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ABSTRACT:
Signal-to-noise ratio (SNR) estimation is necessary for many speech processing applications often challenged by

nonstationary noise. The authors have previously demonstrated that the variance of spectral entropy (VSE) is a

reliable estimate of SNR in nonstationary noise. Based on pre-estimated VSE-SNR relationship functions, the SNR

of unseen acoustic environments can be estimated from the measured VSE. This study predicts that introducing a

compressive function based on cochlear processing will increase the stability of the pre-estimated VSE-SNR rela-

tionship functions. This study demonstrates that calculating the VSE based on a nonlinear filter-bank, simulating

cochlear compression, reduces the VSE-based SNR estimation errors. VSE-SNR relationship functions were esti-

mated using speech tokens presented in babble noise comprised of different numbers of speakers. Results showed

that the coefficient of determination (R2) of the estimated VSE-SNR relationship functions have absolute percentage

improvements of over 26% when using a filter-bank with a compressive function, compared to when using a linear

filter-bank without compression. In 2-talker babble noise, the estimation accuracy is more than 3 dB better than other

published methods. VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0001168
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I. INTRODUCTION

Signal-to-noise ratio (SNR) is a measure that compares

the level of the desired signal (S) to the level of background

noise (N), the ratio of signal power to noise power.

Knowledge of the degree of background noise corruption is

necessary for optimizing signal processing strategies in

many acoustic applications, such as speech enhancement

and automatic speech recognition. In the case of speech

enhancement, the aim is to reduce the background additive

noise without reducing speech intelligibility. Most speech

enhancement algorithms accomplish this by applying a gain

function (Gerkmann and Hendriks, 2012) based on certain

error criteria (e.g., mean square error), to multiply the mag-

nitude spectrum of speech which is corrupted by back-

ground noise (noisy-speech). Such an enhancement strategy

relies particularly on accurate estimates of the SNR, as the

gain function itself or the optimization of the gain function

often depend on the estimated SNR (Plapous et al., 2006).

Generally, the SNR can be estimated over either a long

time-scale (often greater than 1000 ms, referred to here as

global SNR), or a short time scale, with duration of less than

30 ms (referred to here as instantaneous SNR). Instantaneous

SNR is often preferred in conventional speech enhancement

algorithms (Ephraim and Malah, 1984; Plapous et al., 2006).

This is because the instantaneous SNR tracks the rapid fluc-

tuations of the noise power more closely, and this benefits

speech enhancement in nonstationary noise. However, in

practice, the estimated instantaneous SNR in nonstationary

noise can be erroneous due to the rapid fluctuations of noise

power. These errors can cause speech distortion in speech

enhancement (Loizou and Kim, 2011). In some cases, global

SNR estimation can provide a more accurate estimation of

SNR compared to an instantaneous SNR estimation, in both

stationary and nonstationary noise (May et al., 2017;

Papadopoulos et al., 2016). This is thought to be because the

longer time-scale noise power is more stable than that using

a shorter time scale. Moreover, regulating the underlying

gain function based on a longer time scale can lead to a

smoother noise reduction. Martin et al. (2004) reduced the

speech distortion in a minimum-mean-square-error based

enhancement algorithm by regulating the lower limit of the

gain adjustment according to the global SNR. Currently,

there is increased interest in using a global SNR estimate to

optimize conventional speech enhancement algorithms

(Martin et al., 2004) or to develop supervised speech

enhancement algorithms (Healy et al., 2013) for improved

speech intelligibility.

The accuracy of global SNR estimation is challenged

by nonstationary noise, for instance, babble noise, which is

one of the most common types of interfering background

noise. Babble noise is composed of multiple talking speak-

ers. The estimation of the SNR in babble noise is often

challenging because the statistics of babble noise are similar

to that of clean speech that varies considerably over time

(Krishnamurthy and Hansen, 2009). Vondr�a�sek and Poll�ak

(2005) estimated the SNR of noisy-speech by estimating

noise power using a “hard decision” based voice activitya)Electronic mail: fangqi.liu.14@ucl.ac.uk, ORCID: 0000-0002-0903-7462.
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detection (VAD). The “hard decision” approach analyses

the speech using time-windowing short frames, and then

decides which frames contain or do not contain speech. The

decision criteria are often based on the assumption that the

power in a frame that contains speech (speech-present frame)

will be higher than that of a frame that does not contain

speech (speech-absent frame). This is because the speech-

present frame contains both noise and clean-speech, while

the speech-absent frame contains noise only. However, since

the noise power is only updated when speech is absent, when

speech presents itself, the estimation of noise power is

delayed. The estimation accuracy of this method decreases

when there is a sudden rise of noise power during speech-

present frame evaluation. The noise power tracking delay

can be reduced using a “soft decision” approach, which uses

a priori SNR to decide the degree of speech absence, and

updates the noise power even during the speech present eval-

uation phase (Gerkmann and Hendriks, 2012). However, in

highly nonstationary noise (e.g., babble noise with fewer

talkers), the noise power may still fluctuate within the

reduced delay time of noise power estimation.

Kim and Stern (2008) took a different approach and

compared the amplitude distributions of clean speech

(speech uncorrupted by background noise) and noise. They

assumed that clean-speech amplitude can be described by a

Gamma distribution, while the noise amplitude can be

described by a Gaussian distribution. They found that the

parameter of noisy-speech amplitude distribution can be

used to estimate SNR. The relationship function between

the distribution parameter and the SNR is assessed to esti-

mate the SNR according to the measured distribution param-

eter of the noisy-speech. Since the distribution parameter is

measured without detecting speech presence, in comparison

to the noise power estimation method (Gerkmann and

Hendriks, 2012), the noise power tracking delay is avoided.

However, the SNR estimation accuracy of noisy-speech

could be severely degraded in babble noise (Narayanan and

Wang, 2012), since the amplitude distribution of babble

noise is similar to that of clean-speech.

To accurately estimate SNR in babble noise, we pro-

posed using a measure called the variance of spectral

entropy (VSE) (Liu et al., 2017). VSE is defined as the vari-

ance (over time) of the spectral entropy of noisy-speech.

Similar to the method used in Kim and Stern (2008), we

estimate the relationship between VSE and SNR and save it

in a lookup table. The SNRs of noisy-speech are estimated

by measuring the VSE of noisy-speech. Spectral entropy

was first used in VAD, and has shown to be more robust in

nonstationary noise (Wu and Wang, 2005) because spectral

entropy is independent of the amount of noise power; it is

robust against the fluctuations of nonstationary noise power.

Moreover, VSE characterizes the signal variability as it

measures the spectral entropy variation over time.

