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improved prediction of Surgical 
Resectability in patients with 
Glioblastoma using an Artificial 
neural network
Adam p. Marcus1,5, Hani J. Marcus  2,3,5*, Sophie J. camp4, Dipankar nandi4, Neil Kitchen3 & 
Lewis thorne3

In managing a patient with glioblastoma (GBM), a surgeon must carefully consider whether sufficient 
tumour can be removed so that the patient can enjoy the benefits of decompression and cytoreduction, 
without impacting on the patient’s neurological status. In a previous study we identified the five most 
important anatomical features on a pre-operative MRi that are predictive of surgical resectability and 
used them to develop a simple, objective, and reproducible grading system. The objective of this study 
was to apply an artificial neural network (ANN) to improve the prediction of surgical resectability in 
patients with GBM. prospectively maintained databases were searched to identify adult patients with 
supratentorial GBM that underwent craniotomy and resection. performance of the Ann was evaluated 
against logistic regression and the standard grading system by analysing their Receiver operator 
characteristic (Roc) curves; Area Under curve (AUc) and accuracy were calculated and compared using 
Wilcoxon signed rank test with a value of p < 0.05 considered statistically significant. In all, 135 patients 
were included, of which 33 (24.4%) were found to have complete excision of all contrast-enhancing 
tumour. The AUC and accuracy were significantly greater using the ANN compared to the standard 
grading system (0.87 vs. 0.79 and 83% vs. 80% respectively; p < 0.01 in both cases). In conclusion, an 
Ann allows for the improved prediction of surgical resectability in patients with GBM.

Surgical decision-making in patients with glioblastoma (GBM) remains controversial, with little high-quality 
evidence to guide management. Among the most important of these decisions is whether to perform a biopsy or 
resection. In each case, a surgeon must carefully consider whether a patient’s tumour is resectable and, in particu-
lar, whether sufficient tumour can be removed so that the patient can enjoy the benefits of decompression and 
cytoreduction, without negatively impacting on a patient’s neurological status.

Defining the surgical resectability of GBM is inherently challenging. As early as 1928 Walter Dandy demon-
strated that tumour cells infiltrate far beyond the clinically evident tumour mass1. Nonetheless, complete 
resection of all contrast-enhancing tumour does appear to be associated with significantly improved survival 
and a multitude of surgical innovations have been introduced to maximise the resection of GBM including 
fluorescence-guided surgery, and various other intraoperative imaging techniques2–4.

The desire for complete resection of all contrast-enhancing tumour must be balanced against the risk of neu-
rological deficits. Surgical resection of GBM continues to carry a significant risk of complications, with new 
neurological deficits occurring post-operatively in approximately one in ten patients5,6. The consequences of these 
deficits can be severe, affecting quality of life and, ultimately, survival itself.

In a previous study we performed a systematic review of the literature to identify the five most frequently 
cited anatomical features on a standard pre-operative contrast-enhanced T1-weighted MRI that are predictive of 
surgical resectability. We then used these features to develop a simple, objective, and reproducible grading system 
(Table 1)7. These features were: periventricular location if the contrast-enhancing tumour was located within 
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10 mm of the ventricles; bilateral location if the contrast-enhancing tumour extended into the corpus callosum; 
eloquent location if the contrast-enhancing tumour extended into motor or sensory cortex, language cortex, 
insula, or basal ganglia; large size if the diameter of the contrast-enhancing tumour exceeded 40 mm; and asso-
ciated oedema if hypointensity extended more than 10 mm from the contrast-enhancing tumour7. All features 
were weighted equally, with one point assigned if a feature was present, and no points if absent. The sum of these 
features was then used to describe lesions as low (0–1 points), moderate (2–3 points), and high complexity (4–5 
points). The rate of complete of contrast-enhancing tumour varied widely from 3.4% in high complexity lesions 
to 50.0% in low complexity lesions7.

Machine learning is a branch of artificial intelligence that may improve outcome prediction beyond standard 
grading systems by accounting for the more complex relationships between inter-related variables. While pre-
vious studies have demonstrated the utility of machine learning within neurosurgery, its use generally requires 
very large datasets limiting its application8. To this end, a novel framework has been recently been reported that 
allows for the application of artificial neural networks (ANN), a type of machine learning, to small datasets9. In 
this study we apply a variation of this framework to predict surgical resectability in patients with GBM.

