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Abstract 

Studies combined in a meta-analysis often have differences in their design and conduct that 
can lead to heterogeneous results. A random-effects model accounts for these differences in 
the underlying study effects, which includes a heterogeneity variance parameter. The 
DerSimonian-Laird method is often used to estimate the heterogeneity variance, but simulation 
studies have found the method can be biased and other methods are available. This paper 
compares the properties of nine different heterogeneity variance estimators using simulated 
meta-analysis data. Simulated scenarios include studies of equal size and of moderate and large 
differences in size. Results confirm that the DerSimonian-Laird estimator is negatively biased 
in scenarios with small studies, and in scenarios with a rare binary outcome. Results also show 
the Paule-Mandel method has considerable positive bias in meta-analyses with large 
differences in study size. We recommend the method of restricted maximum likelihood 
(REML) to estimate the heterogeneity variance over other methods. However, considering that 
meta-analyses of health studies typically contain few studies, the heterogeneity variance 
estimate should not be used as a reliable gauge for the extent of heterogeneity in a meta-
analysis. The estimated summary effect of the meta-analysis and its confidence interval derived 
from the Hartung-Knapp-Sidik-Jonkman method is more robust to changes in the heterogeneity 
variance estimate and shows minimal deviation from the nominal coverage of 95% under most 
of our simulated scenarios. 

Keywords 

Heterogeneity, simulation, random-effects, DerSimonian-Laird, REML 

  



 

This article is protected by copyright. All rights reserved. 

1 Introduction 

Meta-analysis is the statistical technique of combining the results of multiple comparable 
studies. These studies often have differences in their design and conduct that lead to 
heterogeneity in their underlying effects. When heterogeneity is thought to be present, 
researchers should first attempt to find its causes, but these causes may be too numerous to 
isolate or may simply be unknown. Unexplained heterogeneity of study effects can be 
quantified in a random-effects model. This model typically assumes a normal distribution of 
the underlying effects across studies. A reliable estimate of the variance of this distribution can 
provide valuable insight into the degree of heterogeneity between studies, even if such studies 
are not formally synthesised in a meta-analysis. 

The moment-based method proposed by DerSimonian and Laird1 is most commonly used to 
estimate the heterogeneity variance. However, this method has been shown in previous 
simulation studies to be negatively biased in meta-analyses containing small studies2, 
particularly in meta-analyses of binary outcomes3,4. There are many other available methods5, 
including those proposed by Paule and Mandel6, Hartung and Makambi7, Sidik and Jonkman4,8, 
and the restricted maximum likelihood method (REML)9. Estimates derived from these 
methods in the same meta-analysis can often be notably different and in a small number of 
cases, these estimates can produce discordant conclusions on the summary effect and its 
confidence interval10. Therefore, the choice of heterogeneity variance method is an important 
consideration in a meta-analysis. Research based on simulated meta-analysis data can allow a 
researcher to make a more informed decision. 

A recent systematic review collated simulation studies that compare the properties of 
heterogeneity variance estimators11. Its aim was to assess if there is consensus on which 
heterogeneity variance methods (if any) have better properties than DerSimonian-Laird. The 
review identified 12 relevant simulation studies, but there was little consensus across the 
various authors’ recommendations2,3,4,8,12,13,14,15,16,17,18,19. This may have been caused by a 
potential conflict of interest among the authors of all but four of these studies3,12,13,17; the 
authors of these eight studies recommended their own newly proposed methods over existing 
methods. Three of the simulation studies3,12,13 compared only pre-existing methods and made 
an explicit recommendation for estimating the heterogeneity variance; the authors of these 
studies recommended the method of Paule and Mandel6 and/or REML9, but only compared a 
subset of methods. 

The tentative conclusions of that review provided motivation for a new simulation study, which 
we present in this paper. The limitations of previous simulation studies helped inform the 
design of this study. We consider the inclusion of all methods identified in recent reviews of 
heterogeneity variance methods5,11, compare methods comprehensively in a range of simulated 
scenarios representative of meta-analyses of health studies, and report a wide range of 
performance measures. Performance measures include those that relate directly to the 
heterogeneity variance estimates, and those that measure the impact of heterogeneity variance 
estimates on the summary effect estimate and its confidence interval. Our recommendations 
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are based on a subjective trade-off between many performance measures. To minimise any 
conflict of interest, we do not propose any new methods in this paper. 

The aims of this simulation study are to: (1) compare the relative performance of heterogeneity 
variance methods to establish which method(s) have the most reasonable properties; (2) find 
scenarios where the performance of all methods is poor, such that we cannot rely on a single 
method to provide an estimate. In scenarios where all methods perform poorly, we make wider 
recommendations for random-effects meta-analysis and dealing with between-study 
heterogeneity. 

The outline of the paper is as follows. In section 2, we introduce methods for estimating the 
heterogeneity variance and any other meta-analysis methods relevant to this simulation study. 
The design of the simulation study is given in section 3, followed by the results of this study in 
section 4. Results are discussed and conclusions are drawn in sections 5 and 6. 

2 Methods 

2.1 The heterogeneity variance parameter in a random-effects model 

A random-effects model accounts for the possibility that underlying effects differ between 
studies in a meta-analysis. The random-effects model is defined as: ߠ෠௜ ൌ ௜ߠ ൅ ௜ߠ                         ௜ߝ ൌ ߠ ൅  ௜ ǡ                                                                    ሺͳሻߜ

where ߠ௜ is the true effect size in study i, ߠ෠௜ is the estimated effect size, and ߠ is the average 
effect across all studies. ߝ௜ and ߜ௜ are the within-study errors and the between-study 
heterogeneity respectively. Meta-analysis methods typically assume that both are normally 

distributed, i.e. ߝ௜̱ܰሺͲǡ ௜̱ܰሺͲǡߜ ௜ଶሻ andߪ ߬ଶሻ. The heterogeneity variance parameter is a 
measure of the variance of ߠ௜ around ߠ and is denoted by ߬ଶ.  

The inverse-variance method is most commonly used to estimate ߠ in this model; the estimate 
is given by: 

෠ߠ ൌ ෍ ෠௜௞ߠ ௜ݓ
௜ୀଵ ෍ ௜௞ݓ

௜ୀଵ ǡ൙                                                             ሺʹሻ 

where ݇  is the number of studies in the meta-analysis and ݓ௜ is the weight given to study i. 

