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ABSTRACT Sharing human genotype and phenotype data is essential to discover otherwise inaccessible genetic associations, but is a
challenge because of privacy concerns. Here, we present a method of homomorphic encryption that obscures individuals’ genotypes and
phenotypes, and is suited to quantitative genetic association analysis. Encrypted ciphertext and unencrypted plaintext are analytically
interchangeable. The encryption uses a high-dimensional random linear orthogonal transformation key that leaves the likelihood of
quantitative trait data unchanged under a linear model with normally distributed errors. It also preserves linkage disequilibrium between
genetic variants and associations between variants and phenotypes. It scrambles relationships between individuals: encrypted genotype
dosages closely resemble Gaussian deviates, and can be replaced by quantiles from a Gaussian with negligible effects on accuracy.
Likelihood-based inferences are unaffected by orthogonal encryption. These include linear mixed models to control for unequal re-
latedness between individuals, heritability estimation, and including covariates when testing association. Orthogonal transformations
can be applied in a modular fashion for multiparty federated mega-analyses where the parties first agree to share a common set of
genotype sites and covariates prior to encryption. Each then privately encrypts and shares their own ciphertext, and analyses all parties’
ciphertexts. In the absence of private variants, or knowledge of the key, we show that it is infeasible to decrypt ciphertext using existing

brute-force or noise-reduction attacks. We present the method as a challenge to the community to determine its security.

KEYWORDS quantitative genetics; homomorphic encryption; genetic privacy

WITH the growth of clinical genome sequencing, the
number of individual human genomes available for
analysis is increasing dramatically. To make the most of this
resource, we need to be able to share and analyze genetic and
phenotypic data securely.

The conflicting demands of individual privacy vs. medical
research have led to a spectrum of ways of sharing human
genotype and phenotype data (Azencott 2018). In a small
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minority of studies, anonymized data [that is, where the
names of individuals have been replaced by anonymous iden-
tifiers (IDs)] are freely available for users to download and
analyze. More usually—as for the UK BioBank and the UK
10k project, and studies deposited in the National Center for
Biotechnology Information Database of Genotypes and Phe-
notypes and the European Bioinformatics Institute European
Genome-phenome Archive (EGA)—anonymized data are dis-
tributed only to researchers approved for access, whose insti-
tutions demonstrate that their computer systems are secure,
and where they agree not to redistribute the data. The host
data archive then prepares data sets, encrypted with keys that
may be specific to each data request, for transfer over a public
network. After downloading the encrypted files within the fire-
wall of the researcher’s computer system, they are decrypted
into plain text. The advantage of this approach is that the re-
searcher then has complete access to the anonymized geno-
types and phenotypes, with only the identities of the samples
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being redacted; there is then no technical limitation as to the
genetic analysis that can be performed. However, this carries
certain risks because a data breach cannot be ruled out, and
even if the data are anonymized, comparing anonymous geno-
types with those of genotyped relatives might still reveal ge-
netic relationships (Hansson et al. 2016).

At the other extreme, data sets are not distributed, but
researchers may negotiate access to analyze the data on the
host’s computer system (as in the UK 100,000 genomes proj-
ect), or the host may agree to perform an analysis on behalf of
an external user. No direct access to the raw data is granted,
but analyses are shared. In still other cases, only the summary
statistics of genome-wide association studies (GWAS) are
distributed, typically comprising the regression coefficients
and P-values of the genetic variants tested for association
with the phenotype, for a federated meta-analysis. Such anal-
yses combine sets of summary statistics from different GWAS,
where participating laboratories have collected phenotypes
and genotypes for different sets of subjects imputed at the
same SNPs, and wish to test association across all studies
(Pasaniuc and Price 2017).

Another approach that is gaining traction is to encrypt
genotypes and phenotypes in such a way that it is still possible
to perform relevant computations on the data, possibly on a
remote or cloud computer, without decrypting them, i.e., one
can “throw away the key.” Homomorphic encryption (HE) re-
fers to cryptographic systems that allow computations to be
performed on encrypted data (the ciphertext) without
decrypting it, and which yield the same answers as when the
analogous computations are performed on the original data
(the plaintext). It is an active area of research in computer
science because it could make cloud computing much more
secure, for both genetic and other applications. With HE, it is
possible to build systems that store and process encrypted
data, such that the data always stay encrypted both in transit
and at rest. Should a cloud service be compromised, any stolen
ciphertext would be valueless.

We define HE for genotypes and phenotypes (HEGP) to
mean a transformation of the data that preserves those struc-
tures necessary for analysis while obscuring the individuals’
identities, phenotypes, and genotypes. Only the encrypted
data are moved and shared between systems. HEGP is attrac-
tive because it enables testing genetic association across mul-
tiple data sets, in a federated mega-analysis based on the
genotypes instead of a less powerful meta-analysis based
on the summary statistics.

In the clinical field, methods such as the random time
shifting of anonymized patient records (Hripcsak et al.
2016) offer some protection while not being cryptographi-
cally secure. In the quantitative genetics field, a number of
approaches to HEGP have been proposed. In Jagadeesh et al.
(2017) Yao’s protocol is used to identify rare Mendelian-type
mutations shared between affected individuals. In Cho et al.
(2018), secure multiparty communication is used to perform
GWAS using principal components to control for population
structure. Bonte et al. (2018), Tkachenko et al. (2018) and
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Sim et al. (2019) describe cryptographically secure protocols
for computing P-values for case-control studies using contin-
gency table x? tests. All these methods are thought to be
cryptographically secure, but they limit the types of compu-
tation and data exploration possible. In particular, they can-
not control for population structure using a mixed linear
model, which is the current gold standard for quantitative
trait analysis. In addition, they tend to be slower than anal-
yses of unencrypted data.

Here, we consider whether linear transformations of ge-
notypes and phenotypes can be used as keys for HE. The first
class of transformations we investigate are random orthogo-
nal transformations. These leave invariant essential parts of
the linear mixed-model framework for complex trait analysis,
preserving genotype correlations between SNPs while obscur-
ing those between individuals. They share the same likelihood
functions as unencrypted data. Any standard mixed-model
type of analysis (including estimating heritability) will pro-
duce the same output as with unencrypted data. We ask if an
orthogonal key can be generated in a sufficiently random
manner to make the data unrecognizable, and show that keys
sampled from the Steifel manifold have this property; how-
ever, not all orthogonal matrices make suitable keys. Once
encryption has taken place, we show that computations are
essentially identical to those using unencrypted data. They
also can be extended to perform federated mega-analyses in a
natural way. Their major drawbacks are that they are unsuit-
able for logistic regression and that the method is not provably
secure. In particular, individuals with private variants are not
securely encrypted by orthogonal transformation. However,
for variants present in multiple individuals we present argu-
ments that suggest it would be very challenging to find the key
and hence decrypt the data.

