A comparison of heter ogeneity variance estimatorsin simulated random-
effects meta-analyses

Running title: A comparison of heterogeneity variance estimators

Dean Langan (d.langan@ucl.ad.uk) (corresponding autfor)

Julian PT Higging (julian.higgins@bristol.ac)jitk

Dan Jackson (daniel.jacksonl@astrazenecd.eom

Jack Bowden (jack.bowden@bristol.af).ék

Areti- Angeliki Veroniki (veronikia@smh.g¢d

Evangelos Kontopantelis (e.kontopantelis@manchester)ac.uk

Wolfgang Viechtbaue} (wolfgang.viechtbauer@maastrichtunivergiy.nl

Mark Simmondd (mark.simmonds@york.aq.tk

1 Great Ormond Street Institute of Child Health, UCL, London, WC1E 6BT, UK
2 School of Social and Community Medicine, University of Bristol, Bristol, UK
3 Statistical Innovation Group, AstraZeneca, Cambridge, UK

4 Lli Ka Shing Knowledge Institute, St. Michael’s Hospital, 209 Victoria Street, East
Building. Toronto, Ontario, M5B 1T8, Canada

> Centre for Health Informatics, Institute of Population Health, University of Manchester,
Manchester, UK

¢ Department of Psychiatry and Neuropsychology, Maastricht University, The Netherlands

” Centre for Reviews and Dissemination, University of York, York, YO10 5DD, UK

This article has been accepted for publication and undergone full peer review but has not been
through the copyediting, typesetting, pagination and proofreading process which may lead to
differences between this version and the Version of Record. Please cite this article as doi:
10.1002/jrsm.1316

This article is protected by copyright. All rights reserved.


mailto:d.langan@ucl.ac.uk
mailto:julian.higgins@york.ac.uk
mailto:daniel.jackson1@astrazeneca.com
mailto:jack.bowden@bristol.ac.uk
mailto:jack.bowden@bristol.ac.uk
mailto:veronikia@smh.ca
mailto:e.kontopantelis@manchester.ac.uk
mailto:wolfgang.viechtbauer@maastrichtuniversity.nl
mailto:mark.simmonds@york.ac.uk

Abstract

Studies.combined in a meta-analysis often have differences in their design and conduct that
can lead to heterogeneous results. A random-effects raammints for these differences in

the underlying study effects, which includes a heterogeneity variance parameter. The
DerSimonian-Laird method is often used to estimate the heterogeneity variance, but simulation
studies have found the method can be biased and other methods are available. This paper
compares the properties of nine different heterogeneity variance estimators using simulated
meta-analysis data. Simulated scenarios include studies of equal size and of moderate and large
differences in size. Results confirm that the DerSimonian-Laird estimator is negatively biased
in scenarios with small studies, and in scenarios with a rare binary outcome. Results also show
the Paule-Mandel method has considerable positive bias in meta-analyses with large
differences in study size. We recommend the method of restricted maximum likelihood
(REML) to estimate the heterogeneity variance over other methods. However, considering that
meta-analyses of health studies typically contain few studies, the heterogeneity variance
estimate should not be used as a reliable gauge for the extent of heterogeneity in a meta-
analysis. The estimated summary effect of the meta-analysis and its confidence interval derived
from the Hartung-Knapp-Sidik-Jonkman method is more robust to changes in the heterogeneity
variance estimate and shows minimal deviation from the nominal coverage of 95% under most
of our simulated scenarios.
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1 Introduction

Meta-analysis is the statistical technique of combining the results of multiple comparable
studies. These studies often have differences in their design and conduct that lead to
heterogeneityin their underlying effects. When heterogeneity is thought to be present,
researchers should first attempt to find its causes, but these causes may be too numerous to
isolate or may simply be unknown. Unexplained heterogeneity of study effects can be
guantified in a random-effects model. This model typically assumes a normal distribution of
the underlying effects across studies. A reliable estimate of the variance of this distribution can
provide valuable insight into the degree of heterogeneity between studies, even if such studies
are not formally synthesised in a meta-analysis.

The moment-based method proposed by DerSimonian and isimibst commonly used to
estimate the heterogeneity variance. However, this method has been shown in previous
simulation studies to be negatively biased in meta-analyses containing small2studies
particularly in meta-analyses of binary outcoffe¥here are many other available metiRpds
including those proposed by Paule and Mahdtdrtung and MakamhiSidik and Jonkmdh,

and the restricted maximum likelihood method (RERILEstimates derived from these
methods in the same meta-anaysan often be notably different and in a small number of
cases, these estimates can produce discordant conclusions on the summary effect and its
confidence intervaf. Therefore, the choice of heterogeneity variance method is an important
consideration in a meta-analysis. Research based on simulated meta-analysis data can allow a
researcher to make a more informed decision.

A recent systematic review collated simulation studies that compare the properties of
heterogeneity variance estimatdrsits aim was to assess if there is consensus on which
heterogeneity variance methods (if any) have better properties than DerSimonian-Laird. The
review identified 12 relevant simulation studies, but there was little consensus across the
various authorsrecommendatioRs##8121314.151617.1819This may have been caused by a
potential conflict of interest among the authors of all but four of these stidgs$’ the
authors of thee eight studies recommended their own newly proposed methods over existing
methods. Three of the simulation studi€s3compared only pre-existing methods and enad

an explicit recommendation for estimating the heterogeneity variance; the authors of these
studies recommended the method of Paule and Maadélor REML, but only compared a
subset of methods.