Under the random-effects model, using weights ݓ௜ ൌ ͳ ሺߪ௜ଶ ൅ ߬ଶሻΤ  provides the uniformly 

minimum variance unbiased estimator (UMVUE) of ߠ, which we denote by ߠ෠ோா. When ߬ ଶ ൌͲ, model (1) simplifies to what is commonly referred to as the fixed-effect model, where the 
true effects are homogeneous. In that case, the UMVUE of ߠ (which is now the common true 

effect for all ݇  studies) is obtained with (2), but using weights ݓ௜ ൌ ͳ ௜ଶΤߪ . We denote this 
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estimator by ߠ෠ிா. However, the variance parameters ߪ௜ଶ and ߬ ଶ are unknown in practice and 
must be estimated from the data. Methods to estimate ߬ଶ are outlined in the next section. 

2.2 Heterogeneity variance estimators 

Nine estimators were identified from two systematic reviews of heterogeneity variance 
methods5,11. Estimators proposed by Hunter and Schmidt20, Rukhin14, Malzahn et al.2 and the 
maximum likelihood method proposed by Hardy and Thompson21 are present in these reviews 
but excluded from the main results because preliminary analysis showed they are clearly 
inferior to other methods (as shown in appendix 1). Furthermore, Bayesian methods that rely 
on a subjective choice of prior distribution are excluded because of difficulty in objectively 
comparing them to frequentist methods. The method proposed by Morris22 is excluded because 
it is an approximation to REML. We excluded the positive DerSimonian-Laird estimator18, 
which truncates heterogeneity variance estimates below 0.01, because any positive cut-off 
value could be applied. 

The included heterogeneity variance estimators are listed in table 1. This table also includes 
acronyms for the estimators used throughout this paper. Their formulae are given below. 

 

Method of moments approach (estimators 1-5) 

Five estimators included in this study can be derived from the method of moments approach, 
which is based on the generalised Q-statistic23: 

ܳெெ ൌ ෍ ܽ௜൫ߠ෠௜ െ ෠൯ଶ௞ߠ
௜ୀଵ  

The weight assigned to study i is denoted by ܽ௜ and calculated differently depending on which 

of the five method of moments estimators is used. ߠ෠ is given by formula (2) with study weights ݓ௜ ൌ ܽ௜. By equating ܳ ெெ to its expected value, the following general formula for the 
heterogeneity variance can be derived23: 

Ƹ߬ଶ ൌ ݔܽ݉ ۔ۖەۖ
Ͳǡۓ ܳெெ െ σ ܽ௜ߪො௜ଶ௞௜ୀଵ ൅ σ ܽ௜ଶߪො௜ଶ௞௜ୀଵσ ܽ௜௞௜ୀଵσ ܽ௜௞௜ୀଵ െ σ ܽ௜ଶ௞௜ୀଵσ ܽ௜௞௜ୀଵ ۙۘۖ

ۖۗ                                              ሺ͵ሻ 

1. The DerSimonian-Laird estimator (DL)1 uses the fixed-effect model weights ܽ௜ ൌ ͳ ො௜ଶΤߪ , 
which leads to the formula: 

Ƹ߬஽௅ଶ ൌ ݔܽ݉ ۔ۖەۖ
Ͳǡۓ σ ሺͳ ො௜ଶΤߪ ሻ൫ߠ෠௜ െ ෠ிா൯ଶ௞௜ୀଵߠ െ ሺ݇ െ ͳሻσ ሺͳ ො௜ଶΤߪ ሻ௞௜ୀଵ െ σ ሺͳ ො௜ଶΤߪ ሻଶ௞௜ୀଵσ ሺͳ ො௜ଶΤߪ ሻ௞௜ୀଵ ۙۘۖ

ۖۗ
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2. Cochran’s ANOVA estimator (CA) uses equal study weights ܽ௜ ൌ ͳ ݇Τ , leading to: Ƹ߬஼஺ଶ ൌ ݔܽ݉ ቄͲǡ ଵ௞ିଵ σ ൫ߠ෠௜ െ ෠஼஺൯ଶ௞௜ୀଵߠ െ ଵ௞ σ ො௜ଶ௞௜ୀଵߪ ቅ ǡ where ߠ෠஼஺ is calculated from formula (2) 

with study weights ݓ௜ ൌ ͳ ݇Τ . 

3. The Paule-Mandel estimator (PM) uses the random-effects model study weights, defined by 
substituting ܽ ௜ ൌ ͳ ሺߪො௜ଶ ൅ Ƹ߬௉ெଶ ሻΤ  into formula (3). Since ܽ௜ is a function of ߬ Ƹ௉ெଶ , there is no 
closed-form expression for Ƹ߬௉ெଶ  and iteration is required to find the solution. Iterative 
algorithms including those suggested by Bowden et al.24 and Jackson et al.25 always converge. 
The same estimator has been derived independently of the methods of moments approach and 
is therefore often referred to as the empirical Bayes estimator in the literature26. 

4. The two-step Cochran’s ANOVA estimator also uses Paule-Mandel random-effects weights 
but restricts iteration to two-steps (PMCA). Cochran’s ANOVA is used to initially estimate ߬ଶ, 

thus, a closed form expression can be derived by substituting ܽ௜ ൌ ͳ ሺߪො௜ଶ ൅ Ƹ߬஼஺ଶ ሻΤ  into formula 
(3). 

5. The two-step DerSimonian-Laird estimator (PMDL) has similar weights as PMCA above, but 
uses the DerSimonian-Laird method to calculate an initial estimate of ߬ଶ. Therefore the study 
weights are ܽ௜ ൌ ͳ ሺߪො௜ଶ ൅ Ƹ߬஽௅ଶ ሻΤ . 

All five of these methods can produce negative variance estimates and are truncated to zero in 
such cases. 

