective
classification of the size of functional processes, which might impact on the
measurement accuracy.

The experimental results presented herein hold for the company involved in
our study and they should be assessed on further data as soon as it becomes
available. Indeed, replications of a study, in different setting and with larger
datasets, are always required in this field. Thus, as future work, we plan to
collect and analyze data from other companies.

Moreover, we intend to further investigate the approximate sizing methods
proposed in the COSMIC documentation [37]. In particular, we intend to verify
pros and cons of the different approaches not only with respect to the accuracy
of the estimation but also with respect to the information required to apply the
methods and then the time needed to carry out the measurement, as well as to
quantify the impact of misclassifications done by the measurer. In the future,
we also intend to investigate whether the type of applications considered can
influence the obtained estimation models.
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Table A.12: Pearson’s correlation and Spearman’ rho test results to assess Linearity

Effort vs CFP CFPafp CFPesb CFPfsc FP HLFPA ILFPA

Pearson
statistics 0.932 0.896 0.899 0.916 0.782 0.8 0.456
p-value <0.01 <0.01 <0.01 <0.01 <0.01 0.022 <0.01

Spearman
statistics 0.942 0.909 0.912 0.9 0.774 0.79 0.79
p-value <0.01 <0.01 <0.01 <0.01 <0.01 0.092 <0.01

Table A.13: Breush-Pagan test results to assess Homoscedasticity

Effort vs CFP CFPafp CFPesb CFPfsc FP HLFPA ILFPA

statistics 0.109 0.106 0.117 0.48 0.601 1.134 0.626
p-value 0.741 0.745 0.733 0.489 0.438 0.287 0.429

Appendix A. Testing Linear Regression Assumptions

In the following, for each research question, we report on the analysis we
carried out to verify the four linear regression assumptions (i.e., linearity, ho-
moscedasticity, normality, and independence) for the construction of the effort
estimation models used in our study.

Appendix A.1. RQ1

Linearity. Linearity was assessed both graphically, as shown in Figure A.3 (b)
and (c), and by exploiting the Pearson and Spearman’ rho tests [78]. The scat-
ter plot in Figure A.3 (b) shows a positive linear relationship between EFF and
HLFPA, confirmed by the Pearson’s correlation test (statistic=0.8 with p-value
=0.022) and the Spearman’ rho test (statistic=0.79 with p-value =0.092). On
the other hand, as for EFF and IFPA, the Pearson’s correlation test (statis-
tic=0.456 with p-value <0.01) and the Spearman’ rho test (statistic=0.79 with
p-value <0.01) revealed a weak linear correlation.
Homoscedasticity. To verify this assumption, we exploited the scatter plot of
residuals (see Figures A.4(b) and (c)) and the Breush-Pagan test. From Figure
A.4(b) we can observe that the residuals for HLFPA based model fall within
a horizontal band centered on 0 and the assumption (i.e., homoscedasticity
of the error terms as null hypothesis) is confirmed by the Breush-Pagan test,
since the p-value is 0.287 (statistic=1.134). Differently, the residuals of the
IFPA based model are not well distributed within a horizontal band centered
on 0. However, the the Breush-Pagan test suggests that the assumptions can
be considered verified since the p-value is 0.429 (statistic=0.626)
Normality. From the analysis of the Normal Q-Q plot depicted in Figures
A.5(b) and (c), we can note that only some observations are not close to the
straight line and they should get more attention, as potential outliers. However,
the Shapiro test (with normality of error terms as null hypothesis) suggested that
the assumption can be considered as verified for both HLFPA (p-value=0.058,
statistic=0.922) and IFPA (p-value=0.358, statistic=0.957) based models.
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Figure A.3: The scatter plot for EFF and FP (a), EFF and HLFPA (b), and EFF and IFPA
(c) resulting from the SLR

Table A.14: Shapiro-Wilk Test results to assess Normality

Effort vs CFP CFPafp CFPesb CFPfsc FP HLFPA ILFPA

statistics 0.959 0.964 0.885 0.941 0.924 0.922 0.957
p-value 0.389 0.51 0.009 0.159 0.064 0.058 0.358
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Table A.15: Results of linear regression for RQ1

Model Variable Value Std.err t-value p-value

MHLFPA
Log(HLFPA) 0.58 0.121 4.807 < .0.01
Intercept 4.316 0.721 5.983 < .0.01

MIFPA
Log(IFPA) 0.272 0.125 2.168 0.041
Intercept 6.292 0.687 9.159 < .0.01

Independence. The uncorrelation of residuals for consecutive errors has been
verified by a Durbin-Watson statistic. For the residuals obtained with MHLFPA,
the test provided a value not close to 2 (1.187) and p-value (0.011) less than 0.05,
thus, we cannot assume that the residuals are uncorrelated. As for the resid-
uals from MIFPA, the value of the Durbin-Watson statistic can be considered
acceptable (1.538) with a p-value=0.089.

