TERMINAL VELOCITIES FOR A LARGE SAMPLE OF O STARS, B SUPERGIANTS, AND WOLF-RAYET STARS

RAMAN K. PRINJA AND M. J. BARLOW

Department of Physics and Astronomy, University College London

AND

IAN D. HOWARTH¹

Joint Institute for Laboratory Astrophysics, University of Colorado, and National Institute of Standards and Technology
Received 1989 November 13; accepted 1990 April 2

ABSTRACT

We argue that easily measured, reliable estimates of terminal velocities for early-type stars are provided (1) by the central velocity asymptotically approached by narrow absorption features and (2) by the violet limit of zero residual intensity in saturated P Cygni profiles. We use these estimators to determine terminal velocities, v_{∞} , for 181 O stars, 70 early B supergiants, and 35 Wolf-Rayet stars. For OB stars our values are typically 15%-20% smaller than the extreme violet edge velocities, $v_{\rm edge}$, while for WR stars $v_{\infty} = 0.76v_{\rm edge}$ on average. We give new mass-loss rates for WR stars which are thermal radio emitters, taking into account our new terminal velocities and recent revisions to estimates of distances and to the mean nuclear mass per electron. We examine the relationships between v_{∞} , the surface escape velocities, and effective temperatures.

Subject headings: stars: early-type — stars: winds — stars: Wolf-Rayet

I. INTRODUCTION

The terminal velocity of a stellar wind, v_{∞} , is defined as the velocity of outflowing matter at large distances from the star, where it is no longer experiencing significant acceleration but is not yet interacting significantly with the interstellar medium. Reliable estimates of v_{∞} are needed for several reasons. The theory of radiation pressure—driven winds makes important predictions concerning the relationship between the terminal velocity and the photospheric escape velocity (Abbott 1978). Terminal velocities are needed for the determination of massloss rates, \dot{M} , derived, for example, from modeling UV resonance line profiles (where $\dot{M} \propto v_{\infty}^2$) or from radio measurements of the free-free radiation from the winds ($\dot{M} \propto v_{\infty}$). Knowledge of wind terminal velocities is also needed for the application of theories for the interaction between stellar winds and the interstellar medium.

Since the time of the first large-scale ultraviolet spectroscopic survey of the mass-loss characteristics of luminous OB stars (Snow and Morton 1976), the terminal velocity of a stellar wind has normally been observationally defined as the modulus of the largest negative velocity seen in absorption in the P Cygni profiles of UV resonance lines. Examples of this blue absorption edge velocity are shown in Figure 1. (We use $v_{\rm edge}$ to signify the edge velocity observed in a given line and v_{max} to denote the maximum edge velocity in any line.) However, even presuming that the optical depth in the line is sufficient for it to be detectable at large radii, this operational definition will be correct only if there are no significant line broadening mechanisms other than the macroscopic Doppler broadening brought about by the bulk velocity field. The observation of P Cygni profiles showing extended regions of zero residual intensity and blue wings with finite width throw the applicability of this condition into question.

Models of saturated P Cygni profiles using the Sobolev approximation and incorporating velocity laws which increase

¹ 1988-1989 JILA Visiting Fellow.

monotonically with radius (e.g., Castor and Lamers 1979) predict that zero intensity should be reached only at v_{∞} and that the profiles should return sharply to unit continuum intensity (since the forward-scattering halo contains material at all projected line of sight velocities up to, but excluding, the terminal velocity). Observed saturated profiles instead often show an extended absorption region which is black, i.e., has zero residual intensity within observational uncertainties, while a finite absorption region between the shortward edge of the black absorption core (v_{black}) and the velocity v_{edge} at which the profile intersects the continuum level is normal (see Fig. 1). These effects are consistent with nonmonotonic wind velocity laws, as first shown by Hamann (1980, 1981), who parameterized the required local velocity fields by large random microturbulent motions, and by Lucy (1982, 1983), who adopted large numbers of forward-propagating shocks resulting from instabilities in the flows as a specific physical model. The recent numerical modelling of radiatively driven non-laminar stellar winds by Owocki, Castor and Rybicki (1988, hereafter OCR) predicts that reverse shocks in the flow should lead to the highest velocity material being located in rarefaction zones, so that the small amount of material with velocities much higher than the terminal flow speed should cause a residual amount of absorption on the blue edge. An implication of Lucy's model (and of OCR's, but in the context of a more realistic physical structure) is that $v_{\rm max}$ can exceed v_{∞} by an amount related to the amplitude of shocks in the wind, and thus, as discussed by Abbott (1985), $v_{\rm black}$ should provide a better estimate of the wind terminal velocity than does v_{max} .

In addition to these effects, discrete absorption components are commonly found within the absorption troughs of unsaturated P Cygni resonance line profiles seen in the UV spectra of luminous OB stars, occurring at the same velocity in different ions (Morton 1976; Snow 1977; Lamers, Gathier, and Snow 1982; Prinja and Howarth 1986). Howarth and Prinja (1989) have shown that the available data are consistent with the hypothesis that the mechanism responsible for discrete com-

Fig. 1.—Examples of the principal stellar wind velocity measurements made on the UV resonance line profiles of O and WR stars.

ponents operates in all O stars. An example of discrete absorption features in the Si IV spectrum of HD 24912 is shown in Figure 1.

Recent investigations of short-term (hours-days) variability in the UV P Cygni profiles of selected O stars have shown that the velocities of discrete absorption components have a systematic time dependence (Prinja, Howarth, and Henrichs 1987; Prinja 1988; Prinja and Howarth 1988). These studies show that the discrete components first appear as broad optical depth enhancements ($\Delta v \simeq 0.5 v_{\rm max}$) at $\sim 0.5 v_{\rm max}$ and evolve into high-velocity narrow absorption components (NACs; $\Delta v_{\rm NAC} \simeq 0.1 v_{\rm max}$) with central velocities $v_{\rm NAC}$ which asymptotically approach $\sim 0.85 v_{\rm max}$ (Howarth and Prinja 1989). The time scale for this velocity evolution appears to be proportional to the rotation period of the star (Prinja 1988). While more than one set of discrete absorption components may be visible in the spectrum of a star at any one time, a single "snapshot" UV spectrum will usually show a narrow absorption component at $v_{\rm NAC} \sim 0.8 v_{\rm max}$. It has been proposed by Prinja and Howarth (1986), by Henrichs, Kaper, and Zwarthoed (1988), and by Howarth and Prinja (1989) that the final

central velocity of the discrete absorption components, $v_{\rm NAC}(t\to\infty)$, also provides a better indicator of v_{∞} than does $v_{\rm max}$.

In this paper we will argue that measurements of both black absorption edge velocities and of narrow absorption component velocities give consistent estimates of wind terminal velocities and that either diagnostic may be used in isolation in a straightforward manner to estimate v_{∞} . Using high-resolution IUE spectra, we then go on to measure wind terminal velocities for 181 O stars, for 70 B0-B3 supergiants, and for 35 Wolf-Rayet (WR) stars.

II. OBSERVATIONAL INDICATORS OF v_{∞}

The discrete absorption components observed in unsaturated P Cygni profiles represent an optical depth enhancement at some specific velocity in the wind, associated with material having a finite velocity dispersion. We interpret the maximum velocity of these features (the narrow components) as the terminal velocity, with the difference $v_{\rm edge}-v_{\infty}$ arising from a local velocity field, which has been parameterized as "microturbulence" by Hamann (1980, 1981), and by Groenewegen, Lamers, and Pauldrach (1989). A physical interpretation of this microturbulence is offered by the work of Owocki, Castor, and Rybicki (1988), who found that their unstable time-dependent wind models are able to produce discrete absorption components that are stable over all phases of the chosen driving wave period of 4000 s. In the OCR model, the discrete components are due to the superposition of the absorption by density enhancements in the wind that are bounded on their inner edges by strong reverse shocks. Figure 12 of Owocki, Castor, and Rybicki reveals the highest velocity narrow absorption component predicted by their model to be at exactly the wind terminal velocity. The work of Prinja (1988) has shown that the time scale for evolution of discrete absorption components appears to be directly related to the stellar rotation period, with fast rotators like 68 Cyg and ξ Per showing much more rapid velocity evolution of the discrete absorption components than slow rotators like 19 Cep and HD 162978. Eventually, an outward-moving density enhancement will reach a velocity comparable to the terminal flow speed, and the absorption due to it will merge with that produced by other density enhancements farther out in the wind that are asymptotically approaching this velocity.

The narrow components are observed to evolve toward increasing velocity with time. We therefore conclude that $v_{\rm NAC}(t \to \infty)$ provides a good indicator of v_{∞} ; however, estimating this quantity observationally requires frequent (~hourly) IUE spectra taken over a sufficiently extensive period (~days), and such data are only available for a very few stars. It is therefore desirable to find a means to estimate v_{∞} from a single "snapshot" UV spectrum. As shown by Howarth and Prinja (1989), this can be done; since the width of a discrete component decreases as its central velocity increases (i.e., as it evolves into a "narrow component"), an appropriate combination of the two should be approximately constant, and equal to $v_{\text{NAC}}(t \to \infty)$. From the time sequence data of Prinja, Howarth, and Henrichs (1987; ξ Per), Prinja and Howarth (1988; 68 Cyg), and Prinja (1988; 19 Cep, HD 162978), we confirm that the central velocity of the narrow absorption components, $\bar{v}_{\rm NAC}$, plus the half-width at half-maximum depth of the model Doppler profiles fitted to them, HWHM_{NAC}, is approximately constant and equal to $v_{NAC}(t \to \infty)$ during the time that the discrete absorption components are identifiable

in isolated spectra, i.e., when they are present as narrow absorption features. (We define \bar{v}_{NAC} as the mean central velocity of the narrow components measured in all resonance line profiles in a given spectrum, taking into account only the most violet-shifted feature when multiple components are visible in a given line.)