Hartung-Makambi (estimator 6) 

Hartung and Makambi7 proposed a correction to the DerSimonian-Laird estimator so that Ƹ߬ଶ is 
always positive and truncation is not required. The formula is given by: 

Ƹ߬ுெଶ ൌ ቀσ ሺͳ ො௜ଶΤߪ ሻ൫ߠ෠௜ െ ෠ிா൯ଶ௞௜ୀଵߠ ቁଶ
ቆσ ሺͳ ො௜ଶΤߪ ሻ௞௜ୀଵ െ σ ሺͳ ො௜ଶΤߪ ሻଶ௞௜ୀଵσ ሺͳ ො௜ଶΤߪ ሻ௞௜ୀଵ ቇ ቀʹሺ݇ െ ͳሻ ൅ σ ሺͳ ො௜ଶΤߪ ሻ൫ߠ෠௜ െ ෠ிா൯ଶ௞௜ୀଵߠ ቁ 

Sidik-Jonkman (estimators 7 and 8) 

Sidik and Jonkman8 proposed the following two-step estimator that only produces positive ߬ଶ 
estimates: Ƹ߬ௌ௃ଶ ൌ ͳ݇ െ ͳ ෍ ͳͳ ൅ ሺߪො௜ଶȀ Ƹ߬଴ଶሻ ൫ߠ෠௜ െ ෠ௌ௃൯ଶ ǡ௞௜ୀଵߠ  

where ߬ Ƹ଴ଶ ൌ ଵ௞ିଵ σ ൫ߠ෠௜ െ ෠஼஺൯ଶ௞௜ୀଵߠ  is the initial heterogeneity variance estimate and ߠ෠ௌ௃ is 

calculated from formula (2) with weights ݓ௜ ൌ ͳ ቀͳ ൅ ሺߪො௜ଶȀ Ƹ߬଴ଶሻቁൗ . 

Sidik and Jonkman8 noted that an alternative formula for Ƹ߬଴ଶ may lead to an estimator with 
better properties. In a subsequent paper4, they proposed an alternative initial estimate Ƹ߬଴ଶ ൌ݉ܽݔሼͲǤͲͳǡ Ƹ߬஼஺ଶ ሽ, where ߬ Ƹ஼஺ଶ  is Cochran’s ANOVA estimate of the heterogeneity variance 
(estimator 2). 
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Restricted maximum likelihood (estimator 9) 

To derive the restricted maximum likelihood (REML) estimator, the log-likelihood function 
from the random-effects model (1) derived from the maximum likelihood method21 is 
transformed so that it excludes the parameter 9ߠ. In doing so, REML avoids making the 
assumption that ߠ is known and is therefore thought to be an improvement on the original 
maximum likelihood estimator13. This results in the following modified log-likelihood 
function: 

 ݈ ൌ െ ݇ʹ ݈݊ሺʹߨሻ െ ͳʹ ෍ ݈݊ሺߪ௜ଶ ൅ ߬ଶሻ௞௜ୀଵ െ ͳʹ ෍ ൫ߠ෠௜ െ ௜ଶߪ෠൯ߠ ൅ ߬ଶ௞௜ୀଵ െ ͳʹ ݈݊ ቆ෍ ͳߪ௜ଶ ൅ ߬ଶ௞௜ୀଵ ቇ 

 

Maximising this modified log-likelihood function with respect to ߬ଶ (by differentiating and 
setting equal to zero) results in the following formula for the heterogeneity variance: 

Ƹ߬ோாெ௅ଶ ൌ ݔܽ݉ ቐͲǡ σ ܽ௜ଶ ቀ൫ߠ෠௜ െ ෠ோா൯ଶߠ െ ො௜ଶቁ௞௜ୀଵߪ σ ܽ௜ଶ௞௜ୀଵ ൅ ͳσ ܽ௜௞௜ୀଵ ቑǡ 
where ܽ ௜ ൌ ͳ ሺߪො௜ଶ ൅ Ƹ߬ோாெ௅ଶ ሻΤ . 

The heterogeneity variance estimate is calculated through a process of iteration. Fisher’s 
scoring algorithm is used for iteration in this study, as implemented in the metafor package in 
R27. 

2.3 Confidence interval methods for the summary effect 

In this study, we also investigate how choice of a particular heterogeneity variance estimation 
method may impact on the estimate of the summary effect ߠ and its confidence interval. As we 
described earlier, the inverse-variance method is typically used to estimate ߠ in a random-

effects meta-analysis, so we calculate ߠ෠ using this method throughout. The following are three 
methods to estimate a corresponding confidence interval. 

A Wald-type confidence interval can be calculated as1: ߠ෠ േ Zሺଵି஼ሻ ଶΤ ටܸܽݎ൫ߠ෠൯ 

෠൯ߠ൫ݎܸܽ ൌ ͳ ቆ෍ ͳ ሺߪො௜ଶ ൅ Ƹ߬ଶሻΤ௞௜ୀଵ ቇൗ                                              ሺͶሻ 

where C is the coverage level of the confidence interval, and ܼሺଵି஼ሻ ଶΤ  is the ሺͳ െ ሻܥ ʹΤ  centile 

of the standard normal distribution (e.g. ܼሺଵି଴Ǥଽହሻ ଶΤ ൌ ͳǤͻ͸) 

Alternatively, a t-distribution can be assumed for the summary effect with ݇ െ ͳ degrees of 
freedom28: 

෠ߠ േ ௞ିଵǡ ሺଵି஼ሻݐ ଶΤ ටܸܽݎ൫ߠ෠൯ ǡ 
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where ݐ௞ିଵǡ ሺଵି஼ሻ ଶΤ  is the ሺͳ െ ሻܥ ʹΤ  centile of the t-distribution with ݇ െ ͳ degrees of freedom 

and ܸ  .෠൯ is calculated from formula (4)ߠ൫ݎܽ

The Hartung-Knapp-Sidik-Jonkman method (HKSJ)29,30 also relies on a t-distribution and uses 

an alternative weighted variance for ߠ෠: ߠ෠ േ ௞ିଵǡ ሺଵି஼ሻݐ ଶΤ ටܸܽݎு௄ௌ௃൫ߠ෠൯ 

෠൯ߠு௄ௌ௃൫ݎܸܽ ൌ σ ܽ௜௞௜ୀଵ ൫ߠ෠௜ െ ෠൯ଶሺ݇ߠ െ ͳሻ σ ܽ௜௞௜ୀଵ ǡ 
where ܽ ௜ ൌ ͳ ሺߪො௜ଶ ൅ Ƹ߬ଶሻΤ  ෠ is calculated from formula (2) and Ƹ߬ଶ can be estimated using anyߠ  ,
of the methods outlined in this paper. 