Measuring signal variability has been shown to be more

robust in nonstationary noise (Ghosh et al., 2011). In con-

trast to the long term signal variability (LTSV) (Ghosh

et al., 2011), which calculates the variance (over the

spectrum) of time-domain entropy for hundreds of fast

Fourier transform (FFT) frequency bins, VSE increases

computational efficiency by calculating the variance (over

time) of frequency-domain entropy from the output of an

auditory filter-bank with a small number of frequency bands.

In a previous approach (Liu et al., 2017), the SNR estima-

tion accuracy showed apparent degradation in highly non-

stationary noise (e.g., 2-talker babble noise). The accuracy

of the VSE based SNR estimation method relies on the

stability of the VSE at a given SNR level. In highly nonsta-

tionary noise, the time and frequency characteristics of

noisy speech vary rapidly. Consequently, the accuracy of

the VSE estimation and the VSE-SNR relationship function

are degraded. The reduced accuracy of SNR estimation in

highly non-stationary noise may have occurred because the

VSE was calculated using a linear auditory filter-bank (Liu

et al., 2017).

It is known that the response of the cochlea increases

with increasing sound stimulus level, but the response

growth is compressive (compression). At moderate and high

levels, the input/output function of the cochlea has a com-

pression exponent (rate of change, measured in dB/dB) of

less than 1 (Ruggero et al., 1997). Aspects of cochlear com-

pression have been successfully applied in contemporary

hearing assistive devices for restoring audibility and com-

fortable loudness growth. The compressed gain extends the

hearing dynamic range by applying greater gain to low level

signals and less gain to high level signals. As a result, the

spectral contrasts of both clean-speech and noise are reduced

(Moore et al., 1998). In this paper, we implement a nonlinear

filter-bank, which simulates the compressive response of

cochlea. The compressive function may reduce the variation

of the VSE, especially in highly non-stationary noise situa-

tions. In the case of VSE-based SNR estimation, the reduced

spectral contrasts would reduce the spectral differences over

noisy-speech samples, and reduce the variation of the VSE

over different noisy-speech samples at the same SNR. The

current study applied a nonlinear auditory filter-bank to cal-

culate the VSE, which was in turn used to estimate the SNR.

The proposed approach is evaluated in nonstationary noise

conditions when the interfering background is babble noise

containing different numbers of talkers. The coefficient of

determination (R2) of the VSE-SNR relationship function to

random generated noisy-speech samples is evaluated. The

SNR estimation accuracy of the compression-based approach

is compared with that of the waveform amplitude distribution

analysis (WADA) method (Kim and Stern, 2008), noise power

estimated (NPE) based method (Gerkmann and Hendriks,

2012), minimum mean-square error (MMSE) based clean

speech estimation method (Erkelens et al., 2007), and our

previous approach using VSE with a linear filterbank (Liu

et al., 2017).

II. THEORY OF VSE BASED SNR ESTIMATION

Information entropy, which is defined by the negative

logarithm of the probability of each given data, was first
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described by Shannon (1948) to characterize the amount of

information produced by a stochastic source based data. In

acoustic signals, the entropy is often calculated over the

spectrum. By further calculating the VSE over time, the sig-

nal variability is characterized. The signal variability reflects

the degree of nonstationarity of the signal that can be used

to track the SNR, even in nonstationary noise. This is

because clean-speech has information encoded in both fre-

quency and time domains that has higher signal variability

than most environmental (broadband) background noise

(Ghosh et al., 2011). For example, a person with an average

speaking rate produces approximately 10–15 phonemes with

different spectral characteristics per second (Liberman,

1996). Although interfering nonstationary noise could have

higher variability, it often has a spectrum flatter than that of

clean-speech. The resultant VSE estimated for nonstationary

noise would be distinctive from the VSE estimated for

clean-speech. The noise corruption degrades the signal vari-

ability of clean-speech, and the degree of noise corruption

(SNR) can be expressed as a function of VSE, which has

been demonstrated in previous work (Liu et al., 2017).

A. VSE calculation

We model the noisy-speech signal yðiÞ as the sum of a

clean-speech signal xðiÞ with the corrupting background

noise dðiÞ,

y ið Þ ¼ x ið Þ þ d ið Þ; (1)

where i denotes the sampling time index. In the present

study, we made the following assumptions: First, clean

speech and noise are statistically independent across time

and frequency. Second, the speech and noise amplitude

across time have a mean value of zero. To calculate the

VSE, the instantaneous spectral entropy needs to be first cal-

culated. In contrast to conventional methods (Shen et al.,
1998; Wu and Wang, 2005) that use the derived probability

associated with spectral energy of hundreds of FFT fre-

quency bins, we use the probability associated with the

instantaneous power of the signal in each filter-bank fre-

quency band to reduce computational complexity. Although

our calculated spectral entropy has a lower spectral resolu-

tion, we have previously (Liu et al., 2017) demonstrated that

an auditory filter bank comprised of ten frequency bands is

sufficient to acquire an almost linear VSE-SNR relationship.

In fact, a higher spectral resolution might degrade the stabil-

ity of the VSE-SNR relationship function because a higher

spectral resolution increases the degree of freedom of the

spectral entropy. The probability pðk; iÞ for frequency band

k at the sampling time i is calculated by normalizing the

instantaneous spectral power across all frequency bands

(Wu and Wang, 2005),

p k; ið Þ ¼ Sðk; iÞXK

l¼1

Sðl; iÞ
k ¼ 1…K: (2)

Sðk; iÞ is the instantaneous power of signal in frequency

band k,

Sðk; iÞ ¼ jgðkÞðHðk; iÞ � yðiÞÞj2: (3)

Hðk; iÞ is the transfer function of the band pass filter k. g is the

gain applied after filtering (referring to the gain of the filter-

bank; for a linear filter-bank g¼ 1 dB/dB, 1 dB/dB refers to

the growth rate of the gain function, which is the gain increase

by 1 dB per dB; see Ruggero et al., 1997, for more details of

representing gain in decibel scale). K is the total number of

frequency bands. According to Eq. (6) used in Wu and Wang

(2005), the spectral entropy hðiÞ is calculated by

hðiÞ ¼ �
XK

k¼1

pðk; iÞ logðpðk; iÞÞ½ �: (4)

The VSE is : rHðjÞ ¼
1

M

XM

i¼1

ðhjðiÞ � �hjÞ2; (5)

where �hj is the mean value of spectral entropy (MSpE) in

each SNR estimation interval j. M is the total number of the

sampling points over the estimation time interval. In this

study, the duration of SNR estimation interval was chosen

to be 1000 ms.