Materials and Methods
Ethical approval to develop and validate a resectability grading system using a prospectively maintained database 
was obtained from our local Research Ethics and Audit Committees. Informed consent was not deemed necessary 
by these Committees, as a retrospective study design was used. All methods were performed in accordance with 
the relevant local guidelines and regulations.

Dataset. A detailed description of the methods used to acquire the original dataset has previously been 
reported7. In brief, a prospectively maintained database was searched between the 1st January 2014 and the 31st 
June 2015 to identify all adult patients with supratentorial GBM that underwent craniotomy and resection at a 
University Teaching Hospital. In each patient, the latest pre-operative contrast-enhanced T1-weighted MRI scan 
(usually within 72 hours before surgery) was scored by two neurosurgeons blinded to the outcome using the 
aforementioned grading system (Table 1). The earliest post-operative contrast-enhanced T1-weighted MRI scans 
(usually within 72 hours after surgery) was then evaluated by a consultant neuroradiologist blinded to the grade 
to determine the extent of resection (complete resection of all contrast-enhancing tumour, or not). A retrospec-
tive case note review was also performed to identify any immediate surgical complications, which were recorded 
according the Clavian-Dindo classification10,11.

Our new dataset was obtained by applying the same methodology to patients operated on between the 1st 
February 2017 and the 1st August 2017 at another University Teaching Hospital. This was combined with our 
original dataset and used to develop and validate the ANN model.

All operations were performed by six specialist neurosurgeons, who spend at least half of their clinical 
programmed activity in neuro-oncology. Intraoperative imaging including 5-Aminolevulinic Acid (5-ALA), 
ultrasound, and MRI were used according to availability and surgeon preference. However, only the pre- and 
post-operative MRI data were used to develop and validate the ANN model.

Pre-operative MRI feature Score

Periventricular or deep location

  ≥10 mm from ventricle 0

  <10 mm from ventricle 1

Corpus callosum or bilateral location

  No corpus callosum involvement 0

  Corpus callosum involvement or bilateral 
location 1

Eloquent location

  Not eloquent location 0

  Eloquent location (motor or sensory cortex, 
language cortex, insula or basal ganglia) 1

Largest diameter of tumour

  <40 mm 0

  ≥40 mm 1

Associated oedema

  <10 mm from contrast-enhancing tumour 0

  ≥10 mm from contrast-enhancing tumour 1

TOTAL 0–5

0–1 Low complexity

2–3 Moderate 
complexity

4–5 High complexity

Table 1. Previously reported grading system for adults with supratentorial glioblastoma. All features are 
assessed using the pre-operative contrast-enhanced T1-weighted MRI7.
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network design. Artificial neural networks, like biological neural networks, consist of several neurones that 
are connected together. In this study, a multilayer perceptron network was used that consisted of at least three 
layers arranged in a series: an input layer, a number of hidden layers, and an output layer. The input layer con-
tained five neurones corresponding to each of the five important anatomical features identified on pre-operative 
MRI. The output layer contained a single neurone representing the probability of complete surgical resection of 
the contrast-enhancing tumour. Neurones were connected using a feed-forward structure that allowed signals to 
travel from input to output only. Neurones within the input layer passed their output to the first hidden layer, neu-
rones in this layer then pass their output to the second hidden layer, until eventually the output layer was reached.

An ANN consists of a number of parameters. The majority of these are learned through training however 
several of these need to be set before the learning process begins and are termed hyperparameters. Our network 
defined the following hyperparameters: training algorithm, training algorithm parameters, learning rate, learning 
momentum, number of hidden layers, number of hidden neurones per hidden layer, neurone activation func-
tions, weight initialisation method, and weight initialisation parameters.

network selection. An evolutionary approach was used to optimise the network hyperparameters. An ini-
tial population of 100 solutions were generated with random tuples of these hyperparameters. The performance of 
each solution was evaluated using 100 repeats of 10-fold stratified cross-validation. In this procedure the dataset 
is randomly partitioned into 10 equal sized subsamples while ensuring approximately proportional contributions 
of patients with complete resection of all contrast-enhancing tumour, or not. Each subsample was used once as 
validation data for testing the model while the other samples were used as training data. This was repeated 100 
times to mitigate high variance issues arising from small data conditions9. The results were then averaged to pro-
duce a single estimation of performance.

