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Abstract: The development of connected and autonomous vehicles (CAVs) is one of the central
aspects in the pathway towards future intelligent mobility systems. This paper addresses the
problem of coordinating CAVs crossing an uncontrolled intersection so as to maintain safe and
efficient traffic flow. The proposed control strategy is based on an optimal control framework
that is formulated to minimize a weighted sum of total energy consumption and travel time
of all CAVs by finding the optimal velocity trajectory of each vehicle. The design procedure
starts with a proper formulation of the autonomous intersection crossing problem for CAVs,
with various cases of energy recovery capability by the CAVs considered, to also investigate
the influence of powertrain electrification on the intersection crossing problem. This yields an
optimal control problem (OCP) with nonlinear and nonconvex dynamics and constraints. In
order to ensure a rapid solution search and a unique global optimum, the OCP is reformulated
via convex modeling techniques. Numerical results validate the effectiveness of the proposed
approaches, while the trade-off between energy consumption and travel time is illustrated by
Pareto optimal solutions.
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1. INTRODUCTION

The rapid advance of urbanization leads to overloaded
urban roads and causes traffic congestion, which in turn
increase overall energy use, emissions and travel time.
The major bottleneck that leads to congestion is road
intersections where flows of traffic merge from different
directions. This has motivated growing research on traffic
flow and vehicle motion control systems that can alleviate
traffic congestion, especially at intersections. Traditionally,
traffic lights are used to regulate flows that pass from an
intersection to improve traffic capacity and safety without
affecting the existing road infrastructure. Although a vast
amount of literature exists that utilizes different method-
ologies for traffic light control, such as optimization (Fleck
et al., 2015) and machine learning (Srinivasan et al., 2006),
intersection crossing is still inefficient. More traffic signals
usually come with higher cost and potentially increased
rear-end vehicle collisions as drivers may abruptly stop at
a yellow or a red light.

Due to the recent developments in information and com-
munication technologies, such as vehicle-to-vehicle (V2V),
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and vehicle-to-infrastructure (V2X), the connected and
autonomous vehicle (CAV) has been identified as a trans-
formative technology that has a great potential to improve
road traffic capacity and to reduce delays (Guanetti et al.,
2018; Martinez et al., 2017). In this paper, the problem
of autonomous intersection crossing is addressed, where
multiple CAVs are optimally and cooperatively controlled
to cross a signal-free intersection so as to minimize energy
consumption subject to safety and throughput maximiza-
tion requirements. The implications of this study are that
vehicles can pass the intersection without a full stop,
thereby both energy consumption and travel time can
benefit from momentum conservation (Rios-Torres and
Malikopoulos, 2016).

The research efforts that have been reported in the lit-
erature for coordinating CAVs at intersections can be
categorized into centralized and decentralized approaches.
The centralized schemes are regulated by a central con-
troller that globally decides the trajectory for all CAVs.
Huang et al. (2012); Zhang et al. (2015) propose the use
of centralized approaches based on heuristic control rules
that target safe and efficient scheduling of CAVs approach-
ing the intersection. Although the rule-based methods
are easy to implement and understand, they generally
yield non-optimal control solutions. Some other centralized
approaches have focused on numerical optimization algo-
rithms, which guarantee global/local optimality and by
which various control targets can be reached by a suitably
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designed objective function, such as traffic throughput
(Fayazi and Vahidi, 2018) and total travel time (Zohdy
et al., 2012). Nonetheless, these approaches rely on non-
convex optimization problems, which are computationally
expensive, and therefore they are not applicable to a large
number of vehicles. In the decentralized case, the motion
of each CAV is determined by a local (to each vehicle) con-
troller based on the information shared by other vehicles
and the infrastructure (Colombo and Vecchio, 2014; Kim
and Kumar, 2014). Recently, Malikopoulos et al. (2018)
proposes a decentralized strategy for the co-optimization
of energy consumption and travel time. The optimal solu-
tion is found analytically resorting to the Pontryagins Min-
imum Principle, thus it can be implemented online very
efficiently. Although significant progress has been made,
the available methods only utilize a highly simplified linear
vehicle longitudinal model, in which the energy losses
are neglected and the powertrain is conventional, while
powertrain energy recovery is not addressed. Furthermore,
the energy consumption (cost function) is approximated

by the L2-norm of the vehicle acceleration, which might
not be realistic (Hadjigeorgiou and Timotheou, 2019).