B. Analysis of the VSE-SNR relationship

To analyse the factors that influence the VSE-based

SNR estimate accuracy, we derive the relationship function

between VSE and SNR. Let W denote the number of sample

points containing speech with added noise (speech presence)

over an interval j. The number of sample points only con-

taining noise (when speech is absent) is M �W. Assuming

that the spectral entropy of noise and clean-speech are inde-

pendent, Eq. (5) can be rewritten as

rHðjÞ¼
1

M

XM�W

i¼1

ðhDðiÞ� �hjÞ2þ
XW
i¼1

ðhYðiÞ� �hjÞ2
( )

; (6)

where hDðiÞ is the spectral entropy of the sample points only

containing noise and hYðiÞ is the spectral entropy of points

containing speech added with noise. For simplification, the

estimation time interval index j will be omitted in the fol-

lowing equations. We assume estimations of spectral

entropy at each time interval are independent. MSpE (�hj) in

Eq. (6) can be expressed as a function of the MSpE when

speech is absent [�h
M�W
D ðjÞ] and when speech is present

[�h
W
Y ðjÞ�. Thus,

rH ¼
M �W

M
rM�W

hd þW

M
rW

hy 1�W

M

� �
�h

M�W
D � �h

W
Y

� �2

;

(7)

where rM�W
hd and rW

hy are the VSE of during speech absence

and speech presence. According to Eqs. (1), (4), and (5),

hyðiÞ can be written as

J. Acoust. Soc. Am. 147 (5), May 2020 Liu et al. 3199

https://doi.org/10.1121/10.0001168

https://doi.org/10.1121/10.0001168


hyðiÞ ¼ gðiÞhXðiÞ þ ð1� gðiÞÞhDðiÞ; gðiÞ ¼ nðiÞ
1þ nðiÞ ;

(8)

where hXðiÞ is the instantaneous spectral entropy of clean-

speech, and nðiÞ is the instantaneous SNR fnðiÞ ¼ ½xðiÞ=
dðiÞ�g. The next step is substituting Eq. (8) into Eq. (7).

Since we assumed hXðiÞ and hDðiÞ are independent of each

other, when the instantaneous SNR is relatively high, nðiÞ=
½1þ nðiÞ� ¼ 1, otherwise nðiÞ=½1þ nðiÞ� � 1. For low

instantaneous SNR 1=½1þnðiÞ� ¼ 1, otherwise 1=½1þnðiÞ�
� 1. Therefore, varW 1=½1þnðiÞ�

� �
� varW nðiÞ=½1þnðiÞ�

� �
� 0, then we have

rH ¼
M �W

M
rM�W

hd þ 1

M

XW
i¼1

ðgðiÞÞ2rW
hx

þ 1

M

XW
i¼1

ð1� gðiÞÞ2rW
hd

þ 2W

M
�h

W
X

�h
W
D covWðgðiÞ; 1� gðiÞÞ

þW

M
1�W

M

� �
�h

M�W
D � 1

W

XW
i¼1

gðiÞð Þ�hW
X

 

� 1

W

XW
i¼1

gðiÞð Þ�hW
D Þ
!2

; (9)

where gðiÞ ¼ nðiÞ=½1þ nðiÞ�, �h
W
D is the MSpE of noise dur-

ing speech presences. covW ½gðiÞ; 1� gðiÞ� is the covariance

between gðiÞ and 1� gðiÞ over W (speech presences). Since

ð1=MÞ
PW

1 ½gðiÞ�
2

and ð1=MÞ
PW

i¼1 ½1� gðiÞ�2 are the func-

tions of global SNR, it can be seen that VSE ðrHÞ depends

on the global SNR.

In practice, Eq. (9) is difficult to solve because the noise

corrupts clean speech; thus, rW
hx and �h

W
X of clean-speech are

unable to be measured directly. Instead, we assume that

different clean-speech contents have a similar degree of VSE

difference to a specific type of noise that share the same

VSE-SNR relationship. The relationship functions, which

represent the VSE-SNR relationship in different types of

noise, are estimated using generated noisy-speech samples

and saved as a lookup table (detailed in Sec. III B) for the

SNR estimation of new noisy-speech samples. The mean val-

ues of VSE over different time samples for each SNR level

are estimated for each point of the relationship function (the

process is detailed in Sec. III B). This is based on the general

assumption that at each SNR level, the VSE of different

noisy-speech samples roughly follows a Gaussian distribu-

tion. The VSE relies on the spectral coefficients and ampli-

tude of clean-speech and noise, whose distributions have

been characterized by Gaussian models (Malah and

Ephraim, 1985; Jensen et al., 2005). According to Eq. (9),

the distribution range relies on the variation of rM�W
hd ,

rW
hd;

�h
M�W
D , �h

W
D ; and rW

hx, �h
W
X (at the same SNR), which are

caused by the inherent spectral characters differences over

noisy-speech samples. Their variation would cause noisy-

speech samples to have different VSE at the same SNR level

and possibly degrade the SNR estimation accuracy.

By assuming that the amplitude of clean-speech and noise

are independent, the above variations dominated by either

noise or clean-speech can be discussed separately. Specifically,

rM�W
hd , rW

hd, are the variance of noise spectral entropy during

speech absence and presence, respectively. �h
M�W
D , �h

W
D are the

mean of noise spectral entropy during speech absence and

presence, respectively. According to Eqs. (2)–(4), the varia-

tions of rM�W
hd , rW

hd, �h
M�W
D , �h

W
D are caused by the variance of

instantaneous noise power [rdðk; iÞ] over different noise inter-

vals. Similarly, the variations of the variance (rW
hx) and mean

(�h
W
X ) of clean-speech spectral entropy are caused by the vari-

ance of instantaneous clean-speech power [rxðk; iÞ] over dif-

ferent clean-speech intervals. According to Eqs. (1) and (3),

both of the noise and clean-speech dominated variances can be

expressed by

rdðk; iÞ ¼
XJ

j¼1

jgðkÞðHðk; iÞ � djðiÞÞj2 �
1

J

XJ

j¼1

jgðkÞðHðk; iÞ � djðiÞÞj2
0
@

1
A

2

;

rxðk; iÞ ¼
XJ

j¼1

jgðkÞðHðk; iÞ � xjðiÞÞj2 �
1

J

XJ

j¼1

jgðkÞðHðk; iÞ � xjðiÞÞj2
0
@

1
A

2

;

8>>>>>>>><
>>>>>>>>:

(10)

where �x and �d are the mean instantaneous power of clean-

speech and noise and J is the total number of noisy speech

intervals. If using a linear filter-bank, the terms rdðk; iÞ; rxðk; iÞ
will be large, particularly in nonstationary noise and high

SNRs. This is because the instantaneous power of both

nonstationary noise and clean-speech are unstable. When g
¼ 1 dB/dB, such variances will be linearly propagated to the

calculated VSE and degrade the VSE-SNR relationship function.