To illustrate this, the central velocities of consecutive sequences of discrete absorption components in the spectra of 68 Cyg and 19 Cep are plotted in Figure 2 as a function of time (data from Prinja and Howarth 1988 and Prinja 1988). The sum \bar{v}_{NAC} + $\bar{H}WHM_{NAC}$ is also shown and is seen to be a good approximation to the velocity asymptotically approached by the narrow components. The time scale for the development and recurrence of the discrete features is a few days for the relatively rapid rotator 68 Cyg ($v_e \sin i = 315 \text{ km s}^{-1}$; Uesugi and Fukuda 1982), whereas for the slow rotator 19 Cep ($v_e \sin i = 40 \text{ km s}^{-1}$) it is much longer.

Also plotted in Figure 2 are the values of $v_{\rm black}$ derived from the saturated C IV profiles. It is clear that $v_{\rm black}$ can be identified with the asymptotic value of $\bar{v}_{\rm NAC}$ measured from long time sequences of data, at least for O stars. In fact, $v_{\rm black}$ is very

FIG. 2.—Central velocities of consecutive sequences of variable opacity enhancements in 68 Cyg (HD 203064) and 19 Cep (HD 209975) as a function of time. The sum $v_{\rm NAC}$ + HWHM $_{\rm NAC}$ (for the most blueshifted component) is also shown (open circles), together with the corresponding values of $v_{\rm black}$ derived from the C IV profiles (filled circles).

FIG. 3.—A comparison of $v_{\rm black}$, estimated from individual C IV profiles of O stars (filled circles) and B supergiants (open circles), and the corresponding sum of $\bar{v}_{\rm NAC}$ + $\overline{\rm HWHM}_{\rm NAC}$. The dashed line shows a one-to-one correspondence.

stable, showing significantly less variation than the sum $v_{\rm NAC}$ + HWHM_{NAC}, as well as being a more straightforward measurement to make. Hence it is potentially the most direct observational indicator of v_{∞} .

Among our total sample, 48 O stars and 13 B supergiants possess both saturated C IV profiles from which $v_{\rm black}$ can be measured and unsaturated Si IV profiles from which narrow component velocities and HWHMs can be measured. Figure 3 is a plot of $v_{\rm black}$ versus $\bar{v}_{\rm NAC} + \overline{\rm HWHM}_{\rm NAC}$ for these stars (cf. Fig. 10 of Howarth and Prinja 1989). The dashed line corresponds to a 1:1 correlation, which the data fit very tightly (the product-moment correlation coefficient is r=0.98).

The results presented here, and in Howarth and Prinja (1989), therefore show that, for OB stars, $v_{\rm black}$ and $\bar{v}_{\rm NAC}$ + $\overline{\rm HWHM}_{\rm NAC}$ measure the same quantity, which we have identified with v_{∞} . Since $v_{\rm black}$ is the simpler measurement and the more stable quantity, we preferentially adopt $v_{\infty} = v_{\rm black}$ for stars showing saturated P Cygni lines; C IV $\lambda 1550$ nearly always provides the most easily measured profile. For stars without saturated profiles, but with readily identifiable narrow absorption components in an individual spectrum, we adopt $v_{\infty} = \bar{v}_{\rm NAC} + \overline{\rm HWHM}_{\rm NAC}$.

The conclusion that, for saturated line profiles, the velocity range for black absorption extends as far as the wind terminal velocity but no further probably has a physical interpretation in that material moving at velocities in excess of the terminal flow speed is extremely rarefied (OCR). Interestingly, therefore, for saturated profiles the terminal velocity is given by the velocity where the black absorption starts to return to the continuum, just as in classical laminar flow Sobolev models.

III. RESULTS

a) O Stars and B Supergiants

Table 1 gives measurements of v_{max} , v_{black} , and \bar{v}_{NAC} for 181 O stars which have a saturated P Cygni profile and/or identi-

TABLE 1
STELLAR WIND VELOCITIES FOR O STARS

	STELLAR WIN	ND VELOCITIES	for O Stars		
HD/BD/ CPD	Spectral Type	v _{max} (km s ⁻¹)	v _{black} (km s ⁻¹)	$ar{v}_{ m NAC} \ ({ m km \ s^{-1}})$	v _∞ (km s ⁻¹)
108	O6: f?pe	2700	1960	1975	1960
1337 5005A	O9 III: (n)	2400	•••	1840	1960
12323	O6.5 V ((f)) ON9 V	3350 1630	•••	2655	2835
12993	O6.5 V	2750	•••	950 2185	1105
13268	O7	2370	•••	1910	2290 2070
13745	O9.7 II ((n))	2400	1905	1920	1905
14434	O5.5 V $n((f))p$	2300	1960	1805	1960
14633	ON8 V	2100	•••	1580	1690
14947	O5 I f+	2550	1885	•••	1885
15137	O9.5 II–III (n)	2000		1530	1640
15558 15570	O5 III (f) O4 I f+	3200	2735	•••	2735
15629	O5 V ((f))	3200 3200	2605	•••	2605
15642	O9.5 III: n	1800	2810 1435	1230	2810
17505	O6.5 V ((f))	2800		2160	1435 2265
19820	O8.5 III ((n))	2650	2255	2000	2255
24912	O7.5 III (n)((f))	2500	2330	2130	2330
30614	O9.5 Ia	1900	1590		1590
34656	O7 II (f)	2500	2155	2020	2155
35619	O7 V	2450	•••	1775	1870
35921	O9.5 III: n	2300	1990	1825	1990
36486	O9.5 II	2300	•••	1850	1995
36879	O8 III ((f)) O7 V (n)	2650 2400	•••	2015	2125
37022	O6-O4 p var	1000	•••	2110 350	2170
37043	O9 III	2450		2070	510 2195
37742	O9.7 Ib	2250	1860	1620	1860
39680	O6 V: [n]pe var	1800		1540	1635
41161	O8 V n	2400	•••	1950	2035
42088	O6.5 V	2215		2020	2155
46056	O8 V n	1500	•••	1200	1305
46150	O5 V ((f))	3150		2780	2925
46485	O4 V ((f)) O7 V n(e)	3100	2910		2910
46966	O8 V	2250 2215	•••	1730	1780
47129	O8 p	2645		1945 2255	2105 2410
47432	O9.7 Ib	2000	1590		1590
47839	O7 V ((f))	2600	•••	1925	2055
48099	O7 V	3300	•••	2840	2925
48279	O8 V	1700		1515	1635
53975 54662	O7.5 V O6.5 V	2025	•••	1705	1795
57060 ^a	O7 Ia: fp var	2750 2135	1425	2265	2395
57061	O9 II	2350	1960	2000	1425 1960
58509	O8 V	1500		1165	1250
60369	O9 III	2300	•••	1725	1825
60848	O8 V	1850		1620	1720
61347 63005	O9 I	2300	1775		1775
	O6 V	2450	2120	2045	2120
66811	O4 I (n)f	2700	2485	2215	2485
69464	O9.7 Ib–II O6.5 Ib (f)	2150 2600	2200	1905	1950
69648	O8.5 I	2700	2300 2090	2035 2055	2300
73882	O8.5 V ((n))	2550		2033	2090 2315
74194	O8.5 Ib (f)	2550	2160		2160
74920	O8	2800	•••	2365	2425
75222	O9.7 Iab	2250	1840		1840
75759 76341	O9 V n O9 I	1400 2250	•••	1170 1450	1245 1500
76968	O9.7 Ib	2400	1815		
90273	O3.7 10 O7	2500	1815	2140	1815 2240
91572	O6 V ((f))	2650	2410	2245	2410
91651	O9 V: n	1900		1600	1705
91824	O7 V ((f))	2700	•••	2240	2270
92554	O9.5 II	1750	1260	1035	1260
92850	O9.5 I	1900	•••	1530	1615
		610			

TABLE 1—Continued

	TAI	BLE 1—Contir	nued		
HD/BD/ CPD	Spectral Type	(km s ⁻¹)	(km s ⁻¹)	v _{NAC} (km s ⁻¹)	$(\operatorname{km}^{v_{\infty}}^{s^{-1}})$
93129A	O3 I f	3950	3150		3150
93130	O6 III (f)	3100	2390	•••	2390
93146	O6.5 V ((f))	2975	•••	2400	2565
93204	O5 V ((f))	3250	2890	2530	2890
93205	O3 V	3630	3370	2845	3370
93206	O9.7 Ib: (n)	2350	1400	1020	1400
93222	O7 III ((f)) O9 III	3050 2200	•••	2550 1685	2645 1755
93250	O3 V ((f))	3350		3000	3160
93403	O5 III (f) var	2750	2615	2205	2615
93521	O9 V `	1075	400	190	400
93843	O5 III (f) var	3150	2730	2405	2730
96715	O4 V ((f))	3430	3000	2845	3000
96917	O8.5 Ib (f)	2550	2000		2000
96946	O6 V:	2770	2465	2300	2465
99546	08	2400	•••	2070	2205
100213 100444	O8.5 V n O9 I	1800 2600	•••	1530 2005	1625 2090
101131	O6 V ((f))	3300		2535	2690
101190	O6 V ((f))	3100		2775	2945
101205	O7 III n((f))	3200		2500	2665
101298	O6 V ((f))	3300	2740		2740
101413	O8 V	2400	2600	2095	2230
101436 105056	O6.5 V ON9.7 Ia e	3100 1325	2600 680	2490	2600 680
105627	O9 II–III	2400		1830	1935
112244	O8.5 Iab (f)	2250	1575		1575
112784	O9.5 III	1650		1180	1275
113904	O9 II	2850	2255	2460	2255
115455	O7.5 III ((f))	2800	2220	2100	2210
116852 123008	O9 III ON9.7 Iab	2600 2300	2230 1250	2035	2230 1250
124314	O6 V (n)((f))	2700		2260	2425
124979	O8.5	3400		2685	2775
135240	O7.5 III ((f))	2700	•••	2083	2390
135591	O7.5 III ((f))	2450		2055	2180
148937	O6.5 f?p	2650		2055	2215
149038	O9.7 Iab	2200	1830	1715	1830
149404	O9 Ia	2850	2450	1205	2450
149757 150136	O9 V O5 III: n(f)	1640 3700	3160	1385	1470 3160
151515	O7 II (f)	2800	2520	2230	2520
151804	O8 Ia f	2250	1445		1445
152218	O9.5 IV (n)	2125		1925	2020
162233	O6 III: (f)p	3200	2730	2345	2730
152246	O9 III–IV ((n))	2200		1610	1670
152247	O9.5 II–III	2800	•••	2100	2235
152248	O7 Ib: (n)(f)p	2700	2420	2040	2420
152249	OC9.5 Iab O9.7 lb–II	2350 2200	2010	1610 1750	2010 1825
152408	O8: Ia fpe	2200	955		955
152424	OC9.7 Ia	2175	1760	1495	1760
152590	O7.5 V	2150	•••	1650	1745
152623	O7 V (n)((f))	3300		2830	3015
152723	O6.5 III (f)	3500	3000	2835	3000
153426	O9 II–III	2350	•••	2065	2160
153919	O6.5 Ia f+	2650	1820	•••	1820
154368 155806	O9.5 Iab	2200 2900	1850	2230	1850 2390
156292	O7.5 V [n]e O9.5 III	2900 1530		1235	1320
156359	O9 III	2175	•••	1800	1885
157857	O6.5 III (f)	3050	2300	2150	2300
159176	O7 V + O7 V	3000		2475	2555
162978	O7.5 II ((f))	2800	2350		2350
163758	O6.5 Ia f	2675	2420		2420
163892	O9 IV ((n))	1575		1285	1370
164492	O7.5 III ((f))	1700	2750	1495	1580
164794	O4 V ((f))	3550	2750	•••	2750
		611			