This method is equivalent to the t-distribution method above, but its variance is multiplied by 

a scaling factor σ ܽ௜௞௜ୀଵ ൫ߠ෠௜ െ ෠൯ଶߠ ሺ݇ െ ͳሻൗ 30,31. In certain cases, this scaling factor can be less 

than one, which leads to a narrower confidence interval than the standard t-distribution 
approach and can also lead to a narrower interval compared to the Wald-type method in few 
cases32. A variation of this method has been proposed to deal with this by constraining the 
scaling factor to be ൒ ͳ7. However, throughout this study, the HKSJ method without constraint 
is used. 

3 Simulation study design 

All simulations and analyses were carried out in R version 3.2.2. The package metafor27 was 
used to run simulated meta-analyses and calculate heterogeneity variance estimates from 
methods coded in this package, bespoke code was used for those that are not. A study 
protocol was agreed by all authors before running these simulations and is available upon 
request from the first author. 

3.1 Simulation methods 

For studies ݅ ൌ ͳǡ ǥ ǡ ݇ in each meta-analysis, true study effects ߠ௜ are simulated from the 
distribution ܰሺߠǡ ߬ଶሻ. Parameters ߠ, ߬ଶ, and ݇  take values as defined in section 3.2. Study 
sample sizes ܰ௜ are generated from a distribution also detailed in section 3.2 and are then split 
evenly between the two study groups ݊ଵ௜ and ݊ ଶ௜. Participant-level data are then simulated for 

both continuous and binary outcomes, and effect sizes and within-study variances (ߠ௜ and ߪ௜ଶ) 
are estimated from these data. In continuous outcome meta-analyses, effects are measured as a 
standardised mean difference and in binary outcome meta-analyses, effects are measured as a 
log-odds ratio. 

For each study simulated from continuous outcome data, the following steps are carried out:  
(1) Generate ݊ଵ௜ observations from ܰ ሺͲǡ ଵ௜ଶߪ ሻ and ݊ ଶ௜ observations from ܰሺߠ௜ ǡ ଶ௜ଶߪ ሻ. We 

assume variances ߪଵ௜ଶ  and ߪଶ௜ଶ  in the two groups are equal and, without loss of generality, 
set them equal to 1. 
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(2) Calculate the sample means and standard deviations of these observations. 

(3) Calculate ߠ෠௜ and ߪො௜ଶ for standardised mean differences by Hedges’ g method, thus 
accounting for small sample bias of standardised mean differences (documented by 
Borenstein et al.33, equations 2.23 and 2.24). 

For studies with an odds ratio outcome measure: 
1. Generate an average event probability between the two study groups (݌ҧ௜) from one of 

the distributions as defined in section 3.2. Although this simulation approach is not 
common, Smith et al.34 has previously defined a Bayesian meta-analysis model that 
included the same ݌ҧ௜ parameter. 

2. Derive underlying event probabilities for each study group (݌ଵ௜ and ݌ଶ௜) from the 
solutions to the following simultaneous equations: ݌ҧ௜ ൌ ሺ݌ଵ௜ ൅ ଶ௜ሻ݌ ʹΤ ௜ߠ  ൌ ଶ௜ሺͳ݌൫ൣ݃݋݈ െ ଵ௜ሻ൯݌ ൫݌ଵ௜ሺͳ െ ଶ௜ሻ൯ൗ݌ ൧ 

3. Simulate cell counts of the 2×2 contingency table from the distributions ݊݅ܤሺ݊ଵ௜ǡ  ଵ௜ሻ݌
and ݊݅ܤሺ݊ଶ௜ǡ  .ଶ௜ሻ. Apply a continuity correction of 0.5 to studies with zero cell counts݌

4. Calculate ߠ෠௜ and ߪො௜ଶ for log odds ratios from the standard formulae in Borenstein et al.33. 

3.2 Parameter values 

Parameter values are chosen to represent the range of values observed in published meta-
analyses in the Cochrane Database of Systematic Reviews10 and based on parameter values 
from previous simulation studies11. For all combinations of parameter values as outlined in this 
section, 5000 meta-analyses are simulated. Binary outcome meta-analyses are simulated with 
log-odds ratios of ߠ ൌ ሼͲǡͲǤͷǡͳǤͳǡʹǤ͵ሽ (corresponding to odds ratios of 1, 1.65, 3, and 10). 
Standardised mean difference meta-analyses are simulated with ߠ ൌ ͲǤͷ only, because 
previous simulation studies suggest ߠ has no noticeable effect on any of the results13,17.  Sample 
sizes are generated from the following five distributions to represent meta-analyses containing 
small, small-to-medium, medium, large, and small and large studies: (1) ௜ܰ ൌ ͶͲ, (2) ௜̱ܷܰሺͶͲǡͶͲͲሻ, (3) ௜ܰ ൌ ͶͲͲ, (4) ௜̱ܷܰሺʹͲͲͲǡͶͲͲͲሻ, and (5) ܰ ௜ ൌ ͶͲ (small) in half of 
studies and half selected from ௜̱ܷܰሺʹͲͲͲǡͶͲͲͲሻ (large). If k is odd in the last scenario, one 
study is selected randomly (with probability 0.5) to be small or large. For odds ratio meta-
analyses, the average event probability (݌ҧ௜) takes the values (1) 0.5, (2) 0.05, (3) 0.01, and (4) 
generated from the distribution ܷሺͲǤͳǡͲǤͷሻ. Simulated meta-analyses contain 2, 3, 5, 10, 20, 
30, 50, and 100 studies. 

Heterogeneity variance parameter values (߬ଶ) are defined such that the resulting meta-analyses 
span a wide range of levels of inconsistency between study effects. We measured inconsistency 
using the ܫଶ statistic32, an approximate measure of the relative size of the heterogeneity variance 
to the total variability in effect estimates (the sum of within-study error variance and between-
study heterogeneity). The chosen ߬ଶ values result in meta-analyses with average ܫଶ values of 
0%, 15%, 30%, 45%, 60%, 75%, 90%, and 95% and are given in appendix 2. ܫଶ values are 
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calculated using the true ߬ଶ parameter estimates, but still vary between simulated meta-
analyses because of the simulated variation in the standard errors. Parameter values for ߬ଶ vary 
between scenarios with different distributions for ௜ܰ and ݌ҧ௜ to maintain a consistent range of ܫଶ. In each scenario, ߬ଶ is fixed and ܫଶ varies between meta-analyses, therefore, we also present 
the range of ܫଶ next to the graphs in the results. 

