
Conditional BRUNO: A Neural Process for
Exchangeable Labelled Data

Iryna Korshunovaa,∗, Yarin Galb, Arthur Grettonc,∗∗, Joni Dambrea,∗∗

aGhent University, Technologiepark-Zwijnaarde 126, 9052 Ghent, Belgium
bUniversity of Oxford, OX1 3QD Oxford, UK

cUniversity College London, Gatsby Unit, 25 Howland Street, W1T 4JG London, UK

Abstract

We present a neural process which models exchangeable sequences of high-

dimensional complex observations conditionally on a set of labels or tags. Our

model combines the expressiveness of deep neural networks with the data-

efficiency of Gaussian processes, resulting in a probabilistic model for which

the posterior distribution is easy to evaluate and sample from, and the compu-

tational complexity scales linearly with the number of observations. The advan-

tages of the proposed architecture are demonstrated on a challenging few-shot

view reconstruction task which requires generalization from short sequences of

viewpoints, and a contextual bandits problem.
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1. Introduction

Exchangeability is an implicit assumption underlying many machine learning

algorithms. It entails that any re-ordering of a finite sequence of observations is

equally likely. As a consequence, it allows to reason about future observations

based on the behaviour of the previous ones. Owing to de Finetti’s theorem, the5

exchangeability property is a cornerstone of Bayesian statistics as it facilitates

inference and parameter learning in probabilistic models.
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Some problems can be explicitly formulated in terms of modelling exchange-

able data. For instance, few-shot concept learning can be seen as learning to

complete short exchangeable sequences [1], where it is natural to assume no10

inherent ordering in the observations coming from the same concept. BRUNO

(Bayesian recurrent neural model) [2] follows this explicit approach by modelling

autoregressive distributions of an exchangeable process p(xn|x1:n−1). This was

proven to be an efficient way of doing both few-shot image generation and clas-

sification within one model.15

In this work, we extend the idea of BRUNO to the conditional case, where

we wish to model the distribution p(xn|hn,x1:n−1,h1:n−1), where hi are vector

valued labels or tags associated with observations xi. As an example, condi-

tional BRUNO can be used in the task of generating new viewpoints of a scene

while given a few images of that scene under different camera positions.20

Formally, a stochastic process x1,x2,x3, . . . is said to be exchangeable if for

all n and all permutations π

p(x1, . . . ,xn) = p
(
xπ(1), . . . ,xπ(n)

)
, (1)

i.e. the joint probability remains the same under any permutation of the se-

quence.

The intimate connection between exchangeability and Bayesian statistics is

due to de Finetti’s theorem, which states that every exchangeable process is a

mixture of i.i.d. processes,

p(x1, . . . ,xn) =

∫
p(θ)

n∏

i=1

p(xi|θ)dθ, (2)

where θ is a parameter vector (finite or infinite-dimensional) conditioned on

which, the xi’s are i.i.d. [3].

This theorem gives two ways of defining models of exchangeable sequences.25

One is via explicit Bayesian modelling: define a prior p(θ), a likelihood p(xi|θ)

and calculate the posterior in Eq. 2 directly. Here, the difficulty is the in-

tractability of the posterior as it requires an integration over the parameter θ.
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A common solution is to use a variational approximation. The neural statisti-

cian [4] implements this approach by building upon a variational autoencoder30

model (VAE) [5].

A second way is to construct an exchangeable process while modelling its

autoregressive distributions p(xn|x1:n−1) without referring to the underlying

Bayesian model. BRUNO [2] proposes a design for doing so. It consists of two

components: (a) a bijective mapping that transforms an intricate input space X35

into a Gaussian latent space Z, and (b) a collection of exchangeable Gaussian

processes (GPs) defined in the latent space Z. Using deep neural networks

to implement the bijection f : X 7→ Z allows to model complex and high-

dimensional inputs, for example, images. At the same time, the construction of

BRUNO guarantees that the process in X is exchangeable, and thus the model40

performs an exact, albeit implicit, Bayesian inference in the space X .

A natural extension when building exchangeable models would be to have a

conditional process with two associated sequences: x1,x2, . . . and h1,h2, . . . .