TABLE 1-Continued

HD/BD/ CPD	Spectral Type	v _{max} (km s ⁻¹)	(km s ⁻¹)	<i>v</i> _{NAC} (km s ⁻¹)	(km s^{-1})
165052	O6.5 V (n)((f))	2800		2205	2205
167263	O9.5 II–III ((n))	2450	•••		2295
167264	O9.7 Iab	2100	•••	2025	2155
167659	O7 II (f)		2440	1735	1795
167771		2730	2440	2135	2440
10///1	O7 III: (n)((f))	2700	2485	2320	2485
167971	O8 Ib (f)p	2275	2185		2185
168075	O6 V ((f))	3200	2845		2845
168076	O4 V ((f))	3550	3305	•••	3305
168941	O9.5 IÌ–ÏII	2250		1665	1755
171589	O7 II (f)	3200	2935		
175754	O8 II ((f))	2700	2060	•••	2935
175876	O6.5 III (n)(f)	2900	2430	2260	2060
186980	O7.5 III ((f))	2550		2260	2430
188001	O7.5 Ia f		1000	2070	2205
188209	O7.5 Ia 1 O9.5 Iab	2330	1980		1980
	09.3 Iab	2100	1650	1470	1650
190429A	O4 I f+	2850	1880	2020	1880
190864	O6.5 III (f)	2800	2440	2250	2440
191423	O9 III: n	1350		750	800
192639	O7 Ib (f)	2700	2180		2180
193322	O9 V: ((n))	1800		 1510	1605
193443	O9 III	2500		2090	
193514	O7 Ib (f)	2750 2750	2100		2250
199579	O6 V ((f))	3300	2190	2055	2190
201345	ON9 V		2715	2275	2715
202124	O9.5 Iab	1550		1280	1380
	O9.3 1ab	2100	1820	•••	1820
203064	O7.5 III: n((f))	2800	2340	2310	2340
206267	O6.5 V ((f))	3225		2535	2680
207198	O9 Ib–IÏ	2450	2090	1905	2090
209481	O9 V:	2250		1815	1925
209975	O9.5 Ib	2400	2010	1835	2010
210809	O9 Iab	2750	2135		2135
210839	O6 I (n)fp	2600	2300	•••	2300
214680	O9 V	1375		1075	
215835	O6 V (n)	3275	2810		1120
217086	O7 V n	3000		•••	2810
		3000	2510	•••	2510
218195	O9 III	2300		1895	1985
218915	O9.5 Iab	2425	1830	1895	1830
235673	O6.5 V	2800	2485		2485
242908	O4 V (n)	3200	•••	2645	2785
303308	O3 V ((f))	3300	3035		3035
+34°1058	O8 ``´´	2315	2025	1860	2025
+60°594	O9 V	1550		1350	1435
+60°2522	O6.5 (n)(f)p	2600	2035		2035
59°2600	O6 V ((f))	3400		 2940	
−59°2603	O7 V ((f))	2050	• • •		3065
-59°2641	O5 V	3200	2870	1695	1795
		3200	28/0	•••	2870

^a See text, § IIIa, for a discussion of the data sources for this star.

fiable narrow components. With only one exception,² these data are reproduced from Howarth and Prinja (1989, where they are respectively denoted as v_* , v_b , and v_c), who give details of data reduction techniques and procedures used for modeling the discrete absorption components, as well as primary sources

for the adopted spectral types. The final column of Table 1 lists the adopted values of v_{∞} , which correspond to $v_{\rm black}$ for stars having saturated lines (C IV in all cases except the five ON stars, for which N V was used), and to $\bar{v}_{\rm NAC} + \overline{\rm HWHM}_{\rm NAC}$, otherwise. The velocities have measurement errors estimated to be $\lesssim 100~{\rm km~s^{-1}}$.

Corresponding results for 70 B supergiant stars having spectral types of B3 or earlier are listed in Table 2. Spectral types were again taken from the primary sources listed by Howarth and Prinja (1989), supplemented where necessary by classifications from Hiltner (1956), Lesh (1968), and Morgan, Code, and Whitford (1956). We restrict ourselves to B0–B3 supergiants in the knowledge that the C IV resonance line still provides a sensitive diagnostic of mass loss for these stars (e.g., Heck et al. 1984; Walborn and Nichols-Bohlin 1987). As for the bulk of the O stars, the values of $v_{\rm edge}$ and $v_{\rm black}$ listed in

 $^{^2}$ The exception is HD 57060 (=UW CMa), for which the value of $v_{\rm black}$ (= v_{∞}) listed in Table 1 is 400 km s $^{-1}$ larger than that listed by Howarth and Prinja (1989). Significant variations in the C IV profile of this system occur during its 4.39 day orbital cycle (Heap 1982). The terminal velocity of 1425 km s $^{-1}$ listed in Table 1 was measured from SWP 3390, which corresponds to phase 0.573 (Stickland 1989), with the O7 Ia:fp primary in front. On SWP 9620 (phase 0.071; secondary in front) $v_{\rm black}=1025$ km s $^{-1}$ was measured from the C IV profile; we consider that this value is likely to reflect the terminal velocity of the secondary star, for which a spectral type of O9.5 V-B0 V has been inferred indirectly (van Genderen et al. 1988). We also note that some of the terminal velocities derived for other spectroscopic binaries in our sample could be affected by orbital motions of up to $\sim 200\,{\rm km\,s^{-1}}$.

TABLE 2 STELLAR WIND VELOCITIES FOR B SUPERGIANTS

		STEELAK WINI	VELOCITIES	OK B SCIENCE			
HD	SWP	Spectral Type	$v_{\rm esc}^{a}$ (km s ⁻¹)	$v_{\text{edge}} (\text{km s}^{-1})$	$(\mathrm{km\ s}^{v_{\mathrm{black}}})$	(km s^{-1})	$\frac{v_{\infty}}{(\text{km s}^{-1})}$
2905	14902	BC0.7 Ia	557	1345	1105		1105
5045	9334	B3 Ia	(400)	565	405		405
13854	2737	B1 Ia	(513)	1105	920		920
14143	9435	B2 Ia	`376 [′]	1005	645		645
14818	9416	B2 Ia	407	820	565		565
24398	6454	B1 Ib	522	1335		1215	1270
29138	10051	B1 Iab	(531)	1300		1140	1315
37128	(PH86) ^b	B0 Ia	700	1980	1910	1725	1910
38771	(PH86)b	B0.5 Ia	580	1800	1525	1425	1525
40111	18943	B1 Ia	663	1560		1340	1465
41117	4374	B2 Ia	399	850	510		510
43384	4656	B3 Iab	442	715	960	600	710 960
47420	9895	B1 Ib	(558)	1250 1245	900	885	900
52382	27404 13564	B1 Ib B3 Ia	(558) 431	845		750	830
53138 58510	21677	B1 Iab	(531)	1375	 930	910	930
77581	22301	B0.5 Iae	(590)	1310	1105		1105
86606	14677	B1 Ib	(558)	615		420	490
		B1 Iab	(531)	1350	 1110	1090	1110
91316	(PH86) ^b 20622	BO Ia	(713)	2095	1635		1635
91943	23760	B0.5 Ib	(558)	1690		1255	1405
91969	9076	BO Ia	(713)	1785	1545		1545
92964	6316	B2.5 Ia	(410)	880	435		435
93840	21525	B2 Ib	(416)	1255		995	1160
94493	21505	B0 Iab	(702)	1545	•••	1345	1495
94909	14810	B0 Ia	(713)	1250	1050		1050
96248	7702	BC1.5 Iab	(440)	880	675	•••	675
97522	31295	B1.5 Ib	(436)	1300		1040	1190
97707	31272	B2 Ib	(416)	1050	870		870
99857	22170	B0.5 Ib	(558)	1720		1600	1705
99953	9074	B1.5 Ia	(444)	805	510		510
100276	22147	B1 Ib	(558)	1830	1430	1390	1430
104683	22169	B1 Ib	(558)	1345	•••	1020	1145
106343	6320	B1.5 Ia	(444)	1275	795		795
109399	20308	B0.5 Ib	(558)	1565	1325	1280	1325
109867	14928	B0.7 Ib	(558)	1635	1155	1085	1155
113012	22168	B0.2 Ib	(625)	1445		1075	1215
115842	27405	B0.5 Ia	(590)	1530	1180	•••	1180
116084	6322	B2.5 Ib	(467)	1040	550	705	550
119608	5647 4349	B1 Ib	(558) (444)	1120 685	880 510	705	880 510
148422	23529	B1.5 Iap B0.5 Ia	(444) (590)	2185	1335	1245	1335
148688	1871	BO.5 Ia B1 Ia	(513)	870	725		725
150898	9267	B0.5 Ia	(513)	1310		1200	1300
152235	16205	B0.5 Ia	(590)	1445	850		850
152236	8831	B1.5 Ia+	441	675	390		390
152667	(H84b)°	B0 Ia((n))	(590)	1565	795		795
154090	14828	B1 Ia	554	1305	915		915
155985	7742	B0.5 Ia	(590)	1280		1190	1225
157038	30759	B3 Iap	(442)	1015	525		525
157246	(PH86)b	B1 Ib	(558)	1000	735	505	735
160993	23541	B1 Ia	(513)	1375		1200	1320
163181	2235	BN0.5 Iap	(590)	885	520		520
163522	32073	B1 Iap	(513)	1490	1240		1240
164402	18147	B0 Ib	658	2115		1585	1650
165024	6331	B2 Ib	(416)	1130		1000	1130
167264	6490	B0 Ia	732	2020	1640		1640
167402	23528	B0 Ib	(691)	2185		1905	2005
167756	30453	B0.5 Ia	(590)	2285	•••	1700	1865
178487	26986	B0 Ia	(713)	1660	•••	1430	1520
179407	23833	B0.5 Ib	(558)	1670	•••	1470	1585
185859	14207	B0.5 Ia	(590)	2135	.::	1455	1715
190066	18310	B1 Iab	(531)	1570	1275	1155	1275
190603	14942	B1.5 Ia+	452	670	485		485
191877	14825	B1 Ib	(558)	1310	1160	1020	1160
198478	13907	B3 Ia	393	655	470		470
204172	6481	B0 Ib	644	2015		1500	1630
206165	6336	B2 Ib	416	910	640		640
213087	2736	B0.5 Ib	552	1595	1520	1470	1520
235783	21706	B1 Ib	(558)	1305	1070	•••	1070

