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ABSTRACT
To cope with the large bandwidth and low-latency requirements,
Virtual Reality (VR) systems are steering toward user-centric sys-
tems in which coding, streaming, and possibly rendering are person-
alized to the final user. The success of these user-centric VR systems
mainly relies on the ability to anticipate viewers navigation. This
has motivated a large attention in studying the prediction of user’s
movements in a VR experience. However, most of these work lack
of a proper and exhaustive behavioural analysis in a VR scenario,
leaving many key-behavioural questions unsolved and unexplored:
Can some users be more predictable than others? Do users have
their own way of navigating and how much is this affected by the
video content features? Can we quantify the similarity of users
navigation? Answering these questions is a crucial step toward the
understanding of user’s behaviour in VR; and it is the overall goal
of this paper. By studying VR trajectories across different contents
and through information-theoretic tools, we aim at characterizing
navigation patterns both for each single viewer (profiling individ-
ually viewers - intra-user analysis) and for a multitude of viewers
(identifying common patterns among viewers - inter-user analysis).
For each of these proposed behavioural analyses, we describe the
applied metrics and key observations that can be extrapolated.
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1 INTRODUCTION
One of the major challenge for the next decade is to design virtual
and augmented reality systems (virtual reality systems at large)
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for real-world use cases such as healthcare, entertainment and, e-
education. In these novel applications, the user becomes an active
consumer that interacts with the content in a fully immersive en-
vironment. This interactivity however can push the limits of both
connectivity and computation. To avoid this, Virtual Reality (VR)
interactive systems will need to operate at scale in a personalized
manner, remaining bandwidth-tolerant whilst meeting quality and
latency criteria. This can be accomplished only by a fundamen-
tal revolution of the coding/streaming/rendering chain that has to
put the interactive user at the heart rather than at the end of the
chain - as is the case of classical non-interactive streaming systems.
This highlights the need for VR systems to adapt to user’s interac-
tions and to develop user-centric VR systems, such as VR streaming
platform, VR content design, and user-based Quality of Experi-
ence (QoE) assessment [4]. However how to model and predict
user’s interactions it is still an open challenge under investigation.

Despite a growing attention on anticipating viewer’s movements
during an immersive experience [8], an efficient prediction tool is
still an open research. One major limitation is the lack of under-
standing of user’s behaviour in a VR experience, which could be
crucial for an efficient prediction. For example, it is not clear if the
content has a dominant impact on user’s navigation patterns; or
if some users are more predictable than others. So far, the way in
which users explore the VR content has been characterised in terms
of angular velocity, frequency of fixation, and mean exploration an-
gles [1, 13]. A more recent visual (and qualitative) tool used to study
user’s behaviour in VR is the heatmap, which identifies areas of the
content mostly attended by viewers within a time interval [10, 13].
While these metrics and tool provide a general understanding of
user’s behaviour, they all fail in identifying similarity among view-
ers over time. For example, given a scene characterised by two
focus of attentions (FoAs), we can identify two types of behaviour:
users that move continuously back and forward from the two FoAs;
others that display for a consistent interval the first FoA and af-
terwards move on the second one. On average, both types would
spend the same amount of time displaying the two FoAs, leading
to the same heatmap, despite their different navigation paths. An-
other possible metric to consider is the angular velocity, that could
quantify the head motion speed, neglecting however the qualitative
movements of the users. To further characterise users based on
their VR interactions, a clustering algorithm for VR trajectories has
been proposed in [11]. This provides a general idea of users similar-
ity without offering however a quantitative metric. In summary, a
proper quantitative metric for user’s behaviour study in VR is still
missing.

The analysis of trajectories in a 3D space is a common problem
widely investigated across many disciplines. For example, human
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mobility is a multidisciplinary field of social science, neuroscience
and transportation, that refers to movements of people in a spatio-
temporal dimension, such as the daily life on earth’s surface [3]. A
common trend has been to adopt information-theoretic (IT) metrics
to statistically characterise the uncertainty of human mobility pat-
terns [14]. Information theory is indeed an important tool born for
communication systems, which has been used in different domains
to detect hidden interactions in complex systems [2].