For instance, when xi is an image, hi could be a vector of descriptive labels

or tags associated with this image. By analogy with Eq. 1, the exchangeability

property becomes:

p(x1, . . . ,xn|h1, . . . ,hn) = p
(
xπ(1), . . . ,xπ(n)|hπ(1), . . . ,hπ(n)

)
. (3)

To have a valid stochastic process, we also need a consistency property as im-

posed by the Kolmogorov extension theorem [6]:

p(x1:m|h1:m) =

∫
p (x1:n|h1:n) dxm+1:n for 1 ≤ m < n. (4)

To our best knowledge, Bayesian theory does not have an established proof

of de Finetti’s theorem for conditional probabilities. In other words, it remains a

conjecture that conditions in Eq. 3 and Eq. 4 guarantee that one can represent

the process as a mixture of conditionally i.i.d. models as given in Eq. 5 or
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equivalently, in Eq. 6.

p(x1:n|h1:n) =

∫
p(θ)

n∏

i=1

p(xi|hi,θ)dθ (5)

p(xn|hn,x1:n−1,h1:n−1) =

∫
p(θ|x1:n−1,h1:n−1)p(xn|hn,θ)dθ (6)

However, for processes where xi and hi take values from a finite set, this theorem

is proven in the field of quantum physics [7]. Though, it is yet unclear how to

extend these results to continuous variables.

Relying on the conditional version of de Finetti’s theorem, neural processes [8]45

take an approach that is similar to the neural statistician’s. It extends the VAE

model to handle collections of (xi,hi) input pairs in a permutation-invariant

way while optimizing a variational lower bound on p(xn|hn,x1:n−1,h1:n−1).

Versa [9] also follows the idea of approximating the aforementioned posterior

predictive distribution, though they use a training procedure that differs from50

standard variational inference. Both models achieve permutation invariance of

p(θ|x1:n,h1:n) by using instance-pooling operations, e.g. the mean over repre-

sentations of (xi,hi) pairs.

An alternative method that does not require approximations of the right-

hand side of Eq. 6, is to use the idea of BRUNO and construct a process that55

satisfies Eq. 3 and Eq. 4 directly. In the next section, we show how this can be

done by slightly modifying the architecture of BRUNO, thus leading to condi-

tional BRUNO, which we will further refer to as C-BRUNO.

2. Method

We begin this section with an overview of the mathematical tools needed60

to construct our model: first the exchangeable Gaussian processes; and then

a proposed conditional version of Real NVP - a deep, stably invertible and

learnable neural network architecture for conditional density estimation [10].

We next present C-BRUNO – an extension of the BRUNO model [2], wherein

we combine the two aforementioned components. Our model is illustrated in65

Figure 1.
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Figure 1: A schematic of C-BRUNO unrolled for two update steps and a sampling step.

This illustrates how our model is able to update, evaluate and sample from the predictive

distribution. Here, the two data points x1 and x2 are mapped into latent vectors z1 and

z2, where the mappings are conditioned on h1 and h2 respectively. The GPs’ parameters

are updated after processing every input. For example, after observing z1, we update the

parameters of the priors p(z11) and p(z21). At every step, we can also evaluate the predictive

distributions p(x1|h1) and p(x2|x1,h1:2). Sampling from the predictive distribution is done

by sampling z1 and z2 and then applying the inverse Real NVP mapping.

2.1. Exchangeable Gaussian processes

Consider a stochastic process z1, z2, z3, . . . , where for any finite number n of

random variables z1, z2, . . . zn ∼ Nn(µ,Σ) with a constant mean µ = (µ, µ, . . . , µ)

and a compound symmetry covariance matrix Σ, i.e. Σii = v and Σij,i 6=j = ρ.70

To ensure that Σ is a positive-definite covariance matrix that complies with

covariance properties of exchangeable sequences, we additionaly require that

0 ≤ ρ < v [3]. The constructed process a special case of a Gaussian process,

and it is exchangeable since the definition in Eq. 1 is satisfied.

Imposing exchangeability constraints allows to derive recurrent linear-time

updates for the mean and variance parameters of the predictive distribution,

i.e. p(zn+1|z1:n) = N (µn+1, vn+1) for n ≥ 1:

µn+1 = (1− dn)µn + dnzn, vn+1 = (1− dn)vn + dn(v − ρ), (7)

where dn = ρ
v+ρ(n−1) , and the prior parameters µ1 = µ and v1 = v. Derivation75

of these updates are given in the Appendix B of Korshunova et al. [2].

Exchangeable GPs on their own have the insufficient power to model any

interesting data. However, they become useful once we combine them with

5



deep neural networks. We will show this experimentally in Section 3, where

the resulting model is able to sucessfully model complex conditional densities of80

image sequences.