The second type of linear transformation we consider is
based on the mixed-model transformation. We show that this
is likely to be more secure than orthogonal transformation but
is more limited in its applications.

Materials and Methods
Data sets

We tested our encryption scheme on 10,640 individuals from
the CONVERGE study of major depressive disorder (Cai et al.
2017), and on the smaller mouse data set of 1329 individuals
and 19,877 SNPs from (Nicod et al. 2016) for platelet counts
on mouse chromosome 11, which are publicly available as
described below in Supplemental Material, File S1. We use
the mouse data for the majority of the analyses in this study
so that users may replicate our analyses by downloading the
data and code.

Data availability

The data and software are available from University College
London figshare at https://rdr.ucl.ac.uk/articles/Mouse
Platelet Dataset/11907687. In addition, the GitHub repository


https://rdr.ucl.ac.uk/articles/Mouse_Platelet_Dataset/11907687
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https://github.com/encryption4genetics contains the soft-
ware and libraries (under an AGPLv3 free software license)
and mouse data used in the study, as well as ongoing devel-
opments of the system. The authors state that all data nec-
essary for confirming the conclusions presented in the
manuscript are represented fully within the manuscript.
Supplemental material available at figshare: https://doi.org/
10.25386/genetics.8251535.

Results
Conceptual overview of quantitative genetic encryption

The conflict between respecting individuals’ privacy and estab-
lishing allelic effects is sketched in Figure 1A. We have a vector
of phenotypes, y, and a matrix of genotypes, G. Each row of the
matrix corresponds to genotypes for a given individual, and
each column to a given SNP. The phenotype and each geno-
type vector (column of G) are standardized to have mean
0 and variance 1. The standardized genotypes are dosages
proportional to the estimated number of alternative alleles; a
typical trimodal distribution of dosages is also shown in Figure
1C (for clarity they are shown prior to standardization). We
want to preserve the privacy of the individuals (rows) but
make public certain information about the effects of the SNPs
(columns) in relation to each other and to the phenotype.

Conceptually, it is helpful to recall that the standardized
genotype dosages for a given SNP across n subjects (a column
in Figure 1A) can be thought of geometrically as a unit vector
in n-dimensional space lying on the n-1 dimensional embed-
ded unit hypersphere, and the standardized vector of pheno-
types as another point on the same hypersphere (Figure 2).
We measure the association between phenotype and SNP
from the angle 6 between their n-dimensional vectors. Their
Pearson correlation coefficient (an invertible transformation
of the t-statistic used to determine significance of a linear
regression of phenotype on genotype dosage) is equal to their
dot-product, i.e., cosf. Similarly, linkage disequilibrium R?
between any pair of SNPs is the square of the cosine of the
angle between the SNPs. It is intuitively obvious that any
orthogonal transformation, a rotation or reflection of the
space, will leave all the angles between unit vectors un-
changed (Figure 2). Thus, all the associations between phe-
notype and genotypes, and correlations within genotypes,
are preserved by orthogonal transformations. Figure 1B
shows the phenotypes and genotypes after orthogonal trans-
formation. Even though the original distribution of the geno-
types dosages is trimodal (Figure 1C), the transformed
genotypes resemble a sample from a normal distribution
(Figure 1, D and F).

It follows that, if the encryption key is an n X n orthogonal
matrix P of floating point values such that PPT = I (where PT
is the transpose of P), then multiplication of the key with the
genotype/phenotype matrix acts like a rotation (or reflec-
tion). In this way each SNP column is rotated by multiplica-
tion by the key and, as discussed below, if the key is sampled

randomly, then the elements of each column vector of the
resulting encrypted genotype/phenotype matrix are approx-
imately normally distributed (Figure 1, D and F). We next
show that these transformations preserve key components of
the linear mixed model relating the phenotype to the geno-
types (Figure 1E)

Statistical preliminaries

Mixed-model quantitative genetic association: To make this
geometric intuition rigorous, we first review the core standard
computations required for a mixed-model GWAS. Suppose we
have n subjects and m SNPs, a quantitative phenotype vector
y of length n, a n X p covariate matrix X (containing informa-
tion about, e.g., sex, age, environmental covariates, and prin-
cipal components for controlling population structure), and
an n X m genotype dosage matrix G in which the entries
typically take the values 0,1, 2, such that G; is the number
of alternate alleles for the genotype of subject i at SNP j (G
can also represent imputed dosages without any change to
the argument). It is necessary to standardize the genotype
matrix into the matrix H such that

Hi— _ Gy —2m %)
v V2m(1 — )

where m7; is the minor allele frequency of the SNP j (alterna-
tively, each vector of dosages can be standardized empirically
by subtracting its sample mean and dividing by its empirical
SD). The phenotype vector y and each column of X must also
be standardized to have mean 0 and variance 1.

The n X n additive genetic relationship matrix (GRM)

1
K=-—HHT 2
m

is used to model the variance—covariance structure of the
phenotype as

Var(y) =V =Ko} +Io; 3)
where 07,02 are the genetic and environmental variance
components, and

2
Tg

2 2
oy + 0%

h? = 4

is the additive heritability. These variance components are
typically estimated by restricted maximum likelihood (Yang
et al. 2011). The linear model to test the significance of the
SNPj is

where e is a vector of fixed effects, h; is the jth column of H, 3;

is the regression coefficient for SNP j, and e is the residual,
with variance matrix V.
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Figure 1 Privacy in relation to
quantitative genetic analysis. (A)
A numeric phenotype vector y
(left) and genotype dosage matrix
G (right) are represented as colors
and shades of gray. Each row of
the matrix represents one individ-
ual and each column one SNP.
Genotypes are encoded as im-
puted dosages clustered at the
values 0, 1,2 giving the numbers
of alternate alleles. (B) The same
data after multiplication by an or-
thogonal matrix P (a rotation rep-
resented by the curved orange
arrow). The genotype dosages
are now represented by a contin-
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uum of real numbers. (C) The dis-
tribution of dosages for a particular
SNP (column of G), dustered around
0,1,2. (D) The distribution of the
same dosages after orthogonal
transformation by multiplication
by the orthogonal matrix P (black
histogram) with the normal distri-
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bution with same mean and vari-
ance superimposed in red. (F) The
normal QQ plot for the data in D,
showing the transformed dosages
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bution. (E) A cartoon of the HEGP
scheme. The top black arrow and
equation show the linear mixed
model relating the phenotype y
to genotype G with regression co-
efficients B representing the alle-
lic effects. The variance matrix for
the residuals is V. After multiplica-
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tion by orthogonal matrix P, data
y, Gand V and the mixed linear

model are transformed as shown in orange. The likelihood and regression estimates B are preserved. HEGP, homomorphic encryption for genotypes and

phenotypes; QQ, quantile-quantile.