The Fast Artificial Neural Network (FANN) library version 2.2.0 was used to implement the ANN’s. The 
cost function used during training was chosen from this library, and defined by the mean squared error (MSE) 
between the output and actual value representing if the contrast-enhancing tumour was completely resected. 
Early stopping was implemented to avoid overfitting and increase generalisation12. The fitness of each solution 
was calculated using the average validation error of the set of ANN’s. For each generation the 90 worst perform-
ing solutions were replaced with new solutions with hyperparameter tuples generated by crossover and random 
mutation. Uniform crossover was used where each hyperparameter was selected from parents with equal prob-
ability. The rate of random mutation was decayed exponentially from 100% in the first generation to 5% using 
factor of 0.85. After 100 generations the single best performing solution of hyperparameter tuples was selected.

The final ANN model was an ensemble of 1000 ANN’s. Diversification of the constituent ANN’s was achieved 
by randomising initial parameters and training on different pairs of training and validation sets. ANN’s outputs 
were then combined using simple averaging. This strategy has shown to be effect when dealing with small data-
sets13,14. Training the ensemble used the same approach as training the solutions in evolutionary hyperparameter 
optimisation. The cost function was MSE and early stopping was used to improve performance.

network evaluation. For comparison of the ANN, logistic regression, and standard models, averaged 
receiver operating characteristic (ROC) curves were created using 10 repeats of 10-fold stratified cross-validation 
(in effect we used nested cross-validation with an outer loop for network evaluation and inner one for network 
selection)15.

A probability cut off point of 0.5 (50%) was applied to the ANN and logistic regression models to classify the 
predicted resectability on the pre-operative MRI as low complexity (resectable) or high complexity (not resecta-
ble). For the standard grading system, low complexity lesions (0–1 points) were considered resectable, and more 
complex lesions (2–5 points) were considered not resectable; this cut off was chosen because our previous study 
found that moderate and high complexity lesions had a less than 50% rate of resection. The overall accuracy of 
the final model was determined by comparing the predicted resectability and whether actual complete excision 
of all contrast enhancing tumour was achieved as judged on the post-operative MRI. The area under the curve 
(AUC) from the ROC analysis was evaluated to compare the discriminatory power of the models. Associated 
goodness-of-fit statistics (specificity, sensitivity, negative and positive predictive values) were calculated with the 
same approach.

We employed a cross-validated paired Wilcoxon signed rank test to establish the statistical significance of 
the difference in performance between two models, with a p < 0.05 considered statistically significant. Wilcoxon 
signed rank test was chosen in place of the more commonly used t-test due to its better tolerance of outliers and 
improved suitability towards machine learning datasets16. All statistical analyses were performed using R version 
3.4.4. (R Foundation for Statistical Computing, Vienna, Austria).

Results
Dataset. In total, 135 patients were included, of which 33 (24.4%) were found to have complete excision of all 
contrast-enhancing tumour. The median age was 60 years (interquartile range 47–70 years), and the male:female 
ratio was 2.1:1. The median length of stay was 5 days (interquartile range 4–11 days). Three patients had major 
complications (2.2%): two had intracerebral haematoma, and one had pulmonary embolism.

network selection. The median optimal hyperparameters determined by our evolutionary approach are 
reported in Table 2, and the median network structure illustrated in Fig. 1. The median network structure had 
three layers: an input layer containing five neurones corresponding to each of the five important anatomical 
features identified on pre-operative MRI; a single hidden layer containing 11 neurones; and an output layer rep-
resenting the probability of complete surgical resection of the contrast-enhancing tumour.
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Hyperparameter
Median optimal 
value Possible values

Number of hidden 
layers 1 1–100

Number of neurones 
in hidden layer 11 1–1000

Hidden layer 
activation function Gaussian

Linear
Bounded linear
Sigmoid
Gaussian

Hidden layer 
activation steepness 0.400061 0–1

Output layer 
activation function Bounded linear

Linear
Bounded linear
Sigmoid
Gaussian

Output layer 
activation steepness 0.05962545 0–1

Training algorithm
Resilient 
Backpropagation 
(RPROP)