Therefore, the main objective of the present study is to

use the outputs of a nonlinear filter-bank with a compressive
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gain to calculate the VSE in order to reduce the VSE-SNR

relationship function variation.

III. METHOD

A. Reducing the VSE variation using the nonlinear
pathway of the DRNL filter-bank

The nonlinear filter-bank is implemented based on the

existing dual resonance nonlinear (DRNL) filter-bank

model, which simulates the nonlinear response of the

cochlea in the auditory system (Lopez-Poveda and Meddis,

2001). The DRNL filter-bank consists of two signal path-

ways. (1) The linear pathway contains a cascade of three

identical first-order Gammatone band pass filters with linear

gains to simulate the linear response of cochlea to stimulus

at the frequencies below the centre frequency (CF). (2) The

nonlinear pathway simulates the cochlear response to stimu-

lus at or above the CFs. Each CF is characterized by a cas-

cade of three identical first-order gammatone filters. A

“broken-stick” nonlinear gain function is applied to simulate

the compressive response of the cochlea. The “broken-stick”

function simulates a compressed gain of 0.25 dB/dB at input

sound levels above the compression threshold and applies

linear gain at input sound levels below the compression

threshold. The compression threshold is frequency specific.

The level of the compression threshold decreases from 40 to

30 dB with increasing CFs. Processing after the “broken-

stick” function comprises another three identical gamma-

tone filters. More details of the DRNL filter-bank are pro-

vided in Lopez-Poveda and Meddis (2001).

Only the nonlinear pathway of the DNRL filter-bank is

implemented in the present study. The nonlinear pathway

outputs are used to calculate the VSE according to Eqs.

(2)–(5). We only implement the nonlinear pathway for two

reasons. First, it reduces almost half of the computational

complexity. Second, the nonlinear pathway dominates the

outputs of the DRNL filter-bank at relatively low sound lev-

els (<75 dB) (Lopez-Poveda and Meddis, 2001), while in

practice, and for our test purposes, the general speech level

is maintained at moderate level. The implementation details

of the nonlinear filter-bank are compared with that of the

linear filter-bank (Liu et al., 2017) in Table I. The nonlinear

filter-bank is built with gammatone filters, while the linear

filter-bank is built with Butterworth filters. The two types of

filter differ in phase, impulse response, and frequency

response shape (the slope of the filter skirt is different).

Since the spectral entropy is defined as the probability asso-

ciated with instantaneous power in each frequency band, we

mainly consider the influence of frequency response shape

difference on the VSE. To reduce the effect of the filter type

difference on VSE performance, each frequency band of the

two filter-banks are set to have the same bandwidth, particu-

larly, the equivalent rectangular bandwidth (ERB) of audi-

tory system suggested in Glasberg and Moore (1990).

Although the linear pathway of the DRNL filter-bank has

been removed when calculating the VSE, it has little effect

on the final response of the DRNL filter-bank to inputs at

low or moderate levels. As shown in Lopez-Poveda and

Meddis (2001), the linear pathway only slightly increases

the 10 dB (or above) cut-off frequency for input levels

between 30 and 70 dB. Consequently, in the current evalua-

tion, both filter-banks would demonstrate similar efficiency

in extracting spectral information for calculating the VSE.

J€urgens et al. (2016) also used second-order Butterworth fil-

ters with selected bandwidths to replace the gammtone fil-

ters in the DRNL filter-bank when simulating the cochlear

response in their hearing model. Therefore, by setting the

same ERB, the differences between Butterworth and gamm-

tone filters are considered to be reduced and insufficient to

affect VSE estimation performance. Within the linear filter-

bank, each of the second-order Butterworth filters is set to

have the 3 dB down bandwidth equal to the bandwidth sug-

gested in Glasberg and Moore (1990). Since the nonlinear

filter-bank contains a cascade of six gammatone filters, each

filter has a bandwidth broader than the ERB suggested in

Glasberg and Moore (1990) to make sure the final output of

DRNL filter-bank has the bandwidth similar to that of the

linear filter-bank. The bandwidth of the nonlinear pathway

is calculated using the algorithm provided in Lopez-Poveda

and Meddis (2001). The other parameters of the nonlinear-

pathway are similar to those used in Lopez-Poveda and

Meddis (2001).

In the present study, the DRNL filter-bank with

g ¼ aðkÞ
bðkÞjHðk; iÞ � yðiÞj�0:75

jHðk; iÞ � yðiÞj < thðkÞ
jHðk; iÞ � yðiÞj � thðkÞ

�

TABLE I. Details of the filter banks used for the nonlinear and linear implementation. Showing values for the sample rate, filter type, filter orders, number

of cascades, centre frequency of the filter, and filter bandwidth.

Nonlinear filter-bank Liner filter-bank

Sample rate (kHz) 16 16

Filter type Gammatone filter Butterworth filter

Orders 1 2

Number of cascades 6 1

Centre frequency (Hz) 250 367 540 794

1167 1714 2520 3703

5443 8000

250 367 540 794

1167 1714 2520 3703

5443 8000

Bandwidth of each single filter (Hz) 215 231 255 291 343 420 57 71 92 122 167 232 329

532 698 942 1300 470 679 985 (ERB)
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is used to calculate the VSE, where thðkÞ is the compression

threshold, aðkÞ and bðkÞ are the DRNL filter parameters

(Lopez-Poveda and Meddis, 2001). Let �xðk; iÞ¢ð1=
JÞ
PJ

j¼1 j½Hðk; iÞ � xjðiÞ�j and �dðk; iÞ¢ð1=JÞ
PJ

j¼1 j½Hðk; iÞ
�djðiÞ�j. At the general speech level of 60 dB, we have

�xðk; iÞ � thðkÞ. According to Eq. (10), the effect of compres-

sion can be discussed in the context of three different SNR

conditions:

(1) For high SNRs, the rxðk; iÞ of clean speech dominates

the variation of VSE. As shown in Fig. 1 (left panel),

when jHðk; iÞ � xjðiÞj < �xðk; iÞ (signals between green

and red lines in the left panel of Fig. 1), rxðk; iÞ is

reduced because the compressed gain reduces the �xðk; iÞ
but retains the signal xjðk; iÞ below thðkÞ. When

jHðk; iÞ � xjðiÞj > �xðk; iÞ(signal between red and blue

lines in the left panel of Fig. 1), rxðk; iÞ is also reduced

because the compression applies smaller gain to signals

{j½Hðk; iÞ � xjðiÞ�j} at higher levels. Note that, the overall

spectrum of clean speech shows an amplitude decrease

with increasing CFs (L€ofqvist and Bengt, 1987). In the

DRNL filter-bank, the cochlear compression over fre-

quencies is simulated by letting thðkÞ decrease with

increasing CFs, which helps to guarantee that �xðk; iÞ
> thðkÞ in each frequency band.