The mixed model transformation

Aly=(A"'X)a+A hp; + A e (6)
converts the mixed model into an ordinary least squares
problem in which the variance matrix is the identity, i.e.,
Var(A~'e) = I. Here, A is the matrix square root of V, i.e.,
A? =V, which can be computed efficiently by eigen decom-
position of K, alongside the estimation of the variance com-
ponents (r§7 o2 (Kang et al. 2008).

The realized genetic relationship between individuals i, k is
summarized as the matrix element Ky and the relationship
(Pearson correlation coefficient) between SNPs j, [ as the el-
ement Ly in the m X m matrix

1

L=-HTH 7)
n

Orthogonal transformations: We wish to find an encoding of
the genotypes, covariates, and phenotype such that their
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plaintexts are obscured, but such that we can compute all
the above quantities and test association between genotypes
and phenotypes using the same mixed model.

Consider the eigen decomposition of the variance matrix
V = ETAE where E is an orthonormal matrix of eigenvectors
and A the diagonal matrix of eigenvalues. These quantities
are determined (up to permutation and rotation) by the ma-
trix V. The (symmetric) matrix square root used in the mixed-
model transformation is defined as

A=ETA%E ®)
where A% is the diagonal matrix whose entries are the
square roots of the eigenvalues.

Suppose P is any orthogonal n X n matrix, i.e., so that
P! = PT. Then consider working with the transformed ge-
notype matrix F = PH, phenotype vector 2 = Py, and covari-
ate matrix W =PX in place of the plaintext. Such a
transformation corresponds to finding a new coordinate



system, so the rows (subjects) in the transformed space no
longer correspond to individuals.
First note that

F'F =H"P'PH =H"H = nL (9)

so the m X m SNP-relationship matrix L is preserved, while
the GRM

FFT = PHH"PT = mPKP"T (10)
is transformed. In other words, linkage disequilibrium (as
measured by Pearson correlation) between SNPs is unaltered,
but since the original subjects are transformed, intersubject
correlations are destroyed. In fact, since after orthogonal
transformation each “subject” is a weighted combination of
the originals, it is not meaningful to describe them as sub-
jects. Nonetheless,

Var(z) = Var(Py) = PVP" = PKP"o? + Io? (1)

and hence the transformed phenotype has the same variance
components o2, 07 and heritability h? even though the GRM
is transformed. Define B = AP. as the ciphertext analog of the
plaintext mixed-model transformation. That is,

Var(B™'z) = Var(PTA™'y) = P"Var(A~ly)P = PTIP =1
(12)
and hence the ciphertext “rotated mixed model”

z=Wa +f;B; + Pe (13)

SNP genotype g,

phenotype y

Figure 2 Geometric interpretation of genetic associa-
tion. Phenotypes and genotypes are represented as
unit vectors in a high-dimensional space. The cosines of
the angles between the phenotype vector y and various
SNPs equal the corresponding Pearson correlations,
which are closely related to the t-statistics for testing
association. In the example, SNP 1 has a smaller angle
with the phenotype than SNP 2, and hence a stronger
genetic association.

cos 0, > cos 0,

SNP genotype g,

thatis expressed entirely using the ciphertext D(P) = {z,W,F}
is equivalent to the original plaintext model, and can be
converted to ordinary least squares by multiplication by
B~!. Furthermore, the log-likelihood for the data (provided
the errors are normally distributed) is invariant after or-
thogonal transformation. That is, using standard change-
of-variable rules for y = PTz for the multivariate normal
distribution, and recalling that the determinant of an or-
thogonal matrix |P| = =1, then the plaintext log-likelihood
fory:

—2logl(a, Bj,02,0%) = (y—Xa—h;B;)"V "} (y - Xa — h;B))
+ log|V| + nlog(27)
(14)

is identical to the log-likelihood for ciphertext z when evalu-
ated at the same parameters:

(z—Wa—f;B,) (PVPT)

+ nlog(2m)

(z— Wa —f;B;) + log|PTVP|

(15)

Hence, all inferences about the parameters based on the
likelihood are unaffected by the transformation. In particular,
they yield identical maximum likelihood parameter estimates
and P-values for likelihood-based tests of significance. Fur-
thermore, any analyses based on linkage disequilibrium be-
tween SNPs are unaffected by the transformation. It is also
possible to compute GRMs corresponding to subsets of SNPs
(e.g., per chromosome) from the transformed genotypes.
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Generalizations

Here, we sketch various generalizations to the orthogonal
encryption scheme.

First, analyses that are unaffected by orthogonal trans-
formation include the estimation of parameters by ridge
regression, Least Absolute Shrinkage and Selection Operator
(LASSO), or by Henderson’s mixed model equations. The
proof for ridge regression follows from the observation that
the ridge estimator

B = (XX + 1K) X7y = ()7 (%) + 1K) (%) (Py)
(16)

for any orthogonal matrix P and ridge scale parameter k. The
proof for Henderson’s equations follows in a similar way, as
under orthogonal transformation any data matrix transforms
as X—PX and any variance matrix as V—-PVPT (since
Henderson’s model is a special case of a mixed model it also
follows from Equation 6). Consequently, genomic prediction
from estimated fixed effects (best linear unbiased estima-
tor) and predicted random effects (best linear unbiased pre-
diction) is also unaffected, provided of course we have
access to some unencrypted genotypes with which to make
predictions.

Second, dominance effects might be incorporated in the
following way. The additive genotype dosage matrix G can be
augmented in the usual way by a matrix T defined as

_ foifG;=0
v {1 otherwise a”n
representing a dominance effect. Then, any combination of
additive and dominance effects can be modeled as a linear
combination of G, T, so that Equation 5 that models the effect
of SNP j becomes

where t; is the jth column of T and v; is the dominance effect.
Multiplying by the orthogonal matrix P produces

Py = (PX)a + (Ph;)B; + (Ptj)y; + Pe (19)
The rest of the development is similar to the purely additive
case. Investigators would need to share both the transformed
additive and dominance matrices. It is not clear if this would
make decryption easier.

Finally, the major principal components of the genotype
dosage matrix are sometimes included as covariates, in place
of or in addition to fitting a mixed model, to further control
for population structure and admixture. The n X m dosage
matrix H has singular value decomposition H = USVT,
where U is the n X n orthogonal matrix of principal compo-
nents, ¥ is n X n diagonal, and V7 is n X m orthogonal. Thus
F = PH = PU3V'. This means the principal components U of
H are transformed to PU so that if necessary, the principal

364 R. Mott et al.

components of F may be calculated and included in the linear
mixed model without explicitly including them as plaintext
covariates to be transformed.

Orthogonal HE

We propose that, if the orthogonal key P is appropriately
sampled at random and independently of the plaintext
data D(I) = {y,X,H}, then it homomorphically encrypts
D(I)—D(P), sufficient to allow full mixed-model GWAS
without revealing the plaintext.