2.2. Conditional Real NVP

Real NVP (real-valued non-volume preserving transformation) [10] is a mem-

ber of the normalizing flows family of models, where some density p(x) in the

input space X = RD is transformed into the desired probability distribution p(z)

in the latent space Z = RD through a sequence of invertible mappings [11]. Real

NVP is implemented as a stack of alternating coupling layers, with every layer

transforming half of its input dimensions while copying the other half directly

to the output:



x1:d
out = x1:d

in

xd+1:D
out = xd+1:D

in � exp(s(x1:d
in )) + t(x1:d

in ),

(8)

where � is an elementwise product, and the functions s (scale) and t (transla-

tion) are usually deep neural networks. In addition to bijectivity, this design

ensures the following two properties. Firstly, the inverse is easy to evaluate,

i.e. the computational cost of the backward mapping x = f−1(z) is the same

as for the forward mapping z = f(x). Thus, sampling from Real NVP is fast

compared to autoregressive flow models [12]. Secondly, computing the Jacobian

determinant takes linear time in the number of input dimensions D, which al-

lows to easily evaluate the likelihood of the inputs via the change of variables

formula:

p(x) = p(z)

∣∣∣∣∣det

(
∂f(x)

∂x

)∣∣∣∣∣ . (9)

A learnable, sufficiently expressive mapping of the data to a latent space is

capable of making the transformed data conform to a factorized and easy-to-

model distribution. Namely, p(z) =
∏D
d=1 p(z

d), where every zd is independent,85

and p(zd) is a standard distribution, commonly chosen to be Gaussian [5, 10].

When the goal is to model a conditional distribution p(x|h), we propose to

make the transformations s and t dependent on h. One way to achieve this is
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to concatenate the features of h to the inputs of every dense and convolutional

layer of the s and t networks. In this case, the Jacobian of the Real NVP

mapping becomes dependent on h, and the change of variables formula gives

the conditional density:

p(x|h) = p(z)

∣∣∣∣∣det

(
∂f(x,h)

∂x

)∣∣∣∣∣ . (10)

2.3. C-BRUNO: the conditional exchangeable sequence model

We now combine Bayesian and deep learning tools from the previous sections

and present our model for conditional exchangeable sequences, whose schematic

is given in Figure 1.90

Assume we are given exchangeable sequences x1,x2, . . . ,xn and h1,h2, . . . ,hn,

where every D-dimensional variable xi is associated with a vector of labels or

tags hi. Applying conditional Real NVP to every (xi,hi) pair results in an

exchangeable sequence z1, z2, . . . ,zn in the latent space where the model makes

the following assumptions:95

A1: dimensions {zd}d=1,...,D are independent, so p(z) =
∏D
d=1 p(z

d)

A2: for each dimension d, we assume that (zd1 , . . . z
d
n) ∼ Nn(0,Σd), where Σd

is a n× n covariance matrix with Σd
ii = vd and Σd

ij,i 6=j = ρd, 0 ≤ ρd < vd.

These two assumptions of C-BRUNO are identical to the ones from its un-

conditional counterpart [2] because the dependence on h is introduced by con-100

ditioning the Real NVP part of C-BRUNO, and thus the distribution in the

latent space Z can remain fixed.

3. Experiments

3.1. ShapeNet view reconstruction

We consider the task of few-shot image reconstruction, where the model105

is required to infer how an object looks from various angles based on a small

set of observed views [9]. This problem can be framed as generating samples

from a predictive conditional distribution p(xn|hn,x1:n−1,h1:n−1), where hn

is a desired angle and x1:n−1 is a set of observed views associated with angles
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h1:n−1. We use a set of 12 object categories from ShapeNetCore v2 [13] as110

selected by Gordon et al. [9], and train C-BRUNO to predict different views

from a single shot. Namely, given a random view x1 and its angle h1, the goal

is to predict N views of the same object under angles h1, . . . ,hN . Thus, the

training objective is to maximize the likelihood of ground-truth images under the

model distribution, i.e. L =
∑N
n=1 log p(xn|hn,x1,h1). This loss is optimized115

with respect to the Real NVP parameters and variance-covariance parameters

of the GPs. We train C-BRUNO in a batch-mode on all 12 object classes at

once and use the same train-test split as VERSA [9], such that the two models

are comparable 1.

In Figure 2, we show samples from C-BRUNO when the model is given120

viewpoints of an object that was not seen during training. In the majority of

cases, our samples have correct orientation and are visually sharper compared to

samples from VERSA [9]. The difference between the two models increases with

more uncertainty in the object’s appearance or when the object is less similar to

the training examples. In this case, C-BRUNO generates samples with higher125

variance and more inaccuracies while VERSA samples become more blurry.

In Figure 2, this is illustrated for the airplane object. When a single shot is

given, from which we cannot infer the wing configuration, C-BRUNO samples

more diverse airplanes compared to when we condition on multiple distinctive

viewpoints. With more airplane shots, the quality of VERSA samples increases130

as well. However, as we can see from the car example, this does not always

hold, thus indicating that VERSA requires training with multiple input shots

in order to match these testing conditions. C-BRUNO, on the other hand, is

more agnostic to the length of sequences it is trained or tested on.

3.2. Contextual bandits135

Contextual bandits constitute another task where we can apply C-BRUNO.