This paper addresses the autonomous intersection crossing
problem by a centralized methodology, where a weighted
sum of the aggregate energy consumption and traveling
time of all CAVs is optimized. The contributions of the
present work are that in contrast with the available ap-
proaches: a) the vehicle dynamics in this work are modeled
by a realistic longitudinal model that involves the air drag
and rolling resistance losses, and the energy consumption
is accurately formulated rather than utilizing the L2-norm
of the vehicle acceleration. b) the investigation is carried
out for a wide range of powertrain energy recovery capa-
bility during braking (such an investigation for a single
vehicle scenario is found in (Chen et al., 2019)) to char-
acterize the impact of powertrain electrification on the
optimal solution, c¢) the overall optimal control problem
(OCP) is formulated as a convex optimization problem
without substantial relaxation and approximation, and
d) the resulting problem is solved by an OCP solver,
GPOPS-II (Rao et al., 2010), with the Pareto optimal
solutions generated to show the trade-off between energy
consumption and travel time, and also the benefit of the
convex formulation against the original non-convex OCP
formulation in terms of energy and computation cost.

The rest of this paper is organized as follows. Section 2 in-
troduces the intersection crossing problem for CAVs. The
optimal control problem is formulated and convexified in
Section 3. Numerical examples are illustrated in Section 4,
followed by the concluding remarks in Section 5.

2. PROBLEM STATEMENT

A signal-free intersection is considered in the present
work, as illustrated in Fig.1 (Malikopoulos et al., 2018;
Rios-Torres and Malikopoulos, 2016). The center of the
intersection is the Merging Zone (MZ), which is the area
of potential lateral collision of vehicles. CAVs merging
from each direction towards the MZ will first enter the
Control Zone (CZ), in which the CAVs are coordinated
by an Intersection Controller (IC). It is assumed that the
IC can communicate without any error or delay with all
CAVs that intend to cross the intersection, and then it
determines the trajectory of all the CAVs to ensure the
safe crossing of the MZ with an optimized objective in
relation to the total energy consumption and travel time.
In addition, the IC follows a First-In-First-Out (FIFO)
control policy, whereby each vehicle must enter and leave
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Fig. 1. Scheme of autonomous intersection crossing with
connected and autonomous vehicles.

the MZ in the same order it entered the CZ. Without loss
of generality, the MZ and CZ are considered to be squares
of side S and 2L + S, respectively, with S < L. As such,
the distance from any CZ entry point to the entry of the
MZ is L. For simplicity, it is also assumed that the roads
only have two lanes and all the CAVs keep their initial
directions throughout the CZ, such that lane changing and
turns are not allowed in this study.

Let us denote N the total number of CAVs that will enter
the CZ within a predefined time period T'. All the CAVs
are assumed identical, and the gross motion of a single
CAV is described by the longitudinal dynamics:

d 1 .
%U'L(t) - E(El)yi(t)iFriFd7i(t>)7 1= 1727"'7N7 (]‘)

where v;(t) is the velocity of the ith CAV, m=1200kg is
the vehicle mass, F,. = f.mg and Fy;(t) = fqv?(t) are the
resistances of rolling and air drag, f,,=0.01 and f;=0.47
are coeflicients of rolling and air drag resistances, and F,, ;
is the powertrain driving or braking force acting on the

wheels. The velocity and driving force of are constrained
by permissible limits:
(2a)

VUmin S Uz(t) S VUmax;
(2b)

Fw,min S Fw,i(t) S Fw,maxv
where Vmaxy = 15m/s and vmin = 0.5m/s represent the
maximum and minimum speed limits, prescribed by in-
frastructure requirements and traffic regulations (Hadji-
georgiou and Timotheou, 2019). Note that in order to
satisfy the strict positivity requirement of the transfor-
mation in (3), the lower bound of the velocity is set to
a small positive value. Moreover, the lower and upper
limits of the driving force are determined respectively by

. 2
Fw,min =M0min and Fw,max =MAmax with Amax = 2.5 Hl/S
the maximum (possible) acceleration of a CAV associated

with the powertrain capability and ami, = —6.5m/ % the
maximum available deceleration during emergency braking
subject to tire friction limits.

