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Abstract 

An increasing number of new drugs have their origin in small biotech or academia. In contrast to big 

pharma, these environments are often more limited in terms of resources and this necessitates 

different approaches to the drug discovery process. In this perspective, we outline how 

computational methods can help advance drug discovery in a setting with more limited resources 

and we share what, based on our experience, are the best practices for these methods. 

 



Introduction 

Government and charity funding of academic research has been shown to have a major impact on 

drug discovery by elucidating disease biology and de-risking targets.1 An increasing number of 

academic contributions to new drugs are made through dedicated academic drug discovery 

institutes that aim to translate basic research to proof-of-concept.2–5 In parallel, a growing number 

of new drugs come from small biotech companies rather than big pharma.6 

Predictive modeling and informatics are today cornerstones of drug discovery.7 Computational 

methods can have an impact from the first conception of a drug discovery project all the way up to 

clinical trials.8 Data mining and analysis approaches can help to better inform and greatly speed up 

the process of target assessment.9 Virtual screening10 (VS) is a well-established computational 

method that is used to find hits for selected protein targets. Docking, QSAR analysis, and matched 

molecular pairs (MMP) support medicinal chemistry programs to turn hits into leads. More recent 

additions to the computational toolbox include big data analysis as well as artificial intelligence 

methods (usually in the form of deep neural networks).11 Together, computational methods have 

played an important role in the discovery of several drug candidates and approved drugs.12 

Academic drug discovery centers and smaller biotech companies often do not have all the 

capabilities of large pharma, placing certain constraints on what tools and data can be accessed. 

However, computational methods accessible to everyone can speed-up and reduce the cost of the 

drug discovery process in a number of ways. In this perspective, we outline the challenges and 

opportunities for computational methods to impact drug discovery in the context of a resource 

limited drug discovery organization. We hope this can serve to illustrate the value of these methods 

across the drug discovery spectrum and that we can help introduce these methods also to non-

experts who are curious about what their organisation could gain from computational approaches. 

Impact of computational methods on target identification and validation 

The first step of most drug discovery programs is to identify and, as far as possible, validate a 

suitable target. Informatics can be leveraged to sift through large amounts of data to help in this 



endeavor.9 Choosing the right target to start a drug discovery program has never been an easy task. 

The amount of information available nowadays has the potential to make this decision more 

informed. It is worth mentioning that the purpose of this perspective is not to provide the “right” 

approach to select a successful drug target but rather underline the contribution computational 

chemistry can make and the challenges that a computational scientist will face in this endeavor. 

The vast amount and variety of data that is accessible to researchers makes the target selection 

and validation a discipline by itself. With data comprising CRISPR-Cas9 screens,13 protein expression 

profiles, biomarkers, multi-omics studies, and patient data; juggling between different metrics, 

ontologies, and conventions is required to extract information that can be used to infer relevance in 

a disease of interest. To help with this task, a plethora of tools exist (see Table 1). We are focusing 

only on a few that are particularly accessible and provide both a user-friendly interface and access to 

various data sources. Initiatives such as Open-Targets14, UniProt15, and ChEMBL16 (Table 1) provide 

an extremely useful starting point to cover areas such as disease association, protein annotation, 

and potential ligands, respectively. These tools require little computational expertise to operate, and 

the output parameters are generally well-documented. Often, these portals will be used to gain 

knowledge of a potential target and build up a picture of the amount and type of information 

available. Reading the literature linked to the information in the portal helps to further validate or 

invalidate a target hypothesis. While this approach has its merits, it falls short when the validity or 

tractability of hundreds of potential targets coming from a genome-wide association study or multi-

omics analysis needs to be assessed. It is in this context that informatics can play a role in the 

integration of all the available resources in an automated and standardized manner. 

Whether originating from a genetic screen or an interest in a particular protein family, the list of 

potential protein targets to investigate can be long. For all these targets data will need to be 

extracted and combined from multiple sources. At this stage of the project, technical skills such as 

scripting (e.g. Python or R) and database extraction (e.g. SQL) are important in order to manipulate 

the information that might come out in different formats. It is common for publicly available data to 



be distributed in the form of a database, flat comma-separated files, or as an API (application 

programming interface) that can be directly accessed by scripting languages. In addition to technical 

skills, the ability to understand and critically assess both the quality and relevance of the data 

gathered is essential. This is often a challenge in smaller settings where a specialist in each of these 

areas is generally not available. As a result, significant effort is required to interpret and analyze the 

breadth of information available on targets and summarize the information in an actionable manner. 

The diversity of the data makes it difficult to aggregate and normalize it in order to build metrics for 

target selection. Another challenge is the sparsity of the data obtained. For example, how can two 

targets be compared if there is little to no overlap between the data sources available for them? 