 ^a Values in parentheses are means for the spectral type.
 ^b Data from Prinja and Howarth 1986.
 ^c Measurements from the mean spectrum constructed by Howarth 1984b.

:

Table 2 were determined from the C IV profiles, while the values of \bar{v}_{NAC} represent the mean values found from unsaturated C IV, Si IV and N V resonance line profiles. Narrow components may be present in other lines (e.g., HD 152667 shows such features in C II λ 1335 and Fe III λ 1900; Howarth 1984a, b), but we have not carried out a systematic study of their occurrence.

The sample represents all of the B0-B3 supergiants which had high-resolution *IUE* spectra available from the Rutherford Appleton Laboratory World Data Centre archive at the time of our investigation (mid-1989). Prinja (1989) examined the UV spectra of normal nonsupergiant B0-B5 stars and found no evidence of narrow absorption components or of saturated stellar wind profiles; the wind terminal velocities of these stars cannot, therefore, be safely determined from direct measurement of *IUE* data.

Table 3 lists the mean terminal velocities found for each spectral type in luminosity classes I, III, and V in our sample. (We ignored "f" qualifiers and omitted the extreme BI⁺ supergiants and the OBNC stars from these means, together with HD 93521, which has very peculiar profiles—see Prinja and Howarth 1986.) Table 3 shows that, for spectral types running from O4 to O9.5, the mean terminal velocities decline quite steeply for the dwarfs and giants, falling from 3000 km s⁻¹ to 1400 km s⁻¹ and from 2800 km s⁻¹ to 1500 km s⁻¹, respectively, while for the supergiants the decline is much less steep (from 2300 km s⁻¹ to 1800 km s⁻¹). The mean terminal velocities of the B supergiants continue this decline, falling from 1600 km s⁻¹ at B0 to 600 km s⁻¹ at B3.

b) Wolf-Rayet Stars

Figure 1 shows the C IV profile observed in the spectrum of the WC5 star HD 165763. The velocity corresponding to the black absorption edge, $v_{\rm black}$, is marked, as is our estimate for the position of $v_{\rm edge}$. Determining the position of $v_{\rm edge}$ is often

difficult in O star spectra because of the need to estimate where unit continuum lies; in WR spectra, with their many blended emission lines, it can be even more of a problem. By contrast, the determination of $v_{\rm black}$ is straightforward, as Figure 1 shows. We assume that, as for the O stars, it provides a reliable measurement of v_{∞} ; this assumption is justified by the comparisons with other indicators of v_{∞} discussed in § IIIc.

Thirty-five Galactic Wolf-Rayet stars had well-exposed high-resolution *IUE* spectra available in the Rutherford Appleton Laboratory World Data Centre archive at the time of our investigation. The velocity measurements made from these spectra are presented in Table 4. For the single WN stars in our sample, the N v resonance line always exhibits a saturated absorption profile, as does the C IV resonance doublet for all but the WN3 star; Si IV shows saturated absorption for the WN6-WN8 types. The subordinate lines He II $\lambda 1640$ and N IV $\lambda 1718$ almost never reach zero intensity.

For the single WC stars, the C IV and Si IV resonance lines always have saturated absorption, as do the C II resonance line profiles for all but the WC5 types. The absorption profiles of the C III $\lambda 1175$ and $\lambda 1247$ subordinate lines always reach zero intensity in the spectra of the single WC stars, whereas the absorption profile of C III] $\lambda 1909$ never does.

We have measured the value of $v_{\rm black}$ for all saturated absorption profiles mentioned above (these measurements are given in roman type in Table 4). For unsaturated absorption profiles (including, in the case of WR binaries, profiles which do not reach zero intensity because of the presence of a residual O star continuum), we have measured the velocity at the deepest point in the absorption profile (given in italics in Table 4). If a flat-bottomed but unsaturated profile is present, we measured the blueward edge of the flat region. These velocities are parenthesized in Table 4.

Figures 4a, 4b, and 4d show examples of the velocities measured in the profiles of C III λ 1247, C II λ 1335, and C III] λ 1909

TABLE 3

Mean and Range of OB Star Terminal Velocities as a Function of Spectral Type and Luminosity Class

		I			III		v			
SPECTRAL Type	$(\operatorname{km} \operatorname{s}^{-1})$	Range (km s ⁻¹)	Na	$(\operatorname{km} s^{-1})$	Range (km s ⁻¹)	Na	\bar{v}_{∞} (km s ⁻¹)	Range (km s ⁻¹)	Na	
O3	3150		1				3190	3035–3370		
O4	2325	1880-2605	3	•••	•••	•••	2950	2750–3305	3	
O5	1885		1	2810	2615–3160	4	2875		5	
O5.5	•••							2810–2925	4	
O6	2300	•••	1	2560	2390–2730	2	1960	1625 2065	1	
O6.5	2180	1820-2420	3	2545	2300-3000	4	2570	1635–3065	12	
O7	2055	1425-2420	4	2600	2485–2665		2455	2155–2835	10	
O7.5	1980		1	2175	1580-2390	3	2295	1780–3015	10	
O8	1530	955–2185	3	2175	1380-2390	7	1975	1745–2390	3	
O8.5	1955	1575–2160	4	2255	•••	1	1755	1250-2230	7	
O9	1990	1500-2450	5		000 2250	1	1970	1625–2315	2	
O9.5	1765	1590-2010	7	1875	800-2250	9	1500	1120-1925	7	
O9.7	1735	1400-1860	7	1505	1275–1990	4	•••	•••		
B0	1535	795–2005	11	• • •	•••	• • •	•••	•••		
B0.2	1215			•••	•••	• • •	•••	•••		
B0.5	1405	950 1965	1	•••	•••	•••	•••	• • •		
B0.7	1155	850–1865	14	•••	•••	• • •		•••		
B1	1065	400 1465	1	•••	• • •	• • •	•••			
B1.5		490–1465	20	•••	•••		•••	•••		
B2	750 700	510-1190	4	•••	•••					
B2.5	790	510-1160	7	•••	•••		•••			
	490	435–550	2	•••	•••			•••		
В3	590	405–830	5					•••		

Number of stars.