The Pearson correlation between a standardized vector x
and Px is

~ xTPx
T n-1

pp(x) (20)
Thus, provided P is “far” from the identity matrix I then we
expect pp(x) to be distributed like the correlation of two ran-
dom vectors. We found that an effective way to do this is
to sample orthogonal matrices from the Stiefel manifold
(i.e., the Haar measure over the orthogonal group) (Hoff
2009), a uniform sampling distribution for orthogonal matri-
ces (Anderson et al. 2005).

To investigate this experimentally, we sampled a
1000 X 1000 matrix P1ggo using the R library “rstiefel.” This
uses the following scheme to simulate an orthogonal n X n
matrix: (i) simulate an n X n matrix M whose entries are all
iild N(0, 1), (ii) compute the eigen decomposition of the sym-
metric matrix MM = QTSQ where Q is n X n orthogonal and
S is diagonal with positive entries, and (iii) return the orthog-
onal matrix P = MQTS %5Q where $7%° is the diagonal ma-
trix whose elements are the reciprocals of the square roots of
the eigenvalues.

Now the eigen decomposition of an orthogonal matrix can
be written as

P =C lexp(i®)C (21
where C is a (nonorthogonal) matrix of eigenvectors and @
is a diagonal matrix of angles, so that the eigenvalues
exp(i@) are pairs of conjugate complex numbers on the unit
circle or =1. Then, for A real, define the set of orthogonal
matrices P(1) = C~ 'exp(iA®)C, which vary smoothly between
P(A=0)=Iand P(A1=1)=P.

Studying this set as A varies lets us explore the encryption
properties of a particular “linear direction” in the space of
orthogonal matrices, starting at the identity matrix and pass-
ing through P [incidentally, the set P(4) forms a subgroup of
the orthogonal matrices, such that P(1)P(u) = P(4 + ), with
inverse P(1) ' = P(—4); this subgroup is of course isomor-
phic to the real numbers under addition].

Figure 3 shows the mean and SD of the correlation pp ;) (x)
for a 1000 X 1000 matrix Pjggo with 1000 SNPs sampled
from the CONVERGE study of major depressive disorder
(CONVERGE consortium 2015), for a subset of 1000 randomly
sampled individuals. When A = 0, then the correlations are
all unity, as would be expected, but as 1 increases we observe
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Figure 3 Correlation of unencrypted SNP dosages with encrypted versions as a function of 1. The black line shows the mean correlation pp, (x) and the
red lines the mean =+ SD, estimated from 1000 individuals sampled from the CONVERGE study of major depressive disorder, at 1000 randomly chosen

SNP sites.

a damped oscillatory behavior, with mean correlation of O at
approximately A = 1,2, 3, ... Thus, it is possible to sample a
random orthogonal matrix such that, on average, there is no
correlation between a random input vector of genotypes and
its orthogonal transformation.

We applied these ideas to human genotype dosages from
the CONVERGE study of major depressive disorder in
n = 10,465 individuals (CONVERGE consortium 2015).
We generated a random 10,465 X 10, 465 orthogonal matrix
P10k, which took ~ 1 hr with two cores and 8 GB of memory.
Figure 4A shows the distribution of the correlations p; . (x)
evaluated at 10,000 randomly chosen SNPs, after
Z-transformationz = p, /{= p22’ and Figure 4B shows the QQ plot
confirming the transformed correlations have the expected
null normal distribution. Thus, transformed dosages are
uncorrelated with their untransformed values, despite
being a deterministic, invertible linear transformation of
the latter. We return to this point later.

A potential concern is that rounding errors might arise due
to the very large dimension of the key P. To test this, we
computed PTP, which should equal the identity matrix I.
When P = Py, the off-diagonal values (which should all
equal 0) had typical magnitude 107'!, indicating that the
accuracy is acceptable. Nonetheless, the average magnitude
of off-diagonal elements drifts upwards as the dimension of
the matrix increases; when P = Pyggo the magnitudes are
typically only 10~ 13, Therefore, we might eventually encoun-
ter rounding issues when sampling very large orthogonal
matrices, but not for matrix dimensions up to at least
10,000. One solution would be to divide the samples into
randomly chosen blocks of 10, 000 individuals, sample a dif-
ferent transformation matrix to encrypt each block, and then
permute all transformed data so that the block structure is
hidden.

Applications of orthogonal genotype encryption

It might be thought that orthogonal encryption is of little use,
because both genotypes and phenotypes are transformed with
the same orthogonal matrix, which must be known to those
performing the transformation. However, there are uses for

such a system. First, if the number of phenotypes is large (e.g.,
from a gene expression study), then it might be necessary to
analyze the data on an insecure cloud computing platform.
Second, the encrypted data could be archived without special
security concerns. Third, as we show next, it is possible
to share and analyze federated independently transformed
ciphertexts.

Sharing federated studies: Suppose we wish to perform a
federated mega-analysis on several genotype/phenotype
sets. We assume that each set has first been imputed onto a
common set of SNPs that are ordered consistently across data
sets. Similarly, any covariates must be consistently defined and
ordered across sets. Within each data set D,, with n; subjects,
an independent, private, orthogonal transformation is made
using an n; X n; orthogonal matrix P; sampled at random to
generate transformed ciphertext D,(P;) as above. We com-
bine the shared ciphertexts by stacking them top of each
other. Thus, for three sets we have:

D(z1,F1,W1) 21 F1 W,
D(I,Zc,Fc,W(;)Z D(Zz,FQ,Wz) = 292 Fz W2
D(22,F3,W3) 2y F3 W3

Py, PiH; P1X;

= ngz P2H2 P2X2

Psy; PsHs P3X3

Py O 0 Y1 Hi X;
=10 P, O Yy, Hy X
0 0 Ps Y3 Hz Xs

=D(P¢,y¢,Hc, Xc) (22)

where the subscript C denotes the combined data, and where
the individual orthogonal matrices have been combined in a
block-diagonal manner:

Py, 0 O
Pc=|10 P, O (23)
0 0 P3
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Figure 4 (A) The distribution of
Z-transformed correlations p;q (X)
evaluated at 10,000 randomly
chosen CONVERGE SNPs. The red
line is the normal density with the
same mean and SD. (B) Normal
guantile-quantile plot for the data
in (A).
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P¢ is orthogonal > ,n; X > ,n, and hence the combined data
can be analyzed as if it were a single plaintext that had been
encrypted using Pc. However, in reality, each laboratory con-
tributing a data set D; independently encrypts their plaintext
using their private key P; before sharing it.

Similarly, a data set could also be subdivided into subsets
(e.g., into male vs. female subjects) and each part encrypted
separately so that subanalyses could be performed, and the
subsets distributed separately. We emphasize that for feder-
ated analysis to work, it is necessary for the parties to agree in
advance on a common set of SNPs and covariates.