Since the traveled distance of each vehicle from the entry
of the CZ to the exit of the MZ is fixed, it is reasonable to
formulate and describe the problem in the space domain,
in which the independent variable is traveled distance, s,
instead of time. Moreover, in Section 3 it will be shown
that the problem defined in the space domain can be
formulated in a convex form. The transformation from
time domain to space domain takes the following form,
provided that the speed of the CAVs is strictly positive:

d 1d

ds wv;dt’ )
Then, the vehicle longitudinal dynamics are described by:
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Fw,i(s) —FT —Fdﬂ‘(s)
mu;(s)

d
—v,(s) = 1 =1,2,...,N 4
ds’UZ(S) y U )4y L] ()

For s€[L, L 4+ S], the following assumption is imposed:

Assumption 1. All CAVs enter the MZ at a same prede-
fined speed U € [Umin, Umax), and then maintain that speed
inside the MZ, such that:

vi(s)=v, se€[L,L+S5], VieN, (5)

where N is a set to designate the order in which the
vehicles enter the CZ:

N={1,2,...,N} e Z". (6)

As the model is formulated in the space domain, the
individual travel time t; of each CAV is introduced as a
system state, with its state dynamics expressed by:

d 1

—ti(s) = ——, i=1,2,...,N. 7
ds i(s) v;(s)’ ’ ’ (7)
The following assumption is imposed to validate the FIFO
priority model:

Assumption 2. The entry times of all CAVs at the CZ are
different, such that ¢;(0) # ¢;(0), i # j.

Thus, t;(0) < t;(0),4 < j, Vi,j € N. N can be further
divided into two subsets as N' =N, UN,, where N\, € Z"»
and N, € ZN+ collect the CAVs moving in longitudinal

and lateral directions, respectively. With reference to (6),
the FIFO control policy can be expressed as:

ti(s)<t;j(s), se{L,L+ S}, i<j, Vi,j e N. (8)
Furthermore, for the safe crossing of all vehicles, lateral
and rear-end collisions must be avoided at all times. A safe
(minimum) separation gap is defined to avoid rear-end col-
lision for CAVs traveling in the same direction. In contrast
to the rear-end safety constraint deployed in (Malikopoulos
et al., 2018) that enforces a constraint with a fixed safety
(minimum) distance, the present work proposes the use
of a more robust dynamic (velocity-dependent) minimum
inter-vehicular distance, which represents more accurately
the required gap. Since the problem is formulated in the
space domain, it is convenient to introduce the gap as a
time-gap for all s€[0, L] as follows:

ti(s)—tk(s)>Tg+|Zl(S)|, k<i, Yi,keN,  (9)
where k denotes the index of the vehicle in front of the
ith CAV in the same traveling direction, and T, = 0.5
is the response time of the vehicle braking system (Xie
et al., 2019). The overall time-gap on the right hand side
of (9) represents the minimum time that is required to stop
the ith CAV if CAV k suddenly stops. As this separation
gap is velocity dependent, it is less vulnerable to rear-end
collisions that may be caused by velocity disturbances,
in comparison to the fixed minimum distance applied
in existing works (Hadjigeorgiou and Timotheou, 2019;
Malikopoulos et al., 2018). Such an attribute may turn
out to be very useful in practice as the actual velocity
of the CAVs may be perturbed due to measurement
noise, communication delays or even malicious attacks.
Based on (5) (see Assumption 1), for s € [L,L + S] the
path constraint (9) can be reduced to a single terminal
constraint for each CAV as follows:

th(L) + Ty + —— < t:(L),

|amin ‘

(10)

which prevents rear-end collisions inside the MZ.