TABLE 4

MAXIMUM VELOCITIES AT WHICH THE ABSORPTION MINIMUM OCCURS IN THE STRONGEST STELLER WIND LINES OF WN AND WC STARS

193576	HD	Spectral Type	SWP	C III λ1175.7	N v λ1238.8	C III λ1247.4	C II λ1334.5	Si 1v λ1393.8	Si 1V λ1402.8	C IV λ1548.2	He II λ1640.4	N IV λ1718.6	C III λ1908.7	Mean ^a (excluding C IV)
65865													•••	
190918. WN4.5 + O9.5 b 1471.5 1565 1510 (1425) 1625 1560 1515 150896 WN5 (HP)* 1725 (1635) (1580) 1720 1780 (1620) 1670				•••	2290	• • •		•••	•••				•••	
50896 WN5 (HP) ^b 1725 (1635) (1580) 1720 1780 (1620) 1670 193077 WN5 + abs 15641 (1230) 1230 1195 1345 1250 1200 1221 193576 WN + O6 26007 1250 1785 (1770) (1400) 1434 1785 (1770) (1400) 1434 1785 (1770) (1400) 1438 1785 (1770) (1400) 1785 (1700) 1480											1345		• • • •	
193077				• • •					` /				• • • •	
193576	50896	WN5	(HP) ^b	•••	1725	•••	•••	(1635)	(1580)	1720	1780	(1620)	•••	1670
143414. WN6 16976 1575 1600 1590 1590 1325 1320 1480 191765 WN6 4088 1910 1795 1770 1905 (1795) (1705) 1791 1915 (1795) (1705) 1791 1916 (1795) (1705) 1792 1770 1905 (1795) (1705) 1792 1770 1905 (1795) (1705) 1792 1770 1905 (1795) (1705) 1792 1770 1706 (1610) (1610) 1430 1363 1365 1400 1383 1365 (1175) 1160 1501 1511 1502 1501 1501 1501 1501 1501	193077	WN5 + abs			(1230)			1230	1195					1220
191765 WN6	193576	WN + O6												1475
192163 WN6 30793 (1380) 1570 1565 1605 (1610) (1610) 1542	143414	WN6	16976		1575			1600	1590					1480
211853 WN6 + O 14143 1150 (1465) (1485) 1785 1700 1456 62910 WN6-C4 27473 1530 1555 1600 (1335) 1600 151932 WN7 4334 1550 1400 1380 1365 (1175) 1160 150 92740 WN7 + abs 27341 (2325) 1770 1770 1790 1050 (1440) 151 93131 WN7 + abs 27341 (2325) 2105 2010 2455 1770 1755 186 214419 WN + O 13996 1680 1440 1690 (1325) 910 136 86161 WN8 13893 (770) 755 755 (855) 655 660 126 96548 WN8 <t< td=""><td>191765</td><td>WN6</td><td>4088</td><td></td><td>1910</td><td></td><td></td><td>1795</td><td>1770</td><td>1905</td><td>(1795)</td><td>(1705)</td><td>•••</td><td>1795</td></t<>	191765	WN6	4088		1910			1795	1770	1905	(1795)	(1705)	•••	1795
62910 WN6-C4 27473 1530 1555 1600 (1335) 1600 150 151932 WN7 4334 1550 1400 1380 1365 (1175) 1160 1333 92740 WN7 + abs 27341 1770 1770 1790 1050 (1440) 1511 1770 1770 1790 1050 (1440)	192163	WN6	30793		(1380)			1570	1565	1605	(1610)	(1610)	• • •	1545
62910 WN6-C4 27473 1530 1555 1600 (1335) 1600 150 151932 WN7 4334 1550 1400 1380 1365 (1175) 1160 1333 92740 WN7 + abs 27341 1770 1770 1790 1050 (1440) 1511 1770 1770 1790 1050 (1440)	211853	WN6 + O	14143		1150			(1465)	(1485)	1785		1700		1450
151932 WN7 4334 1550 1400 1380 1365 (1175) 1160 1333 92740 WN7 + abs 27341 1770 1770 1790 1050 (1440) 1510 93131 WN7 + abs 27341 2170 2040 2155 1785 1635 198 93162 WN7 + abs 15025 2105 2010 2455 1770 1575 186 214419 WN + O 13996 1680 1440 1690 (1325) 910 1344 86161 WN8 13893 (770) 755 755 (855) 655 660 724 96548 WN8 6927 955 955 920 (975) (920) 890 2160 233 15473 WC5 1510	62910	WN6-C4	27473					1530	1555	1600	(1335)	1600		1505
92740 WN7 + abs								1400	1380	1365	(1175)	1160		1335
93131 WN7 + abs 27341 (2325) 2130 2040 2155 1785 1635 1985 93162 WN7 + abs 15025 1680 1440 1690 (1325) 910 1344 86161 WN8 13893 (770) 755 755 (855) 655 660 720 96548 WN8 6927 955 955 920 (975) (920) 890 720 96548 WN8 6927 955 955 920 (975) (920) 890 720 955 920 (975) (920) 890 226 165763 WC5 15105 2440 3025 2830 3225 2160 2234								1770	1770	1790	1050	(1440)		1510
214419 WN + O 13996 1680 1440 1690 (1325) 910 1340 86161 WN8 13893 (770) 755 755 (855) 655 660 726 96548 WN8 6927 955 755 755 (855) 655 660 726 96548 WN8 6927 955 955 920 (975) (920) 890 93 115473 WC5 15105 2440 3025 2830 3225 276 165763 WC5 2872 (2495) 2200 2400 2405 2415 2160 233 76536 WC6 10113 (2450) (2025) 2080 2070 2055 1840 299 92809 WC6 15558 <								2130	2040	2155	1785	1635		1985
214419 WN + O 13996 1680 1440 1690 (1325) 910 1348 86161 WN8 13893 (770) 755 755 (855) 655 660 720 96548 WN8 6927 955 955 920 (975) (920) 890 930 115473 WC5 15105 2440 3025 2830 3225 276 165763 WC5 2872 (2495) 2200 2400 2405 2415 2160 233 76536 WC6 10113 (2450) (2025) 2080 2070 2055 1840 2099 92809 WC6 15558 2380 (2150) 2220 2250 2280 1840 2099 92809 WC7 20280	93162	WN7 + abs	15025					2105	2010	2455	1770	1575		1865
86161 WN8 13893 (770) 755 755 (855) 665 660 720 96548 WN8 6927 955 955 920 (975) (920) 890 93 115473 WC5 15105 2440 3025 2830 3225 2160 233 165763 WC5 2872 (2495) 2200 2400 2405 2415 2160 233 76536 WC6 10113 (2450) (2025) 2080 2070 2055 1840 209 92809 WC6 15558 2380 (2150) 2220 2250 2280 2200 2241 119078 WC7 20280 1715 (1845) 1820 1850 1785 1770 1485 175 156385 WC7 15130								1680	1440	1690	(1325)	910		1340
96548 WN8 6927 955 955 920 (975) (920) 890 936 115473 WC5 15105 2440 3025 2830 3225 276 165763 WC5 2872 (2495) 2200 2400 2405 2415 2160 233 76536 WC6 10113 (2450) (2025) 2080 2070 2055 1840 2099 92809 WC6 15558 2380 (2150) 2220 2250 2280 2380 92809 WC7 20280 1715 (1845) 1820 1850 1785 1770 1485 175 119078 WC7 15130 2255 (2040) 2185 1770 1485 175 1563										(855)		660		720
165763 WC5 2872 (2495) 2200 2400 2405 2415 2160 2336 76536 WC6 10113 (2450) (2025) 2080 2070 2055 1840 2099 92809 WC6 15558 2380 (2150) 2220 2250 2280 2200 2241 119078 WC7 20280 1715 (1845) 1820 1850 1785 1770 1485 1750 156385 WC7 15130 2255 (2040) 2185 2100 2045 1930 210 97152 WC7 + O5-7 15107 1625 1910 1555 1750 1670 1645 1505 1670 152270 WC7 + O5-8 15129 2185 (2130) (2150) 2300 2310 2270 2050 219 192641 WC7 + O5 31507 1760 1680 1820 1920 1885											(920)	890		930
165763 WC5 2872 (2495) 2200 2400 2405 2415 2160 2336 76536 WC6 10113 (2450) (2025) 2080 2070 2055 1840 2099 92809 WC6 15558 2380 (2150) 2220 2250 2280 2200 2241 119078 WC7 20280 1715 (1845) 1820 1850 1785 1770 1485 1750 156385 WC7 15130 2255 (2040) 2185 2100 2045 1930 210 97152 WC7 + O5-7 15107 1625 1910 1555 1750 1670 1645 1505 1670 152270 WC7 + O5-8 15129 2185 (2130) (2150) 2300 2310 2270 2050 219 192641 WC7 + O5 31507 1760 1680 1820 1920 1885	115473	WC5	15105			2440		3025	2830	3225				2765
76536 WC6 10113 (2450) (2025) 2080 2070 2055 1840 2099 92809 WC6 15558 2380 (2150) 2220 2250 2280 2200 2240 119078 WC7 20280 1715 (1845) 1820 1850 1785 1770 1485 175 156385 WC7 15130 2255 (2040) 2185 2100 2045 1930 2100 97152 WC7 + O5-7 15107 1625 1910 1555 1750 1670 1645 1505 1670 152270 WC7 + O5-8 15129 2185 (2130) (2150) 2300 2310 2270 2050 219 192641 WC7 + O5 31507 1760 1680 1820 1920 1885 1955 1830														2330
92809 WC6 15558 2380 (2150) 2220 2250 2280 2240 119078 WC7 20280 1715 (1845) 1820 1850 1785 1770 1485 1750 156385 WC7 15130 2255 (2040) 2185 2100 2045 1930 210 97152 WC7 + O5-7 15107 1625 1910 1555 1750 1670 1645 1505 1670 152270 WC7 + O5-8 15129 2185 (2130) (2150) 2300 2310 2270 2050 219 192641 WC7 + O5 31507 1760 1680 1820 1920 1885 1955 183 193793 WC7 + O4-5 31504 (2600) 1510 2635 2645 2900 2760 243 192103 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2095</td>						,								2095
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														2240
97152 WC7 + O5-7 15107 1625 1910 1555 1750 1670 1645 1505 1670 152270 WC7 + O5-8 15129 2185 (2130) (2150) 2300 2310 2270 2050 2190 192641 WC7 + O5 31507 1760 1680 1820 1920 1885 1955 1830 193793 WC7 + O4-5 31504 (2600) 1510 2635 2645 2900 2760 2430 192103 WC8 22861 1505 1300 (1495) 1480 1460 1405 1280 1420 68273 WC8 + O9 I 3377 1520 (1040) 1045 1415 1405 1415 1165 126 168206 WC8 + O8-O9 IV 34037 1715 1820 1885 1890														1750
97152 WC7 + O5-7 15107 1625 1910 1555 1750 1670 1645 1505 1670 152270 WC7 + O5-8 15129 2185 (2130) (2150) 2300 2310 2270 2050 2190 192641 WC7 + O5 31507 1760 1680 1820 1920 1885 1955 1830 193793 WC7 + O4-5 31504 (2600) 1510 2635 2645 2900 2760 2430 192103 WC8 22861 1505 1300 (1495) 1480 1460 1405 1280 1420 68273 WC8 + O9 I 3377 1520 (1040) 1045 1415 1405 1415 1165 126 168206 WC8 + O8-O9 IV 34037 1715 1820 1885 1890 1450 172 136488 WC9 13816	156385	WC7	15130			2255	(2040)	2185	2100	2045			1930	2100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														1670
192641														2190
193793 WC7 + O4-5 31504						` /								1830
68273 WC8 + O9 I 3377 1520 (1040) 1045 1415 1405 1415 1165 126 168206 WC8 + O8-O9 IV 34037 1715 1820 1885 1890 1450 172 136488 WC9 13816 1275 1140 (1120) 1160 (1105) 116 157451 WC9 16835 1300 1125 1095 1070 990 113														2430
68273 WC8 + O9 I 3377 1520 (1040) 1045 1415 1405 1415 1165 126 168206 WC8 + O8-O9 IV 34037 1715 1820 1885 1890 1450 172 136488 WC9 13816 1275 1140 (1120) 1160 (1105) 116 157451 WC9 16835 1300 1125 1095 1070 990 113	102103	WC8	22861	1505		1300	(1495)	1480	1460	1405			1280	1420
168206 WC8 + O8-O9 IV 34037 1715 1820 1885 1890 1450 172 136488 WC9 13816 1275 1140 (1120) 1160 (1105) 116 157451 WC9 16835 1300 1125 1095 1070 990 113							()							1265
136488 WC9 13816 1275 1140 (1120) 1160 (1105) 116 157451 WC9 16835 1300 1125 1095 1070 990 113						,								1720
157451 WC9 16835 1300 1125 1095 1070 990 113														1160
														1130
164270 WC9 8156 1130 1190 1140 1025 1090 820 106							1190	1140	1025	1090			820	1060