Removing duplicates and close relatives: dual encryption:
One potential difficulty when sharing encrypted data is the
possibility of duplicates or close relatives occurring in different
cohorts. Because HEGP disguises genetic relationships, it
would not be possible to identify duplicates in the shared
ciphertexts. While there are simple practical ways of elim-
inating individuals with identical IDs in different studies
(e.g., first sharing the hashes of their sample IDs) or with
identical genotypes at a small set of test SNPs (by sharing
hashes of their genotype vectors), these methods would fail
if the IDs were different or if the test genotypes differed
even slightly (as might happen if samples were genotyped
twice).

A solution would be for all parties to first agree on a
restricted subset of Ny common test SNPs (say 100 common
SNPs chosen genome-wide). Each party computes a normal-
ized plaintext Hp restricted to just these SNPs, and they share
the “dual ciphertext” Fr = HrPg, where Pg is a random
Nr X Ny orthogonal key, instead of sharing F = PH.

Importantly, Fr defines a dual form of encryption that has
complementary properties to those of F; for the dual GRM

FrF% = HRPRPRHY = HRHEy = NgKg (24)
is the same as the plaintext GRM, while the SNP correlation
matrix is scrambled. Dual encryption is therefore useless for
genetic association. However, relatives and duplicates may be
identified from the GRM Kg, and agreement reached on a
revised subset of individuals from each study to be shared
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Theoretical Quantiles

using the original scheme of encryption applied to all SNPs.
However, it should be pointed out that sharing information in
any way that reveals relationships between people is inher-

ently risky.
How secure is orthogonal encryption?

Can we determine P given only D(P)? Although we have
shown that PH is uncorrelated with H, we have not shown
that this renders the transformation truly secure. Since or-
thogonal encryption and decryption keys are essentially the
same, our encryption has very different properties from pub-
lic-key methods. Orthogonal encryption is certainly insecure
for certain choices of P. As Figure 3 shows, any orthogonal
matrix close to the identity matrix (i.e., 1 ~ 0) is clearly a
poor choice, so one should restrict attention to random or-
thogonal matrices sampled from either the Stiefel manifold
or using another scheme with similar sampling properties.
One should also check that the mean of the correlations of
the columns of F with the columns of H is close to zero.

Itis obvious that any permutation of the rows of any key will
transform the phenotype and genotypes in the same way, and
so are functionally equivalent. Consequently, orthogonal per-
mutation matrices in isolation are useless as keys. However, it
also means that any permutation of any “good” key is also a
good key.

The singular value decomposition of the unencrypted
n X m dosage matrix H has H = UXV', where U is n Xn
orthogonal, ¥ is n X n diagonal, and V7 is n X m orthogonal.
Thus F = PH = PU3VT, so the rotation U is simply replaced
by another rotation PU. If P is truly random then we seek U
given PU, which appears to be hard problem, since PU re-
sembles another random orthogonal transformation.

Next, we discuss strategies that might be used to decrypt
the data, in likely increasing order of effectiveness.

Brute-force: We first tried sampling random decryption keys
from the Stiefel manifold. Each key contains n(n + 1)/2 in-
dependent double precision numbers, each of which can
take ~10?° possible values. We defined a distance function
between matrices as the mean of the absolute difference



between each pair of corresponding elements (i.e., the L1
norm), to compare the plaintext genotype matrix to an
attempted decryption. We defined a good key as one that
gives a mean distance of < 0.4 between the genotype matrix
and the attempted decryption. Empirically this upper limit
gave results that are visually fairly close to the original, at
least for small data sets. Extrapolating from small matrices,
we estimated a lower bound on the number of attempts re-
quired for solving an n X n key of one good key generated per
10" ! incorrect keys. Thus, ifn = 100, = 10%° keys have to be
tried before a good one is found. Interestingly, even for an
8 X 8 matrix, we could not identify a key that regenerated the
plaintext and even good keys did not reflect the underlying
genotypes fully.

Generating orthogonal random keys is computationally
expensive. The computational complexity of the Stiefel mani-
fold is O(n?); if n = 100, a few hundred keys can be gener-
ated and evaluated per second on one CPU central processing
unit (CPU) core. Our estimated bound suggests that it would
take in the order of 102 CPU hr to get close to a solution.
Larger keys of realistic size take significantly longer, e.g.,
when n = 10, 000, a single key takes ~1 CPU hr to generate.
Rather than generating orthogonal keys, a naive brute-force
attack where potential keys are randomly selected would be
even slower because the search space becomes much larger,
including all nonorthogonal matrices. Thus, it takes a great
deal of CPU power to guess large orthogonal matrices.

These experiments show that there is no consistent re-
lationship between generated keys and their decryption out-
comes using this simple metric. Moreover, the metricis defined
in terms of distance to the plaintext, so it only works when we
know the answer. In reality, an attacker would have to use a
less-accurate score function. The number of possible permu-
tations of the result matrix is so large that it is not feasible to
use a brute-force attack without a method optimized to
compute orthogonal matrices while optimizing for a metric
that has an open-ended end result.

Exploiting non-Gaussian distributions of genotype dos-
ages: Another potential attack, that exploits specific features
of the problem, is as follows. We note that the SNP identities
(genomic positions) need to be distributed with the data to
interpret the biology of any GWAS hits. Population allele
frequencies for SNPs are generally available, and so for a
SNP j with frequency mr; that is in Hardy—Weinberg equilib-
rium, we expect to observe genotype dosages in the approx-
imate proportions

0:7?, 1:2m(1—m),2: (1-m)° (25)
After standardization, the dosages will be rescaled but will
still be trimodal, with modes djo, d;1, dj» that are completely
determined by m; and the constraints that the standard-

ized dosages have mean = 0, variance = 1 and that
djo — djp = dj1 — djp.

Consequently, we might seek an orthogonal matrix approx-
imation @ ~ P~! = P that maps F — @F with columns such
that each has the frequency distribution close to that pre-
dicted by Hardy-Weinberg equilibrium. That is, for each
SNP, the decrypted genotype dosages look like samples from
a distribution with modes at djo, dj1, d;, corresponding to the
rescaled dosages 0, 1,2 (like Figure 1C), which can be mod-
eled using a kernel density estimate

bj(x,7) = Wf@(djoT_ x) +2m;(1 - Wj)@’(djl; X>
dio —
+(1—7Tj)2({)( JZT x)

where ¢(z) is a standard normal density kernel and 7 is the
SD of the kernel. Then, we seek an orthogonal matrix ¢* that
maximizes

(26)

o = argmax,pHHd)j((FcD)ij, T) 27)
] 1

We also require 7 to be small to concentrate the data around

the modes. However, if the plaintext dosages were imputed

then they might well not be exactly integral, so it is necessary

that 7> 0 but is still as small as reasonably possible.