On the other hand, the merging times of any two CAVs
i and j from the perpendicular directions need to satisfy
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the constraint:

WD+ <L), i< i N, jEN,, (1)
which ensures that vehicle j enters the MZ only after
vehicle ¢ has left the MZ. As it can be noticed, the FIFO
control policy (8) is naturally guaranteed by (10) and (11).
Finally, a further assumption is introduced to ensure that
the initial states and control inputs are feasible:

Assumption 3. For any CAV i, none of the constraints (2)
and (9) is active at ¢;(0).

The energy consumption of a CAV is evaluated by for-
mulating the “wheel-to-distance” energy losses. A wide
range of vehicle powertrain architectures is considered in
the present study by defining the energy recovery factor
p € ]0,1] as the ratio between regenerative braking power
and the total braking power (Chen et al., 2019). Conse-
quently, the energy dissipation function for a single CAV
Eu,i Z 0

7 1s:
g [ [Fuals)
“r J pFyi(s) Fu:<0

As it can be noticed, different values of p allow different
fractions of recuperation of the vehicle braking energy. In
particular, the case p = 0 corresponds to a conventional
vehicle (such as an internal combustion engine vehicle),
while p=1 indicates that all braking energy is recovered
as in a highly hybridized or fully electric vehicle.

ds. (12)

3. OPTIMAL CONTROL PROBLEM FORMULATION

This work aims to design an IC that optimizes the total
energy consumption and travel time of all CAVs crossing
the intersection subject to constraints related to physical
limits and safety (as discussed in Section 2), by finding the
optimal driving speed profile of each CAV. This section
formulates the associated optimal control problem (OCP)
with suitable approximations for convex reformulation.

The objective of the OCP is to find the wheel force, F, ;,

that minimizes a multi-objective function, expressed as

follows:
N

J:Z<W1(ti(L)—ti(0>) + W,

L

max(pF, i(s), Fw,(s))ds
i=1 0

(13)

where the second term is inferred from (12), and W3 and
W, are the weighting factors tuned to balance the trade-
off between the total travel time and energy consumption,
subject to constraints (2), (4), (7), (9), (10), and (11).
Note that only the cost required to arrive at the MZ is
considered since both the energy consumption and travel
time within the MZ are fixed and independent of the
optimal control strategy (see Assumption 1).

The dynamic model of the OCP, which describes the
gross motion of all the CAVs, collects the differential
equations (1) and (7), and therefore the dynamic order
is 2N. As 1t can be seen, the velocity dynamic equation
(1) is nonlinear due to the air drag loss term. The nonlin-
earity can be conveniently removed, without introducing
approximations, by transforming from the time domain to
the space domain (see (4)), and performing the variable
change v;(s) = F;(s), where E;(s) is the kinetic energy of
CAV i (Uebel et al., 2019), defined by: E;(s) = tmuv?(s).
The system dynamic equations (4) and (7) can then be
rewritten as:
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%Ei(s) =Fii(s) + Fp(s) — Fr. — 2 % Ei(s), (14a)
d 1 .
£ti(3) = \/W’ ieN, (14b)

where the first equation is linear, and the wheel force
F.,;,i(s) is broken down to two separate control inputs, the

traction force Fy;(s) > 0 and braking force Fp;(s) < 0.

As such, the energy consumption fOL max(pFy i, Fyi) ds
in (13) can be expressed as a linear function of the two
control inputs, Fy,(s) and Fp;(s). It is clear from (2b)
that the two inputs are constrained by:

Fw,min < Fb,i(s) < Oa 0 < Ft,i(s) < Fw,max-

(15)

Another important step to convexify the nonlinear OCP
is to linearize the nonlinear dynamics of ¢(s) in (14b), and
to do so let us introduce a new control variable ((s):

) = Gils). (162)
Gi(s) > L i€ N. (16b)

V2E;(s)/m’

Thus, the nonlinearity in the differential equation (14b) is
removed and replaced by a convex path constraint (16b),
with the equality condition precisely achieved at all times,
since minimization of the total travel time (see (13)) also
minimizes ¢;(s).