The tentative conclusions of that review provided motivation for a new simulation study, which
we present in this paper. The limitations of previous simulation studies helped inform the
design of this study. We consider the inclusion of all methods identified in recent reviews of
heterogeneity variance methéds compare methods comprehensively in a range of simulated
scenarios representative of meta-analyses of health studies, and report a wide range of
performance measures. Performance measures include those that relate directly to the
heterogeneity variance estimates, and those that measure the impact of heterogeneity variance
estimates on the summary effect estimate and its confidence interval. Our recommendations
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are based on a subjective trade-off between many performance measures. To minimise any
conflict of interest, we&lo not propose any new methods in this paper.

The aims of this simulation study are to: (1) compare the relative performance of heterogeneity
variance methods to establish which method(s) have the most reasonable properties; (2) find
scenarios where the performance of all methods is poor, such that we cannot rely on a single
method to provide an estimate. In scenarios where all methods perform poorly, we make wider
recommendations for random-effects meta-analysis and dealing with between-study

heterogeneity.

The outline of the paper is as follows. In section 2, we introduce methods for estimating the
heterogeneity variance and any other meta-analysis methods relevant to this simulation study.
The design of the simulation study is given in section 3, followed by the results of this study in
section 4. Results are discussed and conclusions are drawn in sections 5 and 6.

2 Methods

2.1-.The heter ogeneity variance parameter in a random-effects model

A random-effects model accounts for the possibility that underlying effects differ between
studies in a meta-analysis. The random-effects model is defined as:

§i=9i+£i
91':6+6i' (1)

where®; is the true effect size in studyd; is the estimated effect size, afids the average
effect across all studiesg; and §; are the within-study errors and the between-study
heterogeneity respectively. Meta-analysis methods typically assume that both areynormall
distributed, i.e.g;~N(0,0?) ands;~N(0,72). The heterogeneity variance parameter is a
measure of the variance &faroundd and is denoted bs?.

The inverse-variance method is most commonly used to esthiatinis model; the estimate
is given by:

k k
§=2Wi§i/ZWi, (2)
i=1

i=1
wherek is the number of studies in the meta-analysiswgnd the weight given to study i.

Under the random-effects model, using weigltfs= 1/(o7 + t2) provides the uniformly
minimum variance unbiased estimator (UMVUE)dofwhich we denote b§z;. Whent? =

0, model (1) simplifies to what is commonly referred to as the fixed-effect model, where the
true effects are homogeneous. In that case, the UMVUE(which is now the common true
effect for allk studies) is obtained with (2), but using weights= 1/5?. We denote this
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estimator byd;. However, the variance parametefsandt? are unknown in practice and
must be estimated from the data. Methods to estinfaaee outlined in the next section.

2.2 Heterogeneity variance estimator s

Nine estimators were identified from two systematic reviews of heterogeneity variance
methods$*. Estimators proposed by Hunter and SchffiidRukhin®, Malzahn et af.and the
maximum likelihood method proposed by Hardy and Thonmfdsoe present in these reviews

but excluded from the main results because preliminary analysis showed they are clearly
inferior to other methods (as shown in appendix 1). Furthermore, Bayesian methods that rely
on a subjective choice of prior distribution are excluded because of difficulty in objectively
comparing them to frequentist methods. The method proposed by ¥lsrascluded because

it is an approximation to REML. We excluded the positive DerSimonian-Laird estifyator
which truncates heterogeneity variance estimates below 0.01, because any positive cut-off
value could be applied.

The included heterogeneity variance estimators are listed in table 1. This table also includes
acronyms for the estimators used throughout this paper. Their formulae are given below.

Method of moments approach (estimators 1-5)

Five estimators included in this study can be derived from the method of moments approach,
which is based on the generalised Q-stafistic

k

Qum = Z ai(éi - 9)2

i=1

The weight assigned to study i is denotedipgnd calculated differently depending on which
of the five method of moments estimators is uédad.given by formula (2) with study weights
w;=-a;- By -equatingQ,,, to its expected value, the following general formula for the
heterogeneity variance can be dedfi?:

k 242
— Yk g.52 4 &2i=1 %0 )
Qum — Li=1 i0; 3
A2 i=1 a‘l
T =max {0, — 3)
K g Ai=l a;
i=1%i K 4.
i=1 %

1./ The DerSimonian-Laird estimator (BL)ses the fixed-effect model weights= 1/67,
which leads to the formula:
( A
(/678 = )’ — (= D) L
i,(1/67)?
i21(1/69) J

£3, = max J 0,

[ k,Q/67) -
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2. Cochran’s ANOVA estimator (CA) uses equal study weighis = 1/k, leading to:

2, = max {Oﬁ G §CA)2 - %Zﬁ;l 65}, wheref., is calculated from formula (2)
with study weightsv; = 1/k.

3. The Paule-Mandel estimator (PM) uses the random-effects model study weights, defined by
substitutinga; = 1/(67 + t3,,) into formula (3). Sincey; is a function oft3,,, there is no
closed-form expression fot3,, and iteration is required to find the solution. Iterative
algorithms including those suggested by Bowden &tatd Jackson et &.always converge.