In this paper, we attempt to use tools from information theory
to identify key behavioural aspects of users during an immersive
experience. We are interested in quantifying similarities not only
among different users but also for the same viewer across contents,
leading to a two-fold investigation: an intra-user behaviour analysis,
and an inter-user behaviour analysis. To the best of our knowledge
this is the first work using IT metrics for analysing trajectories in
VR context.1 The intra-user behaviour analysis is aimed at under-
standing the level of interactivity of each single user across different
contents. On the other hand, the inter-user analysis considers navi-
gation across an entire group of viewers to asses if user’s behaviour
can help in the prediction of other viewer’s behaviour. The main
contributions of this work are the following:

• to adopt trajectory-based metrics from information theory
to VR domain;

• to highlight the importance of looking at user’s trajectories
instead of more qualitative measures of user’s interactions;

• to propose a behavioural study of users in a VR system
looking for both an intra- and and inter-user variability.

We strongly believe these investigations can bring key-information
in the understanding of any hidden patterns of immersive user’s
navigation. Our outcomes can be eventually exploited in algorithms
to accurately predict where users most likely look at in the near
future during an immersive experience. The remaining part of this
paper is organised as follows: an overview of the proposed VR
analysis framework is provided in Section 2. Section 3 describes IT
metrics considered in this work. A deep user’s analysis is presented
in Section 4, highlighting both similarities in the history path of a
single user and across an entire set of viewers; the main outcomes
of this behavioural study are finally summarised in Section 5.

2 USER BEHAVIOUR ANALYSIS IN VR
Fig. 1 shows the framework used in this work to analyse VR users.
The first step of any experimental study is the data collection
(Fig. 1 A). In a VR scenario, the data is the set of navigation tra-
jectories that identifies movements of users while experiencing an
immersive content. In details, the VR content is typically an om-
nidirectional or spherical video, which represents an entire 360◦
environment on a virtual sphere. The viewer is virtually positioned
at the centre of this sphere. To mimic a real-life scenario, the user
cannot display the entire environment around him/herself, but only
a restricted portion, named viewport. The user is provided by a VR
device – typically an head-mounted display (HMD), that allows to
change viewport according to user’s viewing direction. Therefore,
the sequence of spatio-temporal points representing over time the
user’s viewing direction on the sphere identifies user’s navigation

1Until now, entropy has been applied only to heatmap and not to user’s trajectory as
presented in this work.

within an immersive experience. Formally, the VR user trajectory
is denoted by {(𝑥1, 𝑡1), (𝑥2, 𝑡2), .., (𝑥𝑛, 𝑡𝑛)} where 𝑡𝑖 is the data ac-
quisition time (i.e., video timestamp) with 𝑡𝑖 < 𝑡𝑖+1, ∀1≤𝑖<𝑛 , while
𝑥𝑖 represents the spatial coordinates of the viewing direction (cor-
responding to viewport’s centre). Based on the selected convention,
𝑥𝑖 can be recorded in different formats: quaternion, spherical co-
ordinates and Euler angles are the most common representations
in VR. Some datasets containing these VR trajectories are already
publicly available (Fig. 1 B). In particular, they provide a collection
of head and/or eye-gaze positions as proxy of the viewing direction
for a set of users which explored different VR images/videos [8].
In this work we use the 360◦ video dataset provided in [1]; further
details on the database will be given in Section 4.1.

From the collected raw data, some pre-processing is usually
needed (Fig. 1 C). In our case, user’s trajectories are stored as
quaternion, and not at a constant sampling rate. Thus, we firstly
re-sampled all the collected data based on the frame rate of the
corresponding video. For the sake of notation, in the following we
denote the VR trajectory by {𝑥1, 𝑥2, 𝑥𝑛} omitting the timestamp 𝑡𝑖 .
Then, we converted the original format data (i.e., quaternion) in two
different formats more suitable for a user’s analysis, neglecting in
this way the viewport’s rotation which is already well-known to not
be so relevant. As depicted at the top of Fig. 1 C, the spatial position
𝑥𝑖 is represented in spherical coordinates by latitude-longitude pair,
i.e., 𝑥𝑡 = (𝜃𝑡 , 𝜙𝑡 ) with 0 ≤ 𝜃𝑡 < 2𝜋 and 0 ≤ 𝜙𝑡 ≤ 𝜋 . To be compliant
with most of the behavioural analysis tools, we also quantized the
spherical content into regular block, each one with an assigned ID
value (i.e., 𝐵1, 𝐵2, .., 𝐵𝑇 in Fig. 1 C, lower part).