In view of the speed limits (2a), the state of kinetic energy
E;(s) is bounded by:

Emin S Ez(s) S Emax; B} S N7 (17)
2 2

1 _1 .
where Eyin = 5muy;, and Epax = 5muy,,, are respectively
determined by the minimum velocity vy, and maximum
velocity vpax for the intersection crossing.

After replacing v;(s) with E;(s), the safety constraints (10)
and (11) remain linear, whereas (9) becomes:
(s) — tu(s) > T, + YEEOIM o 1y,
|amin|
which is non-convex. It is possible to turn this back
into a convex condition by approximating the nonlinear
relationship between kinetic energy and velocity, v;(s) =

\/2FE;(s)/m, by a linear function of F;:
f(Ei(s)) =ap+ a1Ei(s), VE;{(s) € [Emin, Emax|, (19)
where ag and a; are obtained by linear regression to

fit the line tangentially to the original curve, as shown
in Fig. 2. Since by virtue of the tangential linear fit

(18)

- 15| * Original

E Linearly approximated

= 10 1

£

=

QN5 ox 1
0 20 40 60 80 100 120

Kinetic Energy, E; [kJ]
Fig. 2. Linearly approximated relationship between kinetic
energy and velocity, where the points (x) of the
nonlinear relationship are linearly spaced in velocity.

f(Ei(s)) > \/2E;(s)/m at any s, a solution to the control
problem obtained by solving the approximated problem is
conservative and always feasible for the original problem.

15309
By defining the state and control vectors:
X = [E13E27‘"aENatlatQW"atN},
u= [Ft,laFt,Qy"'7Ft,N7Fb,17Fb,27"'7Fb,NaC17C27"‘7CN]7

the OCP for autonomous intersection crossing is formu-
lated as follows:

m&n J (20a)
sti La(s) = f(a(s) u(s),  (200)
U(z(s),u(s)) <0, (20¢)
b(x(0),z(L)) =0, (20d)
where
N L L
=Y <W1 i Ci(s) ds—i—Wg/ Fyi(s) + pFy(s) ds
- (21)

The dynamic constraints (20b) are formed by two sets
of linear differential equations (14a) and (16a), which
have identical form for all CAVs. Inequality constraints
(20c) comprise the path constraints for physical limits and
driving safety, including (10), (11),(15), (16b), (17) and,

ag + a1 E; (S)

‘amin|

obtained from (18) and (19). The boundary conditions
(20d) specify the initial and terminal conditions of the
states. As mentioned previously, the initial conditions
2(0) are randomly generated while fulfilling the conditions
imposed in Assumption 3. Finally, the OCP problem is

completed by the following terminal condition to meet
Assumption 1:

ti(s) — ti(s) > T, + sel0,0]  (22)

Ei(L) = %mf)z, i€eN. (23)

4. NUMERICAL RESULTS

The evaluation of the proposed strategy is performed in a
case study in two steps: 1) the proposed convex OCP (see
(20)) is solved for CAVs with different levels of energy
recovery capability determined by p, to investigate and
compare the impact of p on the optimum of the weighted
sum of energy consumption and travel time; 2) the con-
servativeness of the convex relaxation is investigated by
comparing the solution of the convex OCP with the solu-
tion solved by the original more accurate non-convex OCP
(see (20) but with (14b) used instead of (16) and (18) used
instead of (22)).