We consider a wheel bandit problem [14] that was previously used to compare

1The code to reproduce our experiments is available at github.com/IraKorshunova/bruno.
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Figure 2: Few-shot C-BRUNO samples in rows A-C and VERSA samples in row D for the

unseen test objects. Here, we condition on the input views (x1:n,h1:n) marked in red. The

top row of each plot contains ground truth images, whereas the three rows A to C are the

C-BRUNO samples from p(x|h,x1:n,h1:n) conditioned on a different angle h in each column.

neural processes (NPs) [8] and model-agnostic meta-learning (MAML) [15]. The

task can be outlined as follows: a circle of a unit radius is partitioned into a low-

reward region (blue) and 4 high-reward regions whose sizes are parameterized by140

δ as illustrated in Figure 3. There are five possible actions: a1 to a5. The first

action a1 always yields a reward r sampled from N (1.2, 0.0012). The reward

for other four actions depends on the location within a circle – a context point

with coordinates x = (x1, x2). If ‖x‖ < δ, a1 is the optimal action since other

arms have a reward of r ∼ N (1.0, 0.0012). When ‖x‖ > δ, the optimal action145

is defined by the location x and it yields the reward of N (50.0, 0.0012).

Similarly to NPs and MAML, we pretrain C-BRUNO on a batch of 64 se-

quences sampled from wheel problems with a random δ ∼ U(0, 1). Each el-

ement of the sequence is a tuple (x, a, r) of the context x, action a and the

9



Figure 3: Context regions in the unit circle for the wheel bandits problem with varying values

of the exploration parameter δ [14]. For blue, red, green, black, and yellow context regions,

the optimal actions are a1, a2, a3, a4, and a5, respectively.

reward r. Every sequence contains 562 points, where 50 points are used as150

targets, and we train C-BRUNO to maximize the likelihood of target rewards:

L =
∑562
n=512 log p(rn|xn, an,x1:511, a1:511, r1:511). Here, both contexts and ac-

tions constitute the conditional information previously denoted as h. One issue

with this approach is that modelling a scalar reward implies a one-dimensional

latent space as the Real NVP architecture needs to be bijective. In this case,155

the inability to control the size of the latent space would limit the expressive

power of the model. In practice, we found that a simple yet effective solution

is to append a number of dummy dimensions to the inputs and sample their

values from a uniform distribution U(0, 1). A similar approach was shown to

be useful for other flow models, such as Neural ODEs [16]. At test time, the160

dummy dimensions are ignored as we are only interested in rewards sampled

from p(r|xn+1, a,x1:n, a1:n, r1:n). Specifically, their average approximates the

expected reward for action a at step n+ 1 given the context xn+1 and the his-

tory. We choose the action that maximizes this value. Future work may want

to explore how this approach relates to Thompson sampling [17].165

To compare the performance of C-BRUNO to other existing models applied

to the wheel bandit problem, we used the evaluation framework of by Riquelme

et al. [14]. The results are given in Table 1, from which we can conclude that

C-BRUNO is on par with the state-of-the-art meta-learning techniques.
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δ 0.5 0.7 0.9 0.95 0.99

MAML [15] 2.49±0.12 3.00±0.35 4.75±0.48 7.10±0.77 22.89±1.41

NPs [8] 1.04±0.06 1.26±0.21 2.90±0.35 5.45±0.47 21.45±1.30

C-BRUNO 1.32±0.06 1.43±0.07 3.44±0.13 6.17±0.21 21.52±0.41

Table 1: Simple regret (mean cumulative regret in the last 500 out of 80 000 steps) for the wheel

bandit problems with different values of δ. Reported values are the means and standard errors

over 100 trials. The regrets are normalized with respect to the performance of the uniform

method which selects each action at random with equal probability.

4. Discussion170

We presented C-BRUNO – an extension of BRUNO [2] to the conditional

case, which maintains its appealing properties, such as (a) exact likelihoods

(b) fast sampling and inference, (c) no retraining or changes to the architecture

at test time, and (d) a recurrent formulation. These features constitute a

powerful meta-learning model with a flexible design. Together, BRUNO and175

C-BRUNO cover a broad range of meta-learning applications while performing

on par with more task-specific state-of-the-art methods. In particular, this paper

showed how C-BRUNO can be used for few-shot conditional image generation

and contextual bandits.

BRUNO and C-BRUNO build directly on the fundamental property of ex-180

changeability that underlies much of Bayesian statistics. They provide an al-

ternative way to building meta-learning models by shifting to implicit inference

instead of the commonly used approximate explicit Bayesian inference. BRUNO

models combine exchangeable GPs with powerful bijective feature extractors in

the form of flow-based deep neural architectures. While the former compo-185

nent is unlikely to be improved, we expect our models to greatly benefit from

the recent advances in normalizing flows, which is currently an active area of

research [18, 19]. This would allow to apply our models to more challenging

datasets, thus offering a simpler alternative to more complex models, for in-

stance, Generative Query Networks [20].190
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