The same estimator has been derived independently of the methods of moments approach and
is therefore often referred to as the empirical Bayes estimator in the litétature

4. The twostep Cochran’s ANOVA estimator also uses Paule-Mandel random-effects weights
but restricts iteration to two-steps (BM. Cochran’s ANOVA is usedo initially estimater?,

thus, a closed form expression can be derived by substitytiagl /(67 + £2,) into formula

(3).

5. The two-step DerSimonian-Laird estimator @2Mhas similar weights as RiW above, but
uses the DerSimonian-Laird method to calculate an initial estimate dherefore the study
weights.arer; = 1/(67 + t3,).

All five of these methodsanproduce negative variance estimates and are truncated to zero in
such cases.

Hartung-Makambi (estimator 6)

Hartung and Makambproposed a correction to the DerSimonian-Laird estimator sé2ligt
always positive and truncation is not required. The formula is given by:

A2 ( ?=1(1/6i2)(9i - 9FE)2)2
Ty = 52
< M) (Z(k -1+ X,(1/6)(6: - éFE)Z)

R eV

Sidik-Jonkman (estimators 7 and 8)

Sidik and Jonkmahproposed the following two-step estimator that only produces posttive
estimates:

1 k 1 A~ A N2
A2
2, = —— ———(6;,— 0 ,
= 1Zi=11 + (6i2/f§)( )
where 3 = ﬁ k(6 - 9CA)2 is the initial heterogeneity variance estimate &k is
calculated from formula fawith weightsw; = 1/(1 + (62/12)).

Sidik and Jonkmahnoted that an alternative formula fég may lead to an estimator with
better properties. In a subsequent pipiaey proposed an alternative initial estimge=
max{0.01,%2,}, wheret2, is Cochran’s ANOVA estimate of the heterogeneity variance
(estimator 2).
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Restricted maximum likelihood (estimator 9)

To derive the restricted maximum likelihood (REML) estimator, the log-likelihood function
from the random-effects model (1) derived from the maximum likelihood méthsd
transformed so that it excludes the paraméferin doing so, REML avoids making the
assumption thaf is known and is therefore thought to be an improvement on the original
maximum likelihood estimatét. This results in the following modified log-likelihood
function:

o kl (2m) 12kl<2+2> 1k (8,-9) 11 Zk 1
= Zn T 2 i=1no-i T 2 i=10'i2+T2 Zn i=10-i2+T2

Maximising ths modified log-likelihood function with respect t& (by differentiating and
setting equal to zero) results in the following formula for the heterogeneity variance:

iiaf ((éi - éRE)Z - 5i2) 1

K2 3 ’
i=1 4 i=1 Qi

T2y = maxi 0,

wherea; = 1/(6? + tigumL)-

The heterogeneity variance estimate is calculated through a process of iteration. Fisher’s
scoring algorithm is used for iteration in this study, as implemented in the metafor package in
R?’,

2.3 Confidenceinterval methodsfor the summary effect

In this study, we also investigate how choice of a particular heterogeneity variance estimation
method may impact on the estimate of the summary &fand its confidence interval. As we
described earlier, the inverse-variance method is typically used to esfinrai@random-
effects meta-analysis, so we calculdtesing this method throughout. The following are three
methods to estimate a corresponding confidence interval.

A Wald-type confidence interval can be calculadd

017 ¢ /Var(é)
Var(8) = 1/<Zl'c 1/(62 + 1‘-2)) (4)

where C is the coverage level of the confidence intervalZang,, is the(1 — C)/2 centile
of the standard normal distribution (eZg; ¢ 95)/, = 1.96)

Alternatively, a t-distribution can be assumed for the summary effecthwitii degrees of

freedond®:
é i tk—l, (1—C)/2 ’Var(é) )
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wherety_; (1-¢)/2 is the(1 — €) /2 centile of the t-distribution witk — 1 degrees of freedom
andVar(8) is calculated from formula (4).

The Hartung-Knapp-Sidik-Jonkman method (HK$¥also relies on a t-distribution and uses
an alternative weighktl variance fod:

0+ tk-1,(1-0)/2 /VarHKS](é)

~ AN\ 2
¥ a;(6,-9)

VarHKS] (é) =

)

wherea; = 1/(6? + ©2), 0 is calculated from formula (2) arid can be estimated using any
ofithe methods outlined in this paper.

This method is equivalent to the t-distribution method aboveiduariance is multiplied by

ascaling facto; a; (8; — 9)2 /(k — 1)%°2L In certain cases, this scaling factor can be less
than one, which leads to a narrower confidence interval than the standard t-distribution
approach.and can also lead to a narrower interval compared to the Wald-type method in few
case®. A variation of this method has been proposed to deal withbthonstraining the
scaling factor to be 17. However, throughout this study, the HKSJ method without constraint

is used.

3 Simulation study design

All simulations and analyses were carried out in R version 3.2.2. The package thetagor
used to run simulated meta-analyses and calculate heterogeneity variance estimates from
methods coded in this package, bespoke code was used for those that are not. A study
protocol was agreed by all authors before running these simulations and is available upon
request from the first author.