The data is then ready to be processed, Figure 1 D. This step is
the core of our proposed VR analysis framework, and it is aimed
at better understanding user’s navigation within omnidirectional
contents. The analysis highlights a two-line investigations:

a) intra-user behaviour analysis aims at characterizing the
interaction of each user over time against different video
contents. Studying single user’s trajectory over time allows
us to profile user or to identify recurrent navigation patterns.

b) inter-user behaviour analysis aims at studying a user be-
havior in correlation with others. The target here is to un-
derstand how much user’s trajectories are informative in
understanding/predicting other user’s behaviors.

For both directions, we propose to use information-theoretic (IT)
metrics due to their powerful ability in quantifying interactions
within the same or between different sources of information. In
the following section, we present the metrics that we used for the
proposed user’s behaviour analysis in a VR scenario.

3 INFORMATION-THEORETIC METRICS
Information theory has been introduced by Shannon in [12] to
answer fundamental questions on communication theory. Since
then information-theoretic metrics have been applied to a much
wider range of disciplines beyond communications, becoming a
de-facto statistical tool for data analysis in fields such as physics,
computer science, and neuroscience [15]. A key quantity in in-
formation theory is entropy, which relates to the uncertainty or
randomness associated with an event. The less an event is certain,
the more informative the event is, resulting in higher entropy. In
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Figure 1: Overview of user behaviour analysis in a VR system: A) Collection of user’s trajectories during immersive experi-
ments. B) The raw data collected from different users and content are stored in a database. C) After a general pre-processing
(i.e., re-sampling), the VR trajectories are transformed in themost suitable format for the final analysis. D) Information-theory
metrics are applied to the VR trajectories looking for the desired characteristics: intra- and inter-user behaviour analysis.

other words, the entropy is a measure of information required on
average to describe a random variable [2]. More formally, given a
random variable 𝑋 , with 𝑥 being one possible realisation of 𝑋 , the
entropy is measured by:

𝐻 (𝑋 ) = −
∑
𝑥 ∈𝑋

𝑝 (𝑥) log
(
𝑝 (𝑥)

)
(1)

where 𝑝 (𝑥) is the probability of experiencing the event 𝑥 . An event
occurring with high-probability 𝑝 (𝑥) is poorly informative (low
entropy). Conversely, the occurrence of a very unlikely event car-
ries a large information. The concept of information reflected by
the entropy is highly related with the degree of predictability of a
variable, with low values of entropy for highly predictable events.
Authors in [14] exploited this correlation by using the entropy as a
proxy of predictability of humanmobility patterns. Specifically, they
introduced the actual entropy to measure the information (and pre-
dictability) carried within a given trajectory, considering both the
visiting rate but also the temporal order of visited areas. The actual
entropy can be estimated from the past history of user’s trajectory
by Lempel-Ziv compression algorithm [16]. Let𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}
be a trajectory of 𝑛 points sampled at periodic time with 𝑥𝑡 being
the position at the 𝑡-th time-slot, and let {𝑥𝑡 , 𝑥𝑡+1, . . . 𝑥 (𝑡−1)+𝜆} be
a subsequence of 𝑋 starting at time 𝑡 and spanning 𝜆 time-slots,
the actual entropy assumes the following form:

𝐻𝑎𝑐𝑡 (𝑋 ) ≈
(
1
𝑛

𝑛∑
𝑡=1

𝜆𝑡

)−1
log2 (𝑛) (2)

where 𝜆𝑡 is the length of the shortest subsequence in 𝑋 starting at
timeslot 𝑡 and not appearing between time 1 and 𝑡 − 1.