Note.—Measurements of v_{black} are indicated by values in roman type, the velocities of the deepest points in unsaturated absorption profiles are in italics, and the blueward edge of flat regions in unsaturated profiles are enclosed in parentheses.

in the spectrum of the WC8 + O9 I binary γ Velorum. This spectrum (SWP 3377), obtained and first illustrated by Kondo, Feibelman, and West (1982), was taken at phase 0.534 (WC8 star in front), so that the orbital radial velocities of the component stars are minimized. The C IV $\lambda 1550$ profile (Fig. 4c) shows evidence of the winds from both components. We identify the black absorption edge velocity of -1415 km s^{-1} (short vertical arrow) with the wind of the WC8 component; this value is close to the velocities measured for the C III lines (Table 4), which can arise from only the WC8 wind. It agrees well with the terminal velocity of $1520 \pm 200 \text{ km s}^{-1}$ determined by Barlow, Roche, and Aitken (1988) for γ Vel from the profile of the 12.8 μ m [Ne II] emission line, which is formed far out in the wind. The velocity of 2370 km s⁻¹ which we identify with $v_{\rm black}$ for the O9 I component is indicated by the long vertical arrow in Figure 4c; it does not reach zero intensity because the O star wind does not absorb the WC8 continuum in the composite spectrum (the composite C IV profile is black as far as $-1415 \,\mathrm{km \, s^{-1}}$ because the absorption profiles of both stars are black as far as this velocity). With this interpretation, the C IV profile shown in Figure 4c implies that at 1540 Å the O9 I star continuum is 0.7 ± 0.2 mag brighter than that of the WC8 star. The implied terminal velocity of the O star falls within the range found for single O9 supergiants (Table 3).

Other WR binaries where we see evidence for a composite C IV profile are the WC7 binaries HD 87152, HD 152270, and HD 192641, for which we estimate O star wind terminal velocities of 2460, 2900, and 2750 km s⁻¹, respectively.

The IUE spectrum (SWP 26007) chosen for V444 Cyg (=HD 193576) came from the study of Shore and Brown (1988) and corresponds to phase 0.997 (WN5 star in front) so that, as with γ Vel, orbital motions relative to the observer are minimized. The IUE SWP images chosen for the spectroscopic binaries HD 190918 and HD 211853 were taken at phases 0.93 and 0.98, respectively.

Table 5 lists the values of $v_{\rm edge}$ and $v_{\rm black}$ (= v_{∞}) that were measured for each of the Wolf-Rayet stars from their saturated C IV absorption profiles, except (a) for the case of the WN3 star HD 104994, where C IV $\lambda 1550$ is undetectable and we instead used N V $\lambda 1240$, and (b) for the case of the three WC9 stars, for which we adopted the velocities measured from C II $\lambda 1335$, since C⁺ is the dominant ion in the spectra of these stars.

a "Mean" values in this column exclude the C IV values, to facilitate comparison between the two measures.

^b Values measured using the mean spectrum constructed by Howarth and Phillips 1986.

Fig. 4.—Examples of carbon line stellar wind profiles for HD 68273 (γ Vel; WC8 + O9 I). The maximum wind velocities at which the absorption minimum occurs in the WR wind (short arrow) and O star wind (long arrow) are indicated.

TABLE 5
STELLAR WIND VELOCITIES AND MASS-LOSS RATES FOR WR STARS

HD WR* SWP Spectral Type v_{edge} (km s ⁻¹) v_{∞} (km s ⁻¹) log (M) (M _☉ yr ⁻¹ 104994. 46 7020 WN3 3235 3120 187282. 128 15101 WN4 2515 2270 65865. 10 29703 WN4.5 2035 1475 190918. 133 14715 WN4.5 + O9.5 lb 1770 1625 -4.52 50896. 6 (HP) WN5 3140 1720 -4.12 193077. 138 15641 WN5 + abs 1650 1345 -4.52 193077. 138 15641 WN5 + Abs 1650 1345 -4.52 193077. 138 15641 WN5 + abs 1650 1345 -4.52 193077. 138 4088 WN6 2880 1590 191765. 134 4088 WN6 2775 1905 -4.13 192163.						THE DITTED	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HD	WRª	SWP	Spectral Type	(km s^{-1})	$(\operatorname{km}^{v_{\infty}}^{s^{-1}})$	$\log(\dot{M}) \atop (M_{\odot} \text{ yr}^{-1})$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		46	7020	WN3	3235	3120	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		128	15101	WN4			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	29703	WN4.5			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		133	14715	WN4.5 + O9.5 Ib			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6	(HP)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		138	15641	WN5 + abs			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		139	26007				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	143414	71					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	191765	134	4088				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	192163	136					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	211853	153					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62910	8					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		78					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92740	22					-4.31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93131	24					•••
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93162	25					•••
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							< -4.61
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	115473	52	15105	WC5			•••
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-4.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							•••
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							•••
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							<-4.46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-3.98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							-4.10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							-4.36
136488 69 13816 WC9 1615 1275 157451 92 16835 WC9 1870 1300							-4.09
157451 92 16835 WC9 1870 1300						1890	≤ -4.38
15/451 92 16835 WC9 1870 1300						1275	
						1300	
	1042/0	103	8156	WC9	1310	1190	

^a Numbers from the catalog of van der Hucht et al. 1981.

The final column in Table 4 lists the mean of the absorption velocities, excluding C IV, measured for each WR star. Comparison of these mean velocities with the C IV velocities (which we generally adopt as v_{∞}) shows agreement to within 120 km s⁻¹ for 13 out of 16 WC stars and for 10 out of 19 WN stars. When present, the velocities given by the N v and Si IV resonance lines show good agreement with the C IV velocities. In the case of the WC stars, the C III λ 1175 and λ 1247 excited state line velocities and the C II resonance line velocities are in general agreement with the C IV velocities.

Hillier (1989) has suggested that the line-center optical depth of C IV $\lambda 1550$ can be so large ($\sim 10^9$) in the winds of WC stars that broad Lorentzian wings will affect its profile. However, we interpret the fact that the C IV black absorption edge velocities measured by us for the WC stars agree so well with the velocities measured from the Si IV, C II, and C III lines (Table 4) as indicating that Lorentzian damping wings do not significantly affect the position of the C IV black absorption edge in the spectra of these stars (or that all these lines have similar optical depths, which seems unlikely).

Single Wolf-Rayet stars are, in general, not observed to exhibit NACs in their UV P Cygni profiles (e.g., St-Louis, Willis, and Smith 1988), presumably because the UV resonance line absorption profiles in their spectra are almost always saturated. Some WR stars in spectroscopic binary systems have, however, been observed to exhibit NACs in their UV resonance line profiles. This phenomenon could be due to absorption of the companion O star continuum by the WR wind at large radii. Fitzpatrick, Savage, and Sitko (1982) observed an NAC in the Si IV profile of the WR binary HD 193793, with a central velocity of 2700 km s⁻¹ and a HWHM of 125 km s⁻¹ which was stable in velocity/and strength over a period of 5 months. The terminal wind velocity of 2825 km s⁻¹ given by these data is consistent with the value of 2900 km s⁻¹ implied for the WC7 star by the C IV black absorption edge (Table 5). In the C IV and Si IV profiles of the WR binary HD 193077, Koenigsberger and Auer (1987) found absorption features at -1250 km s⁻¹, with widths of ~ 200 km s⁻¹. The implied terminal velocity of ~ 1350 km s⁻¹ is again consistent with the value of 1345 km s⁻¹ listed in Table 5.

c) Comparison with Other Estimates of v_{∞}

Groenewegen, Lamers, and Pauldrach (1989) have recently derived terminal velocities for the winds of 26 O stars, plus the B0 supergiant ϵ Ori, from IUE observations of resonance line profiles. They used a profile-fitting method which incorporates a turbulence parameter and therefore also derived terminal velocities significantly lower than $v_{\rm max}$. Their values show good agreement with those derived here (Table 1): the mean ratio (ours/theirs) is 0.97 ± 0.11 .

For the 10 WR stars in common, our values of $v_{\rm edge}$ (Table 5) show agreement with those measured by Willis (1982; his " v_a "). On the other hand, there is no simple correspondence between his "centre of the violet-displaced absorption component," v_0 , and the absorption velocities listed in Table 4.