3.1 Simulation methods

For studiesi = 1, ...,k in each meta-analysis, true study effe@tsare simulated from the
distributionN (6, 72). Parametex 8, 72, andk take values as defined in section.32udy

sample sized/; are generated from a distribution also detailed in section 3.2 and are then split
evenly between the two study groups andn,;. Participant-level data are then simulated for

both continuous and binary outcomes, and effect sizes and within-study varrereso(?)

are estimated from these data. In continuous outcome meta-analyses, effects are measured as a
standardised mean difference and in binary outcome meta-analyses, effects are measured as a
log-odds ratio.

For each study simulated from continuous outcome data, the following steps are carried out:
(1) Generaten,; observations froniV (0, c%) andn,; observations froW(6;,5%). We
assume variances; ands; in the two groups are equal and, without loss of generality,
set them equal to 1.
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(2) Calculate the sample means and standard deviations of these observations.

(3) Calculated; and? for standardised mean differences by Hetgesnethod, thus
accounting for small sample bias of standardised mean differences (documented by
Borenstein et al, equations 2.23 and 2.24).

For studies with an odds ratio outcome measure:
1. Generate an average event probability between the two study gmupeif one of
the distributions as defined in section 3.2. Although this simulation approach is not
common, Smith et &f has previously defined a Bayesian meta-analysis model that
included the samp; parameter.
2. Derive underlying event probabilities for each study grgup &ndp,;) from the
solutions to the following simultaneous equations:

pi = (P1i + p2:)/2
6; = log[(p2:(1 — p1)/(p1:(1 — p21))]

3. Simulate cell counts of the 2x2 contingency table from the distribuBén@:;, p;;)
andBin(n,;, p,;). Apply a continuity correction of 0.5 to studies with zero cell counts.
4. Calculated; ands? for log odds ratiofrom the standard formulae in Borenstein étal.

3.2 Parameter values

Parameter values are chosen to represent the range of values observed in published meta-
analysesn the Cochrane Database of Systematic Reveausd based on parameter values

from previous simulation studis For all combinations of parameter values as outlined in this
section, 5000 meta-analyses are simulated. Binary outcome meta-analyses are simulated with
log-odds ratios o) = {0,0.5,1.1,2.3} (corresponding to odds ratios of 1, 1.65, 3, and 10).
Standardised mean difference meta-analyses are simulatedfdwitR.5 only, because
previous simulation studies sugg@stas no noticeable effect on any of the re$tits Sample

sizes are generated from the following five distributions to represent meta-analyses containing
small, smallto-medium, medium, large, and small and large studies:N(1¥ 40, (2)
N;~U(40,400), (3) N; =400, (4 N;~U(2000,4000), and (5)N; = 40 (small) in half of

studies and half selected frak~U(2000,4000) (large). If k is odd in the last scenario, one
study is selected randomly (with probability 0.5) to be small or Idtge odds ratio meta-
analyses, the average event probabifity {fakes the values (1) 0.5, (2) 0.05, (3) 0.01, and (4)
generated from the distributidn(0.1,0.5). Simulated meta-analyses contain 2, 3, 5, 10, 20,

30, 50, and 100 studies.

Heterogeneity variance parameter valué$ ére defined such that the resulting meta-analyses
span a wide range of levels of inconsistency between study effects. We measured inconsistency
using the'? statisti®?, an approximate measure of the relative size of the heterogeneity variance
to the total variability in effect estimates (the sum of within-study error variance and between-
study heterogeneity). The chosehvalues result in meta-analyses with averEgealues of

0%, 15%, 30%, 45%, 60%, 75%, 90%, and 95% and are given in apperddixslues are
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calculated using the true? parameter estimates, but still vary between simulated meta-
analyses because of the simulated variation in the standard errors. Parameter valuesyor
between scenarios with different distributions fprandp; to maintain a consistent range of
I2.In each scenaria? is fixed and? varies between meta-analyses, therefoeslso present

the range of? next to the graphs in the results.

Simulating all combinations of parameter values leads to 320 scenarios for standardised mean
difference meta-analyse$(k) x 5(N;) x 8(72)) and 5120 scenarios for odds ratio meta-
analyses §(k) x 5(N;) x 8(t2) x 4(p;) x 4(0)). Given the large number of simulated
scenarios, this paper can only show results from a representative subset of these scenarios.

3.3 Performance measures

Properties of heterogeneity variance estimators are measured in terms of bias and mean squared
error. These two measures are plotted proportional to the heterogeneity variance parameter
value, so that results can be compared more easily between scenarios with diffeFemt
example, a proportional bias of 100% meansthas on average twice as large as the tfue

By the same token, a proportional bias-60% means that? is on average half as large as

the truec?. Similarly, a proportional mean squared error of 100% implies that the mean squared
error is equal ta?. We also report bias @& and coverage of the three included methods to
calculate 95% confidence intervals using estimates from the eleven included heterogeneity
variance estimators.

4 Results

In section 4.1, results are presented for performance measures that relate directly to the
heterogeneity variance parameter; bias and mean squared error. In section 4.2, we present bias
of the summary effect. In section 4.3, we present the coverage probability of the three
confidence interval methods for the summary effect.

4.1 Propertiesof heterogeneity variance parameter estimates

Estimators are compared in terms of bias in figures 1 and 2 and in terms of mean squared error
infigures 3 and 4. The first figure in each case shows results from standardised mean difference
meta-analyses and the second shows results from odds ratio meta-analyses. We present selected
scenarios containing small studies, snainedium studies, and small and large studies
combined with scenarios where the averkges either equal to 30% or 90%, and fo« 0.5

only. For odds ratio meta-analyses, we present scenarios where the average event probability
in each study is uniformly distributed between 0.1 and 0.5. In this section, results are
summarised separately for each heterogeneity variance estimator.