(2) For low SNRs, the rdðk; iÞ of noise dominates the varia-

tion of VSE, and �dðk; iÞ � thðkÞ as shown in Fig. 1

(right panel). In both stationary and nonstationary noise,

when jHðk; iÞ � djðiÞj < �dðk; iÞ, if jHðk; iÞ � djðiÞj
< thðkÞ, then rdðk; iÞ is reduced because the compressed

gain reduces the �dðk; iÞ but retains the signal below the

thðkÞ (signals between green and red lines in the right

panel of Fig. 1). If jHðk; iÞ � djðiÞj < thðkÞ, then rdðk; iÞ
is reduced because less gain is applied on �dðk; iÞ. When

jHðk; iÞ � djðiÞj > �dðk; iÞ, then rdðk; iÞ is also reduced

because less gain is applied to jHðk; iÞ � djðiÞj (as signal

between red and blue lines in the right panel of Fig. 1).

(3) For moderate SNR levels, the above two cases work

together to reduce rxðk; iÞ and rdðk; iÞ. As a result, the

overall variation of the noisy speech is reduced, and the

variation of VSE over different noisy speech contents at

each SNR is reduced.

B. SNR estimation procedure

The flow chart when using the nonlinear filter-bank to

estimate the SNR is shown in Fig. 2. The noisy-speech sam-

ples are processed by the nonlinear filter-bank. The outputs

of the filter-bank are used to calculate the VSE using Eqs.

(2)–(5). At the same time, the noise type is detected to select

a noise type specific lookup table using the noise type detec-

tion method. The lookup tables comprise the stored noise-

type specific relationship functions for the SNR range

between �10 and 20 dB in steps of 1 dB. The relationship

functions are estimated offline using the method detailed in

the following section. The calculated VSE of noisy-speech

is used to compare to the values in the lookup table to find

the corresponding SNR. The whole estimation process is

automatic, no manual intervention or oracle information is

required. The number of the relationship functions can be

increased to cover more types of noise based on practical

conditions of individual users frequently encountered noise

background.

1. Relationship function estimation

The relationship functions are estimated for a given

noise-type, making the functions noise-type specific, to

FIG. 1. (Color online) Examples of compression reducing the signal variance. The average level of the signal is marked in red. The signal below average

level is marked in green. The signals above average are marked in blue. The left-hand panel shows a clean-speech signal, and the right panel shows a pure

noise signal.

FIG. 2. Flowchart of the nonlinear filter-bank based SNR estimation.
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reduce the SNR estimation errors over different types of

noise. For each type of noise, the relationship function is

estimated by calculating the mean value of VSE across dif-

ferent clean-speech samples corrupted by the same type of

noise. The estimation consists of three stages: In stage 1, for

a given SNR level, a group of random noisy-speech are

generated, which are masked by the same type of added

noise. In the present study, the group size is 500 random

noisy-speech samples. A value of 500 noisy-speech samples

was chosen because preliminary studies investigating the

confidence interval of the VSE based on 1300 speech utter-

ances (recorded from 112 speakers), found that the confi-

dence interval of VSE stabilized at about 500. To estimate

the relationship function for the different types of noise two

nested procedure loops are used. The outer loop iterates

over noise types and the inner loop iterates over SNRs

ranging between –10 and 20 dB in 1 dB steps. The 1 dB step

was regarded as a good compromise between estimation

accuracy and computational efficiency. In each iteration, the

noisy-speech sample is randomly generated by adding noise

to clean-speech samples, following the procedure detailed in

Sec. IV. Each noise sample has the same length of 1000 ms.

The 1000-ms noise sample is cut from a specific type of

noise resource with a random starting time. The VSE of all

the random noisy speech samples is then calculated using

Eqs. (2)–(5). The VSEs of all the generated noisy-speech

samples are averaged to provide the estimated relationship

function for a given SNR level per noise type.

2. Unknown noise type detection

In practice, the noise type is often unknown. To address

unknown noise conditions, the VSE based method stores a

group of pre-estimated relationship functions, which cover

the noise types most often encountered in daily life. Our

proposed method detects the unknown noise type and esti-

mates the SNR using the corresponding relationship func-

tion. Unlike the method in Papadopoulos et al. (2016),

which used a complicated noise type detection method, we

classify unknown noise based on the original VSE of the

noise. This is because the noise-type specific VSE-SNR

relationship functions are characterized by the original VSE

of the noise. At high SNRs, the relationship function mainly

depends on clean speech VSE, which is independent of the

change in noise type, while at low SNRs, the relationship

function relies more closely on the VSE of the noise. The

unknown noise type is detected by comparing the VSE of

the unknown noise type with the “identification VSEs”

(iVSEs) of each type of noise. Each iVSEs is estimated by

calculating the mean VSEs of noise samples randomly cut

from each type of noise (as described earlier). All iVSEs are

saved per noise type in the detection lookup table. We use

VSE to characterise noise type since different noise types

differ in their signal variability. Particularly, in our case,

according to Eq. (7), relationship function differences for

different types of noise are mainly attributed to the original

VSE of each type of noise. The VSE of a type-unknown

noise sample is estimated by dividing noisy-speech into

short frames (100 ms) to detect speech absences. The MSpE

of each short frame can then be used to discriminate the

speech absences (Shen et al., 1998; Wu and Wang, 2005).

Given that the MSpE of a noise-only frame is higher than

that of noisy-speech frame (Wu and Wang, 2005), the

frames with MSpE higher than the discrimination threshold

are detected and classed as noise. In order to adapt to back-

ground noise changes, the discrimination threshold is con-

tinuously updated. If the detected frame contains speech, the

threshold is updated by averaging the past thresholds; if not,

the threshold is updated according to the MSpE of the noise

frame. The algorithm can be expressed using the following

equation:

PðnÞ¼
0;

1;

�hðnÞ�eqðn�1Þ
�hðnÞ>eqðn�1Þ;

(

qðnÞ¼
aqðn�1Þþ1�a

1�d
�hðnÞ�d�hðn�1Þ;

�hðnÞ;

�hðnÞ�eqðn�1Þ
�hðnÞ>eqðn�1Þ;

8><
>:

(11)

where �hðnÞ is the MSpE of the short frame index n. qðnÞ is

the discrimination threshold value at the frame n, the initial

value of q is the MSpE of the first frame. PðnÞ is the speech

absence probability. d and a are factors used for regulating

the threshold updating speed, and e is the decision parameter.