Incremental
Resilient 
Backpropagation 
(RPROP)
Quickprop
Simulated Annealing 
Enhanced Resilient 
Backpropagation 
(SARPROP)

Initial step size 
(Δzero) 0.257795 0–1

Maximum step size 
(Δmax)

226.582 0–500

Minimum step size 
(Δmin) 0.05381755 0–0.1

Decrease factor (η−) 0.676261 0–1

Increase factor (η+) 1.43495 1–10

Weight initialisation 
method Random

Random
Widrow + Nguyen’s 
algorithm

Minimum initial 
weight −0.4201585 −1–0

Maximum initial 
weight 0.1856795 0–1

Table 2. Median optimal hyperparameter values determined by our evolutionary approach.

Periventricular location

Associated oedema

Bilateral location

Large diameter

Eloquent location

GBM resectability

Input layer Hidden layer Output layer

Linear Guassian Bounded linear

Activation function

Figure 1. Median Artificial Neural Network (ANN).
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network evaluation. The most important factors identified by logistic regression were: eloquent location, 
deep location, and bilateral location (Fig. 2).

The comparative performance of the ANN against logistic regression and the standard grading system is 
reported in Table 3, and the mean ROC illustrated in Fig. 3. The AUC and accuracy were significantly greater 
using the ANN compared to the standard grading system (0.87 vs. 0.79 and 83% vs. 80% respectively; p < 0.01 in 
both cases).

Figure 2. Distribution of logistic regression (LR) coefficients across cross-validation folds. Coefficients 
represent the odds ratio of presence of pre-operative MRI features compared to no MRI features.

Parameter Estimate (95% CI) P value

Accuracy

ANN 83.4 (81.6–85.1) <0.01

LR 83.2 (81.3–85.0) <0.01

Standard grading system 80.2 (78.2–82.1) Reference

AUC

ANN 0.871 (0.849–0.895) <0.01

LR 0.868 (0.848–0.889) <0.01

Standard grading system 0.786 (0.747–0.825) Reference

Sensitivity

ANN 0.586 (0.531–0.640) 0.0861

LR 0.587 (0.532–0.643) 0.0807

Standard grading system 0.543 (0.489–0.560) Reference

Specificity

ANN 0.915 (0.898–0.932) 0.0117

LR 0.910 (0.893–0.927) 0.0380

Standard grading system 0.885 (0.861–0.908) Reference

PPV

ANN 0.707 (0.649–0.766) 0.0164

LR 0.679 (0.619–0.739) 0.236

Standard grading system 0.642 (0.585–0.698) Reference

NPV

ANN 0.877 (0.862–0.892) 0.0945

LR 0.878 (0.862–0.893) 0.0677

Standard grading system 0.864 (0.849–0.880) Reference

Table 3. Mean performance using the standard grading system, logistic regression (LR), and Artificial Neural 
Network (ANN) to predict surgical resectability in patients with glioblastoma.
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Examples of low and high complexity tumours, as assessed by the ANN, are illustrated in Figs. 4 and 5 
respectively.

Discussion
Principal findings. Currently, there is no consensus on surgical resectability in patients with GBM, with con-
siderable variation in clinical judgement between surgeons reflecting different surgical philosophies. In a study 
at the University of Michigan, Orringer et al. found that two surgeons were more likely to disagree than agree 
with each other as to whether the features of a particular GBM are amenable to complete excision17. Even when 
surgeons agreed the features of a GBM allowed for complete excision, this was achieved in less than a quarter of 
cases.

While individual surgeons vary considerably in their clinical judgement of surgical resectability, pooled 
responses from of a large number of surgeons has been shown to be far more consistent and predictive. Sonabend 

Figure 3. Mean Receiver Operating Characteristic (ROC) curves using the Artificial Neural Network 
(ANN), logistic regression (LR), and standard grading system to predict surgical resectability in patients with 
glioblastoma.

Figure 4. T1-weighted gadolinium-enhanced axial MRI brain demonstrating a low complexity lesion with a 
74.9% likelihood of complete resection.
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et al. found that the surgical resectability in patients with GBM calculated from the pooled responses of 13 sur-
geons was strongly correlated with the percentage of contrast-enhancing tumour18.