Hillier (1987b) deduced a maximum flow velocity of 1600–1700 km s⁻¹ in the line formation region of the WN5 star HD 50896 from detailed modeling of the UV, optical, and IR line profiles, and he was forced to invoke a further acceleration of the wind at much larger radii in order to explain the much higher UV violet absorption edge velocities. (Hamann, Schmutz, and Wessolowski 1988 also reached this conclusion.) However, the terminal velocity of 1720 km s⁻¹ given by the

black absorption edge of C IV in the mean spectrum of Howarth and Phillips (1986; our Table 5) effectively eliminates the need to invoke further wind acceleration at large radii.

Torres, Conti, and Massey (1986) estimated wind terminal velocities for a large sample of WC stars by fitting the profiles of optical emission lines and extrapolating a line width versus excitation potential (EP) diagram to zero EP. For the 13 stars in common we find that their method gives velocities that are larger than the terminal velocities listed in Table 5 by an average factor of 1.21 ± 0.17 .

Williams and Eenens (1989) have recently measured the velocities of the He I 2.058 μ m violet-displaced absorption line in the spectra of eight Wolf-Rayet stars and have argued that the absorption occurs far out in the winds, so that the velocities are representative of the wind terminal velocities. Of the five stars in common with our data, four give agreement to better than 80 km s⁻¹ between the values of v_{∞} listed in Table 5 and the values of v_e (the central absorption velocity v_0 + HWHM) that they measured from the He I 2.058 μ m absorption profiles. The fifth object is the WN7 + O system HD 214419, for which our value of v_{∞} = 1690 km s⁻¹ exceeds by 700 km s⁻¹ that for v_e measured by Williams and Eenens.

Schmutz, Hamann, and Wessolowski (1989) have estimated wind terminal velocities for 30 WR stars from profile fits to (or, in some cases, from the observed maximum line widths of) He I and He II emission-line profiles in the 0.5-1.1 μ m spectral region. There are 20 stars in common with our WR sample. For the five WC stars in common, the velocities derived by Schmutz et al. are a factor of 1.22 ± 0.11 larger than those given by the C IV $\lambda 1550$ black absorption edge (as discussed earlier, the velocities obtained from the Si IV, C II, and C III UV absorption profiles in WC star spectra are in agreement with those derived from C IV; Table 4). The eight WN4.5, WN5, WN6, and WN8 stars in common show good agreement between the terminal velocities derived by Schmutz et al. from the 0.6-1.1 μ m line widths and the terminal velocities derived here (the mean ratio is 1.00 ± 0.08). However, the velocities derived by Schmutz et al. for the four WN7 stars in their sample, and for the WN3 and WN4 stars HD 104994 and HD 187282, are much smaller than the terminal velocities derived here (the mean ratio is 0.65 ± 0.14). These stars have the weakest emission lines in their WR sample, and we interpret the above discrepancy as implying that the 0.6-1.1 μ m helium emission line width fits of Schmutz et al. do not yield the terminal velocity in the case of these weak-lined WR stars. This conclusion also appears to apply to the 2.058 μ m He I absorption profile measured by Williams and Eenens (1989) in the spectrum of the WN7 system HD 214419 (see above).

IV. DISCUSSION

Figure 5 shows a plot of $v_{\rm edge}$ versus v_{∞} for the O stars, B supergiants, and WR stars in our sample. For given values of v_{∞} , the WR stars can be seen to have systematically higher values of $v_{\rm edge}$. The WR stars have significantly ($\sim 10 \times$) higher rates of mass loss, \dot{M} , suggesting the possibility of a causal relationship, which we now investigate.

The last column of Table 5 lists mass-loss rates for those Wolf-Rayet stars in our sample which have been observed at radio wavelengths. Since the major WR radio survey by Abbott et al. (1986), a number of effects have been noted which lead to changes in their derived mass-loss rates.

1. Van der Hucht, Cassinelli, and Williams (1986) showed

1990ApJ...361..607P

Fig. 5.—The terminal velocities of O (filled circles), B supergiant (open circles), and WR stars (open triangles) as a function of the maximum velocity observed in absorption in C IV, $v_{\rm edge}$. The dashed line indicates the 1:1 relation for comparison.

that allowance for the high abundance of carbon in WC winds leads to an upward revision of the mass loss rates.

- 2. The ionization in WR winds has been predicted to decrease outward, such that the dominant ion at radio-emitting radii would be He⁺ rather than He²⁺ (Schmutz and Hamann 1986; Hillier 1987a). This also leads to an upward revision of the mass-loss rates.
- 3. A reduction in the adopted wind terminal velocities (this paper) leads to a reduction in the derived mass-loss rates which is proportional to v_{∞} .
- 4. Very small (random) changes in the mass-loss rates are introduced by using distances from van der Hucht *et al.* (1988). (For HD 50896 we adopted D=2 kpc, after Howarth and Phillips 1986).

The WR mass-loss rates listed in Table 5 have been derived using the formula of Wright and Barlow (1975) and the radio fluxes, or upper limits, measured by Abbott et al. (1986), Hogg (1982; for HD 214419), Becker and White (1985; the "low" state flux for HD 193793) and Hogg (1989; for HD 50896, 151932, 152270, 191765, and 192163). A temperature of 6000 K was adopted for the radio-emitting regions (Hogg 1985). For the WN stars, He⁺ was assumed to be the dominant ion, except for the cases of HD 151932 and HD 193077, where we adopted H⁺/He⁺ = 1 and 1.6, respectively (Conti, Leep, and Perry 1983; Schmutz, Hamann, and Wessolowski 1988). For the WC stars we adopted $C^{2+}/He^{+} = 0.3$ (Smith and Hummer 1988; Torres 1988). The mass loss rates listed in Table 5 assume the same wind terminal velocity in all directions from the WR star. Poe, Friend, and Cassinelli (1989) have proposed that WR stars may have lower terminal velocities and high densities in their equatorial zones, thereby reducing the massloss rates that should be derived from the observed radio

Figure 6 shows the plot of $(v_{\text{max}} - v_{\infty})$ versus $\log M$ for the O

FIG. 6.— $v_{\rm edge}-v_{\infty}$ as a function of mass-loss rate for O (filled circles) and WR (open triangles) stars.

stars and WR stars in our sample. The O star mass-loss rates are those listed in Table 10 of Howarth and Prinja (1989). which include a statistical correction for the average effect of revised terminal velocities. A loose correlation (r = 0.36)between \dot{M} and the excess absorption velocity $(v_{\rm edge}-v_{\infty})$ is present in the data shown in Figure 6. To quantify this effect further, Table 6 lists the mean values of $v_{\infty}/v_{\rm max}$ found for O v, O III, O I, B I, and WR stars. The mean value of $v_{\infty}/v_{\rm edge}$ is found to decrease steadily from 0.88 for O v stars, 0.84 for $\bar{\text{O}}$ III and O II stars, through to 0.80 for O I and B I stars and 0.76 for WR stars. This is also a sequence of generally increasing C3+ column density. We interpret this trend in terms of two effects. First, among the O stars, the supergiants, which have higher mass-loss rates than the dwarfs or giants, tend to have lower terminal velocities (Table 3). If the amplitude of high-velocity perturbations in the wind was independent of the final terminal velocity reached, this might contribute part of the effect. Probably more important is the fact that the highest velocity material in an unstable radiatively driven wind is predicted to be extremely rarefied. In a low-density wind, such material would be unlikely to have enough optical depth to be seen in absorption, whereas a high mass-loss rate would lead to larger

TABLE 6 ${\rm RATIO~OF}~v_{\infty}~{\rm TO}~v_{\rm edge}~{\rm AND}~v_{\rm esc}$

Spectral Type	Number	$\overline{v_{_{\infty}}/v_{_{\mathbf{edge}}}}$	$\overline{v_{\infty}/v_{ m esc}}$
01	39	0.80 + 0.08	2.60 + 0.38
OII	11	0.84 + 0.06	2.75 ± 0.51
O III	35	0.84 ± 0.06	2.41 + 0.47
O3 V-O7 V	45	0.87 ± 0.05	2.26 + 0.37
O7.5 V-O9 V	19	0.89 ± 0.04	1.67 + 0.44
ON	5	0.69 ± 0.15	1.38 + 0.34
Ofp	5	0.70 ± 0.16	1.98 + 0.52
B0 I–B3 I	65	0.80 ± 0.13	1.96 + 0.60
WR	35	0.76 ± 0.12	

Note.—Quoted errors are standard deviations.

TERMINAL VELOCITIES OF EARLY-TYPE STARS

absorption and a greater probability for the highest velocity material to be detectable.

We note that the present results do not significantly change the overall slope of the \dot{M} versus L relation for OB stars, as determined by previous workers. Radio mass-loss rates (which scale as v_{∞}) have been obtained mainly for supergiants and so (from Table 6) should decrease by a mean factor of 0.80. UV-based mass loss rates (which scale as v_{∞}^2) have been derived mainly for samples of dwarfs and giants and so (from Table 6) should decrease by a mean factor of $(0.88)^2 = 0.77$. Thus the overall slope found for composite radio-UV samples should be unchanged, although the scale factor should be decreased by ~ 0.8 . (This change in the scaling constant is already included in the mass-loss rates given by Howarth and Prinja 1989.)

Starting with Snow and Morton (1976) and Abbott (1978), the terminal wind velocities of OB stars have often been compared with their escape velocities, $v_{\rm esc}$. In Figure 7 we plot the wind terminal velocities derived for the O stars in our sample against the escape velocities derived for them by Howarth and Prinja (1989); different symbols have been assigned to dwarfs, giants, and supergiants. The peculiar stars HD 37022 and HD 93521 have been excluded from this diagram.