In the present study, we have d¼ 0.93, a ¼ 0:99; e ¼ 0:97.

After noise frame detection, the VSEs of the detected noise-

frames, within each SNR estimation interval, are averaged to

get VSEx. Then, the VSEx is compared through the pre-

measured iVSEs following an order from low to high. The

relationship function whose iVSE is closest to VSEx is

selected for SNR estimation. For comparison, the following

steps are implemented:

Step 1: Sort all the pre-measured iVSEs by their values

from low to high (i.e., iVSE1 < iVSE2 < iVSE3).

Step 2: Start with lowest identification VSE (iVSE1 to com-

pare it with the VSEx. Specifically, check If VSEx � iVSEl

þðiVSElþ1 � iVSEl=2Þ; where l is the order of the iVSE in

the first attempt l¼ 1. If so, select the relationship function

of iVSE1 for SNR estimation; otherwise, go to step 3.

Step 3: Compare VSEx with a higher iVSE (iVSElþ1) by

repeating step 2; otherwise, repeat step 3 until the If condi-

tion is met.

IV. DATASETS

The random noisy-speech samples, which are generated

by adding noise samples to clean-speech samples, are used

for the evaluation experiments. Next, 1300 clean-speech

utterances spoken by 56 male and 56 female speakers from

the AURORA (Hirsch and Pearce, 2000) resource database

are divided into dataset A (500 utterances), which is used

for estimating the relationship functions, and dataset B (800
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utterances) which is used for evaluating SNR estimation

errors. There is no overlapping between dataset A and B.

Six types of talker-number specific babble noise were used

for testing: 2-, 4-, 8-, 16-, 24-, and 32-talker babble derived

by combining IEEE sentences (Rothauser, 1969). All sen-

tences were normalized to have the same root-mean-square

(rms) energy to generate babble noise. Although we only

tested babble noise, the VSE-based method can also be used

to estimate SNR in other types of noise. This can be accom-

plished by estimating the corresponding relationship func-

tions and saving in the lookup tables (as described earlier).

We used babble noise with different number of talkers

mainly for three reasons. First, babble noise is one of the

most common types of background noise encountered and

therefore has high validity. It has been widely used in

previous SNR estimation studies (Kim and Stern 2008;

Gerkmann and Hendriks, 2012; Papadopoulos et al., 2016).

Second, in real-life scenarios, the number of interfering talk-

ers often varies, influencing the time-frequency characteris-

tics of the ongoing babble noise. Cooke (2006) reported that

at a given global SNR level, babble noise with a different

number of talkers have different masking effects on speech

perception. In addition, previous studies (Gerkmann and

Hendriks, 2012; Papadopoulos et al., 2016) have not fully

investigated the effects of babble noise comprising of differ-

ent numbers of speakers on estimated SNR.

Each noise source length is 15 000 ms, and each speech

utterance ranged in duration from 1000 to 3000 ms. To add

a noise sample to a clean-speech sample, each noise sample

(1000 ms) generated was cut from the noise resource with a

random starting point (ranging from 1 to 14 000 ms). For

each type of noise, the starting 10 000 ms of the resource

noise was used for estimating the relationship function. The

remaining duration of the resource noise was used for evalu-

ating the results; this ensured that the training and testing

noise datasets were independent. Similarly, each clean-

speech sample (1000 ms) was cut from a speech resource

with a random starting point (ranging from 1 to 2000 ms).

The sample rate was 16 000 Hz. The noisy-speech samples

were generated at SNRs ranging between �10 and 20 dB,

with a steps-size of 1 dB.

V. RESULTS

To evaluate the effect of the simulated filter-bank com-

pression to the VSE-based SNR estimation method, two

experiments were presented. To begin with, as we hypothes-

ised that the compression would increase the stability of the

VSE-SNR relationship function, the coefficient of determi-

nation (known as “R2”) of the estimated relationship func-

tion derived from noisy-speech samples with a compressive

filter-bank were evaluated and compared with those esti-

mated using a linear filter-bank. R2 (Nagelkerke, 1991) is a

typical method for evaluating the goodness-of-fit of regres-

sion models. In our case, the relationship function can be

considered as a data trained model. Next, we evaluated the

overall effect of the compression to VSE-based SNR

estimation accuracy. The SNR estimation accuracy is tested

and compared with other contemporary SNR estimation

methods (detailed later). The accuracy is quantified by mea-

suring the mean absolute errors (MAE), which is widely

used in literature (Narayanan and Wang, 2012;

Papadopoulos et al., 2016). The main limitation of the MAE

is that it is unable to reflect the difference between over- and

under-estimation of the SNR. To address the limitations of

the MAE, the under- and over-estimation of the SNR was

further quantified by estimating the one-side MAE, a mea-

sure used by May et al., 2017).

A. Experiment 1: Coefficient of determination R2

of the estimated relationship function

The coefficient of determination R2 of estimated rela-

tionship functions based on a compressive (nonlinear) filter-

bank (denoted as “VSE-nonlinear”) to random noisy-speech

samples was evaluated and compared with that of the linear-

filter bank (denoted as “VSE-linear”) (Liu et al., 2017). The

relationship functions of VSE-nonlinear were estimated

using speech dataset A as detailed in Sec. III. Each random

noisy-speech sample was generated at a random SNR level

(from �10 to 20 dB) following the procedures provided in

Sec. IV. The random SNR level was generated using the

“rand” function in MATLAB, which generates uniformly dis-

tributed random numbers. The speech dataset B and the test-

ing noise dataset were used for generating random noisy-

speech samples for evaluation. Two types of babble noise

containing 2 and 32 talkers were used for the testing.

Krishnamurthy and Hansen (2009) demonstrated that the

stationary nature of babble noise decreases with decreasing

number of talkers. We used 2-talker and 32-talker babble

noise to test the effect of compression on highly nonstation-

ary, and relatively stationary babble noise, respectively.

Importantly, for our comparisons, both the VSE-nonlinear

and VSE-linear were tested with the same noisy speech

dataset.