DerSimonian-Laird (DL)

In standardised mean difference meta-analyses, DL is negatively biasedXitidarge and
study sample sizes are small (as shown in figure 1, bottom-left). The estimator is more
negativéy biased in the equivalent odds ratio meta-analyses, even with event rates between 0.1

This article is protected by copyright. All rights reserved.



and 0.5 (figure 2). Additionally, DL is negatively biased in odds ratio meta-analyses when
sample sizes are smat-medium (figure 2, middle-left In all other scenarios presented in
figures 1 .and 2, DL is positively biased in meta-analyses containing fewer than 10-20 studies
and roughly unbiased for those with more studies. DL has similar bias to many estimators
including PMca, PMpL, and REML in scenarios with smad-medium studies. In meta-
analyses with a mix of small and large studies (figures 1 and 2, third column), Dd_a$ the

least positively biased estimators - distinctly lower than PM angaPM

DL has a relatively low mean squared error in the same scenarios where negative bias is also
observed (figures 3 and 4). However, this is not necessarily a good property because only
underestimates can be truncated to zero and truncatioresttacerror of the estimate. Low

mean squared error is also observed in scenarios with small and large studies where DL has
low bias (figures 3 and 4, third column).

Cochran’s ANOVA (CA)

CA tends to produce higher estimates of the heterogeneity variance than most other estimators
for both standardised mean difference and odds ratio meta-analyses. As such, CA is roughly
unbiased in scenarios with highwhen most other estimators are negatively biased. However,

CA is one of the most positively biased estimators for low to modgra@A's positive bias

is particularly prominent in scenarios with small and large studies (figures 1 and 2, third
column); it is counterintuitive to assign equal study weights (as the CA estimator does) in these
scenarios with large differences in study size. CA also has higher mean squared error than most
other estimators when the estimator is positively biased (figures 3 and 4).

Paule-Mandel (PM)

PM has properties similar 0L in scenarios of standardised mean difference meta-analyses
that contain small or smaib-medium sized studies (figure 1, first and second column). In
these scenarios, PM is roughly unbiased witeis typically high or the meta-analysis has
more than 20 studies and positively biased otherwise. In scenarios where DL is negatively
biased, PM often has less negative bias, except in scenarios with highly sparse data where all
estimators perform poorly (figure 2, bottom-left). In scenarios with a mix of small and large
studies (figures 1 and 2, third column), PM has a higher mean squared error and higher positive
bias than DL, PM., HM, and REML (figures 1-4, third column).

Two-step Cochran’s ANOVA (PMcp)

PMca uses CA as an initial estimate of heterogeneityc£dbias and mean squared error are
equal to, or somewhere between, CA and PM in all scenarios. Given than CA and PM have
high positive bias and large mean squared error in scenarios with small and large studies, so
too does PMa (figures 1-4, third column

Two-step DerSimonian-Laird (PMpy)

In a similar fashion to Pih, PMpL has bias and mean squared error that is equal to, or
somewhere between, DL and PM in all scenaiidp. has properties similar to the best
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performing out of the two estimators in all simulated scenarios. In scenarios with large and
small studies, PML has low positive bias and mean squared error similar to DL and in
scenarios where DL is negatively biased,d?&hd PM have comparable properties. réhe

little difference in the properties of RMland REML in all scenarios.

Hartung-Makambi (HM)

In meta-analyses with small or smadtmedium study sizes and zero or Ity HM tends to
produce relatively high estimates of heterogeneity and therefore has relatively high positive
bias (figures 1 and 2, top-left). This is perhaps because HM is a transformation of the DL
estimator that only produces positive estimates. HM tends to produce comparatively low
estimates whef? is moderate or high and has more negative bias than DL in these scenarios.
HM has a comparatively low mean squared error in all scenarios presented (figures 3 and 4),
including scenarios where HM has high positive bias. HM is one of the best performing
estimators in meta-analyses containing small and large studies (figures 1-4, third column), with
properties comparable with DL, M and REML.

Sidik-Jonkman (SJ)

SJ typically produces one of the highest estimates of the heterogeneity variance in both
standardised mean difference and odds ratio meta-analyses; even higher than the other
estimators which only produce positive estimates (HM apg) S8s such, SJ has considerable
positive bias and high mean squared error in meta-analyses with up to mdderfaoe
example, in standardised mean difference meta-analyses containingcsmatiium sized

studies and low? (figure 1, topmiddle), SJ has bias of more than 100% when almost all other
estimators are roughly unbiased.

Alternative Sidik-Jonkman (SJca)

Ska generally has improved properties over the original SJ estimator. In meta-analyses with
small studies (as shown in figures 1 and 2, first columms &Jone of the least biased
estimators, with bias similar to many of the truncated methods including DL, PM, and REML.
As the typical study size increases, the extent ek’Spositive bias also increases, such that

it becomes one of the most positively biased estimators in meta-analyses with small and large
studies (figures 1 and 2, third column). In scenarios whetg &k positive bias, it also has
relatively high mean squared error (i.e., in meta-analyses with large studies, see figures 3 and
4, third column.