Equation 27 describes a nonconvex and nonlinear objective
function. One potential approach to minimization is via robust
nonconvex optimization based on the Cayley transform
(Bertsimas et al. 2010; Wen and Yin 2013). Whether such
an attack is feasible is unclear: the space of n X n orthogo-
nal matrices has dimension n(n—1)/2, so if n=10%
the minimization is over 4.995 X 107 = 50 million free pa-
rameters. There are likely to be local minima. It is also un-
clear if the minimizer @* is unique, or whether the true
answer necessarily minimizes this quantity (by unique we
mean if two distinct solutions @**, @* exist then they are
permutations of each other).

Fast Independent Components Analysis (FastICA) (Hyvéarinen
and Oja 1997) is another method that attempts to split non-
Gaussian signals from Gaussian noise. FastICA (Hyvérinen
and Oja 1997) finds an orthogonal transformation to map
the data onto “interesting directions,” such that the projec-
tions of the data are strongly non-Gaussian along these di-
rections; in our case, we seek directions in which the
distributions are trimodal. In this context, FastICA may be
thought of as maximizing a different function from the likeli-
hood with a particular choice of optimization algorithm.
However, we found that applying the implementation in
the “fastICA” R package does not improve on our random
brute-force attacks. We configured FastICA to produce an
orthogonal matrix of the same size as the encryption key
and computed the distance score of the resulting matrix.
We found that these scores were much higher than the best
keys generated during the brute-force attack. This is the case
whether using a random initial matrix or providing an al-
ready generated key with a relatively good score. Table 1
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Table 1 Examples of attempted decryption using FastICA

Generated key Score of FastICA output initialized with

score generated key
0.07327044 0.39261006
0.07877358 0.44937107
0.08148585 0.39339623
0.08309748 2.67963836
0.08384434 0.4735456
0.08388365 2.67763365
0.08694969 2.82252358

Seven 4 X 636 genotype matrices were first encrypted and then attempts at de-
cryption made either by brute-force random attempts (left column) or FastICA (right
column). The score is the L1 distance between matrices. FastiCA, Fast Independent
Components Analysis.

shows the results of applying FastICA to the seven best keys
from the brute-force attempt on a 4 X 4 key, with a 4 X
636 data set. The per-entry error in the decrypted data was
0.079 on average, which is quite good, while anything > 0.4
is unusable.

As FastICA attempts to maximize non-Gaussianity in the
attempted decryption, these results imply that non-Gaussian-
ity does not describe the plaintext sufficiently uniquely. While
the decrypted data are non-Gaussian, there are many other
transformations of the ciphertext that also produce highly
non-Gaussian results.

Another form of mathematical optimization is constrained
convex programming, where constraints could be imposed to
ensure the decrypted genotypes take plausible values. The
main difficulty with applying convex programming (and lin-
ear programming, which also handles constraints) is the
choice of a suitable objective function to minimize.

There is good reason to believe that nonconvex program-
ming cannot produce good results. Optimizing a key to im-
prove its decryption results would entail finding a path
through the n-dimensional space of rotations, choosing both
a correct direction to rotate in and a degree of rotation at
each step. Specifically, the score function is not locally con-
vex, and any naive optimization attempt is bound to fall into
local minima. Similarly, gradient descent is also unlikely to
be useful, as each iteration would require calculating a num-
ber (linear to the size of the key) of matrix multiplications
(of the entire data set with the key at each step).

Compression: The plaintext is highly compressible (at least if
all the genotypes are integral), so we might instead seek

@ * = argming compress(F®) (28)
where “compress” is some program like gzip. Again, we do
not know if the most compressible encoding of the genotypes
is identical to the true answer, or whether this could be com-
puted efficiently. We expect that it would be very slow for
large data sets.

Pedigrees: If all the individuals in the study are from a set of
known pedigrees (for example a large set of trios), then the
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expected plaintext GRM E(Kpigintext) is known (i.e., entries for
full siblings and parent-offspring will be one-half, those for
unrelateds will be 0, etc.) and we can assume the samples are
ordered so that the matrix is block diagonal. Then, the orig-
inal and encrypted GRMs are linked via the approximation

IE(Kplaintext) ~ P TKciphertextP 29
which is a system of n(n+ 1)/2 quadratic equations in
n(n+ 1)/2 independent unknowns (the number of degrees
of freedom in an n X n orthogonal or symmetric matrix).
Thus, an approximation to P could be obtained and might
be a useful initial guess for further refinement, if n is small.
When n is large, the problem has exponential time complex-
ity (Grigoriev and Pasechnik 2005). Moreover, any permuta-
tion of the ordering of pedigrees that left Kpjgintexs unchanged
would have the same solution so it would be impossible to
assign phenotypes to pedigrees uniquely. Finally, if everyone
is unrelated then E(Kpgintexe) = I and the method would not
work.

Incremental decryption: Another way of thinking about the
effects of the group of orthogonal transformations is that they
define sets of equivalence classes of data sets D. That is, two
sets D1, D, are equivalent if there exists an orthogonal matrix
P such that D1 (P) = Do, i.e., that maps one to the other. The
transitive property of the group of orthogonal matrices means
that there is always an orthogonal matrix that will transform
any pair of data sets provided they are in the same equiva-
lence class. All data sets in the same equivalence class have
the same likelihood, so these classes can be thought of as
likelihood contours in a high-dimensional space.

This suggests another attack on the problem: find a series of
N incremental orthogonal transformations that successively
resolve individuals by “factorizing along the contour.” That is,
we seek a sequence of orthogonal keys {@®y} and partially
decrypted genotype matrices {Fi} such that (i) [[®) = PT
and (ii) Fx®y — Fy1 with F; = F, Fy = H. Therecertainly
exist infinitely many orthogonal keys that decrypt any subset
of individuals. Suppose we want to decrypt the first k indi-
viduals. Then, if Q,,_ is any n — k X n — k orthogonal matrix
and Iy is the k X k identity, and we partition P = [Py |Pp—g],
such that Py, is the n X k matrix comprising the first k columns
of P, and P,,_j is the last n — k columns, then

(8 o )7k (a)
0 Qu« Qn_kPZ_k Rpk

where R,,_ is any (n — k) X n orthogonal matrix, will decrypt
just the first k individuals. Thus, a sequence of matrices of the
above form would decrypt the data. Using this scheme, in
principle one could either try to decrypt individuals one-by-
one in N = n steps or use a divide-and-conquer strategy with
N = log,n more difficult steps. Of course, since we do not
know PT this merely proves existence: it is not clear that this
type of approach is intrinsically better than trying to estimate

(30)
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Figure 5 Correlation R? of plaintext and ciphertext dosages as a function
of minor allele frequency. Simulations are of genotypes for 1000 subjects
with minor allele frequencies in the range (1...100)/1000. Each black dot
represents one vector of genotypes. y-axis: squared correlation R?, x-axis:
allele frequency. Red line is the smoothed moving average of R%.