Figure 3 plots the VSE of 200 random noisy-speech

samples and the estimated VSE-SNR relationship functions

of the nonlinear filter-bank (left panels) and linear filter-

banks (right panels) for 2-, (upper panels) and 32-talker bab-

ble noise (lower panels). For both VSE-nonlinear and VSE-

linear, the VSE of the random noise samples is concentrated

more closely around the relationship function in 32-talker

babble noise than in 2-talker babble noise, which is consis-

tent with the fact that babble noise with fewer talkers is

more nonstationary (Krishnamurthy and Hansen, 2009).

Comparing VSE-nonlinear to VSE linear for both types of

tested noise, the VSE-nonlinear demonstrates a better rela-

tionship function fit. The fit improvement is evident in 2-

talker babble noise at an SNR below 5 dB. To quantify the

improvement, R2 value for each estimated relationship func-

tion was evaluated for five separate tests. In each test, all the

random noisy-speech samples were re-generated to guaran-

tee the independence of each test. The mean and standard

deviation of R2 are shown in the caption of Fig. 3. In 32

talker babble noise, the R2 of the nonlinear filter-bank case
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was about 26% (absolute percentage improvement) higher

than the linear filter-bank case (p< 0.001). The most notable

coefficient of determination improvement is shown in

2-talker babble noise where the R2 is increased about 33%

(absolute percentage improvement) (p< 0.001).

B. Experiment 2: SNR estimation accuracy

The SNR estimation accuracy of the VSE-nonlinear

method is compared with that of the VSE-linear method,

WADA method (Kim and Stern, 2008), NPE method

(Gerkmann and Hendriks, 2012), and MMSE method

(Erkelens et al., 2007). For the VSE-nonlinear method, the

SNR is estimated using noise-type specific VSE-SNR rela-

tionship functions of 2-, 4-, 8-, 16-, and 32-talker babble

noise. The implementation of VSE-linear is identical to that

used in Liu et al. (2017). The WADA method was applied

using the programs provided on the website (Ellis, 2008),

the default parameters were used for our purposes. The

implementation of the NPE method is identical to that used

in Narayanan and Wang (2012). The method of using

MMSE (Erkelens et al., 2007) to estimate global SNR fol-

lows the approach used in May et al. (2017). 2-, 4-, 8-, 16-,

24-, and 32-talker babble noise were used for testing, as

explained earlier. The noise type was unseen to all the tested

SNR estimation methods. The VSE-based method

automatically detects the type and selects the corresponding

relationship function using the noise detection method. For

each type of noise, 800 noisy-speech samples are used for

evaluation. Each of the noisy-speech samples is randomly

generated following the procedures detailed in Sec. IV. The

clean-speech data B and the testing noise dataset are used

for generating these noisy-speech samples. All the test meth-

ods are evaluated with the same noisy-speech samples. Two

metrics have been used to quantify the estimation accuracy.

The overall estimation accuracy is quantified by measuring

the MAE, which is defined by Papadopoulos et al. (2016),

MAE ¼ 1

J

XJ

j¼1

jnðjÞ � n̂ðjÞj; J ¼ 1;…; 800; (12)

where n is the real SNR (the SNR used for generating the

test noisy speech), and n is the estimated SNR. j is the index

of the noisy-speech sample. In order to evaluate the differ-

entiating between under and overestimation errors, the error

measure used in May et al. (2017) has been applied in the

present study. Both the over and under estimation errors are

specified using the equations (May et al., 2017)

one sided MAEover ¼
1

J

XJ

j¼1

jminð0; n jð Þ � n̂ jð ÞÞj; (13)

FIG. 3. (Color online) The fit of the estimated VSE-SNR relationship function to random noisy-speech samples. (a) Using a nonlinear filter-bank in 2-talker

babble noise R2 ¼ 64:98%62:53. (b) Using a linear filter-bank in 2-talker babble noise R2 ¼ 31:17%67:59. (c) Using a nonlinear filter-bank in 32-talker

babble noise. R2 ¼ 84:80%61:76. (d) Using a linear filter-bank in 32-talker babble noise R2 ¼ 58:67%66:10.
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one sided MAEunder ¼
1

J

XJ

j¼1

jmaxð0; n jð Þ � n̂ jð ÞÞj:

(14)

The averaged MAE of WADA, NPE, MMSE, linear

filter-bank based VSE (VSE-linear), and the nonlinear filter-

bank based VSE methods (VSE-nonlinear) across all SNR

levels between �10 and 20 dB in different types of babble

noise are shown in Fig. 4. The error bars represent the stan-

dard deviation of five different tests. In each test, all the ran-

dom noisy-speech samples were re-generated to guarantee

the independence of each test. The WADA, VSE-linear, and

NPE methods show an apparent increase of MAE with

decreasing talker number. In contrast, the VSE-nonlinear

method is less influenced by the decrease of talker number.

From 32-talker babble noise to 2-talker babble noise, the

error increases by only about 1 dB, which is much lower

than other methods. Moreover, the VSE-nonlinear shows the

lowest MAE over most of tested noise. It only shows a

MAE about 0.29 dB higher than that of MMSE in relatively

stationary 32-talker babble noise. However, the improve-

ment increases with decreasing number of talkers in babble

noise. Particularly, in 2-talker babble noise, the VSE-

nonlinear method shows the MAE 10 dB lower than the

NPE method and about 6 dB lower than that of the WADA

method. It is worth noting that the MAEs of VSE-nonlinear

method are lower than 3 dB in all the tested noise types.

In comparing to the VSE-linear method, the VSE-

nonlinear shows significant SNR estimation accuracy

improvements in all tested babble noise. In 24- and 32-

talker babble noise, the VSE-nonlinear shows the lowest

improvement of about 1 dB. This indicates that the simu-

lated compression shows less improvement compared to

VSE-linear method in relatively stationary noise types, and

the 24- and 32-babble noises have a similar degree of sta-

tionary. The improvement increases from about 1 to about

3.5 dB when the talker number in babble noise decreases

from 32 to 2. The increased improvement indicates that the

VSE-nonlinear is more robust than the VSE-linear method

against the highly nonstationary noise.

The one_sided MAE of WADA, NPE, MMSE, VSE-

linear, and the VSE-nonlinear methods across SNR levels

between �10 and 20 dB in different types of babble noise

are shown in Fig. 5. The upper bars represent the over-

estimation of the SNR, while the lower bars represent the

under-estimation of the SNR. For clarity, the standard devia-

tions of fives times tests are shown in Table II. In general,

both of the over and under estimation errors of all test meth-

ods increase with the decrease of the talker number in bab-

ble noise. In the WADA, NPE, and the MMSE methods, the

over-estimation errors are greater than under-estimation

errors. Particularly, the MMSE method had a lower degree

of over-estimation, which is consistent with the results

shown in May et al. (2017).