Simulating all combinations of parameter values leads to 320 scenarios for standardised mean 
difference meta-analyses (ͺሺ݇ሻ ൈ ͷሺ ௜ܰሻ ൈ ͺሺ߬ଶሻ) and 5120 scenarios for odds ratio meta-
analyses (ͅሺ݇ሻ ൈ ͷሺ ௜ܰሻ ൈ ͺሺ߬ଶሻ ൈ Ͷሺ݌ҧ௜ሻ ൈ Ͷሺߠሻ). Given the large number of simulated 
scenarios, this paper can only show results from a representative subset of these scenarios. 

3.3 Performance measures 

Properties of heterogeneity variance estimators are measured in terms of bias and mean squared 
error. These two measures are plotted proportional to the heterogeneity variance parameter 
value, so that results can be compared more easily between scenarios with different ߬ଶ. For 
example, a proportional bias of 100% means that Ƹ߬ଶ is on average twice as large as the true ߬ଶ. 
By the same token, a proportional bias of −50% means that Ƹ߬ଶ is on average half as large as 
the true ߬ଶ. Similarly, a proportional mean squared error of 100% implies that the mean squared 

error is equal to ߬ଶ. We also report bias of ߠ෠ and coverage of the three included methods to 
calculate 95% confidence intervals using estimates from the eleven included heterogeneity 
variance estimators. 

4 Results 

In section 4.1, results are presented for performance measures that relate directly to the 
heterogeneity variance parameter; bias and mean squared error. In section 4.2, we present bias 
of the summary effect. In section 4.3, we present the coverage probability of the three 
confidence interval methods for the summary effect. 

4.1 Properties of heterogeneity variance parameter estimates 

Estimators are compared in terms of bias in figures 1 and 2 and in terms of mean squared error 
in figures 3 and 4. The first figure in each case shows results from standardised mean difference 
meta-analyses and the second shows results from odds ratio meta-analyses. We present selected 
scenarios containing small studies, small-to-medium studies, and small and large studies 
combined with scenarios where the average ܫଶ is either equal to 30% or 90%, and for ߠ ൌ ͲǤͷ 
only. For odds ratio meta-analyses, we present scenarios where the average event probability 
in each study is uniformly distributed between 0.1 and 0.5. In this section, results are 
summarised separately for each heterogeneity variance estimator. 

DerSimonian-Laird (DL) 

In standardised mean difference meta-analyses, DL is negatively biased when ܫଶ is large and 
study sample sizes are small (as shown in figure 1, bottom-left). The estimator is more 
negatively biased in the equivalent odds ratio meta-analyses, even with event rates between 0.1 
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and 0.5 (figure 2). Additionally, DL is negatively biased in odds ratio meta-analyses when 
sample sizes are small-to-medium (figure 2, middle-left). In all other scenarios presented in 
figures 1 and 2, DL is positively biased in meta-analyses containing fewer than 10-20 studies 
and roughly unbiased for those with more studies. DL has similar bias to many estimators 
including PMCA, PMDL, and REML in scenarios with small-to-medium studies. In meta-
analyses with a mix of small and large studies (figures 1 and 2, third column), DL is one of the 
least positively biased estimators - distinctly lower than PM and PMCA. 

DL has a relatively low mean squared error in the same scenarios where negative bias is also 
observed (figures 3 and 4). However, this is not necessarily a good property because only 
underestimates can be truncated to zero and truncation reduces the error of the estimate. Low 
mean squared error is also observed in scenarios with small and large studies where DL has 
low bias (figures 3 and 4, third column). 

Cochran’s ANOVA (CA) 

CA tends to produce higher estimates of the heterogeneity variance than most other estimators 
for both standardised mean difference and odds ratio meta-analyses. As such, CA is roughly 
unbiased in scenarios with high ܫଶ when most other estimators are negatively biased. However, 
CA is one of the most positively biased estimators for low to moderate ܫଶ. CA's positive bias 
is particularly prominent in scenarios with small and large studies (figures 1 and 2, third 
column); it is counterintuitive to assign equal study weights (as the CA estimator does) in these 
scenarios with large differences in study size. CA also has higher mean squared error than most 
other estimators when the estimator is positively biased (figures 3 and 4). 

Paule-Mandel (PM) 

PM has properties similar to DL in scenarios of standardised mean difference meta-analyses 
that contain small or small-to-medium sized studies (figure 1, first and second column). In 
these scenarios, PM is roughly unbiased when ܫଶ is typically high or the meta-analysis has 
more than 20 studies and positively biased otherwise. In scenarios where DL is negatively 
biased, PM often has less negative bias, except in scenarios with highly sparse data where all 
estimators perform poorly (figure 2, bottom-left). In scenarios with a mix of small and large 
studies (figures 1 and 2, third column), PM has a higher mean squared error and higher positive 
bias than DL, PMDL, HM, and REML (figures 1-4, third column). 

Two-step Cochran’s ANOVA (PMCA) 

PMCA uses CA as an initial estimate of heterogeneity. PMCA's bias and mean squared error are 
equal to, or somewhere between, CA and PM in all scenarios. Given than CA and PM have 
high positive bias and large mean squared error in scenarios with small and large studies, so 
too does PMCA (figures 1-4, third column). 

Two-step DerSimonian-Laird (PMDL) 

In a similar fashion to PMCA, PMDL has bias and mean squared error that is equal to, or 
somewhere between, DL and PM in all scenarios. PMDL has properties similar to the best 
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performing out of the two estimators in all simulated scenarios. In scenarios with large and 
small studies, PMDL has low positive bias and mean squared error similar to DL and in 
scenarios where DL is negatively biased, PMDL and PM have comparable properties. There is 
little difference in the properties of PMDL and REML in all scenarios. 