Predictive models that attempt to fill these gaps could offer a solution, but their application often 

requires specialized knowledge.17 Also, the multiplication of sources makes it more difficult to keep 

everything up to date as it requires tracking and going back to each source to check for novel 

information.  

Target selection in practice. When looking for information on a single target, the Open-Targets 

initiative has done a fantastic job at presenting and providing an easy access to different data 

sources in a single place. While we acknowledge that a platform like Open-Targets is very well suited 

for gathering information on a single target, it is more difficult to interpret or extract the information 

for a bigger list of targets. It highlights the challenge to directly compare different targets, given the 

spread and fragmentation of the data available. In our institutes, we decided to build a tool, 

TargetDB (https://github.com/sdecesco/targetDB), to help in this task. The aim of the project was to 

develop a tool that can collect standardized information on a target of interest into a single file and 

can be used to prioritize a list of targets by a user-defined score. Data are collected from the above-

mentioned resources as well as others, and a series of data analyses are performed in order to 

extract the most relevant pieces of information for target tractability assessment; a schematic of the 

process is provided in Figure 1a. Recently, ML algorithms have been applied to target identification 

and drug discovery in general.18 It is important to note that these algorithms need well-curated, 



uniform and standardized data to maximize their predictive power. We believe initiatives like Open-

Targets or TargetDB play an important role in providing data to improve prediction made by these 

algorithms. In our institutes, TargetDB was used to rapidly prioritize and select targets from an entire 

family of proteins with the help of a machine-learning (ML) model that classifies targets into three 

tractability classes (Tractable, Challenging, Intractable) (Figure 1b). 

 

 

 

Figure 1.  a) Schematic showing how TargetDB searches for information in a range of databases 

and compiles the results to generate the output b) Example of analysis performed on the E3 ligases 

family using TargetDB to assess potential tractability and disease relevance of targets. 

Impact of computational methods on hit discovery 

Once a suitable target or phenotype has been determined, the next step is to identify compounds 

able to bind or modify the selected target/phenotype that can serve as a starting point for medicinal 

chemistry. 

High throughput screening. High throughput screening (HTS) has long been the go-to method for 

hit-finding for drug discovery.19 However, due to the high costs, this method has been out of reach 

for many academic labs and smaller biotechs. Computational methods can help to make the 

screening process more manageable, either through VS campaigns or through the application of ML-

driven iterative screening and rational library design. 



In iterative screening, a subset of the compound library is screened and the results from this 

screen used to inform on the next stage of screening. Studies have shown that this approach can 

retrieve most of the active compounds while screening less than half of the total screening library.20 

Typically, ML methods are used to predict the next set of compounds to screen. While this approach 

makes the screening logistics more complicated by introducing multiple rounds of compound 

picking, the reduction in the number of compounds to be screened can more than make up for this, 

especially for complicated and costly screens. With methods such as automated compound 

dispensing becoming more commonplace, this trade-off is set to become increasingly attractive. 

Also, these methods can be used to pick compounds iteratively from a vendor library, only 

purchasing the compounds of interest. 

For many smaller research outfits, the work and cost involved in maintaining a large HTS library 

are prohibitive and one might look to either maintain a smaller library or to purchase a set of 

screening-ready plates for each assay (many of the suppliers discussed in the VS section also provide 

larger libraries in bespoke formats). In either case, it is important not to include compounds that are 

unlikely to lead to productive starting points for medicinal chemistry.21 This calls for a rationally 

designed screening library. Library design can be done either for a specific target, by trying to enrich 

relevant chemotypes specific for that target, or for a library intended to be screened against multiple 

different targets.22,23 Common tasks include filtering of reactive24 and interfering groups (such as 

PAINS25,26) as well as controlling key molecular properties and chemical diversity. Typically such 

property filtering is inspired by the concept of lead-likeness, looking for compounds that after 

development will still end up within drug-like space.27 Suitable cut-offs for these properties have 

been reviewed extensively elsewhere.21 There are several free tools, such as RDKit and Knime, which 

can be used for compound filtering (Table 2). Substructure filters for PAINS and reactive groups can 

be downloaded or created in Knime/RDKit. ChemAxon28 also offers free tools to academics to do 

this, including logD and pKa calculators (not available in Knime or RDKit). The latter two properties 



are needed to calculate a CNS MPO score,29 which prioritizes ligands likely to penetrate the blood-

brain barrier and is therefore an important filter for CNS projects. 