In a previous study we attempted to address the definition and evaluation of surgical resectability and pro-
posed a simple, objective, and reproducible grading system that allowed for the standardised reporting of the five 
most important features of GBM on pre-operative MRI. The present study has furthered this work, and developed 
an ANN to predict surgical resectability. In order to develop the ANN using a comparatively small dataset, we 
employed several strategies drawn from the literature including: use of an ensemble of ANN’s14; evaluation of 
performance using k-fold cross-validation14; and the method of multiple runs, where a large number of models 
are trained, and performance is averaged9.

We have demonstrated that use of the aforementioned ANN does improve the prediction of surgical resecta-
bility in patients with GBM. The clinical significance of this improved prediction remains uncertain, particularly 
in comparison to logistic regression. However, we hope that use of the ANN, which we have made freely available 
online and as a mobile app (https://amarcu5.github.io/GBM-resectability-prediction/), will aid surgical decision 
making, and also provide a basis for more robust comparative effectiveness research when reported alongside the 
surgical outcome of patients undergoing craniotomy for GBM.

comparison with other studies. To the best of our knowledge, this is the first study describing the use 
of an ANN to predict surgical resectability in patients with GBM. However, machine learning has been used 
elsewhere for neurosurgical outcome prediction in patients with brain tumours and other conditions such as 
neurovascular disease, epilepsy, movement disorders, traumatic brain injury, and hydrocephalus8,19,20. A recent 
systematic review has found that machine learning models perform significantly better than logistic regression, 
with a median absolute improvement in the AUC and accuracy of 0.06 and 15% respectively8. Moreover, in many 
cases machine learning models were found to outperform clinical experts, with a median absolute improvement 
in the AUC and accuracy of 0.14 and 13% respectively19.

Previous studies using machine learning predict the outcome in patients with brain tumours have an AUC 
between 0.76 and 0.85, which compares favourably with our own studies AUC of 0.8721–25. In the largest of these 
studies, Emblem et al. used a generic support vector machine model (another form of machine learning) in com-
bination with MR imaging–based whole-tumour relative cerebral blood volume (rCBV) histograms to predict 
6-month and 1-, 2-, and 3-year survival, and reported an AUC between 0.79 and 0.8521. Akbari et al. also used 
a generic support vector in combination with advanced imaging techniques such as Diffusion Tensor Imaging 
(DTI) and Dynamic Susceptibility Contrast (DSC) MR perfusion to predict early recurrence, and reported an 
AUC of 0.84. Among these studies using machine learning predict the outcome in patients with brain tumours, 
our work is unique in: (1) using an ANN rather than other machine learning models; (2) using standard 
pre-operative contrast-enhanced T1-weighted MRI rather than advanced imaging techniques; and (3) predicting 
resectability rather than overall survival or progression free survival.

Figure 5. T1-weighted gadolinium-enhanced axial MRI brain demonstrating a high complexity lesion with a 
5.7% likelihood of complete resection.
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Limitations. The present study has several limitations. First, we used quantised data generated using the 
standard grading system, rather than the raw imaging data, to train and evaluate the ANN. The use of quantised 
data allowed for a fair comparison of the performance of the ANN against the standard grading system, but we 
anticipate that performance of the ANN would be further improved using the raw imaging data. Second, we used 
a small and retrospective study design. The choice of study design was pragmatic but introduced the possibility 
of bias, and made the accurate and precise coding of post-operative neurological status and complications chal-
lenging. In this respect high-quality cognitive assessments are very important to better assess loss of functional 
capacity in language and executive domains. Third, the low rate of surgical complications identified did not allow 
for their incorporation into the ANN. More generally, it is recognised that each surgeon will vary in how they 
balance their desire for complete resection against the risk of neurological deficits. These limitations will largely 
be addressed in a planned prospective multicentre study.

conclusions
The proposed ANN allows for the improved prediction of surgical resectability in patients with GBM. Although 
the clinical significance of this remains uncertain, it is hoped that use of the ANN in clinical practice and in the 
literature will serve as a helpful adjunct to surgical decision making, and allow for more meaningful comparison 
between studies reporting the surgical outcome of patients undergoing craniotomy for GBM. In future work we 
hope to expand the features of the ANN, reporting the probability of near-complete alongside complete excision 
of contrast-enhancing tumour, and also the probability of major complications.
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