REML

REML has similar properties to RMand DL in most scenarios. In a small number of scenarios
where DL is negatively biased, REML is also negatively biased but often to a much lesser
extent (observed most prominently in figure 2, bottom-left). REML has relatively low bias and
low mean squared error comparable with DL, HM, &b, in scenarios containing small

and large studies.
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4.2 Summary effect estimates

Results show that summary effect estimat®y gre almost unbiased in all scenarios of
standardised mean difference meta-analyges (.5) and odds ratio meta-analyses with
common events. However, summary effect estimates are biased towards the null value of zero
in‘odds ratio meta-analyses with rare events. This is likely to be partly a consequence of the
choice of continuity correction (we added 0.5 to zero cell counts) and the degreewsédias
similar across all heterogeneity variance estimators. We present bias of the summairy effect
the supplementary results only.

4.3 Coverage of 95% summary effect confidenceintervals

Coverages presented in figure 5 for all combinations of heterogeneity variance estimators and
(95%) Wald-type, t-distribution, and HKSJ confidence interval methods for the summary
effect. Results are presented for standardised mean difference meta-analyses only, but results
are consistent with the equivalent scenarios of odds ratio meta-analyses with common events
(event probabilities 0.1 to 0.5, see appendix 3 in the supplementary)results

Wald-type method

Coverage of the 95% Wald-type confidence interval can differ by up to 5% between
heterogeneity variance estimators, up to 30% between numbers of studies, and up to 20%
between heterogeneity values. Coverage varies between 96-100% when studies are
homogeneous and can be as low as 65% when the typisab0% ¢? = 0.187) and meta-
analyses have two or three studies. When heterogeneity is ptésentfidence interval’s
coverage tends towards the nominal value of 95% as the number of studies increases.

Standard t-distribution method

Coverage of the t-distribution 95% confidence interval is generally more robust to changes in
the mean’?, as shown in figure 5. In these scenarios, however, coverage can differ by up to
5% depending on the heterogeneity variance estimator used and the number of studies. When
there are 20 studies or more, 95% t-distribution confidence intervals have coverage 94-97%,
but perform conservatively with coverages close to 100% when there are fewer than 20 studies.
The heterogeneity variance estimator that works best with this confidence interval method
varies considerably between scenarios, so iffficdit to select one overall.

Hartung-Knapp-Sidik-Jonkman (HKSJ) method

The HKSJ confidence interval for the summary effect has better coverage than the other two

methods in all scenarios. This method has coverage 94-96% in standardised mean difference
meta-analyses presented in figure 5 and is insensitive to the choice of heterogeneity variance
estimator. The method can produce confidence intervals with sub-optimal coverage in odds

ratio meta-analyses with rare events, where all meta-analysis methods perform poorly (as

demonstrated in the supplementary results, appendix 4

This article is protected by copyright. All rights reserved.



4.4 Generalisability of presented results

The results presented so far come from a subset of all simulation scenarios, but these results
can be generalised to some extent. All results are presented in the supplementary material.

First, all-results presented in the main paper come from scenarios with standardised mean
difference and log-odds ratio summary effects of 0.5 (odds ratio = 1.65), but results were

consistent with more extreme odds ratio effects in most scenarios. The exception is in odds
ratio meta-analyses containing only small studies with rare events (average event probability =
0.05), where a larger effect size (odds ratio = 10) produced heterogeneity variance estimates
with more negative bias across all methods. Results from other effect sizes are found in the
supplementary results.

Second, results are not presented in the main paper from scenarios where all heterogeneity
variance methods failed with considerable negative bias. This occurred in all scenarios of odds
ratio meta-analyses with rare events (event probability = 0.05 and 0.01) except where study
sizes were large (sample size >4000 per study). In these scenarios, summary effects were
considerably biased and confidence interval methods also failed to produce reasonable
coverage. For example, simulation results show that the HKSJ method can have coverage as
low as 85% in odds ratio meta-analyses with saathedium sized studies with an underlying

event probability of 0.05 (see appendix 4). Poor properties were perhaps observed in these
scenarios because many studies contained zero events and a continuity correction was applied
(0.5 was added to all 2x2 cell counts in these simulations). An alternative continuity correction
may have produced different results.

Finally, results were presented thus far are from meta-analyses with tfpicues of 0%,

30%, 60%, and 90% (corresponding to four heterogeneity variance parameter values). Meta
analyses with other typicéf values were simulated, but the four presented gave an adequate
description of the properties of methods across all levels of inconsistency.

5 " Discussion

The DerSimonian-Laird heterogeneity variance estimator is not recommended for widespread
use in two-stage random-effects meta-analysis and therefore, should not be the default method
for meta-analysis in statistical software packageproduces estimates witihhore negative

bias than most other methods in odds ratio meta-analyses with small studies or rare events and
to a lesser extent in standardised mean difference meta-analyses with small studies. This
finding can perhaps be explained by DerSimonian-Laird's fixed-effect study weights that are
based solely on estimated within-study variances; these variances are imprecise and likely to
be biased under such conditions. This observation is in agreement with previous simulation
studie$'?, as identified in a systematic reviwiechtbauer® and Bohning et & stated that
DerSimonian-Laird is unbiased when within-study variances are known. However,
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DerSimonian-Laird is one of the better performing estimators in meta-analyses with large
differences in study size.