An other fundamental metric of information theory is theMutual
Information (MI). This metric measures the reduction of uncertainty
of a random variable 𝑋 provided by the knowledge of a second
variable 𝑌 [2]. A large MI indicates that most of the information
about 𝑋 can be inferred from 𝑌 reducing therefore the uncertainty
on 𝑋 . Recalling the conditional entropy 𝐻 (𝑋 |𝑌 ) as the uncertainty
of 𝑋 given 𝑌 , the MI is defined for two variables 𝑋 and 𝑌 as:

𝐼 (𝑋,𝑌 ) = 𝐻 (𝑋 ) − 𝐻 (𝑋 |𝑌 ) =

=
∑

𝑥 ∈𝑋,𝑦∈𝑌
𝑃 (𝑥,𝑦) log

(
𝑃 (𝑥,𝑦)

𝑃 (𝑥)𝑃 (𝑦)

)
(3)

where 𝑝 (𝑥,𝑦) is the joint probability of experiencing both events 𝑥
and 𝑦, and 𝑃 (𝑥), 𝑃 (𝑦) their marginal distributions. To note that MI
is zero if the two variables are uncorrelated, i.e., 𝑝 (𝑥,𝑦) = 𝑝 (𝑥)𝑝 (𝑦).

Finally, Transfer Entropy (TE) is a conditional entropy that con-
siders not only the occurrence of events but also their temporal
ordering. This metric measures the reduction of uncertainty about
the future value of a variable (𝑌𝑓 𝑢𝑡𝑢𝑟𝑒 ) by knowing the whole past
history of itself (𝑌𝑝𝑎𝑠𝑡 ) and of a second variable (𝑋𝑝𝑎𝑠𝑡 ). Therefore,
TE is defined as follow:

𝑇𝐸 (𝑋 → 𝑌 ) =
= 𝐻 (𝑌𝑓 𝑢𝑡𝑢𝑟𝑒 |𝑌𝑝𝑎𝑠𝑡 ) − 𝐻 (𝑌𝑓 𝑢𝑡𝑢𝑟𝑒 |𝑋𝑝𝑎𝑠𝑡 , 𝑌𝑝𝑎𝑠𝑡 ) .

(4)

In contrast with MI, TE measures better the influence from 𝑋 to 𝑌 .
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A Sample thumbnail frame of
- video ID 03
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Figure 2: Examples for ID 03 (A) of fixationmaps of 3 users (B, C, D). In red, fixation positions and the corresponding timestamp.

ID Name Video Selected Segment Description
01 Diving 00:40 - 01:40 No main FoA
02 Paris 00:00 - 01:00 Scene cuts with always one or more FoAs
03 Rollercoaster 01:05 - 02:05 One main FoA
04 Timelapse 00:00 - 01:00 moving FoAs distributed on the horizon line
05 Venice 00:00 - 01:00 No main FoA

Table 1: Key features of the sequences from [1].

4 RESULTS
In the following, we first describe the dataset used in our VR be-
havioural analysis. We then provide and comment experimental
results for both intra- and inter-user behaviour analysis (Fig 1 D).
In more details, we adopt the metrics described in the previous
sections, in the case of 𝑋 and 𝑌 being user’s trajectories.

4.1 VR Trajectory Dataset
To apply our proposed framework of user behaviour analysis, we
chose the dataset published by Corbillon et al. [1]. This dataset
collects navigation trajectories of 57 users who navigated within
5 omnidirectional sequences. Table 1 shows a wide selection of
content features of this dataset in terms of FoAs, scene cuts, etc..

4.2 Intra-User behaviour analysis
Our first direction of VR user analysis aims at characterising each
user individually looking for patterns over time and across different
contents. For example, some viewers could be generally interested
in exploring the immersive video, independently from the content,
and others be always static.

To study independently the behaviour of each user while navi-
gating, we adopt the actual entropy (𝐻𝑎𝑐𝑡 (𝑋 )) which quantifies the
similarities over time within the same variable. We compare the ac-
tual entropy with the entropy of fixation map, 𝐻 (𝑀), evaluated as
the entropy of all fixation points2 per user for each video recorded
during experiment per user for each video. This metric is typically
used to evaluate model of visual attention, and gives a qualitative
idea about the dispersion of movements over time. In both metrics,
a low value of entropy means that the user is focused on a restricted
area; while high value stands for more exploratory movements. The
main difference between the two metrics is that the actual entropy
considers temporal order of navigation points which is neglected
by the fixation map entropy. Fig 2 shows one frame selected from
video ID 03 (Fig. 2A) and fixation maps evaluated by three different
users (users 30, 48 and, 49). Corresponding values of the entropy
metrics are also provided in each subfigure caption (Fig. 2B–2D).
For user 30 both metrics are in agreement as they are both low.
This is explained by the very focused fixation map shown in Fig. 2B.
Conversely, fixation maps of users 48 and 49 are more spread along
2In this work, we consider user’s head positions as proxy of their fixation points.