PT directly; one still needs to estimate each column of PT, a
nontrivial task.

Private variants: There is one clear-cut weakness to orthog-
onal encryption, which occurs when ultrarare private variants
are present. Suppose a SNP j is private to the individual i.
Then the genotype dosages for this SNP (column j of G)
comprises n — 1 zeros and one nonzero value, say 1 at row
i. After standardization this pattern is preserved in H, al-
though the numerical values are now scaled so the j’th col-
umn mean is zero and its variance is unity. The column j of PH
is then

n—1)P —p

(PH); = ( nno 1) (31

i.e., a linear combination of column i of P and a fixed vector p
equal to the row sums of P. This reveals the decryption key for
individual i if p can be guessed.

Thus, in an extreme case, should every individual carry a
private variant, or equivalently if n covariates were defined
that uniquely identify each individual, then the system can be
attacked successfully. While this is an unlikely situation in
practice, and one that could easily be avoided, it does suggest
that an attack focused on lower-frequency variants might be
able to extract useful information. Further, once an individual
has been decrypted in this way, close relatives might be more
easily identifiable as well.

Equation 30 shows how private variants could be factored
out, leaving a smaller orthogonal key representing common
variants still to be discovered. However, note that factoring out
those individuals with private variants does not reveal useful
information about other unrelated individuals, because the
remaining columns of P are in the subspace orthogonal to that
spanned by the factored columns. In addition, population
allele frequencies need not perfectly match those in the sam-
ple, so it is not necessarily clear which variants are in fact
private. Finally, there is no simple relationship between allele

frequency and the correlation between cyphertext and plain-
text dosages, as is shown in Figure 5, which plots the squared
correlations as a function of allele frequency for simulations.

Limitations

HEGP leaves the calculation of genetic association unchanged,
so should analyze ciphertext in the same execution time as
with plaintext. Software that runs off genotype dosage data
should run altered since the rotated data are dosage-like.
HEGP cannot deal with missing data, which should be im-
puted first. Another limitation is that it isimpossible to analyze
subsets of the individuals (e.g., all those of one sex) once they
have been encrypted, unless each subset was encrypted sep-
arately. However, if a covariate specifying sex is also encrypted
then it would be possible to take sex into account when fitting
the model.

The simulation of very large orthogonal keys (e.g., for
hundreds of thousands of individuals) might also present
technical difficulties. A simple solution would be to first per-
mute the rows of D, then group them into a maximum of
~1,000 — 10, 000 individuals per group, and sample an in-
dependent orthogonal key to encrypt each group separately,
as described above. The initial permutation would enhance
the security of the data by separating potentially similar in-
dividuals (permutations are also orthogonal transformations,
although in isolation they are useless encryptors as they rear-
range phenotype and genotype identically).

For the human depression data, we encrypted the pheno-
type and genotype dosages in 10 groups of 1000 individuals
plus a final block of 664. We computed association across
160 k SNPs using both unencrypted and encrypted dosages.
The correlation between the logP values of the tests of asso-
ciation was 0.999. The average absolute difference between
the logP values was 0.002. All calculations were performed in
R using standard matrix arithmetic. Bearing in mind that
usually only the first two decimal places of a logP value are
of interest when interpreting the significance of genetic asso-
ciation, we conclude that the numerical inaccuracies intro-
duced by the encryption are negligible.

For the mouse platelet data, the mean absolute difference
in logP values for simple association was 6.406e-03, with a
maximum of 3.775e-02. We also implemented the mixed
model (Equation 13) to confirm that heritability estimates
and association P-values are numerically stable after encryp-
tion. For the mixed model, the mean absolute difference was
3.141e-03 and the maximum 2.635e-02. The mixed-model
heritability estimated from the unencrypted data was 0.02534315,
compared with 0.025049 after encryption, a discrepancy of
1.1%. We conclude that HEGP does not noticeably affect
GWAS results.

Quantile normalization to improve security

Figure 1D shows that the distribution of ciphertext dosages
for a given SNP is almost Gaussian. This suggests that quan-
tile normalizing the ciphertext might improve security. In this
scheme, the values in each column of F are first ranked and
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then replaced by their corresponding standard normal
quantiles. After quantile normalization the columns of F
contain different permutations of the normal quantiles of
1/(n+1)...n/(n+ 1) that respect the rank orders of the
original ciphertext for each column, applying a small non-
linear perturbation to the encrypted genotypes, F — Fg. At-
tacks that exploit nonnormality in the encrypted data would
be frustrated, potentially increasing security. A further re-
finement might iterate an alternating sequence of indepen-
dent rotations and quantile normalizations.

We evaluated the effects of quantile normalization on the
ciphertext mouse genotypes and platelet phenotypes. First,
the mean absolute discrepancy for mixed-model associa-
tion logP values for the plaintext vs. HEGP ciphertext was
0.003141 (maximum 0.0263), and the overall correlation
of logP values was 0.999: a close agreement. The mean abso-
lute difference between the plaintext and ciphertext dosages
(ie., L1 norm) [[H—PTF]] was 3.561 X 10 (maximum
1.773 X 107%). Thus HEGP alone induces only negligible re-
ductions in the accuracy of association statistics and geno-
types. However, after encryption and quantile normalization,
the mean logP discrepancy rose slightly to 2.402 X 10~2, max
imum 2.257 X 107!, but the correlation was still > 0.99. Sim-
ilarly, the estimated heritability changed 1.3% from 0.02472 to
0.0250. However, the mean absolute error in the decrypted
quantile-normalized standardized genotype dosages
[[H — P"F, ] rose to 0.03585 (i.e., mean discrepancy 18%),
maximum 0.06980.

Our interpretation of this observation is that plaintext
dosages correspond to a very special choice of coordinates
where the standardized genotype dosages for a SNP are
concentrated on three modes depending on the SNP allele
frequency. Any random rotation of the genotypes produces
coordinates such that the ciphertext dosages closely resem-
ble a Gaussian sample. After rotating into such a coordinate
frame it is then possible to make small nonlinear perturba-
tions that have little effect on association statistics or heri-
tability, but degrade the decryption back into the true
coordinate system.

We also explored adding further security by quantile nor-
malizing and rounding the encrypted dosages. As would be
expected, there is a trade-off between the number of signif-
icant digits retained after rounding and the accuracy of
association and decryption.