FIG. 4. (Color online) Averaged MAE over the SNR range between –10

and 20 dB in steps of 1 dB for VSE using nonlinear filter-bank, VSE using

linear filter-bank, WADA, NPE, and, MMSE methods in 2, 4, 8, 16, 24, and

32-talker babble noise. The error bars represent the standard deviation for

five repeat tests.

FIG. 5. (Color online) The one_sided MAE over the SNR range between

–10 and 20 dB in steps of 1 dB for VSE using nonlinear filter-bank, VSE

using linear filter-bank, WADA, NPE, and MMSE methods in 2, 4, 8, 16,

24, and 32-talker babble noise. In each column, the upper/under bars pre-

sent the over/under estimation errors, respectively.

TABLE II. Obtained standard deviation of the testing outputs in Fig. 5.

Number of talkers 2 4 8 16 24 32

WADA Over 0.1029 0.111 0.1181 0.1043 0.0955 0.0801

Under 0.1687 0.0967 0.0944 0.0971 0.0978 0.0642

NPE Over 0.1974 0.1114 0.1162 0.1280 0.1116 0.1197

Under 0.1302 0.1505 0.1246 0.1003 0.0606 0.0757

MMSE Over 0.1716 0.1138 0.1198 0.1327 0.1123 0.0846

Under 0.1104 0.1085 0.0889 0.0999 0.0813 0.0818

VSE-linear Over 0.176 0.1344 0.1177 0.1088 0.0987 0.0715

Under 0.12 0.0853 0.0955 0.0932 0.0985 0.0819

VSE-nonlinear Over 0.1125 0.1243 0.0838 0.0887 0.0749 0.0671

Under 0.1485 0.085 0.1110 0.1075 0.0791 0.0623
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The VSE-nonlinear method shows further over-

estimation reduction in comparison to the MMSE method. In

32-babble noise, the reduction is about 0.39 dB. As the talker

number decreases, the amount of over-estimation errors

reduction increases. The maximum reduction in comparing

to MMSE method is shown in 2-talker babble noise, which is

about 8 dB. However, in 24- and 32-talker babble noise, the

under-estimation errors of the VSE-nonlinear method are

greater than those of the MMSE method. When comparing

the VSE-linear method, VSE-nonlinear method shows both

over- and under-estimation error reduction (e.g., in 2-talker

babble noise). The over-estimation error reduction is about

1 dB, while the under-estimation error reduction is about

2 dB. This indicates that the nonlinear filter-bank helps to

reduce both over and under-estimation of the SNR.

VI. DISCUSSION

The present study demonstrated that the performance of

the VSE based global SNR estimation method can be further

improved by applying a nonlinear filter-bank, which simu-

lates the compression response of the human cochlea. The

evaluation results showed that the nonlinear filter-bank pro-

vided apparent SNR estimation improvement, particularly in

less stationary noise.

The present method offers other benefits for hardware

implementation. First, the proposed method is based on a

filter-bank with a limited number of frequency bands, which

utilizes less computational resources on devices with limited

size. Second, the proposed method utilizes compression to

reduce SNR estimation error.

Compared to other SNR estimation methods, the pre-

sent method shows greater SNR estimation accuracy in

more nonstationary noise. One of the reasons for this is that

the VSE is more reliable than methods involving either

tracking the noise power or estimating amplitude for esti-

mating SNR in nonstationary noise. In Fig. 4, the WADA

method, which has no tracking delays, showed SNR estima-

tion accuracy greater than NPE and MMSE methods (both

influenced by noise power tracking delays) in 4- and 2-

talker babble noise. The distribution amplitude of the babble

noise can be very similar to that of clean speech that

degrades the SNR estimation accuracy of the WADA

method. As shown in Fig. 4, the estimation errors of the

WADA method significantly increase when the talker num-

ber decreases. The nonlinear filter-bank improves the perfor-

mance of the VSE in estimating SNR. The performance

improvement can be attributed to two aspects: (1) increases

of the fit of the VSE-SNR relationship, and (2) increases of

the ability on characterizing the clean speech level at low

SNRs. The results demonstrate that the nonlinear function

increases the fit of the VSE-SNR relationship function.

However, it is not clear if the nonlinear filter-bank increases

the characterizing ability of the VSE based on the present

results. Future work could focus on investing how the non-

linear filter-bank would influence the ability of VSE in char-

acterizing clean speech from the noise.

A possible limitation of the present method is that

although the VSE-nonlinear method resulted in lower over-

estimation errors compared to the other methods, it still has

a high over-estimation error of over 5 dB in highly nonsta-

tionary noise (e.g., 2-talker babble noise). Also, most of the

over-estimations occur at low SNR levels. One of the rea-

sons for these results may be that the 2-talker babble noise

has time and frequency characters more similar to that of

clean speech. This similarity makes the clean speech detect-

ing characteristics difficult to distinguished from noise char-

acteristics, particularly when the original SNR levels are

low. In consequence, the decrease in the clean speech level

is relatively difficult to distinguish. Another limitation is that

the VSE-nonlinear method shows greater under-estimation

errors than the MMSE method in 24- and 32-talker babble

noise. This might be because the VSE-nonlinear method uses

less computational resources to estimate SNR that has an

upper boundary of estimation accuracy, while the MMSE

method performs better on tracking clean speech when noise

is relatively stationary. A potential solution could be using a

non-linear mapping function such as that suggested in May

et al. (2017) to reduce the overestimations when the general

SNR environmental is known and relatively stable.

VII. CONCLUSION

In summary, a nonlinear auditory filter-bank with com-

pression was applied to calculate the VSE for SNR estima-

tion for speech in noise. It was found that the nonlinear

filter-bank improves the overall performance of a VSE-

based SNR method because the compressive gain function

reduces the variance of VSE-SNR relationship function.

Specifically, the nonlinear filter-bank was found to improve

the coefficient of determination R2 of the estimated VSE-

SNR relationship function, particularly for nonstationary

noise, compared to a linear filter-bank based VSE-SNR rela-

tionship function. In 2-talker babble noise, R2 increases by

about 33% and about 26% in 32-talker babble noise.

Overall, the nonlinear filter-bank based method shows over-

estimation errors much lower than other compared methods.

In particular, greater SNR estimation error reduction (in

comparing to other methods) is shown in highly nonstation-

ary noise (e.g, 2-talker babble noise); the over-estimation

error of the present method is about 5, 9, and 8 dB lower

than WADA, NPE, and MMSE methods, respectively.
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