In the present case study, an intersection with S =10m
and L =150m is considered. The constant velocity inside
the MZ is set to ¥ = 10m/s. The arrival speed v;(0), time
t;(0) and direction of each CAV are randomly generated
as presented in (Hadjigeorgiou and Timotheou, 2019).
Without loss of generality, it is assumed that the v;(0), ¢ €
N follow a uniform probability distribution between vy,
and vpax, while the directions are also subject to a uniform
distribution. Arrival times are modeled using Poisson
processes under the constraints of Assumptions 2 and
3. As shown in Fig. 1, there is no interaction between
vehicles traveling in opposite directions. Therefore, in
order to make the presentation of the results clearer,
it is reasonably assumed that there is only one lane
in each perpendicular road and all the CAVs travel in
the same direction in each lane. A total number of 20
CAVs is considered, with 12 randomly selected vehicles
traveling in the north-south direction and 8 vehicles in
the east-west direction. Additionally, the arrival speed of
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one of the vehicles traveling in the north-south direction
is substituted with a value close to the upper speed limit,
and the arrival speed of a vehicle traveling in the east-west
direction is substituted with a value close to the lower
speed limit, to enable a more exhaustive investigation.
All the OCPs are solved in the Matlab environment by
GPOPS-II software.

The optimal solutions of the convex OCP are reported
in Figs. 3 to 5(a). To compare the optimal solutions for
different p, at first the weights of the objective function
are set to W1 = Wy =1 and solutions for p=0and p =1
are found.

Convevz OCP p=0
— North-South —— East- West‘

Velocity [m/s|

n ‘ s
Convcx OCP p—1

//._./.w o Wﬁjﬁ?ﬂfi
<

0 10 20 30 40 50 60 70 80
Time s
Fig. 3. Optimal driving speed profiles of CAVs by solving
the convex OCP with p = 0 (top) and p = 1 (bottom).
The dash lines denote the constant velocity v inside
the MZ.

As it can be seen in Fig. 3, the optimal speed profiles in
both scenarios behave very differently. When p = 0, the
optimal driving speeds of all the CAVs follow the pulse and
glide (PnG) strategy that is mainly formed by initially
rapid acceleration to a maximum velocity followed by a
period of coasting and in some cases intensive braking at
the end of the maneuver to satisfy the terminal condition
(23). Depending on the initial speed, the behavior of each
CAV may start from any PnG stage. For example, if the
CAV enters the CZ at a high velocity, instead of initially
accelerating the CAV, the IC controller enforces the CAV
to glide down immediately in order to reach the desired
velocity ¥ at the end. More braking is preferred when
p =1 as compared to the case with p =0 as the braking
energy can be recuperated for future use. The optimal
solutions for p = 1 further suggest all CAVs accelerate
to a cruise speed value and maintain this speed until
they approach the MZ. Note that all the CAVs cruise at
the same velocity (of 12.42m/s), which naturally avoids
rear-end collisions according to the imposed constraints.
Furthermore, the individual CAV optimal speed profile
results as p varies are compatible with results obtained
in previous single-vehicles studies (Chen et al., 2018). For
example, as compared to the PnG solution for p =0, for
p =1 the constant cruise speed is a solution that allows
to reduce the initial peak speed (to avoid excessive air
drag losses) and maximize energy recovery at the end of
the maneuver, to improve the energy efficiency without
compromising the travel time.

In order to verify that the FIFO policy and safety con-
straints are followed during the simulations, the traveled
distance of each CAV is plotted against time in Fig. 4
for both p = 0 and p = 1 cases. It can be observed that
all the CAVs pass the intersection in sequence without
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— North-South  —— East-West

5150+ Q= 7
g
% 100
E
9 50
)
5
E o

0 800 20 40 60 80

Tlme [s] Time [s]

Fig. 4. Traveled distance trajectories of CAVs when fol-
lowing optimal driving speeds by solving the convex
OCP with p = 0 (left) and p = 1 (right). The black
lines denote the vehicles entry the MZ

rear-end and lateral collisions (none of the trajectories
intersect). Moreover, any two vehicles traveling in the
same direction satisfy the safety minimum time-separation
(see (22)), while the distance of two vehicles traveling in
perpendicular directions may be very close to each other as
they only need to avoid the lateral collision in the MZ (see
(11)). Finally, by further analysis of the results it is found
that the constraints (9), (10), and (11) are satisfied in the
solutions of the convex OCP, which justifies the convex
relaxation (see (22)) and shows the validity of the solution
for the original problem.