For HTS hits, potency often increases with molecular weight, but the most potent molecule might 

not be the most tractable. Generally, starting with a smaller molecule is desirable.30 We find that 

ligand efficiency metrics such as Ligand Efficiency (LE) and Lipophilic Ligand Efficiency (LLE) are useful 

in prioritizing hits.31 

Virtual Screening. Virtual screening10 (VS) refers to the use of computational tools to select 

compounds for screening in biochemical assays. This is often a key task for a computational chemist 

and thus we have dedicated a substantial part of this Perspective to discuss what we believe to be 

the best practice for this task. The term VS is often used to refer to the docking32 of large compound 

databases, but there are several alternative techniques such as shape and pharmacophore searching 

that can also be used to virtually screen compound databases.33 Screening a set of compounds 

selected by VS is typically much cheaper than running a high-throughput screening (HTS) campaign 

because both the compound cost and the cost of screening consumables is lower. It can also be 

significantly faster and equally or more successful than HTS.34,35 Our experience is that VS costs 

around 10-fold less than HTS and takes about half the time. Academic and small biotech drug 

discovery teams should therefore consider if VS is an option for their projects. 

Suitable targets for VS. The targets of many drug discovery programs are not well explored, do 

not have a crystal structure, and/or do not have many or even any known ligands. VS is challenging 

in these scenarios, but often, it is still possible to pursue a VS campaign successfully. The key is to 

find all available information about the target structure and ligands before deciding on a protocol. 

Protein structural information can be found in the PDB (Table 1). If there is no structure for the 

target in the PDB, a BLAST search with the target sequence in UniProt (Table 1) with the PDB as the 

target database may reveal homologous proteins with crystal structures. Any protein with >25% 

homology in the relevant domain, e.g. the ATP-binding or protease domain, may yield a useful 

homology model.36 Lower sequence homology does not necessarily decrease the chance of success 



in VS, but there is a weak correlation between sequence identity and VS enrichment.36 An available 

protein structure is a great start for a VS campaign, but protein structures are not all equally useful.37 

Structures with drug-like ligands give a better chance of success than structures with native ligands 

or substrates, because the best VS enrichments are generally obtained with protein structures 

whose bound ligands are similar to the compounds to be docked.38 Potent ligands have a higher 

likelihood of success, because they typically make more and stronger interactions, and this 

information can be used to guide the VS. Structures without ligands have less chance of VS success, 

because the wrong pocket may be targeted, or structural changes in the protein may occur upon 

binding.35,39 Good resolution (<3.5Å), and a well-defined active site with residues fully visible in the 

density, are also useful indicators of the likelihood of success.37 Table 3 summarizes the hierarchy of 

desirable features for a VS starting point. 

Table 3. Features of VS starting points ordered by likelihood of success. The color gradient highlights 

the likelihood of success in different scenarios, with green indicating a higher likelihood and red a 

lower. 

Structure-based 
Multiple 

chemotypes 

Single drug-
like 

molecule 

Affinity 
>1μM 

Ligand not 
drug-like 

No ligand 

Multiple structures   
        

<3.5Å/complete 
density in active 
site 

  
        

>3.5Å/missing 
density 

  
        

Homology model 
ensemble 

  
        

Single homology 
model 

  
        

Ligand-based 
Multiple 

chemotypes 
Multiple 

Analogues 
Single rigid 

ligand 

Single 
flexible 
ligand 

Affinity > 
100 nM 

    
      

  



It is always worthwhile retrieving the electron density map from the PDBe (Table 1) to check how 

well-defined the ligand and pocket residues are.40 This information can be used to fine-tune the size 

of pharmacophore constraints or to allow flexibility for certain residues in a docking protocol. 

Databases such as ChEMBL16, Probes&Drugs41, and PubChem42,43 (Table 1) can be used to find 

known ligands. Patents can be mined for ligands using SureChEMBL44 (Table 1). If ligands, or even a 

single ligand, for the protein target are known, VS based on ligand shape and pharmacophoric 

features can be tried. These approaches do not require a 3D protein structure, though it can be used 

if available. A number of commercial and academic packages are available for ligand-based VS. We 

have had successful screening campaigns with ROCS, Blaze, MOE, and Phase (Table 2). Ligand-based 

3D pharmacophore approaches assume that all the features of the known ligand are important for 

binding (though this can be manually overridden in some packages).45 Ligands with only the  

pharmacophoric features required for potency therefore work best as queries.45 Conformational 

flexibility adds complexity to ligand-based 3D pharmacophore VS.46 More rigid query molecules 

should therefore be chosen over more flexible alternatives if possible.46,47 However, not all ligand-

based screening tools are sensitive to the query conformation.45,48 If multiple ligands are available, 

an alignment can indicate the key binding features and likely pocket shape. For both structure-based 

and ligand-based screening, data on inactive ligands are also useful to test if the VS protocol is 

predictive and can differentiate between actives and inactives.45 

Selecting a database to screen. The decision of which database to screen is a significant factor in 

the success of a VS campaign. To have a timely impact on a drug discovery program, compounds 

selected by a VS protocol need to be affordable, deliverable in a reasonable timeframe, and in a 

suitable format. When considering the cost of a VS, it is important to consider how many 

compounds should be purchased. Three or four small clusters of actives would be a good outcome of 

a virtual screen, as this allows for some attrition due to flat SAR, intractable chemistry, or ADME 