The above results suggest that a transformation of the data is required before
applying linear regression to build an effort estimation model, for both HLFPA
and IFPA. We decided to apply a log transformation as done in previous work
(e.g., [54] [68] [69] [73] [66]). The variables log transformed are denoted as
Log(HLFPA) and Log(IFPA) and some statistics about the models (values of
the intercept and coefficient of variables as well as their standard error) are
shown in Table A.15. We have also reported the results of the performed t-
statistic, i.e., p-values and t-values of the coefficient and the intercept, in order
to evaluate their statistical significance. Let us remember that a p-value less
than 0.05 indicates that we can reject the null hypothesis and the variable is a
significant predictor with a confidence of 95%. As for the t-value, a variable is
significant if the corresponding t-value is greater than 1.5. The obtained models
are summarized in the following:

Log(EFF ) = 0.58× Log(HLFPA) + 4.316 (A.1)

Log(EFF ) = 0.272× Log(IFPA) + 6.292 (A.2)

and when it is transformed back to the original raw data scale we obtain:

EFF = 74.9×HLFPA0.58 (A.3)

EFF = 539.99× IFPA0.272 (A.4)

Note that in Table 6 when discussing the results of the application of the
linear regression we only report the model transformed back to the original raw
scale.

Appendix A.2. RQ2

Linearity. Figure A.6(b) shows the scatter plot obtained by considering
EFF and CFPafp. It shows a positive linear relationship between the involved
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Table A.16: Durbin-Watson statistics results to assess Independence

Effort vs CFP CFPafp CFPesb CFPfsc FP HLFPA ILFPA

statistics 1.543 1.779 1.744 1.537 1.233 1.187 1.538
p-value 0.109 0.109 0.244 0.104 0.015 0.011 0.089

variables, which is confirmed by the Pearson’s correlation test (statistic=0.896
with p-value <0.01) [86] and the Spearman’ rho test (statistic=0.909 with p-
value <0.01), as reported in Table A.12. Similarly, the scatter plot in Figure
A.6(b), (c), and (d) shows a positive linear relationship between the involved
variables, i.e., EFF and CFPfsc, and EFF and CFPesb, again confirmed by
Pearson’s correlation and Spearman’ rho tests, reported in Table A.12.
Homoscedasticity. From the scatter plots shown in Figure A.7(b), (c), and
(d), we can observe that the residuals fall within a horizontal band centered on
0 for all the approximations. However, some outliers may be noted, e.g., obser-
vations 7, 12, 16, and 25. Thus, we further investigated the homoscedasticity
assumption, by performing a Breush-Pagan test [87], with the homoscedasticity
of the error terms as null hypothesis. This assumption is verified for all the
models based on COSMIC approximations, since the p-value of the statistic is
greater than 0.05 and therefore the null hypothesis cannot be rejected (see Table
A.13).
Normality. The analysis of Normal Q-Q plot for the COSMIC approximations,
shown in Figure A.8(b), (c), and (d), revealed that only a couple of observations
are not very close to the straight line and they should be investigated. To verify
the normality assumption, we used the Shapiro-Wilk Test [79], by considering
as null hypothesis the normality of error terms. The results highlight that the
assumption can be considered as verified for CFPafp and CFPfsc, since the p-
values of are greater than 0.05 and thus the null hypothesis cannot be rejected,
but this does not holds for CFPesb (see Table A.14).
Independence. The uncorrelation of residuals for consecutive errors has been
verified by a Durbin-Watson statistic, whose results are quite close to 2, with a
p-value greater than 0.05, for all the COSMIC approximations. Thus, we can
assume that the residuals are uncorrelated.

The above results suggest that a transformation of the data is not required for
CFPafp and CFPfsc to apply linear regression. The statistics about the models
(values of the intercept and coefficient of variables as well as their standard
error and the results of the performed t-statistics) are shown in Table A.17. In
particular, the obtained are:

EFF = 771.798 + 2.955× CFPafp (A.5)

EFF = 583.796 + 3.064× CFPfsc (A.6)

Differently, we decided to apply a log transformation to EFF and CFPesb
before building the linear regression model for effort estimation.
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Table A.17: Results of linear regression for RQ2

Model Variable Value Std.err t-value p-value

MCFPafp
CFPafp 2.955 0.305 9.69 < 0.001
Intercept 771.798 206.628 3.735 0.001

MCFPfsc
CFPfsc 3.064 0.28 10.957 < 0.001
Intercept 583.796 199.097 2.932 0.008

MCFPesb
Log(CFPesb) 0.758 0.066 11.508 < 0.001
Intercept 3.127 0.405 7.721 < 0.001

We applied a log transformation and the variables log transformed are de-
noted as Log(CFPesb) and Log(EFF) and the obtained models are:

Log(EFF ) = 0.76× Log(CFPesb) + 3.127 (A.7)

and when it is transformed back to the original raw data scale we obtain:

EFF = 22.8× CFPesb0.76 (A.8)

Again, the statistics about the performed t-statistics are shown in Table A.17.