Hartung-Makambi (HM) 

In meta-analyses with small or small-to-medium study sizes and zero or low ܫଶ, HM tends to 
produce relatively high estimates of heterogeneity and therefore has relatively high positive 
bias (figures 1 and 2, top-left). This is perhaps because HM is a transformation of the DL 
estimator that only produces positive estimates. HM tends to produce comparatively low 
estimates when ܫଶ is moderate or high and has more negative bias than DL in these scenarios. 
HM has a comparatively low mean squared error in all scenarios presented (figures 3 and 4), 
including scenarios where HM has high positive bias. HM is one of the best performing 
estimators in meta-analyses containing small and large studies (figures 1-4, third column), with 
properties comparable with DL, PMDL, and REML. 

Sidik-Jonkman (SJ) 

SJ typically produces one of the highest estimates of the heterogeneity variance in both 
standardised mean difference and odds ratio meta-analyses; even higher than the other 
estimators which only produce positive estimates (HM and SJCA). As such, SJ has considerable 
positive bias and high mean squared error in meta-analyses with up to moderate ܫଶ. For 
example, in standardised mean difference meta-analyses containing small-to-medium sized 
studies and low ܫଶ (figure 1, top-middle), SJ has bias of more than 100% when almost all other 
estimators are roughly unbiased. 

Alternative Sidik-Jonkman (SJCA) 

SJCA generally has improved properties over the original SJ estimator. In meta-analyses with 
small studies (as shown in figures 1 and 2, first column), SJCA is one of the least biased 
estimators, with bias similar to many of the truncated methods including DL, PM, and REML. 
As the typical study size increases, the extent of SJCA’s positive bias also increases, such that 
it becomes one of the most positively biased estimators in meta-analyses with small and large 
studies (figures 1 and 2, third column). In scenarios where SJCA has positive bias, it also has 
relatively high mean squared error (i.e., in meta-analyses with large studies, see figures 3 and 
4, third column). 

REML 

REML has similar properties to PMDL and DL in most scenarios. In a small number of scenarios 
where DL is negatively biased, REML is also negatively biased but often to a much lesser 
extent (observed most prominently in figure 2, bottom-left). REML has relatively low bias and 
low mean squared error comparable with DL, HM, and PMDL in scenarios containing small 
and large studies. 
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4.2 Summary effect estimates 

Results show that summary effect estimates (ߠ෠) are almost unbiased in all scenarios of 
standardised mean difference meta-analyses (ߠ ൌ ͲǤͷ) and odds ratio meta-analyses with 
common events. However, summary effect estimates are biased towards the null value of zero 
in odds ratio meta-analyses with rare events. This is likely to be partly a consequence of the 
choice of continuity correction (we added 0.5 to zero cell counts) and the degree of bias was 
similar across all heterogeneity variance estimators. We present bias of the summary effect in 
the supplementary results only. 

4.3 Coverage of 95% summary effect confidence intervals 

Coverage is presented in figure 5 for all combinations of heterogeneity variance estimators and 
(95%) Wald-type, t-distribution, and HKSJ confidence interval methods for the summary 
effect. Results are presented for standardised mean difference meta-analyses only, but results 
are consistent with the equivalent scenarios of odds ratio meta-analyses with common events 
(event probabilities 0.1 to 0.5, see appendix 3 in the supplementary results). 

Wald-type method 

Coverage of the 95% Wald-type confidence interval can differ by up to 5% between 
heterogeneity variance estimators, up to 30% between numbers of studies, and up to 20% 
between heterogeneity values. Coverage varies between 96-100% when studies are 
homogeneous and can be as low as 65% when the typical ܫଶ is 90% (߬ ଶ ൌ ͲǤͳͺ͹) and meta-
analyses have two or three studies. When heterogeneity is present, the confidence interval’s 
coverage tends towards the nominal value of 95% as the number of studies increases. 

Standard t-distribution method 

Coverage of the t-distribution 95% confidence interval is generally more robust to changes in 
the mean ܫଶ, as shown in figure 5. In these scenarios, however, coverage can differ by up to 
5% depending on the heterogeneity variance estimator used and the number of studies. When 
there are 20 studies or more, 95% t-distribution confidence intervals have coverage 94-97%, 
but perform conservatively with coverages close to 100% when there are fewer than 20 studies. 
The heterogeneity variance estimator that works best with this confidence interval method 
varies considerably between scenarios, so it is diffi cult to select one overall. 

Hartung-Knapp-Sidik-Jonkman (HKSJ) method 

The HKSJ confidence interval for the summary effect has better coverage than the other two 
methods in all scenarios. This method has coverage 94-96% in standardised mean difference 
meta-analyses presented in figure 5 and is insensitive to the choice of heterogeneity variance 
estimator. The method can produce confidence intervals with sub-optimal coverage in odds 
ratio meta-analyses with rare events, where all meta-analysis methods perform poorly (as 
demonstrated in the supplementary results, appendix 4). 
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4.4 Generalisability of presented results 

The results presented so far come from a subset of all simulation scenarios, but these results 
can be generalised to some extent. All results are presented in the supplementary material. 

First, all results presented in the main paper come from scenarios with standardised mean 
difference and log-odds ratio summary effects of 0.5 (odds ratio = 1.65), but results were 
consistent with more extreme odds ratio effects in most scenarios. The exception is in odds 
ratio meta-analyses containing only small studies with rare events (average event probability = 
0.05), where a larger effect size (odds ratio = 10) produced heterogeneity variance estimates 
with more negative bias across all methods. Results from other effect sizes are found in the 
supplementary results. 

Second, results are not presented in the main paper from scenarios where all heterogeneity 
variance methods failed with considerable negative bias. This occurred in all scenarios of odds 
ratio meta-analyses with rare events (event probability = 0.05 and 0.01) except where study 
sizes were large (sample size >4000 per study). In these scenarios, summary effects were 
considerably biased and confidence interval methods also failed to produce reasonable 
coverage. For example, simulation results show that the HKSJ method can have coverage as 
low as 85% in odds ratio meta-analyses with small-to-medium sized studies with an underlying 
event probability of 0.05 (see appendix 4). Poor properties were perhaps observed in these 
scenarios because many studies contained zero events and a continuity correction was applied 
(0.5 was added to all 2x2 cell counts in these simulations). An alternative continuity correction 
may have produced different results. 

Finally, results were presented thus far are from meta-analyses with typical ܫଶ values of 0%, 
30%, 60%, and 90% (corresponding to four heterogeneity variance parameter values). Meta-
analyses with other typical ܫଶ values were simulated, but the four presented gave an adequate 
description of the properties of methods across all levels of inconsistency. 