properties that cannot be optimized without losing potency. These are all reasons why we 

discontinued chemistry on screening hits. For representative examples of our successful VS 



campaigns, the hit rate has been 0.5-1.5 % using an IC50 < 10 µM in an ADP Glo assay as a cut-off. It is 

hard to know whether this is typical because hit rates reported in literature use a wide range of cut-

offs and different targets have varying rates of success.30,33 Also, many of the studies that report 

higher hit rates are retrospective studies that use databases seeded with known actives. These 

studies have a much higher ratio of actives than typically found in HTS campaign (around 0.05% with 

some variation for different target classes).30,49 A report from the Shoichet group comes to similar 

conclusions.50 This means that to find 3 or 4 small clusters, so 6 to 10 hits, around 1000 compounds 

need to be purchased and tested. The cost of buying this many compounds is likely to limit the 

vendors from which compounds can be sourced and should therefore be considered before 

embarking on a VS campaign. 

Costs vary from approximately $2 to $120 per screening compound, depending on the vendor, 

quantity required, and the number of compounds in the order. Because the cost per compound 

typically drops when more than a threshold number of compounds are ordered, a limited budget 

often goes further when compounds are ordered from a single vendor. Using a single vendor has the 

additional advantage that ordering and processing the physical compounds is easier and shipping 

costs are lower. We therefore recommend screening single-source vendor databases before 

aggregated compound collections (Table 4). Table 4 show some compound vendors and databases, 

this list is by no means exhaustive but contains the single source vendors we have experience with 

and whose cost per compound was ≤ $10 for orders over 1000 compounds when we enquired. 

Table 4. Some compound databases for VS. Single source vendors included have quoted ≤ $10 per 

compound for 1000+ compounds purchased; this is not an exhaustive list. 

Name Link Single 

source/aggregate 

Database 

size 

Purchase 

from site 

BioAscent compoundcloud.bioascent.com Single source 125,000 y 

ChemBridge chembridge.com Single source 1,300,000 y 



ChemDiv chemistryondemand.com Single source 1,500,000 y 

Enamine www.enaminestore.com Single source 3,500,000* y 

eMolecules Emolecules.com aggregate >7,000,000 y 

MolPort molport.com aggregate >7,600,000 y 

Zinc zinc15.docking.org aggregate >230,000,000 n 

*3,500,000 compounds available in stock at low price bracket. 1.2 billion compounds available on 

demand from the Enamine REAL database at higher cost. 

 

In addition to cost, the content of vendors’ libraries is also an important factor to consider. Some 

vendors may simply have a lot more examples of a chemotype of interest than others. So, if the 

property space and features of the compounds to be purchased can be defined in detail, it may be 

worthwhile mining very large compound databases for molecules that match the requirements very 

closely. We recently obtained a hit rate of 5% (IC50 < 10 µM) from 111 purchased compounds tested 

in a biophysical screen against a target that had not yielded any hits from a previous HTS. The 111 

compounds were selected based on presence of a novel chemotype and fit to a docking model fine-

tuned to discriminate between around 100 internally tested actives and inactives. 50,000 molecules 

with some similarity to known actives were selected for docking from the Enamine REAL database 

(Table 4) using the infiniSee software from BioSolveIT (Table 2). 

A final consideration in database selection is perhaps whether the compound set is manageable, a 

database of a million or so virtual compounds can be processed easily on a workstation with multiple 

cores and docking a set of this size may take a weekend. Beyond that size of database, significant 

time will be required to set up computational infrastructure and workflows. 

Preparing a database and search query for VS. To ensure that only suitable starting points for a 

chemistry campaign are screened, the PAINS, reactive groups, and property filters discussed above 



for rational design of screening libraries should be applied before VS. Docking and most ligand-based 

screening applications need input ligands to be represented in all their likely forms, including 

charged states, tautomers, and stereoisomers in 3D. Many commercial and free software packages 

have tools to do this (see Table 2), but the results they deliver and the time they take vary. For us, 

MolConvert from ChemAxon to generate charges, tautomers, and stereoisomers, followed by 

geometry optimization in RDKit worked very well without tying up software licenses used for other 

applications. 