Logistic regression

So far, we have considered quantitative traits with normally
distributed errors, analyzed in a mixed model framework.
While case-control studies (i.e., where the phenotype
y € {0,1}) are often analyzed as if they were quantitative
traits, under some circumstances it is preferable to use logis-
tic regression, where

e(Xa+ngj)i

1 + e(Xa+gj,Bj)i (32)

Pr(y;=1) =p; =
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where (Xa + g;B;); is the ith element of the vector Xe + g;3;.
Write X; = [X|g;] and a; = [@|B;]. The likelihood for the data
at SNPj is

logl_ZIOg( (1-p;)* y‘) +C(y)
=y Xa] Zlog(l + eX5®), ) +Cly)

= (Py)" (PX;)a Zlog<1+e(x"‘l )+Cy) 63

for any orthogonal matrix P, and where C(y) is a function of y
only that can be ignored when maximizing the likelihood.
Thus, the likelihood function comprises two components,
namely y"X;a;, which is invariant under orthogonal trans-
formation, and 3 ";log(1 4 e%i%)), which is not invariant, in-
stead transforming like > ;log(1 + ePXi%)). However, only
the first component involves both the dependent and inde-
pendent variables. This component is shared with the log-
likelihood for the normal linear model, which is why fitting
a linear model to case-control data generates P-values resem-
bling those from logistic regression. It should be clear that
case-control data (i.e., y; € {0,1}) are no longer of the same
form after an orthogonal transformation, so strictly speaking
the likelihood no longer represents a logistic model after
transformation. Nonetheless, we can attempt to estimate pa-
rameters by maximizing the transformed likelihood (Equa-
tion 33).

We fitted the logistic log-likelihood model to simulated
SNP data, using untransformed and orthogonally transformed
data to assess the change in maximum likelihood parameter
estimates under transformation. We found that the estimates
changed considerably and therefore orthogonal encryption is
not homomorphic for logistic regression, for which we there-
fore recommend methods such as those of Wang et al. (2015).

The mixed-model linear transformation

Are any nonorthogonal transformations suitable for HE? The
mixed-model transformation A~! shares some, but not all, of
the invariant properties of the orthogonal group. If we set

A=Ay Wa=AT'X Fa=AT"Ff;=A""h; (34

then the Var(z,) = I and the log-likelihood transforms thus:

—2logl = (y—Xa—h;B;)"V " (y — Xa — hjB;) + nlog|V|

= (sa~Waa—fB))" (54 — Waa —foiB;) (35
Thus, the log-likelihood is preserved so we can extract the
mixed-model GWAS P-values as before. Moreover, A~! has n2
free parameters, compared to n(n — 1)/2 for P, so the decryp-
tion problem is presumably harder. Furthermore, it is easily
seen that A~! may be replaced by PA™? for any orthogonal P
making the decryption harder still. However, there is some
loss of information; it is no longer possible to estimate the



variance components o2, 07 nor the heritability h% Further-
more, a federated analysis along the lines described above
would not give exactly the same P-values as would orthog-
onal transformation followed by a mixed-model transfor-
mation applied to the combined data set, because each
component study has been transformed separately without
guaranteeing that the federated transformed GRM is also
the identity; the structure of the federated variance matrix
will be of the form

11 ? ?
Ve=| ? I 7 (36)
? 0?7 I

Lastly, linkage disequilibrium between the SNPs is no longer
conserved

FiFa = HT(A"")'A"H = HTA™%H # nL (37)

(because A1 is symmetric).

Discussion

HEGP has many desirable properties for quantitative genet-
ics. It preserves linkage disequilibrium between genetic
variants, and key association statistics including heritability
between variants and phenotypes, while obscuring relation-
ships between individuals. However, we do not yet fully
understand when HEGP is cryptographically secure. Where
private variants are available, decryption is straightforward.
While it is simple to remove low-frequency variants and
therefore protect against this weakness, the larger question
of security remains. We have sketched out several potential
attacks but our investigations have not found a workable
method. To settle this question, one would need either to
find an efficient inversion algorithm, perhaps a version
nonconvex minimization under constraints (Bertsimas et al.
2010), that recovers the correct genotypes accurately, or alter-
natively to show there are too many incorrect “genotype-like”
decoy solutions far from the true answer, and that therefore
the problem is essentially noninvertible. It is likely that the
inversion problem might be solvable for small data sets, but
much harder for larger ones.

Orthogonal encryption also has the potential weakness
that the key space is continuous; in conventional crypto, a
small change in the key used leads to a completely different
ciphertext. In contrast, a small change to an orthogonal key
leads to small changes in the ciphertext. However, at this
point, we know of no algorithm that can exploit this. We found
that transformed genotypes closely resemble samples from a
normal distribution, and so can be replaced by exact normal
quantiles with only small effects on accuracy. Hence, we can
certainly protect the ciphertext from attacks that rely on non-
Gaussianity.

The hardness of the inversion problem depends not only on
avoiding private variants, but on choosing a good key. Those

sampled from the Stiefel manifold work well at obscuring
correlations between plaintext and ciphertext genotypes, such
that—as measured by mean correlation across all sites—
transformed individuals do not resemble the originals more
closely than do simulated individuals with matched allele
frequencies. However, it is possible that other measures of
genetic similarity between individuals might not be ran-
domized to the same extent. Thus, more work is needed
to determine precisely when random orthogonal keys are
cryptographically secure. We submit this problem as an
open challenge to the community, as described at https://
github.com/encryption4genetics.

While HEGP lacks mathematical proof of security com-
pared to normal crypto schemes, most schemes are broken due
to weaknesses in implementation (bad random number gen-
erators, side-channel attacks, etc.) not algorithms. HEGP has
the advantage of an extremely simple algorithm, and is
probably immune to side-channel attacks (and to an extent
social engineering and rubber-hose cryptanalysis).

Given our current knowledge, we claim that random
orthogonal keys provide an encryption scheme where it is,
at the least, very difficult to recover individual genetic or
phenotypic data. This is at least equal to the level of security
of adate shift of medical records, which is also not completely
secure but makes it difficult for researchers to identify an
individual if they do not intend to do so. Thus, should an
effective attack be discovered, orthogonal keys still offer
“pretty good genetic privacy” in the sense that they would
prevent straightforward copying of information about indi-
viduals’ genotypes. We argue that routine orthogonal trans-
formation of genotypes and phenotypes, in combination
with existing legal protocols, would enhance security, in-
crease collaboration and data sharing, and thereby acceler-
ate progress.

In summary, we have shown how to make a distinction
between public information about genetic architecture and
allelic effects, and private information about individuals. This
general principle could be applied more widely. We mention
two examples. First, to the extent that medical records can be
analyzed in a linear modeling framework with a suitable
design matrix, orthogonal encryption offers a means to per-
form federated analyses on orthogonally encrypted medical
records. Second, genetic improvement of crops and farm
animals could be accelerated. While some germplasm and
genetic variation data are in the public domain, commercial
breeders are developing new varieties and breeds, and have
extensive proprietary genetic and phenotypic data that could
be usefully shared using HEGP, so that alleles conferring a
beneficial trait could be discovered and published without
revealing the genomes of proprietary germplasm under
development.

Such a move, toward the idea that an allele’s effects are
public property while an individual’s genotypes are private, is
more important than the encryption mechanism used to at-
tain it.
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