This simulation study identified three heterogeneity variance estimators with more reasonable
properties REML®, Paule-Mandé&] and thewo-step Paule-Mandel that uses a DerSimonian-
Laird initial estimaté®. Paule-Mandel is often approximately unbiased when DerSimonian-
Laird is negatively biased. However, results also show Paule-Mandel has high positive bias
when there are large differences in study size. This can perhaps be attributed to the random-
effects study weights used in this method, which can lead to small studies being given a
relatively large weight under heterogeneous conditi@nsimilar issue regarding the use of
random-effects study weights for summary effect estimation has been noted el&Where
two-step DerSimonian-Laird estimator (B inherits most of the best properties of
DerSimonian-Laird and Paule-Mandel methods and is simple to compute. REML has very
similar propertieso this two-step estimator and is already widely known, recommended in two
previous simulation studies for meta-analyses with contifddwand binary® outcomes.
Furthermore, REML is already available in many statistical software pack3gesf those

with reasonable properties, REML is the only estimator that assumes normality of effect sizes,
but.a previous simulation stutfy*°showed all these methods are reasonably robust under non-
normal conditions.

One of the aims of this simulation study was to investigate when it is appropriate to rely on one
estimate of the heterogeneity variance. Results show all estimators are imprecisendiad ofte

to detect high levels of heterogeneity in matalyses containing fewer than ten studies.
Furthermore, only 14% of meta-analyses in the Cochrane Database of Systematic Reviews
contain ten studies or madPeso it is rarely appropriate to rely on one estimate of heterogeneity

in this setting. All estimators have poor properties even in meta-analyses containing high
numbers of studies when study sizes are small or the event of interest is rare.

Estimates of the summary effect and its HKSJ confidence interval are of less cause for concern,
and perform well even in meta-analyses with only two studies. In particular, the HKSJ
confidence interval offers a large improvement in coverage over the commonly used Wald-
type confidence interval. However, caution must still be applied when dealing with meta-
analysis datasets with rare events, where summary effects are biased and the HKS$iteonfide
interval method can have coverage as low as 85%. Summary effect estimates in this study were
calculated using the inverse-variance approach, though the use of the Mantel-Haenszel method
has been recommended for rare evéfitsand may have improved properties in these
scenarios. These findings agred¢h previous simulation stutfy in which the HKSJ method

was compared with other confidence interval methods for both continuous and binary outcome
measures. The results presented in this paper show the HKSJ method is robust to changes in
the heterogeneity variance estimate.

Our findings do not concur with some previous simulation studies. In all cases, this can be
attributed to differences in parameter values and other differences in simulation study design.
The original estimator proposed by Sidik and Jonkhpamformed well inthe author’s own

simulations, yet simulations in this study shows they have considerable positive bias in meta-
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analyses of up to moderdte This was not observed by Sidik and Jonkimtause simulated
meta-analyses were only presented with higHt. The method of Paule-Mandel has been
recommended based on the results of three previous simulation sttitfjdsut these studies

did not simulate meta-analyses with modetattarge differences in study size, where Paule-
Mandel has considerable positive bias. Novianti et ahly recommended REML for
continuous outcome meta-analyses and observed a small negative bias when the outcome is
binary and high'?; this bias was less pronounced in our simulations with low to modérate

that Novianti et af.did not include in their simulatiohs

The limitations of this simulation study are as follows. First, only a subset of all confidence
interval methods for the summary effect are included. Results show the HKSJ method is more
robust than the Wald method to the choice of heterogeneity variance estimator, but no
confidence interval method can be recommended solely from the results of this study. Other
methods include the profile likelihood metRgdwhich has also been shown as a better
alternative to the Wald method in simulated meta-analysis*’daiad recommended
elsewher®. Second, a continuity correction of 0.5 was applied whenever simulated studies
with a binary outcome contained zero events, but other methoda étter performance are
availablé®. This choice may have affected the results in scenarios where the even(iis.rare
0.05), but alternative continuity corrections are unlikely to have led to meaningful
improvements where the event rate is extremely rare (i.e. 0.01) and all random-effects methods
fail- in-terms of all performance measures. We assumed effects to be normally distributed and
although this is a limitation, it has been shown that most of the investigated methods are robust
even in extreme non-normal distributidhg hird, our analyses assume that all studies provide
unbiased estimates of the true effects underlying them. In practice, results of studies may be
biased if the studies are performed sub-optimally, and meta-analyses may be biased if studies
are missing for reasons related to their results (e.g. due to publication bias). These biases can
affect estimation of heterogeneity (both upwardly or downwardly) and lead to inappropriate
conclusions. Finally, although the study aimed to simulate a comprehensive range of scenarios,
this range could never be complete given how diverse meta-analyses are in pratttie;
outcome measures were included (e.g. hazard ratios) and the distributions from which sample
sizes were drawn in this study cannot be considered representative of all observed distributions
because study sample sizes are unlikely to conform to a defined distribution.