Not only the database, but also the search query, be that a protein active site, pharmacophore or 

ligand need careful preparation. Proteins need to be correctly charged and protonated so that 

relevant hydrogen bonding and charge interactions can be found.51 Water molecules need to be 

assessed and decisions made on whether to keep or remove them. If this is unclear, or where side 

chains or loops are flexible, the best approach may be to use multiple protein models for the virtual 

screen.36,45 The steps required to adequately prepare a protein structure for docking have been 

discussed extensively elsewhere.37,51 If a ligand is used as a 3D query, it needs to be in a likely 

conformation. In the absence of a binding model, the lowest energy conformer is typically used, but 

Kirchmair et al. showed that when using ROCS the query conformation does not impact 

performance.48 Low energy conformations can be found by conformational analysis, followed by 

optimization with a semi-empirical or QM method, and validated by looking at similar ligands in the 

Cambridge crystallographic database (Conquest, Table 2) if available. Detailed conformational 

analysis can also be very useful for pharmacophore generation from multiple ligands.46 Excluding 

unlikely conformations, e.g. cis-amides, rings with axial substituents, in the pharmacophore 

generation reduces the number of possible pharmacophores and improves the likelihood of 

success.46 All screening queries should be tested first by seeing if they retrieve known actives, and 

secondly by their ability to discriminate between actives and inactives, if sufficient activity data is 

available. Scior et al.45 have written an excellent, and much more detailed discussion of the pitfalls of 

binding site and pharmacophore preparation, and other limitations of VS. 



Selecting docking software. Many different software packages for VS are available. The ones we 

have used successfully are listed in Table 2, but numerous other good software tools are available. 

For docking tools, there have been several competitions in which groups using a range of different 

strategies have gone head to head in predicting the binding poses and ranking of ligands for which 

the crystal structure has not yet been released (for example: Gaieb et al.52 and Carlson et al.53). 

Studies that compare VS success have also been published, e.g. Su et al.54 These are all useful 

resources when selecting a docking package and strategy. All docking packages have different 

strengths, so consider the target and library details when choosing. For example, open source 

docking programs are not limited by licenses, so are great for running on many CPUs. The authors 

like GOLD for scenarios where water molecules may form key interactions with the ligand, because it 

can toggle water molecules in the binding site on and off during the screening run. However, we 

prefer Glide in other cases because it calculates ligand strain energy, which is very helpful when 

evaluating poses. Yuriev et al.55 have written an excellent review that discusses which docking tools 

can handle flexible proteins, solvation and fragments among other things. 

Docking packages generally have multiple scoring functions, so the validation of the docking 

protocol should include assessing the best scoring function. Many VS packages also have a rescore 

mode, so it is possible to rescore with a scoring function that was not available in the tool used for 

the docking. Ideally, this should be done by optimizing the docking pose slightly to the new scoring 

function. The results of multiple scoring functions can then be combined in various ways to improve 

enrichment. A recent example of this is a report from Ericksen et al.56 who use ML to improve 

traditional consensus scoring models. Success has also been reported in combining structure-based 

and ligand-based methods.55,57 Ligand-based methods can provide a quick pre-filter to reduce the 

number of compounds to submit to docking, which is typically slower. Alternatively, ligand-based 

methods can be used as a post-docking filter to ensure that all docking hits make the required 

interactions with the receptor.58 The latter approach has been very successful in our hands in 



increasing the enrichment achieved by the VS. Ligand-based methods have also been shown to be 

very successful on their own.33,59 

Selecting compounds to buy and test. The final computational step in a VS campaign is deciding 

which compounds to purchase. This is an important step that potentially has more impact on the 

success of the VS campaign than, for example, which scoring function is used. Scoring functions are 

quite poor at ranking compounds,52,54 so all compounds with a reasonable score (e.g. similar to that 

of known ligand) should be considered for purchase. A well-known problem with scoring functions is 

that the score increases with molecular size60. This can result in more attractive, smaller compounds 

being overlooked. Using a ”virtual ligand efficiency” score, by dividing the score by the number of 

heavy atoms,30 for example, or dividing the hit list into molecular weight tiers, and picking a set from 

each one34 can overcome this issue. These strategies should be combined with a clustering step to 

ensure diversity. However, picking a few examples from each cluster is useful, because it allows 

some SAR to emerge.49 If the set is too diverse, it can be difficult to prioritize what to work on. Data 

Warrior is a useful tool for this type of clustering, because it clusters by Tanimoto similarity. 

Similarity of 0.7-0.8 tends to produce clusters of genuinely similar molecules, which is more difficult 

to achieve with k-means and hierarchical clustering algorithms. It is essential that any hits identified 

from the initial screen are resupplied as solids or resynthesized in-house to properly quality control 

the compound and then verify its activity.49 As mentioned above, we have successfully carried out a 

number of VS campaigns against various targets. Figure 2 shows a representative VS funnel that was 

deployed in one such project. 



 

Figure 2. Example of a VS funnel successfully used in-house. The tools used at the various steps 

are indicated in the figure.  