The 70 B0-B3 supergiants in our sample are also plotted in Figure 7. Their escape velocities have been derived from the stellar parameters tabulated by Leitherer (1988) and are listed in Table 2 (where individual values of $v_{\rm esc}$ were not available, we adopted the mean value, indicated by parentheses, for the appropriate spectral subclass). Table 6 lists the mean values of $(v_{\infty}/v_{\rm esc})$ found for each of these groups. This ratio is found to increase from 1.7 for the late O dwarfs to 2.4 for the O giants and 2.6 for the O supergiants. The mean ratio found for all 151 O stars with assigned luminosity classes (but excluding Op, Oe, ON, and OC stars) is $v_{\infty}/v_{\rm esc} = 2.36 \pm 0.51$. This compares

Fig. 7.—The photospheric escape velocity (see text for sources) versus the wind terminal velocity for B type supergiants (filled triangles), O type supergiants (filled circles), O type giants (open circles), and O type dwarfs (crosses).

with the ratio of 2.78 \pm 0.36 derived for the 27 stars in their sample by Groenewegen, Lamers, and Pauldrach (1989). The latter authors have discussed possible reasons for the discrepancy between observed ratios of $v_{\infty}/v_{\rm esc}$ and the value of 3.9 they obtain for radiation pressure—driven wind models.

The 249 stars plotted in Figure 7 (which excludes HD 93521 and HD 37022; § IIIa) yields a correlation coefficient of r=0.76, while a least-squares fit to the data gives $v_{\infty}=(74\pm101)+(2.145\pm0.182)v_{\rm esc}$ [or alternatively $v_{\rm esc}=(333\pm29)+(0.266\pm0.015)$ v_{∞}]. The OB supergiants alone yield a correlation coefficient of r=0.83.

Inspection of the mean values of $v_{\infty}/v_{\rm max}$ listed in Table 6 reveals that the five Ofp stars in the sample have a low mean ratio of 0.70. Since, as discussed above, this ratio appears to decrease with increasing mass-loss rate, this behavior is consistent with the Ofp stars having higher mass-loss rates than other O stars. The mean value of $v_{\infty}/v_{\rm esc}$ for the Ofp stars (1.98) is also significantly lower than found for the normal O stars. This may be due to the Ofp stars having already lost a large fraction of their original mass, with their current masses (and hence escape velocities) being overestimated by evolutionary track fitting. While there is a steady increase in $v_{\infty}/v_{\rm esc}$ from 2.1 for the O V stars to 2.75 for the O II stars (Table 6), there is also a decrease in this quantity to 2.6 for the O I stars, suggesting the possibility that the higher mass-loss rates of this group again lead to lower masses, and therefore lower escape velocities, than predicted by the evolutionary tracks.

We find the interesting result that the five ON stars in our

Fig. 8.—The terminal velocity as a function of effective temperature. The terminal velocities were derived from $v_{\rm black}$ and $v_{\rm NAC} + \overline{HWHM}_{\rm NAC}$ for O stars (filled and open circles, respectively) and B supergiants (filled and open triangles, respectively).

sample (three dwarfs and two supergiants) yield low mean values for both $v_{\infty}/v_{\rm max}$ (0.69) and $v_{\infty}/v_{\rm esc}$ (1.38; Table 6). The three ON dwarf stars all have spectral types between O7 and O9. The mean value of $v_{\infty}/v_{\rm esc}$ for normal O dwarfs within this spectral type range is also low (1.67, Table 6), but the normal late O dwarfs have a mean value for $v_{\infty}/v_{\rm max}$ of 0.89, significantly higher than found for the ON dwarfs. The ON stars might have physical parameters that are significantly different from those implied by their nominal spectral types. Schönberner et al. (1988) found that nitrogen was strongly enhanced in the atmospheres of a number of OBN main-sequence stars and discussed a variety of scenarios which might have led to this situation. For one of the stars, HD 14633 (ON8 V), their spectroscopically derived value of $\log g = 3.70$ is more like that expected for a giant than a main-sequence star and is 0.26 dex lower than the value derived from the parameters implied by its spectral type that are given by Howarth and Prinja (1989). If the mass and escape velocity of HD 14633 were correspondingly lowered, then the anomaly of its small value of $v_{\infty}/v_{\rm esc}$ would disappear. Strong mixing, possibly rotationally induced, may lead to evolutionary tracks for ON stars near the main sequence quite unlike those for normal O stars (Maeder 1987), and hence the masses (and $\log g$ and $v_{\rm esc}$ values) estimated from evolutionary tracks could be in error. However, the reason for the low values found for the purely empirical ratio $v_{\infty}/v_{\rm max}$ in the case of the ON stars is not obvious, unless these stars have much higher mass loss rates than hitherto suspected.

Finally, we note that although there is a good correlation (r = 0.76) between v_{∞} and $v_{\rm esc}$ (Fig. 7), as predicted by radiation pressure driven-wind models, for the present sample an even better correlation (r = 0.86) exists between v_{∞} and $T_{\rm eff}$. Figure 8 shows a plot of terminal velocity versus T_{eff} for the O stars and B supergiants in our sample (we adopted the effective temperature scale of Howarth and Prinja 1989 for the O type stars, and the effective temperature scale of Barlow and Cohen 1977 for the B supergiants). Prinja (1990) has demonstrated that Be stars are also consistent with the trend shown in Figure 8. A similar trend to that shown in Figure 8 has been found for the central stars of planetary nebulae by Pauldrach et al. (1988). However, planetary nebula central stars exhibit a relatively narrow mass range (0.60 \pm 0.02 M_{\odot} ; Barlow 1989) and during their hydrogen-shell burning phase evolve to higher effective temperatures at constant luminosity, so the dependence of v_{∞} upon $T_{\rm eff}$ is essentially the same as that upon $v_{\rm esc}$. For the case of the OB stars plotted in Figure 8, a mass range as narrow as that found for planetary nebula central stars would be most unexpected.

We thank D. J. Stickland for information about the orbital phases corresponding to the *IUE* images of HD 190918 and HD 211853 and N. R. Walborn for recommendations in respect of spectral types.

REFERENCES

```
Lesh, J. R. 1968, Ap. J. Suppl., 16, 371.
Lucy, L. B. 1982, Ap. J., 255, 278.
  ——. 1983, Ap. J., 274, 372.
Maeder, A. 1987, Astr. Ap., 178, 159
 Margan, W. W., Code, A. D., and Whitford, A. E. 1956, Ap. J. Suppl., 2, 41. Morton, D. C. 1976, Ap. J., 203, 386.

Owocki, S., Castor, J. I., and Rybicki, G. B. 1988, Ap. J., 335, 914 (OCR).

Pauldrach, A., Puls, J., Kudritzki, R. P., Mendez, R. H., and Heap, S. R. 1988,
Pauldrach, A., Fuis, J., Ruditzai, A. J., Astr. Ap., 207, 123.

Poe, C. H., Friend, D. B., and Cassinelli, J. P. 1989, Ap. J., 337, 888.

Prinja, R. K. 1988, M.N.R.A.S., 231, 21p.

1989, M.N.R.A.S., 241, 721.
                   . 1990, Astr. Ap., 232, 119
 Prinja, R. K., and Howarth, I. D. 1986, Ap. J. Suppl., 61, 357.
———. 1988, M.N.R.A.S., 233, 123.
 Prinja, R. K., Howarth, I. D., and Henrichs, H. F. 1987, Ap. J., 317, 389. St-Louis, N., Willis, A. J., and Smith, L. J. 1988, in A Decade of UV Astronomy
 with the IUE Satellite (ESA SP-281), 2, p. 125.
Schmutz, W., and Hamann, W.-R. 1986, Astr. Ap., 166, L11.
Schmutz, W., Hamann, W.-R., and Wessolowski, U. 1989, Astr. Ap., 210, 236.
Schoenberner, D., Herrero, A., Becker, S., Eber, F., Butler, K., Kudritzki, R. P., and Simon, K. P. 1988, Astr. Ap., 197, 209. Shore, S. N., and Brown, D. N. 1988, Ap. J., 334, 1021. Smith, L. F., and Hummer, D. G. 1988, M.N.R.A.S., 230, 511.
 Snow, T. P. 1977, Ap. J., 217, 760.
Snow, T. P., 1977, Ap. J., 211, 700.

Snow, T. P., and Morton, D. C. 1976, Ap. J. Suppl., 32, 429.

Stickland, D. S. 1989, Observatory, 109, 74.

Torres, A. V. 1988, Ap. J., 325, 759.

Torres, A. V., Conti, P. S., and Massey, P. 1986, Ap. J., 300, 379.
 Uesugi, A., and Fukuda, I. 1982, Revised Catalogue of Stellar Rotational Velocities (Kyoto: Department of Astronomy, Kyoto University). van der Hucht, K. A., Cassinelli, J. P., and Williams, P. M. 1986, Astr. Ap., 168,
 van der Hucht, K. A., Conti, P. S., Lundstrom, I., and Stenholm, B. 1981, Space
      Sci. Rev., 28, 227
van der Hucht, K. A., Hidayat, B., Admiranto, A. G., Supelli, K. R., and Doom,
Vali del Fidelit, R. A., Inlagas, B., Adminiano, A. S., Septin, C. 1988, Astr. Ap., 199, 217.

van Genderen, A. M., et al. 1988, Astr. Ap. Suppl., 74, 467.

Walborn, N. R., and Nichols-Bohlin, J. 1987, Pub. A.S.P., 99, 611.

Williams, P. M., and Eenens, P. R. J. 1989, M.N.R.A.S., 240, 445.

Willis, A. J. 1982, M.N.R.A.S., 198, 897.
Wright, A. E., and Barlow, M. J. 1975, M.N.R.A.S., 170, 41.
```

M. J. Barlow, I. D. Howarth, and R. K. Prinja: Department of Physics and Astronomy, University College London, G. er Street, London WC1E 6BT, England, UK [SPAN: 19457:-711VAD:-MIR IDH RKP.

[SPAN: 19457::ZUVAD::MJB, IDH, RKP; Bitnet: MJB, IDH, RKP@STAR.UCL.AC.UK]