the equatorial area (Fig. 2C and Fig. 2D, respectively). This leads
to higher values of entropy, as already anticipated. Interestingly,
there is a significant difference in terms of actual entropy for these
last two viewers (0.65 for user 48 and 0.28 for user 49), difference
that is not fully captured by the entropy of fixation map. Looking
at the distribution of timestamps (i.e., red numbers appearing in
the fixation maps), we can notice that user 48 is navigating more
randomly inside the content. User 49 is also moving within the con-
tent, but his/her fixation points are more contiguous over time. For
instance, from time 30 to 40 the user remains in the right side of the
panorama. Therefore, actual entropy seems to detect discontinuity
and randomness in the trajectories better than 𝐻 (𝑀).

Beyond the above visual results, Fig. 3 provides amore exhaustive
analysis of the actual entropy for the entire dataset. In particular,
Fig. 3A depicts the actual entropy (bar plot), and the entropy of
fixationmap (red diamond) per user and per video. It is worth noting
that most of the users preserve consistent behaviour across videos.
Users with high value of actual entropy in a single video tend to
experience high actual entropy also for other videos (see user 6);
the same for small values of actual entropy (see user 50). This is a
remarkable observation as it shows that users can be profiled across
different videos. This is confirmed by the statistical analysis for all
users across videos showed in Fig. 3B, which provides box plot of
the actual entropy. The variance of the actual entropy is indeed kept
small for the majority of the viewers. Finally, even if the content
might not play the dominant role in defining user’s behaviour, it is
still worth mentioning that it plays an important influence. Fig. 3C
depicts the probability distribution of the actual entropy per video.
This plot shows that video ID 02 (one main FoA) has the lowest
mean value and small variance of actual entropy; conversely video
with more FoAs, such as video ID 01 and 04, are characterised by
higher mean value and variance of the metric. This means that the
way in which users navigate within the omnidirectional content is
more diversified when there are more FoAs.

4.3 Inter-User behaviour analysis
While the intra-user analysis provides a way to profile each user
based on his/her way of navigating within VR contents, we are now
interested in extending the behavioural analysis with a comparison
among users. In particular, we aim at measuring key differences
among navigation patterns of different viewers over time within the
same content. To carry out this inter-user behaviour analysis, we
use Mutual Information (MI) and Transfer Entropy (TE). As defined
in Section 3, these two entropy-based metrics allow us a pairwise
similarity analysis among users considering their positions over
time (i.e., their trajectories).

https://www.youtube.com/watch?v=2OzlksZBTiA&t=1s
https://www.youtube.com/watch?v=sJxiPiAaB4k&t=63s
https://www.youtube.com/watch?v=8lsB-P8nGSM&t=56s
https://www.youtube.com/watch?v=CIw8R8thnm8
https://www.youtube.com/watch?v=s-AJRFQuAtE&t=59s
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Figure 3: Intra-user behaviour analysis: A entropy of each user per video; B statistical analysis of the entropy for all users
across the dataset; C probability distribution of actual entropy for each video across users.

As benchmarking, we also analyse user’s behaviour with two
tools existing in the literature and based on the distance among
users: Inter-Observer Coungrency (IOC), and clique-based cluster-
ing algorithm for VR trajectories. The first metric has been proposed
in [7] as a measure of similarity for users viewing traditional im-
ages, and it is based on a one-to-all comparison (i.e., the heatmap
of a single user is compared against the one computed based on
all other users). Instead, the clique-based clustering detects view-
ers that display similar viewports while consuming an immersive
content [11]. In other words, this algorithm identifies group of
users based on their consistency in the navigation. Thus, we de-
fine a Clique-Index (CI) to quantify the consistency among users
detected by the clique-based clustering. Given the set of clusters
at instant 𝑡 , the CI for a user 𝑢 is the number of users in the same
cluster of 𝑢 at time 𝑡 (i.e., 𝑤𝑡 (𝑢)) normalised per the size of the
maximal cluster (i.e., in terms of number of elements) at time 𝑡
(i.e.,𝑤𝑚𝑎𝑥

𝑡 = max𝑢 𝑤𝑡 (𝑢),∀𝑢). More formally:

𝐶𝐼 (𝑢) = 𝑤𝑡 (𝑢)
𝑤𝑚𝑎𝑥
𝑡

, ∀𝑡 = 1, ...,𝑇 (5)

where 𝑇 is the total length of the analysed video.
Equipped with the above notation, we can now provide the

inter-user behaviour analysis. First, we split each content in tempo-
ral segments of duration 2 sec., i.e., typical chunk length in video
streaming systems. Then, we compute per each segment MI and
TE between users adopting the software provided by [15], and
heatmaps by the tool presented in [6]. To preserve consistency, we
compute clique-based clusters (i.e., trajectory-based format) over
a time-window of 2 sec.. Finally, to verify a correlation between

user’s movements and video content, we also evaluate content char-
acteristics in terms of temporal and spatial information indexes (TI
and SI, respectively) [5] and, number of main FoA objects detected
in the scene by a Multiple Object Tracking tool [9].

For the sake of brevity, we focus on results carried out by only
two videos, namely ID 02 and ID 04. In particular, these videos cover
different content characteristics as shown in the selected frames
provided on the bottom Fig. 4A and Fig. 4B. Specifically, video ID
02 has always one or two static main objects in the scene: a tour-
guide and the Eiffel Tower in the first two frames; only the tower
toward the end of the video. On the contrary, video ID 04 is rather
characterised by many fast-moving objects. These intuitions are
confirmed by content information metrics (i.e., TI, SI indexes and
number of FoA detected objects) provided in the bottom subplot
of Fig. 4A and 4B. The number of detected FoAs is identified by
the colour code of the TI curve. Video ID 02 has only one or two
FoA objects, and a TI index much lower than the one for video ID
04. Conversely, video ID 04 has more FoA objects with a peak of 9
around the middle of the sequence. The remaining subplots of Fig. 4
show the inter-user metrics introduced in Sec.3 as a function of
time, and averaged across users. In the top subplot there are metrics
based on spatial distance such as CI and IOC compared with the
averaged pairwise geodesic distance between users over time (red
dashed line). The middle subplot depicts instead the IT metrics MI
and TE. The entropy-based metric TE seems to reflect quite well
the content information, especially the TI index and the number of
FoA objects. In video ID 02 (Fig. 4A), TI increases around 20-30s and
FoA objects are two instead of one. Users react by having a more
exploratory trajectories – reflected by higher geodesic distance.
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A Video ID 02 B Video ID 04

Figure 4: Inter-user behaviour analysis in two videos: top subplot shows distance metrics (i.e., CAI and IOC), middle one IT
metrics (i.e., MI and TE), bottom one content information (i.e., TI, SI indexes and number of FoAs. The latter is reflected by the
colour of the curve.) In the bottom, there are 3 thumbnail frames corresponding to 3 different temporal instant of the video.

This increase of randomness in the trajectories is measured well
by the TE that peaks in this temporal range. Finally, video ID 04
has many more FoA detected objects than ID 02. This leads to a
more random navigation of viewers, proved by higher TE values.
This difference is captured by TE but not by the spatial metrics, top
subplot in both figure. This preliminary study has then shown a
tight correlation between content information and TE.

5 CONCLUSION
In this paper, we proposed a novel behaviour analysis in a VR sce-
nario aimed at characterising navigation patterns across content or
across users. This is carried out by considering a space-time trajec-
tory domain rather than only a spatial domain. By leveraging on
the knowledge from different disciplines, we based our behavioural
investigation of VR viewers on information-theoretic metrics. The
key intuition is to show that these IT metrics allow us to quantify
the actual behaviour of user’s navigation. We conduced an intra-
user behavioural analysis focused on understanding the behaviour
of each individual when navigating in VR. By measuring the ac-
tual entropy of navigation trajectory, we identified for some users
consistent patterns across different contents. For example, some
users experience a more predictable trajectory for all videos. We
also observed a correlation between content and actual entropy: the
lack of a dominant FoA leads to more discontinuity and randomness
in navigation trajectories. As second step, an inter-user behavioural
analysis was carried out, aimed at understanding how much infor-
mation about a single content can be extracted when observing
an entire population of viewers. The transfer entropy showed to
better quantify behavioural similarity among users rather than the
metrics based on spatial distribution. Future work will focus on a

better understanding of how viewer’s profiling and common be-
havioural information among users could be eventually exploited
in a predictive algorithm for VR trajectory.
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