Impact of computational methods on the hit-to-lead stage 

Once a suitable starting point has been identified, the next task is to develop it into a lead 

compound with a good target potency as well as other favorable characteristics. At this stage too, 

computational methods can speed up the process and increase the quality of the final lead. Docking 

studies and prediction of ADME properties are useful to guide the design process and can lead to 

better molecules faster. We routinely employ these methods in-house and Figure 3 show the final 

compound of one series from our Notum inhibitor discovery program that was optimized with the 

help of these methods.61 

 



Figure 3. Docking, using Glide (Table 2), and various property predictions were used to guide the 

development of a series of furanopyrimidine amides as inhibitors of Notum based on a non CNS 

penentrant lead. The final compound displayed resonable CNS properties.61 

If a crystal structure is available, the docking methods discussed in the previous section can be 

applied to generate design ideas and to rank compounds according to predicted binding affinity. In 

some cases, more accurate but also more computationally intense methods, such as free energy 

perturbation (FEP) or molecular mechanics generalized Born surface area (MM-GBSA)/molecular 

mechanics Poisson–Boltzmann surface area (MM-PBSA), have been shown to provide a better 

correlation with measured affinities and therefore a better basis for compound optimization.62 

However, these methods are not very accessible on a modest budget. They require expensive 

licenses, a lot of computing time and need to be calibrated with a lot of data, in the authors’ 

experience. Also, their applicability domain tends to be small.47 Combined with structure-activity 

relationships established for the series, structure-based optimization can be a powerful tool to 

quickly generate better compounds.63 

QSAR modeling. Quantitative structure-activity relationship (QSAR) and Quantitative structure-

property relationship (QSPR) models have long been used to inform on compound design.7 The idea 

is to create a function predicting the property of interest from the compound structure. These 

models are often constructed using ML methods and use molecular fingerprints64 or a set of 

molecular descriptors to describe the input molecules. QSAR models can be used to prioritize which 

molecules are most likely to meet the design criteria and can span multiple endpoints, including 

basic molecular properties, biological activity, and metabolic stability. A challenge with these 

approaches is that they require data to base the models on, and there may not be enough data 

available to build a model at the start of a project. For successful QSAR modeling, both negative and 

positive examples are required. However, basic molecular properties, as well as many ADME-

T/DMPK properties, are transferable between projects and basic properties can often be used as 

proxies for other endpoints. For targets from families where similar proteins have been researched, 



there is also the opportunity to use information from these related targets to inform on the target at 

hand. QSAR models can be purchased pre-trained as part of a software package (e.g. ADME models 

in StarDrop) or be constructed in-house and trained from available data. Open packages such as 

caret65 in R or scikit-learn66 in Python are commonly used for building ML models and some 

commercial software packages also provide this feature. Best practices for QSAR modeling has been 

published elsewhere.67 While in-house models offer more flexibility, pre-trained commercial models 

are a convenient choice for groups with limited data or domain experience. 

Recently, there has been an increasing interest in the use of deep neural networks for QSAR 

applications and in many settings, these methods have shown better performance than traditional 

approaches.68 However, these methods are generally very computationally expensive and the gains 

for many tasks are not that large in relation to other methods.69 Thus, it is our experience that for 

most standard applications in a small institute, the additional time and hardware investment needed 

for these methods might not be warranted.  

Importantly, QSAR models are most often not intended to replace the experimental assay but to 

select compounds more likely to have favorable properties prior to synthesis and thus reduce the 

number of required design cycles. Studies have shown that incorporation of QSAR predictions 

improves the overall quality of compounds in projects.7,70 

Matched molecular pairs. The improvement of ADME-PK properties is an important aspect of lead 

development.70 As discussed above, QSAR models can be used for ADME-PK modeling but another 

popular technique is the use of matched molecular pairs (MMP).71,72 This approach relies on the 

identification of sets of very similar compound pairs, typically differing only by one chemical 

transformation, with associated data for the property under investigation. Once a database of such 

transformations has been established, it can then be used to evaluate potential changes to a lead 

molecule by looking at the average change in the property for the corresponding changes to 

molecules in the database. One of the advantages of this technique is that the predictions are readily 

interpretable and the examples behind the predictions can be reviewed. 



While feasible for any property, MMP requires a lot of data to give robust estimates and are 

therefore most suited for properties that are transferable between projects. MMP can be 

particularly useful for predicting microsomal stability, efflux, and cytochrome P450 inhibition 

changes, which are often substructure dependent, and therefore not easy to predict with QSAR 

methods. ChEMBL is an excellent source for extracting clearance, permeability, and other ADME 

data which can then be used to build MMP. Several software options are available for matched 

molecular pair building (Table 2). 

Quantum-mechanical (QM) calculations. QM calculations can also be very useful in the hit-to-lead 

stage. They can be used to identify strain in (putative) bioactive conformations and to develop 

hypotheses to relieve this. For example, Kuhn et al. report successfully applying QM methods using 

Guassian98 to relieve the torsion angle strain between two heterocycles,47 while Heightman et al. 

use QM-based single point and minimum energy calculations with Q-Chem to optimize interactions 

between two regions of their ligand that are in close contact.73 Along with the QM package Jaguar, 

that we used for more accurate pKa prediction, we have also used the open-source QM package 

ORCA74to calculate the activation energy of the reaction between a nitrile and a cysteine to form a 

thioimidate covalent bond as exemplified by Cavalli et al.75. This allowed us to guide and tune the 

design of our potential inhibitors with useful information on their reactivity. 