Appendix A.3. RQ3

Linearity. From the scatter plot in Figure A.3(a) we can observe a positive
linear relationship with the variable EFF, confirmed also by the Pearson’s cor-
relation test (statistic=0.782 with p-value <0.01) and the Spearman’ rho test
(statistic=0.8 with p-value <0.01).
Homoscedasticity. The scatter plot in Figure A.4(a) suggests that the residu-
als obtained with the model based on FP fall within a horizontal band centered
on 0, with some outliers, e.g., observations 7, 20, and 22. The Breush-Pagan
Test, with the homoscedasticity of the error terms as null hypothesis, revealed
that the null hypothesis cannot be rejected, since the p-value (0.44) of the statis-
tic (0.596) is greater than 0.05.
Normality. The Normal Q-Q plot in Figure A.5(a) is characterized by an S-
shaped pattern, revealing that there are either too many or two few large errors
in both directions, i.e., the residuals have an excessive kurtosis [70]. The results
of the Shapiro-Wilk test revealed that the null hypothesis can be rejected since
the p-value (0.022) of the statistic (0.904) is less than 0.05 (i.e., the assumption
is not verified).
Independence. The analysis of the Durbin-Watson statistics to verify the un-
correlation of residuals for consecutive errors highlighted minor cases of positive
serial correlation since a value not close to 2 (1.207) was obtained with a p-value
(0.0128) smaller than 0.05. Thus, the assumption cannot be considered verified.

The above results suggest to perform a transformation of the data before to
apply linear regression to built an effort estimation model based on the Function
Points measure.We applied a log transformation and the variables log trans-
formed are denoted as Log(FP) and Log(EFF) and the obtained model is:

Log(EFF ) = 0.56× Log(FP ) + 4.471 (A.9)
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Table A.18: Results of linear regression for RQ3

Model Variable Value Std.err t-value p-value

MFP
Log(FP) 0.564 0.124 5.533 0.001
Intercept 4.4707 0.731 6.117 < 0.001

and when it is transformed back to the original raw data scale we obtain:

EFF = 87.42× FP 0.56 (A.10)

The other statistics about the models (standar error values of the intercept and
coefficient as well as the results of performed t-statistics ) are shown in Table
A.18.

Appendix A.4. RQ4

Linearity. Figure A.6(a) reports the scatter plot obtained by considering EFF
and CFP. It shows a positive linear relationship between these variables, con-
firmed also by the Pearson’s correlation test (statistic=0.932 with p-value<0.01)
and the Spearman’ rho test (statistic=0.942 with p-value <0.01).
Homoscedasticity. From the scatter plot shown in Figure A.7(a), we can
observe that the residuals fall within a horizontal band centered on 0. However,
some outliers may be noted, e.g., observations 7 and 16. Thus, we further
investigated the homoscedasticity assumption by performing a Breush-Pagan
test, with the homoscedasticity of the error terms as null hypothesis. This
assumption is verified for the CFP, since the p-value (0.741) of the statistic
(0.110) is greater than 0.05 and therefore the null hypothesis cannot be rejected.
Normality. The analysis of Normal Q-Q plot for CFP in Figure A.8(a) revealed
that only some observations were not very close to the straight line and they
should get closer attention (“outliers”). However, the results of the the Shapiro-
Wilk Test revealed that the assumption can be considered to be verified since
the p-value (0.389) of the statistic (0.959) was greater than 0.05 and thus the
null hypothesis cannot be rejected.
Independence. The uncorrelation of residuals for consecutive errors has been
verified by a Durbin-Watson statistic. For CFP the test provided a value ac-
ceptable since quite close to 2 (1.543) and p-value (0.109) greater than 0.05.
Thus, we can assume that the residuals are uncorrelated.

The above results suggest that a transformation of the data is not required
before to apply linear regression to built an effort estimation model based on
the COSMIC measure. The obtained model is:

EFF = 512.43 + 3.429× CFP (A.11)

The other statistics about the models (standar error values of the intercept and
coefficient as well as the results of performed t-statistics ) are shown in Table
A.19.
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Table A.19: Results of linear regression for RQ4

Model Variable Value Std.err t-value p-value

MCFP
CFP 3.429 0.279 12.302 < 0.001
Intercept 512.43 183.137 2.798 0.01
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Figure A.4: The scatter plot for residuals and predicted values for FP (a), HLFPA (b), and
IFPA (c) resulting from the application of SLR
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Figure A.5: The Q-Q plot for residuals for FP (a) HLFPA (b), and IFPA (c) resulting from
the application of SLR
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Figure A.6: The scatter plot for EFF and CFP (a), EFF and CFPafp (b), EFF and CFPfsc
(c), and EFF and CFPesb (d), resulting from the SLR
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Figure A.7: The scatter plot for residuals and predicted values for CFP (a), CFPafp (b),
CFPfsc (c), and CFPesb (d) resulting from the application of SLR
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Figure A.8: The Q-Q plot for residuals for CFP (a) CFPafp (b), CFPfsc (c), and CFPesb (d)
resulting from the application of SLR
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