We compared methods in the context of a classio-stage meta-analysis where study effect
estimates and their standard errors are calculated first, then combined at the second final stage.
Alternatively, one-stage meta-analyses can be undertaken using individual participant data
(IPD) using mixed modelling techniques; these raw data can be derived trivially from study-
level 2x2 contingency tables for binary outcome meta-andfSesStijnen et af® explains

that this approach makes random-effects meta-analyses more feasible with sparse data and does
not require a continuity correction in case of zero events. Jacksoff e¢xdewed modelling
approaches for this type of meta-analysis data and suggest these models can offer improved
statistical  inference on the summary effect. However, these models can present additional
numerical issues given their complexity. Future work comparing the propesties
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heterogeneity variance methods between one-stage and two-stage binary cuigame
analyses would be informative.

The HKSJ method is generally preferred over the Wald-type method. However, Wiksten et
al.** showedt can occasionally lead to less conservative results, even when the Wald method
uses a fixed-effect variance structure. Sidik and Jonkpraposed a modification to the HKSJ
method to ensure the resulting confidence interval is at least as wide as the Wald-type fixed-
effect confidence interval. We did not apply this modification in our study. A simulation study
by Rover et af® found the modified method provides coverage closer to the nominal level
when differences in study size were large.

Summarising the properties of a comprehensive list of heterogeneity variance estimators,
compared over many combinations of parameter values was the biggest challenge of this study.
By simulating meta-analyses from a wide range parameter values, inevitably there are scenarios
that reflect meta-analyses rarely observed in practice. For example, most meta-analyses contain
very few studie¥*° but meta-analyses with up to 100 studies were simulated in order to show
results over the full range of possible meta-analysis sizes. An attempt was made to focus more
on the scenarios representative of real meta-analyses when interpreting results, but this was
inevitably subjective.

6 Conclusion

A 'summary of our recommendations are given in table 2. The two-step DerSimonian-Laird
estimator (PML) and REML can often be biased, but overall have the most reasonable
properties in standardised mean difference and odds ratio meta-analyses. Of these two
estimators, REML is recommended on the basis of these results because it is already widely
known, available in most statistical software packages, and consistent with the method
commonly used for one-stage meta-analyses using individual participaitt @agtwo-step
DerSimonian-Laird estimator is recommended as an alternative if a simpler, non-iterative
method is required.

The Hartung-Knapp-Sidik-Jonkman confidence interval for the summary effect is generally
recommended over the standard t-distribution and Wald-type methods, particularly in binary
outcome meta-analyses with rare events and the number of studies included is less than 20. To
be consistent, we recommend the same REML estimate of the heterogeneity variance to
calculate this cdindence interval. However, this is inconsequential given how robust this
confidence interval is to changes in the heterogeneity variance method in most scenarios.

A REML point estimate, or indeed any other single estimate of heterogeneity, should not be
relied on to gauge the extent of heterogeneity in most meta-analyses. Confidence intervals
should always be reported to express imprecision of the heterogeneity variance estimate.
However, a point estimate can usually be used reliably to calculate a summary effect with a
Hartung-Knapp-Sidik-Jonkman confidence interval.
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Table 1: Nine heterogeneity variance estimatorsincluded in this study

Estimator | Acronym
Method of moments estimators (truncated)
1 | DerSimonian-Laird DL
2 | Cochran’s ANOVA CA
3. | Paule-Mandel PM
4 | Two-step Cochran’s ANOVA PMca
5 | Two-step DerSimonian-Laird PMbL
Non-truncated estimators
6 | Hartung-Makambi HM
7 | Sidik-Jonkman SJ
8 | Alternative Sidik-Jonkman Ska
Maximum likelihood estimators
9 [ Restricted maximum likelihood | REML
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Table 2: A summary of results and recommendations (considering only REML, PM and
PMpL heterogeneity variance methods, and HKSJ confidence interval)

OR outcome with average event
probability:
0.05 0.1t00.5 SMD outcome
Study small All estimators have | pen /PM/PMp, recommended, but all
& s.ubs.tantlal negative gstimators biased/imprecise for <10
Small-to- b:ca: Itn the pre'st:ence studies. HKSJ confidence interval yield
. of heterogeneity. -
medium HKSJ confidence the nominal coverage.
interval can have | REML/PMpL and HKSJ confidence
small coverage too interval recommended (as above), but
and large | Nighflow for >20 heterogeneity variance estimators

studies (appendix 4] biased/imprecise for <10 studies. PM
positively biased.
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Figure 1: Bias of heterogeneity variance estimatesin standardised mean difference outcome
meta-analyses.

Scenarios containing small studies (first row), sn@&hredium studies (second row), and
small and large studies (third row). Effect $ize- 0.5. Note: the y-axis limits differ between
plots.
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Figure 2: Bias of heterogeneity variance estimates in odds ratio meta-analyses with
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plots.
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small and large studies (third row). Effect $ize- 0.5. Note: the y-axis limits differ between
plots.
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Figure 4: Mean squared error of heterogeneity variance estimates in odds ratio meta-
analyseswith underlying summary odds ratio 1.65 and an average event probability between
0.1and 0.5

Scenarios containing small studies (first row), sr@lredium studies (second row), and
small and large studies (third row). Effect $ize- 0.5. Note: the y-axis limits differ between
plots.
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Figure5: Coverage of 95% confidenceintervals of the summary effect in standardised mean
difference meta-analyses with small-to-medium studies (N; = U(40, 400))
Coverage of Wald-type (first row), t-distribution (second row), and HKSJd(thaw)

confidence intervals presented.
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