Impact of computational methods on lead development 

The further the discovery process progresses, the less data for the relevant design stage tends to 

be available to build predictive models on. For example, while a large set of cell-based data can be 

obtained quite easily, the number of compounds tested in an animal model will be significantly 

fewer. In our settings, this is a difference between thousands and a handful of datapoints. Generally, 

this means that predictive modeling tends to play less of a role in the later stages of a project but 

there are some areas where computational models still can contribute. Some off-targets and toxicity 

mechanisms are routinely evaluated using computational models. Probably the most commonly 

predicted off-target activity is hERG, where good quality models can be obtained.76 In addition, 



carcinogenicity can be reliably evaluated with computational methods.77 Another area where 

computational methods can be useful also in the advanced stages of drug discovery is the prediction 

of metabolites and metabolic stability.70 For both of these tasks, both commercial and open 

solutions are available,78 perhaps the most prominent being the various tools offered by Lhasa 

Limited. It is important to consider that when using web-based services for predictions, disclosure of 

proprietary information is not recommended as most services do not guarantee the confidentiality 

of the data uploaded to their servers. 

Challenges and opportunities 

Data is emerging as one of the key commodities of modern drug discovery. This poses a challenge 

to small institutes, which normally do not have large amounts of in-house data. Nevertheless, the 

first step in a data strategy is to leverage whatever data is available in-house. It is therefore 

important to set-up rigorous ways of storing the data that is generated in a format that is searchable 

and suitable for subsequent analysis. Commercial data management systems like Dotmatics and 

Collaborative Drug Discovery Vault are efficient ways to capture the range of data generated from 

drug discovery projects.79 These systems also future-proof the organization, preventing loss of data 

when a member of staff moves on. Data management systems are significantly more expensive than 

computational modeling tools. However, they offer excellent return on investment by preventing 

data loss, minimizing time spent finding data, and maximizing the amount of information that can be 

extracted from the data. 

Even when leveraging all of the data generated in-house, most smaller institutions will find that 

there is an overall lack of data to base modeling on. Key to mitigate this is the plethora of publicly 

available databases. A selection of useful databases, many of which are discussed in the previous 

sections, are presented in Table 1.  

Selecting the appropriate software is another key task requiring careful consideration. The reality 

is that software can represent a significant cost while a large software collection also adds 

complexity. Any purchase should therefore fill a specific function. Some vendors provide all 



functionality in one package while others sell individual modules, so verify that any package includes 

the functionality that you need before purchasing. In our experience, using one commercial suite as 

the core and supplementing this with key bits of free software is an affordable but powerful setup. It 

is possible to set up an entire discovery pipeline using only free software, but this comes at the cost 

of complexity and sometimes performance. A list of commonly used software is provided in Table 2. 

There are also many web tools available to carry out a range of computational chemistry tasks, for 

example, pKa predictors, P450 metabolism site predictors, etc. An important issue to consider when 

employing these tools is whether your data and IP are secure. Many require uploading structures on 

a website, and this may allow others to see your compounds. 

In addition to the software, some hardware is required. However, most tasks can be accomplished 

using standard hardware. A good setup is a high-end workstation with a good graphics card coupled 

with a simple server for licenses and hosting web applications. For a workstation, the choice of 

operating system (OS) is a matter of personal preference. Choice of software may dictate the OS 

required, but all software packages listed in Table 2 run on Windows and Linux. In our experience, 

for servers Linux is generally better. 

A big challenge for computational chemists in small settings is the wide range of skills required. 

Whereas larger set-ups may have separate bioinformatics, chemoinformatics, modeling, and IT 

specialists, in small settings one person may have to cover all these disciplines. Luckily, there are 

now many training resources available online, which can help gain the skills required. Many software 

vendors, including CCG, Cresset, Optibrium, and Schrödinger organize free or low-cost webinars, 

seminars, and user group meetings to train their users. They post many of the lectures given at these 

events on their websites or YouTube. Short videos of presentations showing how to tackle specific 

tasks and tutorials to work through are also available from most software providers’ websites (Table 

2) and for most databases in Table 1. RDKit, Knime, and many other open tools have very active user 

communities who help each other through forums, and share tools they have developed. Time spent 

on these training resources is worthwhile in our experience, as it helps with choosing the correct 



settings and understanding the limitations of tools. Important learnings can also be had from 

networking with the wider modeling community.  

Conclusions and outlooks 

Computational methods play a role in the entire drug discovery and development cascade, from 

finding the right targets to statistical analysis of clinical data. Although smaller actors in the drug 

discovery area may struggle to implement all state-of-the-art techniques, key aspects can be 

covered using only modest resources. Throughout the perspective, we have described what we 

believe are the best practices for these methods as well as how they fit in the drug discovery 

cascade. Additionally, it is our experience that when computational scientists are closely integrated 

into the day-to-day activities they can influence the culture around and uptake of computational 

methods in the drug discovery process, and may so mitigate some of the challenges imposed by 

limited resources. 