5 Discussion 

The DerSimonian-Laird heterogeneity variance estimator is not recommended for widespread 
use in two-stage random-effects meta-analysis and therefore, should not be the default method 
for meta-analysis in statistical software packages; it produces estimates with more negative 
bias than most other methods in odds ratio meta-analyses with small studies or rare events and 
to a lesser extent in standardised mean difference meta-analyses with small studies. This 
finding can perhaps be explained by DerSimonian-Laird's fixed-effect study weights that are 
based solely on estimated within-study variances; these variances are imprecise and likely to 
be biased under such conditions. This observation is in agreement with previous simulation 
studies4,12, as identified in a systematic review11. Viechtbauer13 and Böhning et al.35 stated that 
DerSimonian-Laird is unbiased when within-study variances are known. However, 
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DerSimonian-Laird is one of the better performing estimators in meta-analyses with large 
differences in study size. 

This simulation study identified three heterogeneity variance estimators with more reasonable 
properties; REML9, Paule-Mandel6, and the two-step Paule-Mandel that uses a DerSimonian-
Laird initial estimate23. Paule-Mandel is often approximately unbiased when DerSimonian-
Laird is negatively biased. However, results also show Paule-Mandel has high positive bias 
when there are large differences in study size. This can perhaps be attributed to the random-
effects study weights used in this method, which can lead to small studies being given a 
relatively large weight under heterogeneous conditions. A similar issue regarding the use of 
random-effects study weights for summary effect estimation has been noted elsewhere36. The 
two-step DerSimonian-Laird estimator (PMDL) inherits most of the best properties of 
DerSimonian-Laird and Paule-Mandel methods and is simple to compute. REML has very 
similar properties to this two-step estimator and is already widely known, recommended in two 
previous simulation studies for meta-analyses with continuous3,13 and binary13 outcomes. 
Furthermore, REML is already available in many statistical software packages27,37. Of those 
with reasonable properties, REML is the only estimator that assumes normality of effect sizes, 
but a previous simulation study38,39 showed all these methods are reasonably robust under non-
normal conditions. 

One of the aims of this simulation study was to investigate when it is appropriate to rely on one 
estimate of the heterogeneity variance. Results show all estimators are imprecise and often fail 
to detect high levels of heterogeneity in meta-analyses containing fewer than ten studies. 
Furthermore, only 14% of meta-analyses in the Cochrane Database of Systematic Reviews 
contain ten studies or more10, so it is rarely appropriate to rely on one estimate of heterogeneity 
in this setting. All estimators have poor properties even in meta-analyses containing high 
numbers of studies when study sizes are small or the event of interest is rare. 

Estimates of the summary effect and its HKSJ confidence interval are of less cause for concern, 
and perform well even in meta-analyses with only two studies. In particular, the HKSJ 
confidence interval offers a large improvement in coverage over the commonly used Wald-
type confidence interval. However, caution must still be applied when dealing with meta-
analysis datasets with rare events, where summary effects are biased and the HKSJ confidence 
interval method can have coverage as low as 85%. Summary effect estimates in this study were 
calculated using the inverse-variance approach, though the use of the Mantel-Haenszel method 
has been recommended for rare events18,40 and may have improved properties in these 
scenarios. These findings agree with a previous simulation study41, in which the HKSJ method 
was compared with other confidence interval methods for both continuous and binary outcome 
measures. The results presented in this paper show the HKSJ method is robust to changes in 
the heterogeneity variance estimate. 

Our findings do not concur with some previous simulation studies. In all cases, this can be 
attributed to differences in parameter values and other differences in simulation study design. 
The original estimator proposed by Sidik and Jonkman8 performed well in the author’s own 
simulations, yet simulations in this study shows they have considerable positive bias in meta-
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analyses of up to moderate ܫଶ. This was not observed by Sidik and Jonkman8 because simulated 
meta-analyses were only presented with high ܫଶ 11. The method of Paule-Mandel has been 
recommended based on the results of three previous simulation studies3,12,15, but these studies 
did not simulate meta-analyses with moderate-to-large differences in study size, where Paule-
Mandel has considerable positive bias. Novianti et al.3 only recommended REML for 
continuous outcome meta-analyses and observed a small negative bias when the outcome is 
binary and high ܫଶ; this bias was less pronounced in our simulations with low to moderate ܫଶ  
that Novianti et al.3 did not include in their simulations11.  

The limitations of this simulation study are as follows. First, only a subset of all confidence 
interval methods for the summary effect are included. Results show the HKSJ method is more 
robust than the Wald method to the choice of heterogeneity variance estimator, but no 
confidence interval method can be recommended solely from the results of this study. Other 
methods include the profile likelihood method21, which has also been shown as a better 
alternative to the Wald method in simulated meta-analysis data42 and recommended 
elsewhere43. Second, a continuity correction of 0.5 was applied whenever simulated studies 
with a binary outcome contained zero events, but other methods with a better performance are 
available44. This choice may have affected the results in scenarios where the event is rare (i.e. 
0.05), but alternative continuity corrections are unlikely to have led to meaningful 
improvements where the event rate is extremely rare (i.e. 0.01) and all random-effects methods 
fail in terms of all performance measures. We assumed effects to be normally distributed and 
although this is a limitation, it has been shown that most of the investigated methods are robust 
even in extreme non-normal distributions38. Third, our analyses assume that all studies provide 
unbiased estimates of the true effects underlying them. In practice, results of studies may be 
biased if the studies are performed sub-optimally, and meta-analyses may be biased if studies 
are missing for reasons related to their results (e.g. due to publication bias). These biases can 
affect estimation of heterogeneity (both upwardly or downwardly) and lead to inappropriate 
conclusions. Finally, although the study aimed to simulate a comprehensive range of scenarios, 
this range could never be complete given how diverse meta-analyses are in practice; not all 
outcome measures were included (e.g. hazard ratios) and the distributions from which sample 
sizes were drawn in this study cannot be considered representative of all observed distributions 
because study sample sizes are unlikely to conform to a defined distribution. 