To show the trade-off between the total travel time and
the energy consumption, Pareto solutions in both scenarios
of p values are investigated by a thorough tuning of the
weights W7 and W5 under the same initial conditions of
vehicles speed, direction and arrival time. As it can be seen

-

——Convex OCP
——Nonconvex OCP

154
©

o
™

<
o

<
3

Normalized Total Energy Cost
o
~

©

4
0.4 0.6 0.8 1 0.4 0.6 0.8 1
Normalized Total Travel Time Normalized Total Travel Time

(a) (b)

Fig. 5. Left (a): Pareto fronts of the convex OCP for p=0
and p=1. Right (b): Pareto fronts of the convex OCP
and non-convex OCP for p=1. (The min-max solu-
tions are highlighted by o, and both the total energy
cost and total travel time are normalized against their
maximum value solutions of (400s,1000kJ)).

in Fig. 5(a), the Pareto front for p = 0 is always above the
Pareto front for p = 1 since the energy recovery enables
a significant energy saving. In particular, to achieve the
total travel time of 250s (0.625 when normalized), the
powertrain case with full regenerative braking capability
(p = 1) can approximately save roughly 35% energy as
compared to the conventional powertrain case (p = 0).
Moreover, the results for p = 1 indicate that the min-
max Pareto solution is obtained at normalized values
of (0.525,0.525), which are equivalent to (210s,525kJ),
while an increase in travel time of 20% from the Pareto
solution leads to an approximated 13% reduction in energy
consumption. For any solutions further away from the
Pareto solution, it can be observed that both energy
consumption and travel time are extremely sensitive to the
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changes of each other. In the case of p = 0, the min-max
Pareto solution is at (270s,675kJ). Increasing the travel
time from the Pareto solution by 20% can save about 7%
energy usage, while further increase in travel time can lead
to up to 10.3% energy consumption reduction. Thus, when
the CAVs have conventional powertrains, both energy and
travel time consumption are less sensitive to the changes
of each other as compared to the case of p = 1.

To gain more insight into the optimality of the proposed
convex optimization method, the next example with p=1
is carried out to explicitly compare the solution of the
convex OCP and the solution of the original non-convex
OCP. In Fig. 5(b), the Pareto fronts of both convex and
non-convex OCPs are shown for the same initial conditions
as used previously and shown in Fig. 3. As it can be
noticed, the solution of the convex OCP is equally and
in some cases more optimal than the solution of the non-
convex OCP, which highlights the benefit of the convex
relaxation. As an example, at a total travel time of 250
the convex optimization solution is about 15% better than
the solution of the non-convex original OCP in terms of
energy economy. To further emphasize the improvement
of the convex OCP on the computational efficiency, the
average running time of both OCP cases are compared.
The convex OCPs approximately consume one fifth of the
time requested by the non-convex OCPs. On the other
hand, the equality of the convex and non-convex OCP
solutions holds when the total travel time is small. This
can be understood that each CAV has to travel at least
for a portion of its trajectory at its maximum speed to
achieve the desired travel time, thus yielding the same
or very similar solution for both OCPs. When the travel
time is relaxed, there is more room for optimization, and
therefore the non-convex OCP may reach local optimal
solutions, which are less optimal than the single and well
approximated ‘global optimum’ solution by the convex
optimization.

5. CONCLUSIONS

This paper proposes a novel centralized control strategy for
controlling CAVs to cross a signal-free intersection. Both
travel time and energy consumption is optimized by find-
ing the optimal velocity trajectory of each vehicle subject
to vehicle operational and intersection safety constraints.
The overall control problem is formulated by utilizing con-
vex modeling techniques, yielding a convex optimal control
problem (OCP). The numerical examples investigate the
trade-off between travel time and energy consumption for
different powertrain systems, characterized by the energy
recovery factor. Moreover, the conservativeness and the
optimality of the convex OCP formulation are verified by
comparing the convex solutions with the solutions from the
original non-convex problem. Future research will investi-
gate practical uncertainties, such as noisy measurements,
communication delays, and more realistic priority models
rather than the First-In-First-Out policy.
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