It is our experience that having a computational scientist on-board not only enables the various 

computational drug discovery approaches discussed in this Perspective but also has the potential to 

deliver more unforeseen benefits such as a more robust and streamlined data handling across the 

organization (is your team still routinely spending hours making calculations in Excel spreadsheets?) 

and an increased ability to leverage public data.  

In conclusion, we anticipate that computational methods will play an increasingly important role 

in modern drug discovery both in pharma settings and across smaller institutes. Approaches that 

leverage the most value from computational techniques and from both internal and public data will 

be a key determinant of the success for many academic groups and small biotech companies. 
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Table 1. Databases to mine for compound activity data and/or target–disease links. 

Type Name Molecule 

search 

Target 

search 

Disease search Description 

Internet 

search by 

molecule 

chemspider.com y n n Converts names and IDs to structures; links to vendors and bioactivity data 

isciencesearch.co

m 

y n n Searches the internet by (sub)structure or name for supplier; synthesis; 

bioactivity; literature; patent or toxicity data 

Large 

databases of 

chemical 

matter with 

published 

activity data 

bindingdb.org y y y Published binding affinities for drug-like molecules 

ebi.ac.uk/chembl y y n Assay data on chemical matter extracted from literature 

drugtargetcommo

ns.fimm.fi  

y y n Published binding affinities for drug-like molecules; contains some data not 

in ChEMBL 

solr.ideaconsult.n

et/search/excape 

y y n ChEMBL and PubChem combined 

pubchem.ncbi.nlm

.nih.gov 

y y n Assay data from literature and NIH screens 

cansarblack.icr.ac.

uk 

y y y Chemical and pharmacological data for over one million bioactive small 

molecules focused on cancer targets 

Annotated 

tool 

probes-drugs.org y y n Lots of probes and drugs with information on selectivity; potency and 

places to buy 



compound 

databases 

Guidetopharmacol

ogy.org 

y y y Probe and target information 

chemicalprobes.or

g 

y y n Chemical probes with reviews and ratings 

probeminer.icr.ac.

uk 

n y n Compares chemical probes for a target 

Drug 

databases 

cheminfo.charite.

de/superdrug2 

y n n Knowledge-base of approved and marketed drugs 

drugcentral.org y y y Drug compendium integrating structure; bioactivity; regulatory; 

pharmacologic actions and indications 

db.idrblab.net/ttd y y y ~5;000 Patented drugs and their targets; disease area and phase 

information 

Miscellaneous surechembl.org y y y Patent database with text and (sub)structure search facility 

ebi.ac.uk/pdbe y y n Crystal; CryoEM; and NMR structures of proteins 

uniprot.org n y n Database of proteins; sequences and domains; useful for homology 

searches 

opentargets.org n y y Links targets to diseases and vice versa; scoring based on evidence for link 

 

 



Table 2. Commonly used software for key computational drug discovery tasks. 

Maker Name Cost Compoun

d filtering 

2D to 

3D 

Pharmacophore 

or shape search 

Dockin

g 

Visualizatio

n 

Clustering Chemical 

Databas

e 

MM

P 

Conform

er 

analysis 

QM 

Scripps AutoD

ock 

Free       y            

BioSolveIT  Charg

e 

  InfiniSee/FlexS/ 

FTrees 

FlexX 2D/3D      

CCDC CSD-

Discov

ery 

Charg

e 

   y y Gold 2D/3D       y  

CCG MOE charg

e 

y y y y 3D y   y y can link 

ChemAxo

n 

 
Free 

Ac* 

cxcalc molcon

vert 

    2D/3D; 

Marvin 

JKlustor JChem   Marvin  

Cresset Blaze Charg

e 

    Blaze   2D/3D          

Dotmatics Brows

er; 

Charg

e 

 Vortex       2D Vortex Browser  Vort

ex 

   



Studie

s 

Knime Knime 

Analyt

ics  

Free y y     2D y can link y y  

OpenEye OEsuit

e 

Charg

e 

FILTER QUACP

AC/OM

EGA 

ROCS OEdock

ing 

2D/3D; 

VIDA 

      FREEFOR

M 

 

Optibrium StarDr

op 

Charg

e 

y       2D y can link y    

OSIRIS Data 

Warri

or 

Free y       2D y can link      

RDKit RDKit Free y y     y y can link   y  

Schröding

er 

Maest

ro 

suite 

Charg

e 

y LigPrep Phase Glide 2D/3D y (Canvas) LiveDesig

n 

  MacroMo

del 

Jaguar 

*These vendors offer the licenses free of charge to academic groups (subject to contract). 