We compared methods in the context of a classical two-stage meta-analysis where study effect 
estimates and their standard errors are calculated first, then combined at the second final stage. 
Alternatively, one-stage meta-analyses can be undertaken using individual participant data 
(IPD) using mixed modelling techniques; these raw data can be derived trivially from study-
level 2x2 contingency tables for binary outcome meta-analyses45,46.  Stijnen et al.45 explains 
that this approach makes random-effects meta-analyses more feasible with sparse data and does 
not require a continuity correction in case of zero events. Jackson et al.47 reviewed modelling 
approaches for this type of meta-analysis data and suggest these models can offer improved 
statistical inference on the summary effect. However, these models can present additional 
numerical issues given their complexity. Future work comparing the properties of 
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heterogeneity variance methods between one-stage and two-stage binary outcome meta-
analyses would be informative.  

The HKSJ method is generally preferred over the Wald-type method. However, Wiksten et 
al.31 showed it can occasionally lead to less conservative results, even when the Wald method 
uses a fixed-effect variance structure. Sidik and Jonkman4 proposed a modification to the HKSJ 
method to ensure the resulting confidence interval is at least as wide as the Wald-type fixed-
effect confidence interval. We did not apply this modification in our study. A simulation study 
by Rover et al.48 found the modified method provides coverage closer to the nominal level 
when differences in study size were large. 

Summarising the properties of a comprehensive list of heterogeneity variance estimators, 
compared over many combinations of parameter values was the biggest challenge of this study. 
By simulating meta-analyses from a wide range parameter values, inevitably there are scenarios 
that reflect meta-analyses rarely observed in practice. For example, most meta-analyses contain 
very few studies10,49, but meta-analyses with up to 100 studies were simulated in order to show 
results over the full range of possible meta-analysis sizes. An attempt was made to focus more 
on the scenarios representative of real meta-analyses when interpreting results, but this was 
inevitably subjective. 

6 Conclusion 

A summary of our recommendations are given in table 2. The two-step DerSimonian-Laird 
estimator (PMDL) and REML can often be biased, but overall have the most reasonable 
properties in standardised mean difference and odds ratio meta-analyses. Of these two 
estimators, REML is recommended on the basis of these results because it is already widely 
known, available in most statistical software packages, and consistent with the method 
commonly used for one-stage meta-analyses using individual participant data50. The two-step 
DerSimonian-Laird estimator is recommended as an alternative if a simpler, non-iterative 
method is required. 

The Hartung-Knapp-Sidik-Jonkman confidence interval for the summary effect is generally 
recommended over the standard t-distribution and Wald-type methods, particularly in binary 
outcome meta-analyses with rare events and the number of studies included is less than 20. To 
be consistent, we recommend the same REML estimate of the heterogeneity variance to 
calculate this confidence interval. However, this is inconsequential given how robust this 
confidence interval is to changes in the heterogeneity variance method in most scenarios. 

A REML point estimate, or indeed any other single estimate of heterogeneity, should not be 
relied on to gauge the extent of heterogeneity in most meta-analyses. Confidence intervals 
should always be reported to express imprecision of the heterogeneity variance estimate. 
However, a point estimate can usually be used reliably to calculate a summary effect with a 
Hartung-Knapp-Sidik-Jonkman confidence interval. 
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Table 1: Nine heterogeneity variance estimators included in this study 

 Estimator Acronym 
Method of moments estimators (truncated) 

1 DerSimonian-Laird DL 
2 Cochran’s ANOVA CA 
3 Paule-Mandel PM 
4 Two-step Cochran’s ANOVA PMCA 
5 Two-step DerSimonian-Laird PMDL 

Non-truncated estimators 
6 Hartung-Makambi HM 
7 Sidik-Jonkman SJ 
8 Alternative Sidik-Jonkman SJCA 

Maximum likelihood estimators 
9 Restricted maximum likelihood REML 
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Table 2: A summary of results and recommendations (considering only REML, PM and 
PMDL heterogeneity variance methods, and HKSJ confidence interval) 

 OR outcome with average event 
probability: 

SMD outcome 0.05 0.1 to 0.5 
Study 
sizes: Small 

All estimators have 
substantial negative 
bias in the presence 
of heterogeneity. 
HKSJ confidence 
interval can have 
coverage too 
high/low for >20 
studies (appendix 4). 

REML/PM/PMDL recommended, but all 
estimators biased/imprecise for <10 
studies. HKSJ confidence interval yields 
the nominal coverage. 

Small-to-
medium 

Small 
and large 

REML/PMDL and HKSJ confidence 
interval recommended (as above), but all 
heterogeneity variance estimators 
biased/imprecise for <10 studies. PM 
positively biased. 
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Figure 1: Bias of heterogeneity variance estimates in standardised mean difference outcome 
meta-analyses. 
Scenarios containing small studies (first row), small-to-medium studies (second row), and 
small and large studies (third row). Effect size ߠ ൌ ͲǤͷ. Note: the y-axis limits differ between 
plots.  
  



 

This article is protected by copyright. All rights reserved. 

 
 

Figure 2: Bias of heterogeneity variance estimates in odds ratio meta-analyses with 
underlying summary odds ratio 1.65 and an average event probability between 0.1 and 0.5 
Scenarios containing small studies (first row), small-to-medium studies (second row), and 
small and large studies (third row). Effect size ߠ ൌ ͲǤͷ. Note: the y-axis limits differ between 
plots. 
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Figure 3: Mean squared error of heterogeneity variance estimates in standardised mean 
difference outcome meta-analyses. 
Scenarios containing small studies (first row), small-to-medium studies (second row), and 
small and large studies (third row). Effect size ߠ ൌ ͲǤͷ. Note: the y-axis limits differ between 
plots. 
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Figure 4: Mean squared error of heterogeneity variance estimates in odds ratio meta-
analyses with underlying summary odds ratio 1.65 and an average event probability between 
0.1 and 0.5 
Scenarios containing small studies (first row), small-to-medium studies (second row), and 
small and large studies (third row). Effect size ߠ ൌ ͲǤͷ. Note: the y-axis limits differ between 
plots. 
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Figure 5: Coverage of 95% confidence intervals of the summary effect in standardised mean 
difference meta-analyses with small-to-medium studies (࢏ࡺ ൌ ሺ૝૙ǡࢁ ૝૙૙)) 
Coverage of Wald-type (first row), t-distribution (second row), and HKSJ (third row) 
confidence intervals presented. 
 


